指数式与对数式(基础+复习+习题+练习)

合集下载

指数与对数运算练习题

指数与对数运算练习题

指数与对数运算练习题指数与对数运算练题1.用根式的形式表示下列各式(a>0):1) a^(1/2)2) a^(1/3)3) a^(1/4)4) a^22.用分数指数幂的形式表示下列各式:1) x^(y/3)2) (1/5)^(-3/4)3) (3ab^2)^24) 3a^45) a^33.求下列各式的值:1) 8^(1/3) = 22) 100^(1/2) = 103) (8/14)^(-3/4) = 98/274) (27/64)^(1/3) = 3/45) [(-2)^2] = 46) [(1-3/2)^2] = 1/47) 64^(1/2) = 8选择题:1.以下四式中正确的是(B)log2^1=12.下列各式值为的是(D)-53.log2^1/5^11/24的值是(A)-114.若m=lg5-lg2,则10m的值是(A)55.设N=11+log2^1/5^3,则(A)N=26.在b=loga-2(5-a)中,实数a的范围是(C)2<a<3或3<a<57.若log4[log3(log2x)]=1/2,则x^(1/2)等于(B)1/2填空题:10.用对数形式表示下列各式中的x:10x=25:x=log10(25)/log10(10)=2/1=22x=12:x=log2(12)/log2(2)=4/1=44x=16:x=log4(16)/log4(4)=2/1=211.lg1++=lg(1+1)=lg212.Log15(5)=1/m。

则log15(3)=log3(15)/log3(5)=1/(m*log3(5))13.lg2^2-lg4+1+|lg5-1|=2-2+1+|1-1|=114.(1) log3(2)=log6(3)/log6(2)2) (log6(3))^2+1-a=log6(12/a)log12(3)=log6(3)/log6(12)=log6(3)/[log6(2)+log6(6)]=log3(2 )/(1+1/2)=2log3(2)/3=2log12(3)/(log12(2)+log12(6))6、计算题1.2lg6-2lg5+lg2=lg(6^2/5)+lg2=lg(72/5)2.2lg5+lg2·lg50=2lg5+lg(2·5^2)=2lg5+lg50=lg(5^2·50)=lg12 503.2log3(2)-log3(32)+log3(8)-3log5(5)=2log3(2)-(log3(2^5)-log3(2^2))+log3(2^3)-(log5(5^3))=2log3(2)-log3(2^3)+log3(2^3)-3=2log3(2)-34.lg5·lg20-lg2·lg50-lg25=lg(5·20/2)-XXX(50)-XXX(25)=lg(50/2)-XXX(50)-XXX(25)=lg(1/2)-2lg(5)=log2-2log515.根据换底公式,log5(12)=log2(12)/log2(5)=log2(2^2·3)/log2(5)=2log2(2/5)+log2(3/5)19.根据3a=2,可得a=log2(8/9),代入log3(8)-2log3(6)中,得log3(8)-2log3(6)=log3(2^3)-2log3(2^2·3)=3log3(2)-2log3(2)-2log3(3)=log3(2)-2log3(3)16.根据对数的定义,可得a^m=2,a^n=3,代入a^(2m+n)中,得a^(2m+n)=a^(2loga(2)+loga(3))=a^loga(2^2·3)=621.lg25+lg2lg50+(lg2)^2=2+2lg5+4=6+2lg517.⑴2log2(8)=log2(8^2)=log2(64)=6⑵3log3(9)=log3(9^3)=log3(729)=6⑶2^18=18.⑴lg10-5=1-5=-4⑵⑶log2(8)=3提升题4.化简1)a·a·a/3= a^3/32)a·a/a= a3)3a·(-a)/9= -a^2/34) ba·a^2/a^21= b/a^195)log1(81)/log1(8/27)= log8/27(81)= log3(3^4)= 4log3(3)= 45.计算⑴ 325-125/45= 200/45= 40/9⑵ 23·31.5·612= 23·63·12=⑶ (-1)-4·(-2)^-3+(-9)·2-2·2^-2= -1-1/8-18+1/2= -1453/8⑷ 7/10+0.1-2+π= 37/10+π-1.9⑸ 41/24-32/27= 41/24-32/27·8/8= (41·27-32·24)/648= 5/726.解方程1)x-1/2=1/3,x=5/62)2x^4-1=15,2x^4=16,x^4=8,x=23) (0.5)1-3x=4,(0.5)^1=0.5,0.5·2^-6x=4,2^-7x=8,-7x=log2(8)=-3,x=3/77.解题1)a+a^-1=3,已知a+a^-1=3,两边平方得a^2+a^-2+2=9,所以a^2+a^-2=72)a+a^2=3,已知a+a^-1=3,两边平方得a^2+a^-2+2=9,所以a^2+a^-2=7,两边加1得a^2+a^-2+1=8,即(a+a^-1)^2=8,所以a+a^-1=±2√2,因为a+a^-1=3,所以a+a^-1=2√23)1-2x>0,所以x<1/24)33a-2b=3^3a^3·2^-2b=27/48.lg25+lg2·lg25+lg22=2+2lg5+1=3+2lg51.化简计算:log2 111 ·log3 ·log5 2589 - 3/42.化简:(log2 5+log4 0.2)(log5 2+log25 0.5)3.若XXX(x-y)+XXX(x+2y)=lg2+lgx+lgy,求的值.4.已知log2 3 =a,log3 7 =b,用a,b表示log42 56.5.计算,(1)51-log0.2 3xy;(2)log4 3·log9 2-log1 432;(3)(log2 5+log4 125)2·log3 21.化简计算:log2 111 ·log3 ·log5 2589 - 3/4.将log2 111分解为log2 3和log3 37的和,将log5 2589分解为log5 3和log5 863的和,然后应用对数乘法和对数减法规则,得出结果为log2 3+log3 37+log3-log5-log5 3-log5 863-3/4.2.化简:(log2 5+log4 0.2)(log5 2+log25 0.5)。

指数与对数运算练习题

指数与对数运算练习题

指数运算与对数运算练习题若 m= lg5 — lg2 ,5 210m 的值是(C 、10设 N= ―1— +log 2 3 log 5 3基础题 1、 用根式的形式表示下列各式(a . 0) 1 3 (1) a 5= ________ (2) a 4= _________ 2、 用分数指数幕的形式表示下列各式: (3)3 a _5 = (4) 3a 「2=(1) .. x 4 y 3 = (2)(3) 3 ab 2 .ab = 3、求下列各式的值 2(1) 83= ______ ;(2) 100 (4) 2 m m 二一va■va= (m 0) ; (5)(3)1(5) [(—、,2)2厂=(6) 1-3222(7) 64空1、 、选择题 以下四式中正确的是( log 22=4 B 、log 21=1 C 、log 216=4、log 21=l2 4 2、 F 列各式值为0的是( 10 B 、log 33 C 、(2- 3 )log 2 | — 1 |3、 log ?] 25的值是(B 、5D--5N= 2 C N< — 2 D N> 2A 、 a5 或 a 2 B 、2 a 5 C 、2 :a3 或 3 a 5D 3 a 47、若 log 4[log 3(log 2 x)] 1=0 ,贝U x2等于( )A 、丄12B 、 ^2C 8D 44 2)6、 在b = log a A (5 - a)中,实数a 的范围是( & 3log ^4的值是( )A 、16 B 2 C 、3 D 44、 ,则(5、9、 log 百• n ( n+1—- n)等于()A 、1 B - 1 C 、2 D - 2二、填空题10、用对数形式表示下列各式中的 xxx10=25: : 2 = 12::4x =l :11、Ig1+lg0.1+lg0.01 = 612、 L og i55=mJ 则 log 153= ______________13、 Jg 22 —Ig4+1 +1 Ig5 - 11= ___________________1 _ a14、 (1). log ,32= ------,贝U log 12 3= _________、 a2Iog 618(2). (log 6 3)- = __________ . Iog 2 6⑶ Ig 25 Ig 2 lg 50 = ________________(5) Ig5 Ig20 — Ig2 Ig50-Ig25= _______________15、 若 Ig2 = a , Ig3 = b ,则 log 512= _______ 19 、 3a = 2,贝U log 38-2log 36= ___________ 16、 若 Iog a 2 =m,log a 3 = n,a 2mHn =___________________21、lg25+lg2lg50+(lg2)2= ________ 三、解答题17、求下列各式的值⑴2log 28⑵ 3log 39log丄5⑶2 2log 17⑷3 318、求下列各式的值⑴ Ig10 - 5⑵Ig0.01(3) log21⑷ log 181827提升题4.化简137 3 35 33(1) a 3*a 4*a12 -(2) a 2*a 4a 6=(3) 3a 2•(—a 4)4" 9Ja =2-3 1(4) 「,(5): =Va •刘a27b 61 / 8 6厂(7) a 5b 5 対a 4农b 3(a 式 0,b 式0 )=5.计算__ _(1)325-125"4一5(2)2-3 315 612(4)2log 32 - 也log 38 — 3log 5591(])」_4 ( -2) -(:)°2 4 (7严 27 I +0.1 工 J 9.丿3 2 4(-3 )3 0.04 飞 8 6. 解下列方程 -1 1 (1) x 3 =丄 81 7. (1).已知 a2 - a (3)(5)(6) 1 -9「2⑷2+ '2巴尸一3冗0+聖 \、27 丿 48 4 [(-2)3]「16°75 3(2) 2x 4 -1 =15 =3,求下列各式的值( ” \0-「3、2-2—i +2一 - 2- I I 4丿 -0.010.5(3) (0.5严=42心A a a = 1 1(1) a° - a _2= 1) ;(2) a 2a ,(2).若a a J = 3,求下列各式的值: (2) a 2+3(3) .使式子(1 -2x)花有意义的x 的取值范围是 __________ 亠 (4) .若3a =2,3—5」,则33山的值= &求 lg 25+lg2 • Ig25+lg 22 的值 9、 化简计算:log 2 — • log 31 • log 51 25 8 9 10、 化简:Iog 2 5+log 4 0.2 log s 2+log 250.5 . x 11、 若 lg x 一y lg x 2y =lg2 lg x lg y ,求一的值. 12、 .已知 log 23 = a , log 37 = b ,用 a , b 表示 log 4256. 13、计算,(1) 51_log 0.23; (2) log 4 3 log9^log : 4 32 ; (3) (log 25+log 4 125)2log3 2 log 3 5。

高中数学 第四章 指数函数与对数函数 4.4 对数函数 4.4.1 对数函数的概念精品练习(含解析)

高中数学 第四章 指数函数与对数函数 4.4 对数函数 4.4.1 对数函数的概念精品练习(含解析)

4.4.1 对数函数的概念必备知识基础练知识点一 对数函数的概念1.下列函数表达式中,是对数函数的有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log 12(-x )(x <0);⑥y=2log 4(x -1)(x >1).A .1个B .2个C .3个D .4个2.已知f (x )为对数函数,f ⎝ ⎛⎭⎪⎫12=-2,则f (34)=________.知识点二对数型函数的定义域3.函数f (x )=log 2(x 2+3x -4)的定义域是( ) A .[-4,1] B .(-4,1)C .(-∞,-4]∪[1,+∞)D .(-∞,-4)∪(1,+∞) 4.函数f (x )=1log 122x +1的定义域为________.知识点三对数函数模型的实际应用5.某种动物的数量y (单位:只)与时间x (单位:年)的函数关系式为y =a log 2(x +1),若这种动物第1年有100只,则第7年它们的数量为( )A .300只B .400只C .500只D .600只6.某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额为x 万元时,奖励y 万元.若公司拟定的奖励方案为y =2log 4x -2,某业务员要得到5万元奖励,则他的销售额应为________万元.关键能力综合练 一、选择题 1.给出下列函数:①y =log 23x 2;②y =log 3(x -1);③y =log (x +1)x ;④y =log πx .其中是对数函数的有( ) A .1个 B .2个 C .3个 D .4个 2.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅3.已知函数f (x )=log a (x +1),若f (1)=1,则a =( ) A .0 B .1 C .2 D .3 4.函数y =1log 2x -2的定义域为( ) A .(-∞,2) B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)5.函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B.[0,+∞) C .(1,+∞) D.[1,+∞)6.(探究题)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))的值为( )A .lg 101B .1C .2D .0 二、填空题7.若f (x )=log a x +a 2-4a -5是对数函数,则a =________.8.若f (x )是对数函数且f (9)=2,当x ∈[1,3]时,f (x )的值域是________.9.(易错题)函数f (x )=lg ⎝⎛⎭⎪⎫2kx 2-kx +38的定义域为R ,则实数k 的取值X 围是________.三、解答题10.求下列函数的定义域:(1)y=1log2x+1-3;(2)y=log(2x-1)(3x-2);(3)已知函数y=f[lg(x+1)]的定义域为(0,99],求函数y=f[log2(x+2)]的定义域.学科素养升级练1.(多选题)已知函数f(x)=log a(x+1),g(x)=log a(1-x)(a>0,a≠1),则( ) A.函数f(x)+g(x)的定义域为(-1,1)B.函数f(x)+g(x)的图象关于y轴对称C.函数f(x)+g(x)在定义域上有最小值0D.函数f(x)-g(x)在区间(0,1)上是减函数2.设函数f(x)=log a x(a>0且a≠1),若f(x1x2…x2 017)=8,则f(x21)+f(x22)+…+f(x22 017)=________.3.(情境命题—生活情境)国际视力表值(又叫小数视力值,用V表示,X围是[0.1,1.5])和我国现行视力表值(又叫对数视力值,由缪天容创立,用L表示,X围是[4.0,5.2])的换算关系式为L=5.0+lg V.(1)请根据此关系式将下面视力对照表补充完整;V 1.5②0.4④L ① 5.0③ 4.0(2)甲、乙两位同学检查视力,其中甲的对数视力值为 4.5,乙的小数视力值是甲的2倍,求乙的对数视力值.(所求值均精确到小数点后面一位数,参考数据:lg 2≈0.301 0,lg 3≈0.477 1)4.4 对数函数4.4.1 对数函数的概念必备知识基础练1.解析:符合对数函数的定义的只有③④. 答案:B2.解析:设f (x )=log a x (a >0,且a ≠1),则log a 12=-2,∴1a 2=12,即a =2,∴f (x )=,∴f (34)=34=log 2(34)2=log 2243=43.答案:433.解析:一是利用函数y =x 2+3x -4的图象观察得到,要求图象正确、严谨;二是利用符号法则,即x 2+3x -4>0可因式分解为(x +4)(x -1)>0,则⎩⎪⎨⎪⎧x +4>0,x -1>0或⎩⎪⎨⎪⎧x +4<0,x -1<0,解得x >1或x <-4,所以函数f (x )的定义域为(-∞,-4)∪(1,+∞).答案:D4.解析:由题意有⎩⎪⎨⎪⎧2x +1>0,2x +1≠1,解得x >-12且x ≠0,则f (x )的定义域为⎝ ⎛⎭⎪⎫-12,0∪(0,+∞).答案:⎝ ⎛⎭⎪⎫-12,0∪(0,+∞)5.解析:由题意,知100=a log 2(1+1),得a =100,则当x =7时,y =100log 2(7+1)=100×3=300.答案:A6.解析:由题意得5=2log 4x -2,即7=log 2x ,得x =128. 答案:128关键能力综合练1.解析:①②不是对数函数,因为对数的真数不是仅有自变量x ;③不是对数函数,因为对数的底数不是常数;④是对数函数.答案:A2.解析:∵M ={x |1-x >0}={x |x <1},N ={x |1+x >0}={x |x >-1},∴M ∩N ={x |-1<x <1}.答案:C3.解析:∵f (1)=log a (1+1)=1,∴a 1=2,则a =2,故选C. 答案:C4.解析:要使原函数有意义,则⎩⎪⎨⎪⎧x -2>0,log 2x -2≠0,解得2<x <3或x >3,所以原函数的定义域为(2,3)∪(3,+∞),故选C.答案:C5.解析:∵3x >0,∴3x +1>1.∴log 2(3x+1)>0.∴函数f (x )的值域为(0,+∞). 答案:A6.解析:由题 f (f (10))=f (lg 10)=f (1)=12+1=2.故选C. 答案:C7.解析:由对数函数的定义可知,⎩⎪⎨⎪⎧a 2-4a -5=0,a >0,a ≠1,解得a =5.答案:58.解析:设f (x )=log a x ,∵f (9)=2,∴log a 9=2,∴a =3,∴f (x )=log 3x 在[1,3]递增,∴y ∈[0,1].答案:[0,1]9.解析:依题意,2kx 2-kx +38>0的解集为R ,即不等式2kx 2-kx +38>0恒成立,当k =0时,38>0恒成立,∴k =0满足条件.当k ≠0时,则⎩⎪⎨⎪⎧k >0,Δ=k 2-4×2k ×38<0,解得0<k <3.综上,k 的取值X 围是[0,3). 答案:[0,3)10.解析:(1)要使函数有意义,则有⎩⎪⎨⎪⎧x +1>0,log 2x +1-3≠0,即x >-1且x ≠7,故该函数的定义域为(-1,7)∪(7,+∞). (2)要使函数有意义,则有⎩⎪⎨⎪⎧3x -2>0,2x -1>0,2x -1≠1,解得x >23且x ≠1,故该函数的定义域为⎝ ⎛⎭⎪⎫23,1∪(1,+∞). (3)∵0<x ≤99,∴1<x +1≤100. ∴0<lg(x +1)≤2, ∴0<log 2(x +2)≤2, 即1<x +2≤4,即-1<x ≤2. 故该函数的定义域为(-1,2].学科素养升级练1.解析:f (x )+g (x )=log a (x +1)+log a (1-x )所以⎩⎪⎨⎪⎧x +1>01-x >0,解得-1<x <1,函数f (x )+g (x )的定义域为(-1,1),故A 正确;f (-x )+g (-x )=log a (-x +1)+log a (1+x ),所以f (x )+g (x )=f (-x )+g (-x ),所以函数f (x )+g (x )是偶函数,图象关于y 轴对称,故B 正确;f (x )+g (x )=log a (x +1)+log a (1-x )=log a (x +1)(1-x )=log a (-x 2+1),令t =-x 2+1,则y =log a t ,在x ∈(-1,0)上,t =-x 2+1单调递增,在x ∈(0,1)上,t =-x 2+1单调递减,当a >1时,y =log a t 单调递增,所以在x ∈(-1,0)上,f (x )+g (x )单调递增,在x ∈(0,1)上,f (x )+g (x )单调递减,所以函数f (x )+g (x )没有最小值,当0<a <1时,y =log a t 单调递减,所以在x ∈(-1,0)上,f (x )+g (x )单调递减,在x ∈(0,1)上,f (x )+g (x )单调递增,所以函数f (x )+g (x )有最小值为f (0)+g (0)=0,故C 错;f (x )-g (x )=log a (x +1)-log a (1-x )=log ax +11-x=log a ⎝⎛⎭⎪⎫-1+21-x ,令t =-1+21-x ,y =log a t .在x ∈(-1,1)上,t =-1+21-x 单调递增,当a >1时,f (x )+g (x )在(-1,1)单调递增,当0<a <1时,f (x )+g (x )在(-1,1)单调递减,故D错.故选AB.答案:AB2.解析:∵f (x 21)+f (x 22)+f (x 23)+…+f (x 22 017) =log a x 21+log a x 22+log a x 23+…+log a x 22 017 =log a (x 1x 2x 3…x 2 017)2=2log a (x 1x 2x 3…x 2 017) =2f (x 1x 2x 3…x 2 017), ∴原式=2×8=16. 答案:163.解析:(1)因为5.0+lg 1.5=5.0+lg 1510=5.0+lg 32=5.0+lg 3-lg 2≈5.0+0.477 1-0.301 0≈5.2, 所以①应填5.2; 因为5.0=5.0+lg V , 所以V =1,②处应填1.0;因为5.0+lg 0.4=5.0+lg 410=5.0+lg 4-1=5.0+2lg 2-1≈5.0+2×0.301 0-1≈4.6, 所以③处应填4.6;因为4.0=5.0+lg V ,所以lg V =-1.所以V=0.1.所以④处应填0.1.对照表补充完整如下:(2)则有4.5=5.0+lg V甲,所以V甲=10-0.5,则V乙=2×10-0.5.所以乙的对数视力值L乙=5.0+lg(2×10-0.5) =5.0+lg 2-0.5≈5.0+0.301 0-0.5≈4.8.。

对数计算练习题

对数计算练习题

对数计算练习题一、基础题1. 计算下列对数的值:(1) log₂8(2) log₅25(3) log₃1/27(4) log₁₀1002. 将下列指数式转换为对数式:(1) 2³ = 8(2) 5² = 25(3) 3⁻³ = 1/27(4) 10² = 1003. 将下列对数式转换为指数式:(1) log₂8 = 3(2) log₅25 = 2(3) log₃1/27 = 3(4) log₁₀100 = 2二、进阶题1. 计算下列对数的值:(1) log₂16 log₂2(2) log₅125 + log₅5(3) log₃9 / log₃3(4) log₁₀1000 ÷ log₁₀102. 化简下列对数表达式:(1) log₂(8×2)(2) log₅(25÷5)(3) log₃(27×1/3)(4) log₁₀(1000÷100)3. 计算下列对数的值:(1) log₂(1/16)(2) log₅(1/125)(3) log₃(1/81)(4) log₁₀(1/10000)三、综合题1. 已知log₂x = 3,求x的值。

2. 已知log₅x = 2,求x的值。

3. 已知log₃x = 2,求x的值。

4. 已知log₁₀x = 4,求x的值。

5. 已知log₂(x1) = 2,求x的值。

6. 已知log₅(x+3) = 1,求x的值。

7. 已知log₃(x/2) = 0,求x的值。

8. 已知log₁₀(x²) = 3,求x的值。

四、应用题1. 如果10的某个对数等于5,那么这个对数是多少?2. 某城市的人口每20年增长一倍,如果现在的人口是P,那么多少年前人口是P/4?3. 一种放射性物质的半衰期是5年,经过15年后,剩余的这种物质占原来总量的多少?4. 一个细菌群体每半小时增长一倍,经过2小时后,细菌的数量是初始数量的多少倍?五、难题1. 已知log₂(x+1) log₂(x1) = 3,求x的值。

第四章 指数函数与对数函数【章节复习专项训练】(解析版)

第四章 指数函数与对数函数【章节复习专项训练】(解析版)

第四章指数函数与对数函数【章节复习专项训练】【考点1】:指数、对数的运算例题1.下列各式正确的是()A .248πππ=B .23e =C .ln 6ln 2ln 3=D .lg 4lg 252+=【答案】D 【分析】由指数的运算法则可判断AB ;由换底公式可判断C ;由对数的加法运算法则可判断D.【详解】对于A ,22644ππππ+==,故A 错误;对于B ,23e =,故B 错误;对于C ,3ln 6log 6ln 3=,故C 错误;对于D ,()lg 4lg 25lg 425lg1002+=⨯==,故D 正确.故选:D.【变式1】以下对数式中,与指数式56x =等价的是()A .5log 6x =B .5log 6x =C .6log 5x =D .log 65x =【答案】A 【分析】根据指数式和对数式的关系即可得出.【详解】根据指数式和对数式的关系,56x =等价于5log 6x =.故选:A.【变式2】已知log 92a =-,则a 的值为()A .3-B .13-C .3D .13【答案】D 【分析】直接将对数式化为指数式求解即可.【详解】∵log 92a =-,0a >,∴29a -=,解得13a =,故选:D.【点睛】本题主要考查了对数的概念,属于基础题.【变式3】若1log 24a =,则a =()A .2B .4C .12D .14【答案】C 【分析】利用指数式与对数式的互化以及指数幂的运算即可求解.【详解】2111log 2442aa a =⇒=⇒=.故选:C 【点睛】本题考查了指数式与对数式的互化,考查了基本知识的掌握情况,属于基础题.【变式4】计算122121(2)()248n n n ++-⋅⋅(n ∈N *)的结果为()A .416B .22n+5C .2n 2-2n +6D .1(22n -7【答案】D 【分析】结合指数的运算公式化简即可求出结果.【详解】原式272221722626222122222n n n n n n -+-----⋅⎛⎫==== ⎪⋅⎝⎭,故选:D.【考点2】:指数函数、对数函数的概念例题1.下列函数表达式中,是对数函数的有()①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log x (x +2);⑥y =log 2(x +1).A .1个B .2个C .3个D .4个【答案】B 【分析】根据对数函数的概念确定正确选项.【详解】形如log a y x =(0a >且1a ≠)的函数为对数函数,故③④为对数函数,所以共有2个.故选:B 【点睛】本小题主要考查对数函数的概念,属于基础题.【变式1】已知正整数指数函数()(2)x f x a a =-,则(2)f =()A .2B .3C .9D .16【答案】C 【分析】由函数是指数函数可求出3a =,即可求出(2)f .【详解】因为函数()(2)x f x a a =-是指数函数,所以21a -=,则3a =,所以()3x f x =,+∈x N ,所以2(2)39f ==.故选:C.【点睛】本题考查指数函数概念的理解,属于基础题.【变式2】若函数()f x 是指数函数,且()22f =,则()f x =()A .xB .2xC .12x⎛⎫ ⎪⎝⎭D .2x⎫⎪⎪⎝⎭【答案】A 【分析】利用待定系数法求解即可.【详解】解:由题意,设()(0xf x a a =>且)1a ≠,因为()22f =所以22a =,解得a =所以()xf x =.故选:A.【点睛】本题考查待定系数法求指数函数解析式,是基础题.【变式3】已知函数2x y a =⋅和2x b y +=都是指数函数,则a b +=()A .不确定B . 0C .1D . 2【答案】C 【分析】根据指数函数的概念,得到1a =,0b =,即可求出结果.【详解】因为函数2x y a =⋅是指数函数,所以1a =,由2x b y +=是指数函数,得0b =,所以1a b +=.故选:C.【点睛】本题主要考查由指数函数概念求参数的问题,属于基础题型.【变式4】已知函数f (x )=log a (x +1),若f (1)=1,则a =()A .0B .1C .2D .3【答案】C 【分析】根据指数式与对数式互化公式,结合代入法进行求解即可.【详解】∵f (1)=log a (1+1)=1,∴a 1=2,则a =2,故选:C.【考点3】:指数函数、对数函数的图像和性质例题1.如图,若1C ,2C 分别为函数log a y x =和log b y x =的图象,则()A .01a b <<<B .01b a <<<C .1a b >>D .b a l>>【答案】B 【分析】根据对数函数的图象特征,即可直接得到,a b 大小关系.【详解】根据1C ,2C 分别为函数log a y x =和log b y x =的图象,可得01b <<,01a <<,且b a <.故选:B 【点睛】本题考查根据对数函数图象求参数范围,注意规律的总结,属简单题.【变式1】函数()()ln 31y x x =-+的定义域是()A .()1,3-B .[]1,3-C .()(),13,-∞-+∞D .(][),13,-∞-+∞【答案】A 【分析】由对数函数定义要求其真数大于零构建不等式,求解即可.【详解】在对数函数()()ln 31y x x =-+中,真数()()()()310310x x x x -+>⇒-+<,所以()1,3x ∈-.故选:A 【点睛】本题考查求对数函数的定义域,属于基础题.【变式2】函数12(1)log 1y x =+-的图象一定经过点()A .()1,1B .()1,0C .()2,1D .()2,0【答案】C 【分析】根据对数函数的性质,结合图象的平移变换规律进行求解即可.【详解】把12log y x =的图象向右平移1个单位,再向上平移1个单位即可得到12(1)log 1y x =+-的图象,因为12log y x =的图象恒过(1,0)点,所以12(1)log 1y x =+-的图象经过点(2,1).故选:C 【点睛】本题考查了对数型函数恒过定点问题,考查了函数图象的平移变换性质,属于基础题.【变式3】已知函数()2xy a =-,且当0x <时,1y >,则实数a 的取值范围是()A .3a >B .23a <<C .4a >D .34a <<【答案】B 【分析】利用指数函数的性质求解即可【详解】当0x <时,1021y a >∴<-<,,解得23a <<,故选:B.【变式4】函数y =2|x |的图象是()A .B .C.D.【答案】B 【分析】将函数写成分段函数,再结合指数函数的图象,即可容易判断.【详解】y =2|x |=2,01,02x x x x ⎧≥⎪⎨⎛⎫<⎪ ⎪⎝⎭⎩,故当0x ≥时,函数图象同2x y =单调递增;当0x <时,函数图象同1()2xy =单调递减,且0x =时,1y =.满足以上条件的只有B .故选:B .【点睛】本题考查指数型函数的图象,属简单题.【考点4】:函数的零点与方程的解整式的乘法例题1.设1x ,2x 分别是函数()1x f x xa =-和()log 1a g x x x =-的零点(其中1a >),则122x x +的取值范围是()A .[2,)+∞B .(2,)+∞C .[3,)+∞D .(3,)+∞【答案】D 【分析】解法一:(图象法)根据题意可知12,x x 分别为x y a =与1y x =和log a y x =与1y x=交点的横坐标,,再根据同底数的指数对数函数互为反函数,有121x x =.代入1222122x x x x +=+,再根据区间(1,)+∞上单调递增,所以1223x x +>.解法二:(定义法)根据函数零点的定义可知1x 、2x 是方程1x a x=和1log a x x =的根,又1a >,所以函数1()xF x a x=-在(0,)+∞上单调递增,所以121x x =.代入1222122x x x x +=+在区间(1,)+∞上单调递增,所以1223x x +>.【详解】解:解法一:(图象法)根据函数零点的定义可知函数x y a =与1y x =的图象交点为111,x x ⎛⎫ ⎪⎝⎭,同理可得函数log a y x =与1y x =的图象交点为221,x x ⎛⎫ ⎪⎝⎭.又因为函数x y a =与log a y x =的图象关于直线y x =对称,函数1y x=的图象也关于直线y x =对称,所以点111,x x ⎛⎫ ⎪⎝⎭与点221,x x ⎛⎫ ⎪⎝⎭关于直线y x =对称,所以121x x =.由1a >可知21>x ,所以1222122x x x x +=+在区间(1,)+∞上单调递增,所以1223x x +>.故选:D解法二:(定义法)根据函数零点的定义可知1x 是方程1xa x=的根,所以1x 也是函数1()xF x a x=-的零点.同理可得2x 是方程1log a x x=的根,即221log a x x =,所以212x ax =,所以21x 也是函数1()xF x a x=-的零点.又1a >,所以函数1()xF x a x=-在(0,)+∞上单调递增,所以121x x =.由1a >可知21>x ,所以1222122x x x x +=+在区间(1,)+∞上单调递增,所以1223x x +>.故选:D 【点睛】本题考查了方程的根的确定、反函数性质的应用以及利用函数的单调性求最值,属于基础题.【变式1】函数()33x f x x =+的零点所在区间为()A .()1,0-B .()0,1C .()1,2D .()2,3【答案】A 【分析】判断出所给区间的端点值的乘积小于0可得答案.【详解】()()31213103f --=+-=-<;()()3003010f =+=>;()()3113140f =+=>;()()32232170f =+=>;()()33333540f =+=>;所以()()100f f -<.故选:A.【变式2】已知函数(),0ln ,0x e x f x x x ⎧≤=⎨>⎩,()()g x f x a =+,若()g x 恰有2个零点,则实数a的取值范围是()A .()1,0-B .[)1,0-C .()0,1D .(]0,1【答案】B 【分析】利用数形结合的方法,作出函数()f x 的图象,简单判断即可.【详解】依题意,函数()y f x =的图象与直线y a =-有两个交点,作出函数图象如下图所示,由图可知,要使函数()y f x =的图象与直线y a =-有两个交点,则01a <-≤,即10a -≤<.故选:B .【点睛】本题考查函数零点问题,掌握三种等价形式:函数零点个数等价于方程根的个数等价于两个函数图象交点个数,属基础题.【变式3】函数()232f x x x =-+的零点是()A .()1,0B .()1,0和()2,0C .1和2D .以上都不是【答案】C 【分析】当()0f x =时对应的x 的值即为所求的零点.【详解】令()0f x =,即2320x x -+=,解得:1x =或2x =,()f x ∴的零点是1和2.故选:C .【点睛】本题考查函数零点的求解问题,易错点是误认为零点为一个点的坐标,实际零点是函数值为零时,对应的自变量的值.【变式4】已知函数21ln ()xf x x -=,那么方程f (x )=0的解是()A .1=x eB .x =1C .x =eD .x =1或x =e【答案】C 【分析】通过解方程求得()0f x =的解.【详解】依题意()21ln 0xf x x -==,所以1ln 0,ln 1,x x x e -===.故选:C 【点睛】本小题主要考查函数零点的求法,属于基础题.【考点5】:用二分法求方程的近似解例题1.设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在(1,1.5)内的近似解的过程中,有f (1)<0,f (1.5)>0,f (1.25)<0,则该方程的根所在的区间为()A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定【答案】B 【分析】根据零点存在性定理即可判断零点所在区间.【详解】∵f (1.25)·f (1.5)<0,且f (x )是单调增函数,∴该方程的根所在的区间为(1.25,1.5).故选:B.【变式1】下列函数不宜用二分法求零点的是()A .f (x )=x 3-1B .f (x )=ln x +3C .f (x )=x 2++2D .f (x )=-x 2+4x -1【答案】C 【分析】根据二分法的概念可知,只有存在区间[](),a b a b <,使得()()0f a f b <,才能应用二分法求零点,即可判断出各选项对应的函数是否可用二分法求零点.【详解】对于A ,存在区间[]0,2,使得()()020f f <,所以A 宜用;对于B ,存在区间4,1e -⎡⎤⎣⎦,使得()()410f e f -<,所以B 宜用;对于C ,()(20f x x =≥,不存在区间[](),a b a b <,使得()()0f a f b <,所以C 不宜用;对于D ,存在区间[]0,1,使得()()010f f <,所以D 宜用.故选:C .【点睛】本题主要考查二分法的概念的理解以及应用,属于容易题.【变式2】函数33()log 2f x x x=-在区间[1,3]内有零点,则用二分法判断含有零点的区间为()A .31,2⎡⎤⎢⎥⎣⎦B .3,22⎡⎤⎢⎥⎣⎦C .52,2⎡⎤⎢⎥⎣⎦D .5,32⎡⎤⎢⎥⎣⎦【答案】C【分析】先求(1),(3)f f ,再求(2)f ,发现(3),(2)f f 异号,再求5(2f 的值,再利用零点存在性定理判断即可【详解】解:因为31(1)0,(3)022f f =-<=>,3433333(2)log 2log 2log 3log log 04f =-=-==<,353333355355log log log 3log log log 022524f ⎛⎫=-=-=>=> ⎪⎝⎭因此,函数f (x )的零点在区间52,2⎡⎤⎢⎥⎣⎦内,故选:C.【点睛】此题考查二分法判断零点,考查了零点存在性定理的应用,属于基础题.【变式3】用二分法求函数()f x 在(,)a b 内的唯一零点时,精确度为0.001,则经过一次二分就结束计算的条件是()A .||0.2a b -<B .||0.002a b -<C .||0.002a b ->D .||0.002a b -=【答案】B【分析】根据二分法的步骤分析可得.经过一次二分后,零点所在区间长度为||2b a -,结束计算的条件是零点所在区间的长度满足精确度,由此可得.【详解】据二分法的步骤知,经过一次二分后,零点所在区间长度为||2b a -,此时结束计算,所以||2b a -0.001<,所以||0.002b a -<.故选B【点睛】本题考查了二分法的步骤,属于基础题.【变式4】下面关于二分法的叙述,正确的是()A.用二分法可求所有函数零点的近似值B.用二分法求方程的近似解时,可以精确到小数点后的任一位C.二分法无规律可循D.只有在求函数零点时才用二分法【答案】B【分析】A C D进行判断,可以排除,从而选B.根据二分法的概念对,,【详解】只有函数的图象在零点附近是连续不断且在该零点左右两侧函数值异号,オ可以用二分法求函数的零点的近似值,故A错;二分法有规律可循,可以通过计算机来进行,故C错;求方程的近似解也可以用二分法,故D错.故选B.【点睛】本题考查了二分法的概念,属于基础题.。

考点03 指对数运算及基本初等函数复习(解析版)

考点03 指对数运算及基本初等函数复习(解析版)

考点03 指对数运算及基本初等函数复习一、单选题1.设集合(){}ln 1A y y x ==-,{B y y ==,则A B =( )A .[)0,2B .()0,2C .[]0,2D .[)0,1【答案】A 【解析】 【分析】先分别利用对数型函数以及指数型函数求值域的方法求出集合,A B ,注意集合中的代表元素,再利用集合的交集运算求解即可. 【详解】∵(){}ln 1A y y x R ==-=,{[)0,2B y y ===,∴[)0,2AB =.故选:A. 【点睛】本题主要考查了集合间的运算以及对数函数和指数函数.属于较易题.2.已知3log 2a =,5log 6b =,ln 2c =,则a ,b ,c 的大小关系为( ) A .a c b << B .c a b <<C .a b c <<D .c b a <<【答案】A 【解析】 【分析】根据对数函数的图象与性质,求得(0,1)a c <∈,(1,)b ∈+∞,即可求解,得到答案. 【详解】由题意,根据对数的性质,可得3log 2(0,1)a =∈,5log 6(1,)b =∈+∞, 又由321log 2log 3a ==,21ln 2log c e==,因为3e >,所以22log 3log 1e >>,可得1a c <<, 所以a c b <<. 故选:A. 【点睛】本题主要考查了对数函数的图象与性质的应用,其中解答中熟记对数函数的图象与性质,求得,,a b c 的取值范围是解答的关键,着重考查了推理与运算能力,属于基础题.3.已知3x=5y=a ,且 1 x +1 y=2,则a 的值为( )A B .15C .D .225【答案】A 【解析】 【分析】把指数式化为对数式,再利用对数的运算法则即可得出答案 【详解】35x y a == lg3lg5lg x y a ∴==1lg 31lg 5,lg lg x a y a∴== 则11lg 3lg 5lg152=lg lg x y a a++== 2lg lg15,0a a ∴=>a ∴=故选A 【点睛】本题主要考查了对数的运算性质,在求解过程中指数与对数的互化是解题关键,属于基础题 4.已知22log log a b >,则下列不等式一定成立的是( )A .11a b>B .()2log 0a b ->C .1132a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .21a b -<【答案】C 【解析】 【分析】根据22log log a b >,利用对数函数的单调性得到0a b >>,然后利用不等式的基本性质判断A ;利用特殊值判断B ;利用指数函数和幂函数的单调性判断C ;利用指数函数的单调性判断D 即可. 【详解】因为22log log a b >, 所以0a b >>, 所以11a b<,0221a b ->= , 当3,12a b ==时,()221log log 102a b -==-<,由指数函数和幂函数的单调性得111332abb⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故选:C 【点睛】本题主要考查对数函数、指数函数和幂函数的单调性的应用,还考查了转化求解问题的能力,属于中档题. 5.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递增,则( )A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】B 【解析】 【分析】根据函数()f x 的性质可知,只需分析31log 4,322-,232-的大小关系,绝对值越大函数值越大.因为函数()f x 为偶函数且在()0,∞+递增,所以()f x 在(),0-∞上递减, 又3311log log 143<=-,则31log 14>,23320221--<<<,所以23233102lo 2g 4--<<<, 所以233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B. 【点睛】本题考查利用函数的性质比较函数值的大小关系,较简单.6.已知函数())3ln 2f x x x =+-,则()()20202020f f +-=( )A .2B .0C .2-D .4-【答案】D 【解析】 【分析】引入函数())3lng x x x =+,它是奇函数,则()2020g +()20200g -=,由此可计算(2020)(2020)f f +-.【详解】设())3lng x x x =+.则()()g x g x -=-,即()g x 为奇函数,所以()2020g +()20200g -=,所以()()()()202020202020202044f f g g +-=+--=-. 故选:D. 【点睛】本题考查函数的奇偶性,掌握奇函数的定义与性质是解题关键.7.已知0x >,0y >,lg 4lg 2lg8x y+=,则142x y+的最小值是( ). A .3 B .94 C .4615D .9【解析】 【分析】由已知结合指数与对数的运算性质可得23x y +=,从而根据()141142232x y x y x y ⎛⎫+=++ ⎪⎝⎭,展开后利用基本不等式可得解. 【详解】0x ,0y >,428x y lg lg lg +=,所以428x y =,即23x y +=,则()14114181255232323y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝3=, 当且仅当82y x x y =且23x y +=即12x =,2y =时取等号, 则142x y+的最小值是3. 故选:A 【点睛】本题主要考查了指数与对数的运算性质及利用基本不等式求解最值,要注意应用条件的配凑.属于中档题.8.若函数122log (3),1,()6,1m x x f x x x m x ⎧-<⎪=⎨⎪-+⎩的值域为R ,则m 的取值范围为( ) A .(0,8] B .(0,9]2C .9[2,8]D .(-∞,1](0-⋃,9]2【答案】B 【解析】 【分析】讨论0m >和0m 时函数的单调区间,得到0m 时不成立,0m >时需满足f (3)129(31)m mlog m =--=-,解出即可.【详解】①若0m >时,则当1x <时,12()(3)mf x log x =-单调递增,当1x 时,22()6(3)9f x x x m x m =-+=-+-在(3,)+∞上单调递增,在[1,3)上单调递减, 若函数值域为R 则需12(31)(3)9mlo f m g m --==-,解得902m <;②若0m 时,则当1x <时,12()(3)mf x log x =-单调递减,当1x 时,22()6(3)9f x x x m x m =-+=-+-在(3,)+∞上单调递增,在[1,3)上单调递减,不满足函数值域为R ,不符合题意,舍去, 综上:m 的取值范围为(0,9]2, 故选:B 【点睛】本题主要考查分段函数的值域,考查分类讨论思想、函数思想,属于中档题.二、多选题9.下列关于幂函数y x α=的性质,描述正确的有( )A .当1α=-时函数在其定义域上是减函数B .当0α=时函数图象是一条直线C .当2α=时函数是偶函数D .当3α=时函数有一个零点0【答案】CD 【解析】 【分析】根据幂函数的性质对选项逐一分析,由此确定正确选项. 【详解】 对于A 选项,1y x=,在(),0-∞和()0,∞+上递减,不能说在定义域上递减,故A 选项错误. 对于B 选项,0y x =,0x ≠,图象是:直线1y =并且除掉点()0,1,故B 选项错误. 对于C 选项,2yx ,定义域为R ,是偶函数,所以C 选项正确.对于D 选项,3y x =,只有一个零点0,所以D 选项正确.故选:CD 【点睛】本小题主要考查幂函数的图象与性质,属于基础题. 10.下列四个函数中过相同定点的函数有( ) A .2y ax a =+- B .21a y x -=+C .()310,1x y aa a -=+>≠D .()()log 210,1a y x a a =-+>≠【答案】AB 【解析】 【分析】分别求出各个函数的定点,即可判断. 【详解】对于2y ax a =+-,当1x =时,2y =,则2y ax a =+-过定点()1,2;对于21a y x -=+,当1x =时,2y =,则21a y x -=+过定点()1,2;对于()310,1x y aa a -=+>≠,当3x =时,2y =,则()310,1x y a a a -=+>≠过定点()3,2;对于()()log 210,1a y x a a =-+>≠,当1x =时,1y =,则()()log 210,1a y x a a =-+>≠过定点()1,1,故A ,B 中的函数过相同的定点. 故选:AB. 【点睛】本题考查函数定点的判断,属于基础题. 11.在同一坐标系中,函数()0ay xa =≠和1y ax a=-的图像不可能是( ) A . B .C .D .【答案】ABD 【解析】 【分析】 已知函数()0ay xa =≠和1y ax a=-,对于选项A 和D ,通过幂函数过第一象限且是减函数对一次函数的图像与其是否相符进行判断,对于选项B ,通过幂函数是增函数确定a 的正负性,进而对其进行判断,对于选项C ,根据幂函数是偶函数且过一、二象限对其进行判断,进而得出最终答案. 【详解】对于选项A 和D ,由于幂函数的图像过第一象限,且是减函数,0a <,与一次函数是增函数和一次函数在y 轴上的截距为负矛盾,故错误;对于选项B ,由于幂函数的图像过第一、三象限,且是增函数,1a >,与一次函数的图像不相符,故错误; 对于选项C ,由于幂函数图像过第二象限,且是偶函数,0a >,与-次函数的图像相符,故正确. 故选:ABD . 【点睛】这是一道考查函数图像的题目,解题的突破口是对幂函数图像的性质进行应用,考查学生对幂函数的理解,是中档题.12.下列选项中说法正确的是( )A .函数()()22log 2f x x x =-的单调减区间为(),1-∞B .幂函数()f x mx α=过点12⎛⎝⎭,则32m α+= C .函数()y f x =的定义域为[]1,2,则函数()2xy f =的定义域为[]2,4D .若函数()()2lg 54f x ax x =++的值域为R ,则实数a 的取值范围是250,16⎡⎤⎢⎥⎣⎦【答案】BD 【解析】 【分析】对于A 选项:由对数函数的定义域和复合函数的单调可判断;对于B 选项:由幂函数的定义和函数过的点可判断;对于 C 选项:由复合函数的定义域可判断;对于 D 选项:由对数函数的值域可判断. 【详解】对于A 选项:由22>0x x -得>2x 或0x <,所以()()22log 2f x x x =-中函数的定义域为()()02-∞+∞,,,又函数22t x x =-在(),1-∞上单调递减,函数2log y t =在()0,∞+上单调递增,所以函数()()22log 2f x x x =-的单调减区间为(),0-∞,故A 不正确;对于B 选项:因为幂函数()f x mx α=过点1,22⎛ ⎝⎭,所以212m α⎛⎫= ⎪⎝⎭,且1m =,解得12α=,所以32m α+=,故B 正确; 对于 C 选项:因为函数()y f x =的定义域为[]1,2,所以122x ≤≤,解得01x ≤≤,所以函数()2xy f =的定义域为[]0,1,故C 不正确;对于 D 选项:因为函数()()2lg 54f x ax x =++的值域为R ,所以当0a =时,()()lg 54f x x =+,满足其值域为R , 当0a ≠时,需>0a 且25160a ∆=-≥,解得25016a <≤, 所以实数a 的取值范围是250,16⎡⎤⎢⎥⎣⎦,故D 正确,故选:BD. 【点睛】本题考查函数的定义域,复合函数的单调性,对数函数的值域和幂函数的定义,属于中档题.三、填空题13.设102a =,lg3b =,则5log 12=________.【答案】21a ba【解析】 【分析】首先变指数式为对数式求得a ,把2log 6运用乘积的对数等于对数的和展开后,再运用换底公式转化成含有2lg 和3lg 的式子,代入a 和b 后可的结果. 【详解】解:由102a =,得:2a lg =,又因为3b lg =,所以()25lg 32lg12lg32lg 22log 1210lg5lg10lg 21lg 2b aa ⨯++====--⎛⎫⎪⎝⎭. 故答案为:21b aa+-. 【点睛】本题主要考查对数值的求法,以及对数的运算,考查了对数的换底公式,关键是从102a =,求得a 的值,属于基础题.14.已知函数41,(,1)()2log ,(1,)xx f x x x ⎧⎛⎫∈-∞⎪ ⎪=⎨⎝⎭⎪∈+∞⎩,则()1f x >的解集为________.【答案】()(),04,-∞+∞【解析】 【分析】根据分段函数解析式,分类讨论分别计算,再取并集即可; 【详解】解:当1x <时,1()2xf x ⎛⎫= ⎪⎝⎭,因为()1f x >,所以1121xx ⎧⎛⎫>⎪ ⎪⎨⎝⎭⎪<⎩解得0x <,当1x >时,4()log f x x =时,因为()1f x >,所以4log 11x x >⎧⎨>⎩,解得4x >综上可得不等式的解集为()(),04,-∞+∞故答案为:()(),04,-∞+∞【点睛】本题考查分段函数的性质的应用,分段函数不等式的解法,考查分类讨论思想,属于中档题.15.已知点(2,9)在函数()xf x a =(0a >且1a ≠)图象上,对于函数()y f x =定义域中的任意1x ,()212x x x ≠,有如下结论:①()()()1212f x x f x f x +=⋅; ②()()()1212f x x f x f x ⋅=+; ③()()12120f x f x x x -<-;④()()121222f x f x x x f ++⎛⎫<⎪⎝⎭. 上述结论中正确结论的序号是___________. 【答案】①④ 【解析】 【分析】先求出a ,根据指数运算与指数函数性质依次讨论即可逐项排除得到答案. 【详解】点(2,9)在函数()xf x a =(0a >且1a ≠)图象上,即29a =,3a ∴=,()3x f x =, ∵对于函数()3xf x =定义域中的任意的()1212,x x x x ≠,有()()()12121212333x x x x f x x f x f x ++==⋅=∴结论(1)正确;又()12123x xf x x =,()()121233xxf x f x +=+,()()()1212f x x f x f x ∴≠+,∴结论(2)错误;又()3xf x =是定义域R 上的增函数,∴对任意的12,x x ,不妨设12x x <,则()()12f x f x <,120x x ∴-<,()()120f x f x -<,()()12120f x f x x x -∴->,∴结论(3)错误;又1212232x xx x f ++⎛⎫= ⎪⎝⎭,()()12123322x x f x f x ++= ()()12211212121222122213312()(33)22332x x x x x x x x x x f x f x x x f --+++∴=+=++⎛⎫⎪⎝⎭,12x x ≠122122332x x x x --∴+>,()()1212212f x f x x x f +∴>+⎛⎫ ⎪⎝⎭∴结论(4)正确; 故答案为:(1),(4). 【点晴】本题考查命题真假判断,实质上是考查函数的性质.对于这种给出具体函数式的问题,只要把函数式代入一一验证即可,解决此类问题不能限入误区,认为这类问题都是有难度,没处下手,事实上最简单的方法反而是最好的方法.16.已知2()24,()xf x x xg x a =-+=(0 a >且1a ≠),若对任意的1[1,2]x ∈,都存在2[1,2]x ∈-,使得12()()f x g x <成立,则实数a 的取值范围是______________ 【答案】1(0,)(2,)4+∞【解析】 【分析】由题意,只要()g x 在[1,2]-上的最大值大于()f x 在[1,2]上的最大值即可,再分01a << 和1a >两种情况讨论可得答案. 【详解】因为()221()24+3f x x x x -=-+=,1[1,2]x ∈,所以()()211()242f f x x x f ≤=-+≤,所以13()4f x ≤≤,要使对任意的1[1,2]x ∈,都存在2[1,2]x ∈-,使得12()()f x g x <成立, 则需()g x 在[1,2]-上的最大值大于()f x 在[1,2]上的最大值,即max ()>4g x ,当01a <<,()xg x a =在[1,2]-上单调递减,所以max 1()(1)>4g x g a=-=,解得104a <<,当>1a ,()xg x a =在[1,2]-上单调递增,所以2max ()(2)>4g x g a ==,解得>2a ,所以实数a 的取值范围是1(0,)(2,)4+∞,故答案为:1(0,)(2,)4+∞.【点睛】本题考查任意和存在的问题,注意辨别函数的最值之间的大小关系,属于中档题.四、解答题17.求下列各式的值.(1)()100.2531.8201927-⨯---(2)7log 5229814log log 7log 43-++ 【答案】(1)2-;(2)294. 【解析】 【分析】(1)利用指数幂的运算性质即可求出; (2)运用对数的运算性质即可得出. 【详解】 (1) (2)原式22214log 3log 81log 454221294log 34log 32544. 【点睛】本题考查了指数幂与对数的运算性质,考查了计算能力,属于基础题. 18.已知命题p :指数函数()()26xf x a =-在R 上是单调减函数;命题q :关于x 的方程223210x ax a -++=有实根,(1)若p 为真,求a 的范围 (2)若q 为真,求a 的范围(3)若p 或q 为真,p 且q 为假,求实数a 的范围. 【答案】(1)732a <<;(2)2a ≤-或2a ≥;(3)2a ≤-或72a ≥ 【解析】 【分析】(1)根据指数函数的单调性,即可求出命题p 为真时a 的取值范围;(2)利用判别式,求出命题q 为真时a 的取值范围;(3)根据题意知,p 、q 一真一假,求出p 真q 假和p 假q 真时a 的取值范围,再取并集. 【详解】解:(1)命题p :指数函数()()26xf x a =-在R 上是单调减函数;若p 为真,则0261a <-<,解得732a <<, ∴a 的取值范围是:732a <<; (2)命题q :关于x 的方程223210x ax a -++=有实根, 若q 为真,则()2294210aa ∆=-+≥,解得:2a ≤-或2a ≥,∴a 的取值范围是2a ≤-或2a ≥;(3)若p 或q 为真,p 且q 为假,则p 、q 一真一假;当p 真q 假时,73222a a ⎧<<⎪⎨⎪-<<⎩,解得:a ∈∅;当p 假q 真时,73222a a a a ⎧≤≥⎪⎨⎪≤-≥⎩或或,解得:2a ≤-或72a ≥;综上,实数a 的取值范围是:2a ≤-或72a ≥. 【点睛】本题考查了复合命题的真假性判断与应用问题,还考查了指数函数的单调性以及一元二次方程的根的判别式,是中档题.19.已知幂函数()()22421m m f x m x -+=-在()0,∞+上单调递增.(1)求m 的值;(2)当[]1,2x ∈时,记()f x 的值域为集合A ,若集合[]2,4B k k =--,且=A B ∅,求实数k 的取值范围.【答案】(1)0m =;(2)3k >或2k <-. 【解析】 【分析】(1)由幂函数的定义可得;(2)求出()f x 的值域,再由集合交为空集的含义可得k . 【详解】(1)∵()f x 为幂函数,∴()211m -=,∴0m =或2.当0m =时,()2f x x =在()0,∞+上单调递增,满足题意.当2m =时,()2f x x -=在()0,∞+上单调递减,不满足题意,舍去.∴0m =.(2)由(1)知,()2f x x =.∵()f x 在[]1,2上单调递增,∴[]1,4A =由于此题中B ≠∅,要满足=A B ∅,只需4124k k -<->或,32k k ><-或.【点睛】此题考查幂函数概念、空集概念、集合交运算,属于基础题.20.已知函数()()2101x x f x m m -=>+,且()325f =. (1)求m 的值,并指出函数()y f x =在R 上的单调性(只需写出结论即可); (2)证明:函数()f x 是奇函数; (3)若()()2230f mf m +-<,求实数m 的取值范围.【答案】(1)2,()f x 在R 上为增函数;(2)证明见解析;(3)(3-,1).【解析】 【分析】 (1)由()325f =,代入解析式,解方程求出m 的值,利用指数函数的单调性即可求解. (2)利用函数的奇偶性定义即可判断. (3)利用函数为奇函数,将不等式转化为()()232f m f m <-,再利用函数为增函数可得232mm <-,解不等式即可求解. 【详解】(1)因为()325f =,所以2221315m -=+,即24m =,因为0m >,所以2m =.函数()21212121x x xf x -==-++在R 上为增函数. (2)由(1)知()2121x x f x -=+定义域为(),-∞+∞.对任意(),x ∈-∞+∞,都有()()211221211221x x x x xx f x f x --------====-+++. 所以函数()f x 是奇函数, (3)不等式()()2230f mf m +-<等价于()()223f m f m <--,因为函数()f x 是奇函数, 所以()()232f mf m <-,又因为函数()f x 在R 上为增函数, 所以232m m <-,即2230m m +-<. 解得31m -<<.所以实数m 的取值范围为(3-,1). 【点睛】本题考查了利用定义判断函数的奇偶性、利用函数的单调性解不等式,考查了基本运算求解能力,属于基础题.21.已知函数()21log 1axf x x +=-(a 为常数)是奇函数. (1)求a 的值与函数()f x 的定义域.(2)若当()1,x ∈+∞时,()()2log 1f x x m +->恒成立.求实数m 的取值范围. 【答案】(1)1a =,定义域为{1x x <-或}1x >;(2)(],1-∞. 【解析】 【分析】(1)根据函数是奇函数,得到()()f x f x -=-,求出1a =,再解不等式101xx +>-,即可求出定义域; (2)先由题意,根据对数函数的性质,求出()()2log 1f x x +-的最小值,即可得出结果. 【详解】(1)因为函数()21log 1axf x x +=-是奇函数, 所以()()f x f x -=-,所以2211log log 11ax axx x -+=----, 即2211log log 11ax x x ax--=++, 所以1a =,令101xx +>-,解得1x <-或1x >, 所以函数的定义域为{1x x <-或}1x >; (2)()()()22log 1log 1f x x x +-=+,当1x >时,所以12x +>,所以()22log 1log 21x +>=. 因为()1,x ∈+∞,()()2log 1f x x m +->恒成立, 所以1m ,所以m 的取值范围是(],1-∞. 【点睛】本题主要考查由函数奇偶性求参数,考查求具体函数的定义域,考查含对数不等式,属于常考题型.22.已知2()x f e ax x =-,a R ∈.⑴求()f x 的解析式;⑵求(0,1]x ∈时,()f x 的值域;⑶设0a >,若()[()1]log x h x f x a e =+-⋅对任意的3112,[,]x x e e --∈,总有121()()3h x h x a -≤+恒成立,求实数a 的取值范围.【答案】(1)2()(ln )ln (0)f x a x x x =->(2)1(,]4a -∞-(3)13115a ≤≤ 【解析】试题分析:(1)由题已知2()x f e ax x =-,求()f x ,可利用换元法,即:x e t =,ln 0x t =>,将条件中的x ,换为t 得:2()(ln )ln f t a t t =-,求出()f x(2)由(1)得2()(ln )ln (0)f x a x x x =->,可继续换元,ln (0)x m m =≤ 得:2()()f x g m am m ==-,需对a 进行分类讨论,而化为熟悉的二次函数的值域问题解决.(3)由121()()3h x h x a -≤+恒成立,可转化为()h x 在31[,]e e --满足max min 1()()3h x h x a -≤+,则需对()h x 的单调性进行分析,由(1)()ln 1ln a h x a x x-=-+,采用换元法ln ([3,1])x s s =∈--,得:1()()1ah x r s as s-==+-,由0a >,借助函数的单调性,对a 进行分类讨论,分别得出a 的取值范围,取各种情况的并集,得出结果.试题解析:⑴设x e t =,则ln 0x t =>,所以2()(ln )ln f t a t t =-,所以2()(ln )ln (0)f x a x x x =->;⑵设ln (0)x m m =≤,则2()()f x g m am m ==- 当0a =时,()()f x g m m ==-,()g m 的值域为[0,)+∞ 当0a ≠时,2211()()()(0)24f x g m am m a m m a a==-=--≤ 若0a >,102a>,()g m 的值域为[0,)+∞ 若0a <,102a <,()g m 在1(,]2a -∞上单调递增,在1[,0]2a上单调递减, ()g m 的值域为1(,]4a-∞-综上,当0a ≥时()f x 的值域为[0,)+∞,当0a <时()f x 的值域为1(,]4a-∞-; ⑶因为(1)()ln 1ln a h x a x x -=-+对任意3112,[,]x x e e --∈总有121()()3h x h x a -≤+所以()h x 在31[,]e e --满足max min 1()()3h x h x a -≤+设ln ([3,1])x s s =∈--,则1()()1ah x r s as s-==+-,[3,1]s ∈-- 当10a -<即1a >时()r s 在区间[3,1]--单调递增 所以1(1)(3)3r r a ---≤+,即8412()333a a ----≤+,所以35a ≤(舍) 当1a =时,()1r s s =-,不符合题意当01a <<时, 1≤即112a ≤<时,()r s 在区间[3,1]--单调递增所以1(1)(3)3r r a ---≤+,则1325a ≤≤若13<<即11102a <<时()r s 在[3,-递增,在[1]-递减所以,得11102a <<3≥即1010a <≤时()r s 在区间[3,1]--单调递减所以1(3)(1)3r r a ---≤+,即8412333a a --+≤+,得111110a ≤<综上所述:13115a ≤≤. 考点:1.换元法求函数解析式; 2.换元法与二次函数的值域问题及分类思想. 3.恒成立中的函数思想及分类思想.。

指数函数和对数函数知识点和练习

指数函数和对数函数知识点和练习
65.已知logm7<logn7<0,则m,n,0,1之间的大小关系是________.
66.函数y=log (-x2+4x+12)的单调递减区间是________.
67.若loga2<1,则实数a的取值范围是()
A.(1,2)B.(0,1)∪(2,+∞)C.(0,1)∪(1,2)D.(0, )
68.下列不等式成立的>0
在R上单调递增
在R上单调递减
非奇非偶函数
非奇非偶函数
函数图象都过定点(0,1)
函数图象都过定点(0,1)
注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,则 ; 取遍所有正数当且仅当 ;
(3)对于指数函数 ,总有 ;
A. B.2C.4D.
32.设0<a<1,则函数f(x)= 的定义域是________.
33.若直线y=2a与函数y=|ax-1|(a>0,且a≠1)的图象有两个公共点,则a的取值范围是________.
34.函数f(x)=ax+b(a>0且a≠1)的图象过点(1,3),且在y轴上的截距为2,则f(x)的解析式为________.
39.3log9(lg2-1)2+5log25(lg0.5-2)2等于()
A.1+2lg2B.-1-2lg2C.3D.-3
40.已知lg2=a,lg3=b,则log36=()
A. B. C. D.
41. =()
A.2B. C.1D.
42.(log43+log83)(log32+log98)等于()
A. B. C. D.以上都不对
13.函数y= 的定义域是(-∞,0],则实数a的取值范围为()
A.a>0B.a<1

(完整版)指数函数及对数函数复习(有详细知识点及习题详细讲解)

(完整版)指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习一、指数的性质(一)整数指数幂n 1.整数指数幂概念:a =a ⋅Λ⋅a (n ∈N )a 0=1(a ≠0)1⋅4a 243*n 个aa-n=1a ≠0,n ∈N *)n(a 2.整数指数幂的运算性质:(1)a m ⋅a n =a m +n (m ,n ∈Z )(2)a (3)(ab )=a ⋅b n n n ()mn=a mn(m ,n ∈Z )(n ∈Z )其中a ÷a =a ⋅a m n m -n =a m -n a n ⎛a ⎫-1nn -n , ⎪=(a ⋅b)=a ⋅b =n .b ⎝b ⎭n 3.a 的n 次方根的概念即:若x n 一般地,如果一个数的n 次方等于a n >1,n ∈N ),那么这个数叫做a 的n 次方根,=a ,则x 叫做a 的n 次方根,(n >1,n ∈N )**(说明:①若n 是奇数,则a 的n 次方根记作n a ;若a >0则n a >0,若a <o 则n a <0;②若n 是偶数,且a >0则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:-n a ;(例如:8的平方根±8=±2216的4次方根±416=±2)③若n 是偶数,且a <0则n a 没意义,即负数没有偶次方根;④Θ0=0n >1,n ∈N nn (*)∴n 0=0;⑤式子a 叫根式,n 叫根指数,a 叫被开方数。

∴(a )nn=a ..4.a 的n 次方根的性质一般地,若n 是奇数,则n a n =a ;若n 是偶数,则n a n =a =⎨5.例题分析:例1.求下列各式的值:(1)3-8⎧a⎩-aa ≥0a <0.(3)(2)(-10)*2(3)4(3-π)(4)4例2.已知a <b <0,n >1,n ∈N ,化简:n (a -b )+n (a +b ).n n (二)分数指数幂1051231.分数指数幂:5a =a =a102(a >0)3a =a =a124(a >0)即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质(2)a 3()kn=akn 对分数指数幂也适用,442255⨯3⨯4⎛2⎫⎛⎫2532例如:若a >0,则 a 3⎪=a 3=a , a 4⎪=a 4=a ,∴a =a 3⎝⎭⎝⎭a =a .545即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。

指数与对数运算练习题

指数与对数运算练习题

指数与对数运算练习题1. 求解指数方程:(2^x) * 4^(2x - 3) = 64解法:首先,我们可以将4^(2x - 3)转化为2^(4x - 6),进一步得到:(2^x) * (2^(4x - 6)) = 64根据指数运算的法则,两个相同底数的指数相乘,底数不变,指数相加。

得到:2^(x + 4x - 6) = 64合并同类项,得到:2^(5x - 6) = 64由于64可以表示为2的幂,即64 = 2^6,所以我们可以将方程转化为:2^(5x - 6) = 2^6根据指数函数的性质,底数相同的指数相等,指数也相等。

因此,我们得到:5x - 6 = 6解上述方程,可以得到:5x = 12x = 2.4所以,方程的解为x = 2.4。

2. 求解指数方程:3^(x - 1) - 9^(x - 2) = 0解法:首先,我们可以将9^(x - 2)转化为(3^2)^(x - 2),进一步得到:3^(x - 1) - (3^2)^(x - 2) = 0根据指数运算的法则,幂运算的指数可以相乘,得到:3^(x - 1) - 3^(2x - 4) = 0合并同类项,得到:3^(2x - 4) - 3^(x - 1) = 0根据指数函数的性质,底数相同的指数相等,指数也相等。

因此,我们得到:2x - 4 = x - 1解上述方程,可以得到:x = 3所以,方程的解为x = 3。

3. 计算log2(8) * log8(128)的值。

解法:我们知道,loga(b)表示以a为底,b的对数。

根据换底公式,我们可以将log8(128)转化为以2为底的对数。

log8(128) = log2(128) / log2(8)由于2的幂次可以表示为8的幂次,即2^7 = 8,所以我们有:log2(8) = 7将上述结果代入原式,可以得到:log2(8) * log8(128) = 7 * (log2(128) / log2(8))根据对数运算的法则,log2(128)可以表示为以2为底,128的对数。

指数函数与对数函数练习题(含详解)

指数函数与对数函数练习题(含详解)

指数函数1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为。

2。

指数函数函数性质:函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2。

对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,。

奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小。

指数函数习题一、选择题1.定义运算a⊗b=错误!,则函数f(x)=1⊗2x的图象大致为()2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是()A.(-1,+∞) B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(错误!-1)的定义域是B,若A⊆B,则正数a的取值范围( )A.a〉3 B.a≥3C.a〉 5 D.a≥错误!5.已知函数f(x)=错误!若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是()A.[错误!,3) B.(错误!,3)C.(2,3) D.(1,3)6.已知a〉0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<错误!,则实数a的取值范围是( )A.(0,错误!]∪[2,+∞) B.[错误!,1)∪(1,4]C.[错误!,1)∪(1,2] D.(0,错误!)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大错误!,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1〈x2)的长度为x2-x1。

指数函数与对数函数基础练习题

指数函数与对数函数基础练习题

指数函数、对数函数基础练习题一、选择题1、设5.1348.029.0121,8,4-⎪⎭⎫⎝⎛===y y y ,则 ( )DA. 213y y y >> B 312y y y >> C 321y y y >> D 231y y y >> 2、如果lgx =lga +3lgb -5lgc ,那么( )CA .x =a +3b -cB .cabx 53=C .53cab x = D .x =a +b 3-c 33、设函数y =lg(x 2-5x )的定义域为M ,函数y =lg(x -5)+lg x 的定义域为N ,则( )CA .M ∪N=RB .M=NC .M ⊇ND .M ⊆N4、下列函数图象正确的是( )BA B C D 5、下列关系式中,成立的是 ( )AA .10log 514log 3103>⎪⎭⎫⎝⎛>B . 4log 5110log 3031>⎪⎭⎫⎝⎛>C . 03135110log 4log ⎪⎭⎫⎝⎛>>D .0331514log 10log ⎪⎭⎫⎝⎛>>6、函数)10(|log |)(≠>=a a x x f a 且的单调递增区间为 ( )DA (]a ,0B ()+∞,0C (]1,0D [)+∞,1 二、填空题7、函数)2(log 221x y -=的定义域是 ,值域是 .(][)2,112 --, [)+∞,0;8、若直线y=2a 与函数)且1,0(|1|≠>-=a a a y x的图象有两个公共点,则a 的取值范围是 .210<<a 9、函数),且10(≠>=a a a y x在[]21,上的最大值比最小值大2a,则a 的值是__ 2321或10、函数 在区间 上的最大值比最小值大2,则实数 =___.或 ;11、设函数)1(log 2-=x y ,若[]2,1∈y ,则∈x []3,5 12、已知||lg )(x x f =,设)2(),3(f b f a =-=,则a 与b 的大小关系是 a b >三、解答题13、比较下列比较下列各组数中两个值的大小:(1)6log 7,7log 6; (2)3log π,2log 0.8; (3)0.91.1, 1.1log 0.9,0.7log 0.8; (4)5log 3,6log 3,7log 3. 解:(1)∵66log 7log 61>=, 77log 6log 71<=,∴6log 7>7log 6; (2)∵33log log 10π>=, 22log 0.8log 10<=,∴3log π>2log 0.8. (3)∵.91.11.11>=,1.1 1.1log 0.9log 10<=,0.70.70.70log 1log 0.8log 0.71=<<=,∴0.91.1>0.7log 0.8> 1.1log 0.9.(4)∵3330log 5log 6log 7<<<, ∴5log 3>6log 3>7log 3.14、设x ,y ,z ∈R +,且3x =4y =6z . 求证:yx z 2111=-; 证明:设3x=4y=6z=t . ∵x >0,y >0,z >0,∴t >1,lg t >0,6lg lg ,4lg lg ,3lg lg log 3tz t y t t x ==== ∴yttttxz21lg 24lg lg 2lg lg 3lg lg 6lg 11===-=-.15、若8log 3p =,3log 5q =,求lg 5.解:∵8log 3p =, ∴)5lg 1(32lg 33lg 33log 2-==⇒=p p p , 又∵ q ==3lg 5lg 5log 3,∴ )5lg 1(33lg 5lg -==pq q , ∴ pq pq 35lg )31(=+ ∴ pqpq3135lg +=.16、设a>0,xx e a a e x f +=)(是R 上的偶函数. (1) 求a 的值;(2) 证明:)(x f 在()+∞,0上是增函数.(1)解 依题意,对一切R x ∈有)()(x f x f -=,即.x x x x ae aee a a e +=+1所以011=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-x x e e a a 对一切R x ∈成立,由此得到01=-a a , 即,12=a ,又因为a>0,所以a=1(2)证明 设,021x x <<()()()()212112212121211111121x x x x x x x x x x x x x x e e e e e e e e e e e x f x f +++--=⎪⎭⎫ ⎝⎛--=-+-=- 由0,0.,1221>->x x x x 得0,11221>->+x x x x e e e()()().,0)(,021上是增函数在即+∞<-∴x f x f x f17、已知函数)(log )1(log 11log )(222x p x x x x f -+-+-+=. (1)求函数f (x )的定义域;(2)求函数f (x )的值域. 解:(1)函数的定义域为(1,p ).(2)当p >3时,f (x )的值域为(-∞,2log 2(p +1)-2);当1<p ≤3时,f (x )的值域为(-∞,1+log2(p +1)).18、求函数y =log 22x ·log 24x(x ∈[1,8])的最大值和最小值. 【解】 令t =log 2x ,x ∈[1,8],则0≤log 2x ≤log 28即t ∈[0,3]∴y =(log 2x -1)(log 2x -2)=(t -1)(t -2)=t 2-3t +2=(t -23)2-41t ∈[0,3]∴当t =23,即log 2x =23,x =223=22时,y 有最小值=-41.当t =0或t =3,即log 2x =0或log 2x =3,也即x =1或x =8时,y 有最大值=2.教。

指数函数和对数函数练习题

指数函数和对数函数练习题

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载指数函数和对数函数练习题地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第三章指数函数和对数函数§1正整数指数函数§2指数扩充及其运算性质1.正整数指数函数函数y=ax(a>0,a≠1,x∈N+)叫作________指数函数;形如y=kax(k∈R,a>0,且a≠1)的函数称为________函数.2.分数指数幂(1)分数指数幂的定义:给定正实数a,对于任意给定的整数m,n(m,n互素),存在唯一的正实数b,使得bn=am,我们把b叫作a的 eq \f(m,n) 次幂,记作b=;(2)正分数指数幂写成根式形式:= eq \r(n,am) (a>0);(3)规定正数的负分数指数幂的意义是:=__________________(a>0,m、n∈N+,且n>1);(4)0的正分数指数幂等于____,0的负分数指数幂__________.3.有理数指数幂的运算性质(1)aman=________(a>0);(2)(am)n=________(a>0);(3)(ab)n=________(a>0,b>0).一、选择题1.下列说法中:①16的4次方根是2;② eq \r(4,16) 的运算结果是±2;③当n为大于1的奇数时, eq \r(n,a) 对任意a∈R都有意义;④当n 为大于1的偶数时, eq \r(n,a) 只有当a≥0时才有意义.其中正确的是( )A.①③④ B.②③④ C.②③ D.③④2.若2<a<3,化简 eq \r(2-a2) + eq \r(4,3-a4) 的结果是( )A.5-2a B.2a-5 C.1 D.-13.在(- eq \f(1,2) )-1、、、2-1中,最大的是( )A.(- eq \f(1,2) )-1 B. C. D.2-14.化简 eq \r(3,a\r(a)) 的结果是( )A.a B. C.a2 D.5.下列各式成立的是( )A. eq \r(3,m2+n2) = B.( eq \f(b,a) )2=C. eq \r(6,-32) =D. eq \r(\r(3,4)) =6.下列结论中,正确的个数是( )①当a<0时,=a3;② eq \r(n,an) =|a|(n>0);③函数y=-(3x-7)0的定义域是(2,+∞);④若100a=5,10b=2,则2a+b=1.A.0 B.1C.2 D.3二、填空题7. eq \r(6\f(1,4)) - eq \r(3,3\f(3,8)) + eq \r(3,0.125) 的值为________.8.若a>0,且ax=3,ay=5,则=________.9.若x>0,则(2+)(2-)-4·(x-)=________.三、解答题10.(1)化简: eq \r(3,xy2·\r(xy-1)) · eq \r(xy) ·(xy)-1(xy≠0);(2)计算:+ eq \f(-40,\r(2)) + eq \f(1,\r(2)-1) - eq \r(1-\r(5)0) ·.11.设-3<x<3,求 eq \r(x2-2x+1) - eq \r(x2+6x+9) 的值.12.化简:÷(1-2 eq \r(3,\f(b,a)) )× eq \r(3,a) .13.若x>0,y>0,且x- eq \r(xy) -2y=0,求 eq \f(2x-\r(xy),y +2\r(xy)) 的值.§3指数函数(一)1.指数函数的概念一般地,________________叫做指数函数,其中x是自变量,函数的定义域是____.2.指数函数y=ax(a>0,且a≠1)的图像和性质一、选择题1.下列以x为自变量的函数中,是指数函数的是( )A.y=(-4)x B.y=πxC.y=-4x D.y=ax+2(a>0且a≠1) 2.函数f(x)=(a2-3a+3)ax是指数函数,则有( )A.a=1或a=2 B.a=1C.a=2 D.a>0且a≠13.函数y=a|x|(a>1)的图像是( )4.已知f(x)为R上的奇函数,当x<0时,f(x)=3x,那么f(2)的值为( )A.-9 B. eq \f(1,9)C.- eq \f(1,9) D.95.如图是指数函数①y=ax;②y=bx;③y=cx;④y=dx的图像,则a、b、c、d与1的大小关系是( )A.a<b<1<c<dB.b<a<1<d<cC.1<a<b<c<dD.a<b<1<d<c6.函数y=( eq \f(1,2) )x-2的图像必过( )A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限二、填空题7.函数f(x)=ax的图像经过点(2,4),则f(-3)的值为________.8.若函数y=ax-(b-1)(a>0,a≠1)的图像不经过第二象限,则a,b必满足条件________.9.函数y=8-23-x(x≥0)的值域是________.三、解答题10.比较下列各组数中两个值的大小:(1)0.2-1.5和0.2-1.7;(2)和;(3)2-1.5和30.2.11.2000年10月18日,美国某城市的日报以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积达到50 000 m3”,副标题是:“垃圾的体积每三年增加一倍”.如果把3年作为垃圾体积加倍的周期,请你根据下面关于垃圾的体积V(m3)与垃圾体积的加倍的周期(3年)数n的关系的表格,回答下列问题.(1)设想城市垃圾的体积每3年继续加倍,问24年后该市垃圾的体积是多少?(2)根据报纸所述的信息,你估计3年前垃圾的体积是多少?(3)如果n=-2,这时的n,V表示什么信息?(4)写出n与V的函数关系式,并画出函数图像(横轴取n轴).(5)曲线可能与横轴相交吗?为什么?能力提升12.定义运算a⊕b= eq \b\lc\{\rc\(\a\vs4\al\co1(a a≤b,b a>b)) ,则函数f(x)=1⊕2x的图像是( )13.定义在区间(0,+∞)上的函数f(x)满足对任意的实数x,y都有f(xy)=yf(x).(1)求f(1)的值;(2)若f( eq \f(1,2) )>0,解不等式f(ax)>0.(其中字母a为常数).§3指数函数(二)1.下列一定是指数函数的是( )A.y=-3x B.y=xx(x>0,且x≠1)C.y=(a-2)x(a>3) D.y=(1- eq \r(2) )x 2.指数函数y=ax与y=bx的图像如图,则( )A.a<0,b<0 B.a<0,b>0C.0<a<1,b>1 D.0<a<1,0<b<13.函数y=πx的值域是( )A.(0,+∞) B.[0,+∞)C.R D.(-∞,0)4.若( eq \f(1,2) )2a+1<( eq \f(1,2) )3-2a,则实数a的取值范围是( )A.(1,+∞) B.( eq \f(1,2) ,+∞) C.(-∞,1) D.(-∞, eq \f(1,2) ) 5.设 eq \f(1,3) <( eq \f(1,3) )b<( eq \f(1,3) )a<1,则( ) A.aa<ab<ba B.aa<ba<abC.ab<aa<ba D.ab<ba<aa6.若指数函数f(x)=(a+1)x是R上的减函数,那么a的取值范围为( )A.a<2 B.a>2C.-1<a<0 D.0<a<1一、选择题1.设P={y|y=x2,x∈R},Q={y|y=2x,x∈R},则( )A.QP B.QPC.P∩Q={2,4} D.P∩Q={(2,4)}2.函数y= eq \r(16-4x) 的值域是( )A.[0,+∞) B.[0,4] C.[0,4) D.(0,4)3.函数y=ax在[0,1]上的最大值与最小值的和为3,则函数y=2ax-1在[0,1]上的最大值是( )A.6 B.1 C.3 D. eq\f(3,2)4.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( ) A.f(x)与g(x)均为偶函数 B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数 D.f(x)为奇函数,g(x)为偶函数5.函数y=f(x)的图像与函数g(x)=ex+2的图像关于原点对称,则f(x)的表达式为( )A.f(x)=-ex-2 B.f(x)=-e-x+2C.f(x)=-e-x-2 D.f(x)=e-x+26.已知a=,b=,c=,则a,b,c三个数的大小关系是( )A.c<a<b B.c<b<aC.a<b<c D.b<a<c二、填空题7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<- eq \f(1,2) 的解集是________________.9.函数y=的单调递增区间是________.三、解答题10.(1)设f(x)=2u,u=g(x),g(x)是R上的单调增函数,试判断f(x)的单调性;(2)求函数y=的单调区间.11.函数f(x)=4x-2x+1+3的定义域为[- eq \f(1,2) , eq\f(1,2) ].(1)设t=2x,求t的取值范围;(2)求函数f(x)的值域.能力提升12.函数y=2x-x2的图像大致是( )13.已知函数f(x)= eq \f(2x-1,2x+1) .(1)求f[f(0)+4]的值;(2)求证:f(x)在R上是增函数;(3)解不等式:0<f(x-2)< eq \f(15,17) .习题课1.下列函数中,指数函数的个数是( )①y=2·3x;②y=3x+1;③y=3x;④y=x3.A.0 B.1 C.2 D.32.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于( )A.-3 B.-1 C.1 D.33.对于每一个实数x,f(x)是y=2x与y=-x+1这两个函数中的较小者,则f(x)的最大值是( )A.1 B.0C.-1 D.无最大值4.将 eq \r(2\r(2)) 化成指数式为________.5.已知a=40.2,b=80.1,c=( eq \f(1,2) )-0.5,则a,b,c的大小顺序为________.6.已知+=3,求x+ eq \f(1,x) 的值.一、选择题1.的值为( )A. eq \r(2) B.- eq \r(2) C. eq\f(\r(2),2) D.- eq \f(\r(2),2)2.化简 eq \r(3,a-b3) + eq \r(a-2b2) 的结果是( ) A.3b-2a B.2a-3bC.b或2a-3b D.b3.若0<x<1,则2x,( eq \f(1,2) )x,(0.2)x之间的大小关系是( ) A.2x<(0.2)x<( eq \f(1,2) )x B.2x<( eq\f(1,2) )x<(0.2)xC.( eq \f(1,2) )x<(0.2)x<2xD.(0.2)x<( eq \f(1,2) )x<2x4.若函数则f(-3)的值为( )A. eq \f(1,8)B. eq\f(1,2)C.2 D.85.函数f(x)=ax-b的图像如图所示,其中a,b均为常数,则下列结论正确的是( )A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<06.函数f(x)= eq \f(4x+1,2x) 的图像( )A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称二、填空题7.计算:-(- eq \f(1,4) )0+160.75+=________________.8.已知10m=4,10n=9,则=________.9.函数y=1-3x(x∈[-1,2])的值域是________.三、解答题10.比较下列各组中两个数的大小:(1)0.63.5和0.63.7;(2)( eq \r(2) )-1.2和( eq \r(2) )-1.4;(3)和;(4)π-2和( eq \f(1,3) )-1.311.函数f(x)=ax(a>0,且a≠1)在区间[1,2]上的最大值比最小值大 eq \f(a,2) ,求a的值.能力提升12.已知f(x)= eq \f(a,a2-1) (ax-a-x)(a>0且a≠1),讨论f(x)的单调性.13.根据函数y=|2x-1|的图像,判断当实数m为何值时,方程|2x-1|=m无解?有一解?有两解?§4对数(一)1.对数的概念如果ab=N(a>0,且a≠1),那么数b叫做______________,记作__________,其中a叫做__________,N叫做________.2.常用对数与自然对数通常将以10为底的对数叫做__________,以e为底的对数叫做__________,log10N可简记为________,logeN简记为________.3.对数与指数的关系若a>0,且a≠1,则ax=N⇔logaN=____.对数恒等式:=____;logaax=____(a>0,且a≠1).4.对数的性质(1)1的对数为____;(2)底的对数为____;(3)零和负数________.一、选择题1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④以e为底的对数叫做自然对数.其中正确命题的个数为( )A.1 B.2C.3 D.42.有以下四个结论:①lg(lg10)=0;②ln(ln e)=0;③若10=lg x,则x=100;④若e=ln x,则x=e2.其中正确的是( )A.①③ B.②④C.①② D.③④3.在b=log(a-2)(5-a)中,实数a的取值范围是( )A.a>5或a<2 B.2<a<5 C.2<a<3或3<a<5 D.3<a<44.方程= eq \f(1,4) 的解是( )A.x= eq \f(1,9) B.x= eq\f(\r(3),3)C.x= eq \r(3) D.x=95.若loga eq \r(5,b) =c,则下列关系式中正确的是( )A.b=a5c B.b5=acC.b=5ac D.b=c5a6.的值为( )A.6 B. eq \f(7,2)C.8 D. eq \f(3,7)二、填空题7.已知log7[log3(log2x)]=0,那么=________.8.若log2(logx9)=1,则x=________.9.已知lg a=2.431 0,lg b=1.431 0,则 eq \f(b,a) =________.三、解答题10.(1)将下列指数式写成对数式:①10-3= eq \f(1,1 000) ;②0.53=0.125;③( eq \r(2) -1)-1= eq \r(2) +1.(2)将下列对数式写成指数式:①log26=2.585 0;②log30.8=-0.203 1;③lg 3=0.477 1.11.已知logax=4,logay=5,求A=的值.能力提升12.若loga3=m,loga5=n,则a2m+n的值是( )A.15 B.75C.45 D.22513.(1)先将下列式子改写成指数式,再求各式中x的值:①log2x=- eq \f(2,5) ;②logx3=- eq \f(1,3) .(2)已知6a=8,试用a表示下列各式:①log68;②log62;③log26.§4对数(二)1.对数的运算性质如果a>0,且a≠1,M>0,N>0,则:(1)loga(MN)=________________;(2)loga eq \f(M,N) =________;(3)logaMn=__________(n∈R).2.对数换底公式logbN= eq \f(logaN,logab) (a,b>0,a,b≠1,N>0);特别地:logab·logba=____(a>0,且a≠1,b>0,且b≠1).一、选择题1.下列式子中成立的是(假定各式均有意义)( )A.logax·logay=loga(x+y) B.(logax)n=nlogaxC. eq \f(logax,n) =loga eq \r(n,x)D. eq \f(logax,logay) =logax-logay2.计算:log916·log881的值为( )A.18 B. eq \f(1,18) C. eq \f(8,3) D. eq \f(3,8)3.若log5 eq \f(1,3) ·log36·log6x=2,则x等于( )A.9 B. eq \f(1,9) C.25D. eq \f(1,25)4.已知3a=5b=A,若 eq \f(1,a) + eq \f(1,b) =2,则A等于( )A.15 B. eq \r(15) C.± eq \r(15)D.2255.已知log89=a,log25=b,则lg 3等于( )A. eq \f(a,b-1)B. eq \f(3,2b-1)C. eq\f(3a,2b+1) D. eq \f(3a-1,2b)6.若lg a,lg b是方程2x2-4x+1=0的两个根,则(lg eq\f(a,b) )2的值等于( )A.2 B. eq \f(1,2) C.4 D. eq\f(1,4)二、填空题7.2log510+log50.25+( eq \r(3,25) - eq \r(125) )÷ eq\r(4,25) =______________.8.(lg 5)2+lg 2·lg 50=________.9.2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M= eq \f(2,3) lg E-3.2,其中E(焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于________颗广岛原子弹.三、解答题10.(1)计算:lg eq \f(1,2) -lg eq \f(5,8) +lg 12.5-log89·log34;(2)已知3a=4b=36,求 eq \f(2,a) + eq \f(1,b) 的值.11.若a、b是方程2(lg x)2-lg x4+1=0的两个实根,求lg(ab)·(logab+logba)的值.能力提升12.下列给出了x与10x的七组近似对应值:假设在上表的各组对应值中,有且仅有一组是错误的,它是第________组.( )A.二 B.四C.五 D.七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的 eq \f(1,3) ?(结果保留1位有效数字)(lg 2≈0.301 0,lg 3≈0.477 1)§5对数函数(一)1.对数函数的定义:一般地,我们把______________________________叫做对数函数,其中x是自变量,函数的定义域是________.________为常用对数函数;y=________为自然对数函数.2.对数函数的图像与性质3.反函数对数函数y=logax(a>0且a≠1)和指数函数____________________互为反函数.一、选择题1.函数y= eq \r(log2x-2) 的定义域是( )A.(3,+∞) B.[3,+∞) C.(4,+∞) D.[4,+∞)2.设集合M={y|y=( eq \f(1,2) )x,x∈[0,+∞)},N={y|y=log2x,x∈(0,1]},则集合M∪N是( )A.(-∞,0)∪[1,+∞) B.[0,+∞)C.(-∞,1] D.(-∞,0)∪(0,1)3.已知函数f(x)=log2(x+1),若f(α)=1,则α等于( )A.0 B.1 C.2 D.3 4.函数f(x)=|log3x|的图像是( )5.已知对数函数f(x)=logax(a>0,a≠1),且过点(9,2),f(x)的反函数记为y=g(x),则g(x)的解析式是( )A.g(x)=4x B.g(x)=2x C.g(x)=9x D.g(x)=3x6.若loga eq \f(2,3) <1,则a的取值范围是( )A.(0, eq \f(2,3) ) B.( eq \f(2,3) ,+∞) C.( eq \f(2,3) ,1) D.(0, eq \f(2,3) )∪(1,+∞)二、填空题7.如果函数f(x)=(3-a)x,g(x)=logax的增减性相同,则a的取值范围是________.8.已知函数y=loga(x-3)-1的图像恒过定点P,则点P的坐标是________.9.给出函数,则f(log23)=________.三、解答题10.求下列函数的定义域与值域:(1)y=log2(x-2);(2)y=log4(x2+8).11.已知函数f(x)=loga(1+x),g(x)=loga(1-x),(a>0,且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值.(2)求使f(x)-g(x)>0的x的取值范围.能力提升12.已知图中曲线C1,C2,C3,C4分别是函数y=x,y=x,y=x,y=x 的图像,则a1,a2,a3,a4的大小关系是( )A.a4<a3<a2<a1 B.a3<a4<a1<a2 C.a2<a1<a3<a4D.a3<a4<a2<a113.若不等式x2-logmx<0在(0, eq \f(1,2) )内恒成立,求实数m的取值范围.§5对数函数(二)1.函数y=logax的图像如图所示,则实数a的可能取值是( )A.5 B. eq \f(1,5)C. eq \f(1,e)D. eq \f(1,2)2.下列各组函数中,表示同一函数的是( )A.y= eq \r(x2) 和y=( eq \r(x) )2B.|y|=|x|和y3=x3C.y=logax2和y=2logaxD.y=x和y=logaax3.若函数y=f(x)的定义域是[2,4],则y=f(x)的定义域是( )A.[ eq \f(1,2) ,1] B.[4,16]C.[ eq \f(1,16) , eq \f(1,4) ] D.[2,4]4.函数f(x)=log2(3x+1)的值域为( )A.(0,+∞) B.[0,+∞)C.(1,+∞) D.[1,+∞)5.函数f(x)=loga(x+b)(a>0且a≠1)的图像经过(-1,0)和(0,1)两点,则f(2)=________.6.函数y=loga(x-2)+1(a>0且a≠1)恒过定点________________________________________________________________________.一、选择题1.设a=log54,b=(log53)2,c=log45,则( )A.a<c<b B.b<c<aC.a<b<c D.b<a<c2.已知函数y=f(2x)的定义域为[-1,1],则函数y=f(log2x)的定义域为( )A.[-1,1] B.[ eq \f(1,2) ,2]C.[1,2] D.[ eq \r(2) ,4]3.函数f(x)=loga|x|(a>0且a≠1)且f(8)=3,则有( )A.f(2)>f(-2) B.f(1)>f(2)C.f(-3)>f(-2) D.f(-3)>f(-4)4.函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A. eq \f(1,4)B. eq \f(1,2) C.2 D.45.已知函数f(x)=lg eq \f(1-x,1+x) ,若f(a)=b,则f(-a)等于( )A.b B.-bC. eq \f(1,b) D.- eq \f(1,b)6.函数y=3x(-1≤x<0)的反函数是( )A.y=x(x>0) B.y=log3x(x>0)C.y=log3x( eq \f(1,3) ≤x<1) D.y=x( eq\f(1,3) ≤x<1)二、填空题7.函数f(x)=lg(2x-b),若x≥1时,f(x)≥0恒成立,则b应满足的条件是________.8.函数y=logax当x>2时恒有|y|>1,则a的取值范围是________.9.若loga2<2,则实数a的取值范围是______________.三、解答题10.已知f(x)=loga(3-ax)在x∈[0,2]上单调递减,求a的取值范围.11.已知函数f(x)= eq \f(1-ax,x-1) 的图像关于原点对称,其中a 为常数.(1)求a的值;(2)若当x∈(1,+∞)时,f(x)+(x-1)<m恒成立.求实数m的取值范围.能力提升12.若函数f(x)=loga(x2-ax+ eq \f(1,2) )有最小值,则实数a的取值范围是( )A.(0,1) B.(0,1)∪(1, eq \r(2) ) C.(1, eq \r(2) ) D.[ eq \r(2) ,+∞)13.已知logm4<logn4,比较m与n的大小.习题课1.已知m=0.95.1,n=5.10.9,p=log0.95.1,则这三个数的大小关系是( )A.m<n<p B.m<p<nC.p<m<n D.p<n<m2.已知0<a<1,logam<logan<0,则( )A.1<n<m B.1<m<n C.m<n<1 D.n<m<13.函数y= eq \r(x-1) + eq \f(1,lg2-x) 的定义域是( ) A.(1,2) B.[1,4]C.[1,2) D.(1,2]4.给定函数①y=,②y=(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是( )A.①② B.②③ C.③④ D.①④5.设函数f(x)=loga|x|,则f(a+1)与f(2)的大小关系是________________.6.若log32=a,则log38-2log36=________.一、选择题1.下列不等号连接错误的一组是( )A.log0.52.7>log0.52.8 B.log34>log65 C.log34>log56 D.logπe>logeπ2.若log37·log29·log49m=log4 eq \f(1,2) ,则m等于( )A. eq \f(1,4)B. eq \f(\r(2),2)C. eq \r(2) D.43.设函数若f(3)=2,f(-2)=0,则b等于( )A.0 B.-1 C.1 D.24.若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间(0, eq \f(1,2) )内恒有f(x)>0,则f(x)的单调递增区间为( )A.(-∞,- eq \f(1,4) ) B.(- eq \f(1,4) ,+∞) C.(0,+∞) D.(-∞,- eq \f(1,2) )5.若函数若f(a)>f(-a),则实数a的取值范围是( )A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1)6.已知f(x)是定义在R上的奇函数,f(x)在(0,+∞)上是增函数,且f( eq \f(1,3) )=0,则不等式f(x)<0的解集为( )A.(0, eq \f(1,2) ) B.( eq\f(1,2) ,+∞)C.( eq \f(1,2) ,1)∪(2,+∞) D.(0, eq\f(1,2) )∪(2,+∞)二、填空题7.已知loga(ab)= eq \f(1,p) ,则logab eq \f(a,b) =________.8.若log236=a,log210=b,则log215=________.9.设函数若f(a)= eq \f(1,8) ,则f(a+6)=________.三、解答题10.已知集合A={x|x<-2或x>3},B={x|log4(x+a)<1},若A∩B=∅,求实数a的取值范围.11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)能力提升12.设a>0,a≠1,函数f(x)=loga(x2-2x+3)有最小值,求不等式loga(x-1)>0的解集.13.已知函数f(x)=loga(1+x),其中a>1.(1)比较 eq \f(1,2) [f(0)+f(1)]与f( eq \f(1,2) )的大小;(2)探索 eq \f(1,2) [f(x1-1)+f(x2-1)]≤f( eq \f(x1+x2,2) -1)对任意x1>0,x2>0恒成立.§6指数函数、幂函数、对数函数增长的比较1.当a>1时,指数函数y=ax是________,并且当a越大时,其函数值增长越____.2.当a>1时,对数函数y=logax(x>0)是________,并且当a越小时,其函数值________.3.当x>0,n>1时,幂函数y=xn是________,并且当x>1时,n越大,其函数值__________.一、选择题1.今有一组数据如下:现准备了如下四个答案,哪个函数最接近这组数据( )A.v=log2t B.v=t C.v= eq \f(t2-1,2) D.v=2t-22.从山顶到山下的招待所的距离为20千米.某人从山顶以4千米/时的速度到山下的招待所,他与招待所的距离s(千米)与时间t(小时)的函数关系用图像表示为( )3.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用( )A.一次函数 B.二次函数 C.指数型函数 D.对数型函数4.某自行车存车处在某天的存车量为4 000辆次,存车费为:变速车0.3元/辆次,普通车0.2元/辆次.若当天普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式为( )A.y=0.2x(0≤x≤4 000) B.y=0.5x(0≤x≤4 000)C.y=-0.1x+1 200(0≤x≤4 000) D.y=0.1x+1 200(0≤x≤4000)5.已知f(x)=x2-bx+c且f(0)=3,f(1+x)=f(1-x),则有( )A.f(bx)≥f(cx) B.f(bx)≤f(cx) C.f(bx)<f(cx)D.f(bx),f(cx)大小不定6.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为l1=5.06x-0.15x2和l2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则可能获得的最大利润是( )A.45.606 B.45.6 C.45.56 D.45.51二、填空题7.一种专门侵占内存的计算机病毒,开机时占据内存2KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64MB内存(1MB=210KB).8.近几年由于北京房价的上涨,引起了二手房市场交易的火爆.房子几乎没有变化,但价格却上涨了,小张在2010年以80万元的价格购得一套新房子,假设这10年来价格年膨胀率不变,那么到2020年,这所房子的价格y(万元)与价格年膨胀率x之间的函数关系式是________.三、解答题9.用模型f(x)=ax+b来描述某企业每季度的利润f(x)(亿元)和生产成本投入x(亿元)的关系.统计表明,当每季度投入1(亿元)时利润y1=1(亿元),当每季度投入2(亿元)时利润y2=2(亿元),当每季度投入3(亿元)时利润y3=2(亿元).又定义:当f(x)使[f(1)-y1]2+[f(2)-y2]2+[f(3)-y3]2的数值最小时为最佳模型.(1)当b= eq \f(2,3) ,求相应的a使f(x)=ax+b成为最佳模型;(2)根据题(1)得到的最佳模型,请预测每季度投入4(亿元)时利润y4(亿元)的值.10.根据市场调查,某种商品在最近的40天内的价格f(t)与时间t满足关系f(t)=,销售量g(t)与时间t满足关系g(t)=- eq \f(1,3) t+ eq\f(43,3) (0≤t≤40,t∈N).求这种商品的日销售额(销售量与价格之积)的最大值.11.某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系是p=该商品的日销售量Q(件)与时间t(天)的函数关系式为Q=-t+40(0<t≤30,t∈N),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?能力提升12.某种商品进价每个80元,零售价每个100元,为了促销拟采取买一个这种商品,赠送一个小礼品的办法,实践表明:礼品价值为1元时,销售量增加10%,且在一定范围内,礼品价值为(n+1)元时,比礼品价值为n元(n∈N+)时的销售量增加10%.(1)写出礼品价值为n元时,利润yn(元)与n的函数关系式;(2)请你设计礼品价值,以使商店获得最大利润.13.已知桶1与桶2通过水管相连如图所示,开始时桶1中有a L水,t min后剩余的水符合指数衰减函数y1=ae-nt,那么桶2中的水就是y2=a-ae-nt,假定5 min后,桶1中的水与桶2中的水相等,那么再过多长时间桶1中的水只有 eq \f(a,4) L?第三章章末检测一、选择题(本大题共12小题,每小题5分,共60分)1.已知函数f(x)=lg(4-x)的定义域为M,函数g(x)= eq \r(0.5x-4) 的值域为N,则M∩N等于( )A.M B.NC.[0,4) D.[0,+∞)2.函数y=3|x|-1的定义域为[-1,2],则函数的值域为( )A.[2,8] B.[0,8]C.[1,8] D.[-1,8]3.已知f(3x)=log2 eq \r(\f(9x+1,2)) ,则f(1)的值为( )A.1 B.2 C.-1 D. eq\f(1,2)4.等于( )A.7 B.10 C.6 D. eq\f(9,2)5.若100a=5,10b=2,则2a+b等于( )A.0 B.1C.2 D.36.比较、23.1、的大小关系是( )A.23.1<< B.<23.1<C.<<23.1 D.<<23.17.式子 eq \f(log89,log23) 的值为( )A. eq \f(2,3)B. eq \f(3,2)C.2 D.38.已知ab>0,下面四个等式中:①lg(ab)=lg a+lg b;②lg eq \f(a,b) =lg a-lg b;③ eq \f(1,2) lg( eq \f(a,b) )2=lg eq \f(a,b) ;④lg(ab)= eq \f(1,logab10) .其中正确的个数为( )A.0 B.1 C.2 D.39.为了得到函数y=lg eq \f(x+3,10) 的图像,只需把函数y=lg x 的图像上所有的点( )A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度10.函数y=2x与y=x2的图像的交点个数是( )A.0 B.1C.2 D.311.设偶函数f(x)满足f(x)=2x-4(x≥0),则{x|f(x-2)>0}等于( ) A.{x|x<-2或x>4} B.{x|x<0或x>4}C.{x|x<0或x>6} D.{x|x<-2或x>2}12.函数f(x)=a|x+1|(a>0,a≠1)的值域为[1,+∞),则f(-4)与f(1)的关系是( )A.f(-4)>f(1) B.f(-4)=f(1)C.f(-4)<f(1) D.不能确定二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)= eq \b\lc\{\rc\ (\a\vs4\al\co1(\f(1,2)x,x≥4f x+1, x<4)) ,则f(2+log23)的值为______.14.函数f(x)=loga eq \f(3-x,3+x) (a>0且a≠1),f(2)=3,则f(-2)的值为________.15.函数y=(x2-3x+2)的单调递增区间为______________.16.设0≤x≤2,则函数y=-3·2x+5的最大值是________,最小值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知指数函数f(x)=ax(a>0且a≠1).(1)求f(x)的反函数g(x)的解析式;(2)解不等式:g(x)≤loga(2-3x).18.(12分)已知函数f(x)=2a·4x-2x-1.(1)当a=1时,求函数f(x)在x∈[-3,0]的值域;(2)若关于x的方程f(x)=0有解,求a的取值范围.19.(12分)已知x>1且x≠ eq \f(4,3) ,f(x)=1+logx3,g(x)=2logx2,试比较f(x)与g(x)的大小.20.(12分)设函数f(x)=log2(4x)·log2(2x), eq \f(1,4) ≤x≤4,(1)若t=log2x,求t的取值范围;(2)求f(x)的最值,并写出最值时对应的x的值.21.(12分)已知f(x)=loga eq \f(1+x,1-x) (a>0,a≠1).(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)求使f(x)>0的x的取值范围.22.(12分)已知定义域为R的函数f(x)= eq \f(-2x+b,2x+1+2) 是奇函数.(1)求b的值;(2)判断函数f(x)的单调性;(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.。

人教版高中数学第四章指数函数与对数函数考点精题训练

人教版高中数学第四章指数函数与对数函数考点精题训练

人教版高中数学第四章指数函数与对数函数考点精题训练单选题1、已知9m =10,a =10m −11,b =8m −9,则( ) A .a >0>b B .a >b >0C .b >a >0D .b >0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质)由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1, 令f ′(x)=0,解得x 0=m 11−m ,由m =log 910∈(1,1.5) 知x 0∈(0,1) . f(x) 在 (1,+∞) 上单调递增,所以f(10)>f(8) ,即 a >b , 又因为f(9)=9log 910−10=0 ,所以a >0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法; 法二:利用a,b 的形式构造函数f(x)=x m −x −1(x >1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.2、设a =30.7, b =(13)−0.8, c =log 0.70.8,则a,b,c 的大小关系为( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b 答案:D分析:利用指数函数与对数函数的性质,即可得出a,b,c 的大小关系. 因为a =30.7>1,b =(13)−0.8=30.8>30.7=a ,c =log 0.70.8<log 0.70.7=1, 所以c <1<a <b . 故选:D.小提示:本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:y =a x ,当a >1时,函数递增;当0<a <1时,函数递减; (2)利用对数函数的单调性:y =log a x ,当a >1时,函数递增;当0<a <1时,函数递减; (3)借助于中间值,例如:0或1等.3、中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =Wlog 2(1+SN ).它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至4000,则C大约增加了()附:lg2≈0.3010A.10%B.20%C.50%D.100%答案:B分析:根据题意,计算出log24000log21000的值即可;当SN =1000时,C=Wlog21000,当SN=4000时,C=Wlog24000,因为log24000log21000=lg4000lg1000=3+2lg23≈3.60203≈1.2所以将信噪比SN从1000提升至4000,则C大约增加了20%,故选:B.小提示:本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用.4、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h与其采摘后时间t(天)满足的函数关系式为ℎ=m⋅a t.若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果多长时间后失去40%新鲜度()A.25天B.30天C.35天D.40天答案:B分析:根据给定条件求出m及a10的值,再利用给定公式计算失去40%新鲜度对应的时间作答.依题意,{10%=m⋅a1020%=m⋅a20,解得m=120,a10=2,当ℎ=40%时,40%=120⋅a t,即40%=120⋅a10⋅a t−10,解得a t−10=4=(a10)2=a20,于是得t−10=20,解得t=30,所以采摘下来的这种水果30天后失去40%新鲜度.故选:B5、已知函数f (x )是奇函数,当x >0时,f (x )=2x +x 2,则f (2)+f (−1)=( ) A .11B .5C .−8D .−5 答案:B分析:利用奇函数的定义直接计算作答. 奇函数f (x ),当x >0时,f (x )=2x +x 2,所以f (2)+f (−1)=f(2)−f(1)=22+22−(21+12)=5. 故选:B6、设函数f (x )=ln |2x +1|﹣ln |2x ﹣1|,则f (x )( ) A .是偶函数,且在 (12,+∞)单调递增B .是奇函数,且在 (−12,12)单调递增 C .是偶函数,且在(−∞,−12)单调递增 D .是奇函数,且在 (−∞,−12)单调递增 答案:B分析:先求出f (x )的定义域结合奇偶函数的定义判断f (x )的奇偶性,设t =|2x+12x−1|,则y =ln t ,由复合函数的单调性判断f (x )的单调性,即可求出答案.解:由{2x +1≠02x −1≠0,得x ≠±12.又f (﹣x )=ln |﹣2x +1|﹣ln |﹣2x ﹣1|=﹣(ln |2x +1|﹣ln |2x ﹣1|)=﹣f (x ), ∴f (x )为奇函数,由f (x )=ln |2x +1|﹣ln |2x ﹣1|=ln |2x+12x−1|, ∵2x+12x−1=1+22x−1=1+1x−12.可得内层函数t =|2x+12x−1|的图象如图,在(﹣∞,−12),(12,+∞)上单调递减,在(−12,12)上单调递增,又对数式y =lnt 是定义域内的增函数,由复合函数的单调性可得,f (x )在(−12,12)上单调递增, 在(﹣∞,−12),(12,+∞)上单调递减. 故选:B .7、设f(x)={e x−1,x <3log 3(x −2),x ≥3,则f(f (11))的值是( )A .1B .eC .e 2D .e −1 答案:B分析:根据自变量的取值,代入分段函数解析式,运算即可得解. 由题意得f(11)=log 3(11−2)=log 39=2, 则f(f (11))=f (2)=e 2−1=e . 故选:B.小提示:本题考查了分段函数求值,考查了对数函数及指数函数求值,属于基础题. 8、设m ,n 都是正整数,且n >1,若a >0,则不正确的是( )A.a mn=√a mn B.(a12+a−12)2=a+a−1C.a−mn=√a mn D.a0=1答案:B解析:由指数运算公式直接计算并判断. 由m,n都是正整数,且n>1,a>0,、得(a 12+a−12)2=(a12)2+2a12⋅a−12+(a−12)2=a+a−1+2,故B选项错误,故选:B.9、已知f(x)={2x−x2,x≥5f(x+3),x<5,则f(4)+f(-4)=()A.63B.83C.86D.91答案:C分析:由给定条件求得f(-4)=f(5),f(4)=f(7),进而计算f(5)、f(7)的值,相加即可得解.依题意,当x<5时,f(x)=f(x+3),于是得f(-4)=f(-1)=f(2)=f(5),f(4)=f(7),当x≥5时,f(x)=2x-x2,则f(5)=25-52=7,f(7)=27-72=79,所以f(4)+f(-4)=86.故选:C10、中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过t分钟后物体的温度θ℃将满足θ=θ0+(θ1−θ0)e−kt,其中k是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,100℃的水应大约冷却( )分钟冲泡该绿茶(参考数据:ln2≈0.7,ln3≈1.1)A.3B.3.6C.4D.4.8答案:B分析:根据题意求出k的值,再将θ=80℃,θ1=100℃,θ0=20℃代入θ=θ0+(θ1−θ0)e−kt即可求得t的值.由题可知:50=20+(100−20)e−12k⇒(e−k)12=38⇒e−k=(38)112,冲泡绿茶时水温为80℃,故80=20+(100−20)⋅e−kt⇒(e−k)t=34⇒t⋅ln e−k=ln34⇒t=ln 3 4ln(38)112=12(ln3−2ln2)ln3−3ln2≈12(1.1−2×0.7)1.1−3×0.7=3.6.故选:B.多选题11、高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,也称取整函数,例如:[−3.7]=−4,[2.3]=2,已知f(x)=e xe x+1−12,则函数y=2[f(x)]+[f(−x)]的函数值可能为()A.−2B.−1C.0D.1答案:ABC分析:利用定义可知函数f(x)为奇函数,根据解析式可得f(x)∈(−12,12),分三种情况讨论f(x)可求得结果.因为f(x)=e xe x+1−12,所以f(−x)=e−xe−x+1−12=11+e x−12,所以f(x)+f(−x)=e xe x+1−12+1e x+1−12=0,即f(−x)=−f(x),因为f(x)=e xe x+1−12=e x+1−1e x+1−12=12+−1e x+1,因为e x>0,e x+1>1,所以0<1e x+1<1,所以−1<−1e x+1<0,所以−12<12+−1e x +1<12即f(x)∈(−12,12)当f(x)∈(−12,0)时,f(−x)∈(0,12),所以[f(x)]=−1,[f(−x)]=0,此时y =−2,当f(x)=0时,f(−x)=0,所以[f(x)]=0,[f(−x)]=0,此时y =0,当f(x)∈(0,12)时,f(−x)∈(−12,0),此时[f(x)]=0,[f(−x)]=−1,此时y =−1, 所以函数y =2[f(x)]+[f(−x)]的值域为{−2,−1,0}. 故选:ABC12、若函数f(x)的图像在R 上连续不断,且满足f(0)<0,f(1)>0,f(2)>0,则下列说法错误的是( ) A .f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点 B .f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点 C .f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点 D .f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点 答案:ABD解析:根据f (x )的图像在R 上连续不断,f (0)<0,f (1)>0,f (2)>0,结合零点存在定理,判断出在区间(0,1)和(1,2)上零点存在的情况,得到答案.由题知f (0)⋅f (1)<0,所以根据函数零点存在定理可得f (x )在区间(0,1)上一定有零点, 又f (1)⋅f (2)>0,无法判断f (x )在区间(1,2)上是否有零点,在区间(1,2)上可能有零点. 故选:ABD .13、下列各选项中,值为1的是( ) A .log 26·log 62B .log 62+log 64C .(2+√3)12⋅(2−√3)12D .(2+√3)12−(2−√3)12答案:AC解析:对选项逐一化简,由此确定符合题意的选项. 对于A 选项,根据log a b ⋅log b a =1可知,A 选项符合题意. 对于B 选项,原式=log 6(2×4)=log 68≠1,B 选项不符合题意.对于C 选项,原式=[(2+√3)⋅(2−√3)]12=112=1,C 选项符合题意.对于D 选项,由于[(2+√3)12−(2−√3)12]2=2+√3+2−√3−2(2+√3)12⋅(2−√3)12=4−2=2≠1,D 选项不符合题意. 故选:AC小提示:本小题主要考查对数、根式运算,属于基础题.14、已知函数f(x)=2x2x +1+m(m ∈R)则下列说法正确的是( ) A .f (x )的定义域为R .B .若f(x)为奇函数,则m =−12 C .f(x)在R 上单调递减D .若m =0,则f(x)的值域为(0,1) 答案:ABD分析:根据函数的定义域的求法,可判定A 正确;根据函数的奇偶性列出方程,求得m 的值,可判定B 正确,化简f(x)=−12x +1+m +1,结合指数函数的单调性,可判定C 错误;化简函数f(x)=1−12x +1,结合指数函数的值域,可判定D 正确.由题意,函数f(x)=2x2x +1+m(m ∈R),对于A 中,由2x +1≠0,所以函数f (x )的定义域为R ,所以A 正确;对于B 中,由函数f (x )为奇函数,则满足f (−x )=−f (x ),即2−x 2−x +1+m =−2x2x +1−m ,所以2m =−2x2x +1−2−x2−x +1=−2x2x +1−12x 12x+1=−2x2x +1−12x +1=−1,即m =−12,所以B 不正确;对于C 中,由f(x)=2x 2x +1+m =2x +1−12x +1+m =−12x +1+m +1,因为函数y =2x +1为单调递增函数,则y =−12x +1递增函数, 所以f (x )函数在R 上单调递减,所以C 不正确;对于D 中,当m =0时,可得f(x)=2x 2x +1=1−12x +1,因为2x +1>1,可得−1<−12x +1<0,所以1−12x +1∈(0,1), 即函数f (x )的值域为(0,1),所以D 正确. 故选:ABD.15、某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.以下判断正确的是( )A .该单位每月处理量为400吨时,才能使每吨的平均处理成本最低B .该单位每月最低可获利20000元C .该单位每月不获利,也不亏损D .每月需要国家至少补贴40000元才能使该单位不亏损 答案:AD分析:根据题意,列出平均处理成本表达式,结合基本不等式,可得最低成本;列出利润的表达式,根据二次函数图像与性质,即可得答案.由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80000x−200≥2√12x ⋅80000x−200=200,当且仅当12x =80000x,即x =400时等号成立,故该单位每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元,故A正确;设该单位每月获利为S元,则S=100x−y=100x−(12x2+80000−200x)=−12x2+300x−80000=−12(x−300)2−35000,因为x∈[400,600],所以S∈[−80000,−40000].故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损,故D正确,BC错误,故选:AD小提示:本题考查基本不等式、二次函数的实际应用,难点在于根据题意,列出表达式,并结合已有知识进行求解,考查阅读理解,分析求值的能力,属中档题.双空题16、已知函数f(x)=ln(ax2+2x+1),若f(x)的定义域为R,则实数a的取值范围为______;若f(x)的值域为R,则实数a的取值范围为______.答案:(1,+∞)[0,1]分析:由f(x)的定义域为R知u=ax2+2x+1的图象恒在x轴的上方,由二次函数性质可构造不等式组求得结果;由f(x)的值域为R知u=ax2+2x+1要取遍所有的正数,由二次函数值域可构造不等式组求得结果.若f(x)的定义域为R,则u=ax2+2x+1的图象恒在x轴的上方,∴{a>0Δ=4−4a<0,解得:a>1,即实数a的取值范围是(1,+∞);若f(x)的值域为R,则u=ax2+2x+1要取遍所有的正数,∴a=0或{a>0Δ=4−4a≥0,解得:0≤a≤1,即实数a的取值范围是[0,1].所以答案是:(1,+∞);[0,1].17、若函数f(x)=ln(ax+11−x)+b是奇函数,则a=___________,b=___________.答案: 1 0分析:根据奇函数在x =0处有定义则f (0)=0可得b ,再根据奇函数的满足f (x )+f (−x )=0求解a 即可 因为函数f (x )=ln (ax+11−x )+b 是奇函数,故f (0)=0,即ln 1+b =0,即b =0.又f (x )+f (−x )=0,故ln (ax+11−x )+ln (−ax+11+x )=0,即(ax+11−x )⋅(−ax+11+x )=1,1−a 2x 21−x 2=1恒成立,故a 2=1,所以a =1或a =−1,当a =−1时f (x )=ln (−x+11−x)=ln (−1)无意义.当a =1时f (x )=ln (x+11−x )满足奇函数.故a =1 综上,a =1,b =0所以答案是:1;018、某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,要使这两项费用之和最小,仓库应建立在距离车站______km 处,最少费用为______万元.答案: 5 8解析:根据题意设出y 1和y 2的函数表达式,利用“在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元”列方程,由此求得y 1和y 2的解析式.利用基本不等式求得费用的最小值和建站位置.设仓库与车站距离为x ,依题意y 1=k 1x ,y 2=k 2x .由于“在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元”,所以2=k 110,8=k 2⋅10,解得k 1=20,k 2=45.所以y 1=20x ,y 2=45x ,所以总费用20x +45x ≥2√20x ⋅45x =8,当且仅当20x =45x ,即x =5时,取得最小值.所以答案是:(1)5;(2)8.小提示:本小题主要考查函数模型在实际生活中的运用,考查利用基本不等式求最值,属于基础题. 解答题19、(1)已知函数g (x )=(a +1)x−2+1(a >0)的图像恒过定点A ,且点A 又在函数f (x )=log √3(x +a )的图像上,求不等式g (x )>3的解集;(2)已知−1≤log 12x ≤1,求函数y =(14)x−1−4(12)x +2的最大值和最小值.答案:(1)(3,+∞);(2)y min =1,y max =54.分析:(1)结合指数函数性质首先求a 的值,再解指数不等式;(2)通过换元,设t =(12)x ,并且求变量的取值范围,转化为二次函数在定义域内的最大值和最小值.(1)由题意知定点A 的坐标为(2,2),∴2=log √3(2+a )解得a =1.∴g (x )=2x−2+1.∴由g (x )>3得,2x−2+1>3.∴2x−2>2.∴x −2>1.∴x >3.∴不等式g (x )>3的解集为(3,+∞).(2)由−1≤log 12x ≤1得12≤x ≤2令t =(12)x ,则14≤t ≤√22, y =4t 2−4t +2=4(t −12)2+1. ∴当t =12,即(12)x =12,x =1时,y min =1,当t =14,即(12)x =14,x =2时,y max =54. 小提示:本题考查指数函数与对数函数的图象与性质,考查求对数型函数的值域,求值域的方法是用换元法把函数转化为二次函数,然后求解.20、已知函数f(x)=2x −12x .(1)判断f(x)在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x的不等式f(log2x)<f(1).答案:(1)f(x)在R上是增函数,证明见解析;(2)(0,2).分析:(1)由题可判断函数为奇函数且为增函数,利用定义法的步骤证明即可;(2)利用函数f(x)的单调性及对数函数的单调性即解.(1)∵f(−x)=2−x−2x=−(2x−12x)=−f(x),则函数f(x)是奇函数,则当x⩾0时,设0⩽x1<x2,则f(x1)−f(x2)=2x1−12x1−2x2+12x2=2x1−2x2+2x2−2x12x12x2=(2x1−2x2)2x12x2−12x12x2,∵0⩽x1<x2,∴1⩽2x1<2x2,即2x1−2x2<0,2x12x2>1,则f(x1)−f(x2)<0,即f(x1)<f(x2),则f(x)在[0,+∞)上是增函数,∵f(x)是R上的奇函数,∴f(x)在R上是增函数.(2)∵f(x)在R上是增函数,∴不等式f(log2x)<f(1)等价为不等式log2x<1,即0<x<2.即不等式的解集为(0,2).。

2023年一轮复习《指数函数和对数函数》综合训练(含解析)

2023年一轮复习《指数函数和对数函数》综合训练(含解析)

2023年一轮复习《指数函数和对数函数》综合训练一、单选题(本大题共12小题,共60分)1.(5分)已知函数y=f(x)是定义域为R的奇函数.当x⩾0时f(x)={x 2,0⩽x⩽1f(x−1)+1,x>1.若恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,则实数m的值为()A. √2−1B. 2√2−2C. 2−√2D. 3−2√22.(5分)已知某抽气机每次可抽出容器内空气的60%,要使容器内的空气少于原来的0.2%,则至少要抽的次数是(参考数据:lg2=0.301)()A. 6B. 7C. 8D. 93.(5分)已知函数f(x)=sin(π2x)+a(e x−1+e−x+1)有唯一零点,则a=()A. −1B. −12C. 12D. 14.(5分)已知x1是方程x+≶x=3的根,x2是方程x+10x=3的根,那么x1+x2的值为()A. 6B. 3C. 2D. 15.(5分)函数y=|ln|x−2||+x2−4x的所有零点之和是()A. −8B. −4C. 4D. 86.(5分)已知函数f(x)={xlnx−x,x>0f(x+1),x⩽0,若关于x的方程2f(x)−kx+1=0有四个不同的实根,则实数k的取值范围是()A. (−14,−16]∪(14,12]B. [−14,−16)∪[14,12)C. (−12,−13]∪(12,1]D. [−12,−13]7.(5分)已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递减,f(−2)=0,则不等式xf(x+1)>0的解集为()A. (−3,−1)∪(0,+∞)B. (−∞,−3)∪(0,1)C. (−∞,−3)∪(−1,+∞)D. (−3,0)∪(1,+∞)8.(5分)已知函数y=f(x)的定义域为(0,+∞),满足对任意x∈(0,+∞),恒有f[f(x)−1x]=4,若函数y=f(x)−4的零点个数为有限的n(n∈N∗)个,则n的最大值为()A. 1B. 2C. 3D. 49.(5分)下列函数中,在定义域内单调递增,且在区间(−1,1)内有零点的函数是()A. y=−x3B. y=2x−1C. y=x2−12D. y=log2(x+2)10.(5分)(示范高中)已知x >0,y >0,≶2x +≶4y =≶2,则1x +1y 的最小值是( )A. 6B. 5C. 3+2√2D. 4√211.(5分)已知函数f(x)={|log 2(x +1)|,x ∈(−1,3)5−x,x ∈[3,+∞),则函数g(x)=f(f(x))−1的零点个数为( )A. 3B. 4C. 5D. 612.(5分)已知函数f(x)在[−3,4]上的图象是一条连续的曲线,且其部分对应值如表:A. (−3,−1)和(−1,1)B. (−3,−1)和(2,4)C. (−1,1)和(1,2)D. (−∞,−3)和(4,+∞)二 、填空题(本大题共4小题,共20分)13.(5分)若log 9(3a +4b )=log 3√ab ,则a +3b 的最小值是________. 14.(5分)已知2a =3,b =log 25,则2b =______,2a+b =______. 15.(5分)若lga ,lgb 是方程2x2-4x+1=0的两个实根,则ab=____. 16.(5分)计算 log23•log38=____. 三 、解答题(本大题共6小题,共72分) 17.(12分)求值:(1)0.027−13−(−17)−2−3−1+(−78)0; (2)3log 32+lg 16+3lg 5−lg 15.18.(12分)计算下列各式的值. (1)i −i 2+i 3−i 4+…+i 2021−i 2022;(2)log 168+101−lg5−(2764)13+(1−√2)lg1. 19.(12分)已知函数f(x)=a −22x +1(a ∈R) 为定义域上的奇函数.(1)求a 的值;(2)判断f(x)在定义域上的单调性,并加以证明;(3)若关于x 的方程f(x)=23在区间(b,b +1)(b ∈N ∗)内有唯一解,求b 的值. 20.(12分)设二次函数f(x)=ax 2+(b −3)x +3.(1)若函数f(x)的零点为−3,2,求函数f(x); (2)若f(1)=1,a >0,b >0,求1a +4b 的最小值. 21.(12分)解下列方程. (1)log 2[log 2(2x +3)]=2; (2)(12)x .82x =4.22.(12分)已知函数f(x)=−x 2+2ex +m −1,g(x)=x +e 2x(x >0).(1)若y =g(x)−m 有零点,求实数m 的取值范围;(2)求实数m 的取值范围,使得g(x)−f(x)=0有两个不相等的实根. 四 、多选题(本大题共5小题,共25分) 23.(5分)已知a >0,b >0,ln a =ln b 2=ln (3a +2b )3,则下列说法错误的是( )A. b =2aB. 3a +2b =b 3C. ln bln (a+1)=log 23D. eln b a=324.(5分)设函数f(x)={3x ,x ⩽0|log 3x|,x >0,若f(x)−a =0有三个不同的实数根,则实数a 的取值可以是( )A. 12 B. 1 C. −1 D. 225.(5分)若关于x 的不等式ae x +bx +c <0的解集为(−1,1),则( )A. b >0B. |a|<|c|C. a +b +c >0D. 8a +2b +c >026.(5分)下列各选项中,值为1的是( )A. log 26.log 62B. log 62+log 64C. (2+√3)12⋅(2−√3)12D. (2+√3)12−(2−√3)1227.(5分)已知函数f(x)={cosx,x >0kx,x ⩽0,若方程f(x)+f(−x)=0有n 个不同的实根,从小到大依次为x 1,x 2,x 3,…,x n ,则下列说法正确的是( )A. x 1+x 2+x 3+…+x n =0B. 当n =1时,k <−1π C. 当n =3且k <0时,tan x 3=−1x 3D. 当k >12π时,n =3答案和解析1.【答案】B;【解析】解:∵函数y=f(x)是定义域为R的奇函数.x⩾0时f(x)={x 2,0⩽x⩽1f(x−1)+1,x>1.∴f(0)=0,若恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,则f(x)=mx有且仅有两个正根,则m>0,且y=mx的图象,与y=f(x),x∈[1,2]的图象相切,由y=f(x)=(x−1)2+1,x∈[1,2],故mx=(x−1)2+1有且只有一个解,即x2−(m+2)x+2=0的Δ=0,解得:m=2√2−2,或m=−2√2−2(舍去),故m=2√2−2,故选:B由已知中恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,可得f(x)=mx有且仅有两个正根,则m>0,且y=mx的图象,与y=f(x),x∈[1,2]的图象相切,进而可得答案.此题主要考查的知识点是根的存在性及根的个数判断,其中结合函数奇偶性的函数特征,分析出f(x)=mx有且仅有两个正根,是解答的关键.2.【答案】B;【解析】解:假设至少要抽的次数是n,则(1−0.6)n<0.002,∴nlg0.4<lg0.002,∴n>lg0.002lg0.4=lg2−32lg2−1≈6.8.∴至少要抽的次数是7.故选:B.假设至少要抽的次数是n,则(1−0.6)n<0.002,化为对数式即可得出.该题考查了指数式化为对数式,考查了推理能力与计算能力,属于基础题.3.【答案】B;【解析】解:因为函数f(x)=sin(π2x)+a(e x−1+e−x+1),令x−1=t,t∈R,则g(t)=sin(π2(t+1))+a(e t+e−t)=cos(π2t)+a(e t+e−t)为偶函数,因为函数f(x)=sin(π2x)+a(e x−1+e x−1)有唯一零点,t)+a(e t+e−1)有唯一零点,所以g(t)=cos(π2根据偶函数的对称性,则g(0)=1+2a=0,解得a=−1,2故选:B.t)+a(e t+e−t)有唯一零点,根据偶函数的对称性求令x−1=t,转化为g(t)=cos(π2解.此题主要考查了函数的零点问题,属于中档题.4.【答案】B;【解析】解:第一个方程:≶x=3−x,第二个方程,≶(3−x)=x.注意第二个方程如果做变量代换y=3−x,则≶y=3−y,其实是与第一个方程一样的.如果x1,x2是两个方程的解,则必有x1=3−x2,∴x1+x2=3.故选:B.第一个方程:≶x=3−x,第二个方程,≶(3−x)=x.注意第二个方程如果做变量代换y=3−x,则≶y=3−y,由此能求出结果.该题考查两数和的求法,是基础题,解题时要认真审题,注意对数函数性质的合理运用.5.【答案】D;【解析】解:根据函数y=|ln|x−2||+x2−4x的零点,转化为|ln|x−2||+x2−4x=0的根,令y=|ln|x−2||,y=−x2+4x,两个函数的对称轴都为x=2,在同一坐标系中,画出函数的图象:x 3,x 2关于x =2对称,所以x 3+x 2=4, x 1,x 4关于x =2对称,所以x 1+x 4=4, 所以x 1+x 2+x 3+x 4=8, 故选:D .根据函数y =|ln |x −2||+x 2−4x 的零点⇒|ln |x −2||+x 2−4x =0的根⇒y =|ln |x −2||,y =−x 2+4x 交点的横坐标,由两个函数都有对称轴x =2,结合图象可得x 3,x 2关于x =2对称,x 1,x 4关于x =2对称,进而得出答案. 该题考查函数的零点,解题中注意转化思想的应用,属于中档题.6.【答案】C;【解析】解:当x >0时,f ′(x)=lnx ,当0<x <1时,f ′(x)<0,当x >1时,f ′(x)>0,所以当x >0时,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增, 又当x ⩽0时,f(x)=f(x +1),所以根据周期为1可得:当x ⩽0时f(x)的图象,故f(x)的图象如图所示:将方程2f(x)−kx +1=0,转化为方程f(x)=k2x −12有四个不同的实根, 令g(x)=k2x −12,其图象恒过(0,−12), 因为f(x)与g(x)的图象有四个不同的交点, 所以k CE <k2⩽k DE 或k BE <k2⩽k AE ,又由A(−3,0),B(−2,0),C(−2,−1),D(−1,−1),E(0,−12), 故k CE =14,k DE =12,k BE =−14,k DE =−16, 所以14<k2⩽12或−14<k2⩽−16, 即12<k ⩽1或−12<k ⩽−13. 故选:C.把方程2f(x)−kx +1=0有四个不同的实根,转化为函数y =f(x)和g(x)=k2x −12的图象有四个交点,作出两个函数的图象,结合图象,即可求解.此题主要考查了函数的零点、转化思想、数形结合思想,难点在于作出图象,属于中档题.7.【答案】B;【解析】本题查抽象函数的单调性和奇偶性的综合应用,属于中档题。

高三指数与对数练习题

高三指数与对数练习题

高三指数与对数练习题1. 求解下列方程:(1)$2^{x+1}-5 \cdot 2^x-12=0$(2)$5^{2x+1}+5 \cdot 5^{2x}-24=0$2. 求解不等式:(1)$3^{x-1} \geq 81$(2)$2^{2x+1}-4^x<0$3. 化简下列表达式:(1)$\log_2 16-\log_2 \frac{1}{4}$(2)$\log_5 25+\log_5 0.2$4. 已知点$A(1,0)$和$B(b,1)$,若点$C(c, 2)$在直线$AB$上,求$c$的值。

5. 求以下函数的值域:(1)$y=3^x$(2)$y=\log_2 x$6. 求以下方程的解集:(1)$\log_2 x + \log_2 (x+1)=3$(2)$2\log_3 x + 3\log_3 (x+1)=4$7. 某人从事研究,发现了某种细菌的增长规律,他发现,每过一个小时,细菌的数量增加到原来的2倍。

假设最初有1个细菌,经过t小时,有多少细菌?8. 某城市的人口数量每年以1.5%的速度增长,现在有10万人,求多少年后人口数量将达到20万人?9. 已知函数$f(x)=2^{x-3}+3$,求$f(0)$和$x$使得$f(x)=4$。

10. 某企业的销售额年增长率为5%,现在销售额为100万,求多少年后销售额将达到200万?解答如下:1. 解:(1)设$2^x=a$,则原方程化简为$a^2-5a-12=0$。

该方程可以因式分解为$(a-6)(a+2)=0$,解得$a=6$或$a=-2$。

由$a=2^x$,可得$2^x=6$或$2^x=-2$。

对于$2^x=6$,求解得$x=\log_2 6$;对于$2^x=-2$,无实数解。

综上所述,原方程的解为$x=\log_2 6$。

(2)设$5^x=a$,则原方程化简为$a^2+5a-24=0$。

该方程可以因式分解为$(a+8)(a-3)=0$,解得$a=-8$或$a=3$。

指数式与对数式经典练习及答案

指数式与对数式经典练习及答案

[基础巩固]1.(多选)下列指数式与对数式的互化,正确的一组是( )A .e 0=1与ln 1=0C .log 24=2与412 =2D .log 55=1与51=5解析 指数式与对数式的互化中,其底数都不变,指数式中的函数值与对数式中的真数相对应,对于C ,log 24=2⇔22=4,而412 =2⇔log 42=12.故选ABD. 答案 ABD2.已知log 381=x ,则x 等于( )A .-8B .8C .4D .-4 解析 由题意得,(3)x =81, 3x 2 =34,x =8.答案 B3.的值为( ) A .6B .72C .8D .37解析=2×4=8.答案 C4.log 6[log 4(log 381)]=________.解析 令t =log 381,则3t =81=34,∴t =4,即log 381=4.原式=log 6(log 44)=log 61=0.答案 05.若a >0,a 23 =49 ,则log 23a 的值等于________. 解析 ∵a 23 =49 ,a >0,∴a =⎝⎛⎭⎫49 32 =⎝⎛⎭⎫23 3 . 设log 23a =x ,∴⎝⎛⎭⎫23 x=a .∴x =3. 答案 36.计算:[能力提升]7.(多选)以下四个选项,正确的是( )A .lg(lg 10)=0B .ln(ln e)=0C .若10=lg x ,则x =10D .若e =ln x ,则x =e 2解析 lg(lg 10)=lg 1=0,故A 正确; ln(ln e)=ln 1=0,故B 正确;若10=lg x ,则x =1010,故C 错误; 若e =ln x ,则x =e e ,故D 错误.答案 AB8.已知x =log 23,则23x -2-3x2x -2-x=________. 解析 由x =log 23,得2x =3,2-x =13, 所以23x -2-3x 2x -2-x =33-⎝⎛⎭⎫1333-13=919.答案 919 9.=4+12+32=6. 答案 610.已知log 2(log 3(log 4x ))=0,且log 4(log 2y )=1.求x ·y 34 的值. 解析 ∵log 2(log 3(log 4x ))=0,∴log 3(log 4x )=1,∴log 4x =3,∴x =43=64.由log 4(log 2y )=1,知log 2y =4,∴y =24=16.因此x ·y 34 =64 ×1634 =8×8=64.[探索创新]11.已知log a b =log b a (a >0,且a ≠1;b >0,且b ≠1).求证:a =b 或a =1b. 证明 设log a b =log b a =k ,则b =a k ,a =b k ,∴b =(b k )k =. ∵b >0,且b ≠1,∴k 2=1,即k =±1.当k =-1时,a =1b; 当k =1时,a =b .∴a =b 或a =1b,命题得证.。

指数函数和对数函数复习(有详细知识点和习题详解)

指数函数和对数函数复习(有详细知识点和习题详解)

指数函数和对数函数复习(有详细知识点和习题详解)一、指数的性质一)整数指数幂整数指数幂的概念是指:a的n次方等于a乘以a的n-1次方,其中a不等于0,n为正整数。

另外,a的-n次方等于1除以a的n次方,其中a不等于0,n为正整数。

整数指数幂的运算性质包括:(1)a的m次方乘以a的n次方等于a的m+n次方;(2)a的n次方的m次方等于a的mn次方;(3)a乘以b的n次方等于a的n次方乘以b的n次方。

其中,a除以a的n次方等于a的n-1次方,a的m-n次方等于a的m除以a的n次方,an次方根的概念是指,如果一个数的n次方等于a,那么这个数叫做a的n次方根,记作x=√a。

例如,27的3次方根等于3,-27的3次方根等于-3,32的5次方根等于2,-32的5次方根等于-2.a的n次方根的性质包括:如果n是奇数,则a的n次方根等于a;如果n是偶数且a大于等于0,则a的正的n次方根等于a,a的负的n次方根等于负的a;如果n是偶数且a小于0,则a的n次方根没有意义,即负数没有偶次方根。

二)例题分析例1:求下列各式的值:(1)3的-8次方;(2)(-10)的2次方;(3)4的(3-π)次方;(4)(a-b)的2次方,其中a大于b。

例2:已知a小于b且n大于1,n为正整数,化简n[(a-b)/(a+b)]。

例3:计算:7+40+7-40.例4:求值:(59/24)+(59-45)/24 + 25×(5-2)/24.解:略。

二)分数指数幂1.分数指数幂当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式,例如:$5\sqrt[10]{a^5}=a^{\frac{1}{2}}$,$3\sqrt[12]{a^3}=a^{\frac{1}{4}}$。

当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式,例如:$\sqrt[4]{a^5}=a^{\frac{5}{4}}$。

规定:1)正数的正分数指数幂的意义是$a^{\frac{p}{q}}=\sqrt[q]{a^p}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:指数式与对数式
考纲要求:
理解分数指数幂的概念,掌握有理数指数幂的运算性质;
Байду номын сангаас理解对数的概念,掌握对数的运算性质.
教材复习
次方根的定义及性质:为奇数时,
,为偶数时, .
分数指数幂与根式的互化: , (,,且
零的正分数指数幂为,的负分数指数幂没有意义.
指数的运算性质: ,
(其中,)
指数式与对数式的互化:
设,则的值是
若,那么的值为

如果方程的两根为、,则的值是
设,则属于区间 若,则 方程的根为
若,
已知:,则
;若,则
若,则 已知,求下列各式的值:
求值或化简:=
方程的解是 求的值. 若,求的值; 设,求.
走向高考:
(湖南文) 的值为 (安徽 文)
(上海)若是方程的解,则属于区间 .
(北京)已知函数,若, (上海文)方程的解是 (全国Ⅲ文)解方程
,.
对数的运算法则:如果有


; 换底公式及换底性质:
(,, , ,)
,,
指数方程和对数方程主要有以下几种类型:

(定义法)

(同底法)
(两边取对数法) (换底法) ()(设或)(换元法)
基本知识方法
重视指数式与对数式的互化;
根式运算时,常转化为分数指数幂,再按幂的运算法则运算;
不同底的对数运算问题,应化为同底对数式进行运算;
运用指数、对数的运算公式解题时,要注意公式成立的前提.
指数方程和对数方程按照不同类型的对应方法解决.
典例分析:
题型一:指数式的化简与求值
问题1.计算: (浙江)已知
为正实数,则


(重庆)若,则

已知,求的值.
题型二:对数式的化简与求值
(陕西文)设均为不等于的正实数, 则下列等式中恒成立的是 (四川) (湖南文)若,,则
(上海)方程 的解是 (上海)方程的实数解为
(北京)方程的解是 上海文)方程的解是
(上海春)若、为方程的两个实数解,则

已知,求;
题型三:解指数、对数方程
问题3.(辽宁文)设,且,则
问题4.(上海春)方程的解是
(上海)方程的解是
(上海)方程的解
(辽宁文)方程的解为
题型四:指数、对数综合问题
问题5.设,,且,求的最小值.
课后作业:
设,则 (蚌埠模拟)若,,且,则的值为
或 若,则有
设,则
已知,则
的值为
化简的结果是
化简的结果是 已知,则的值为 或 或
相关文档
最新文档