电缆散热量计算书

合集下载

通信综合楼电源机房的散热量计算

通信综合楼电源机房的散热量计算

通信综合楼电源机房的散热量计算通信综合楼常设有高低压变配电机房、电力室、电池室、油机房等电源机房,各机房内的电源设备对环境温度和进风量有不同要求。

本文结合工程实例,提出高低压变配电机房、电力室、电池室的散热量计算方法,以供参考。

一、通风设计的重要性出于综合造价等成本因素的考虑,近年来新建高层建筑的变配电机房多位于主楼地下层,随之带来机房内通风散热困难的问题。

如不加以妥善解决,将直接影响变配电设备的工作效率,甚至对设备造成严重损坏,发生停电事故。

以变压器为例:变压器的允许温度主要决定于绕组的绝缘材料。

若变压器的温度长时间超过允许值,则绝缘材料将因长期受热而老化,且温度越高,老化越快,变压器的使用寿命相应缩短。

使用年限的减少一般可按"八度规则"计算,即温度每升高8℃,使用年限将减少1/2。

当绝缘老化到一定程度时,在运行振动和电动力作用下,绝缘容易破裂,且易发生电气击穿而造成故障。

因此,变压器必须在其允许的温度范围内运行,以保证供电安全。

而工程中普遍采用的密封阀控铅酸蓄电池也对环境温度有较高要求。

低温,会使得电池容量降低,充电接收能力下降,充放电循环寿命下降;高温,会加快电池失水,甚至产生热失控效应,加剧板栅腐蚀,极板变形膨胀、电池外壳鼓胀或开裂,从而导致电池容量快速下降,电池寿命缩短。

蓄电池的工作温度可以在-5℃~40℃,但其最佳工作温度在20~25℃。

在25℃的环境下蓄电池可获得较长的寿命,长期运行温度若升高10℃,使用寿命约减少一半。

工程设计中,工程设计人员需对通信综合楼内各电源机房的散热量进行较准确估算,以便合理地解决机房内电源设备的通风散热问题。

二、各电源机房的散热量估算电力设备的电能的损耗转化为热量散发到机房内,排风量应以能排除这些余热来确定。

1.高低压变配电机房(1)变压器的散热量:变压器损耗为空载损耗和负载损耗之和,即:⊿P=⊿PO+⊿PB。

变压器的空载损耗(⊿PO)是固定值,只与变压器的容量以及电压的高低有关,一般在产品说明书或出厂试验报告中注明。

散热器散热量计算

散热器散热量计算

散热器散热量计算散热器散热量计算;散热量是散热器的一项重要技术参数,每一种散热器出;现介绍几种简单的计算方法:;(一)根据散热器热工检验报告中,散热量与计算温差;铜铝复合74×60的热工计算公式(十柱)是:;Q=5.8259×△T(十柱);1.标准散热热量:当进水温度95℃,出水温度70;十柱散热量:;Q=5.8259×64.5=1221.4W;每柱散热量;1224.4W÷散热器散热量计算散热量是散热器的一项重要技术参数,每一种散热器出厂时都标有标准散热量(即△T=64.5℃时的散热量)。

但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度、出水温度和室内温度,计算出温差△T,然后根据各种不同的温差来计算散热量,△T的计算公式:△T=(进水温度+出水温度)/2-室内温度。

现介绍几种简单的计算方法:(一)根据散热器热工检验报告中,散热量与计算温差的关系式来计算。

在热工检验报告中给出一个计算公式Q=m×△Tn,m和n在检验报告中已定,△T可根据工程给的技术参数来计算,例:铜铝复合74×60的热工计算公式(十柱)是:Q=5.8259×△T (十柱)1.标准散热热量:当进水温度95℃,出水温度70℃,室内温度18℃时:△T =(95℃+70℃)/2-18℃=64.5℃十柱散热量:Q=5.8259×64.5 =1221.4W每柱散热量1224.4 W÷10柱=122 W/柱2.当进水温度80℃,出水温度60℃,室内温度18℃时:△T =(80℃+60℃)/2-18℃=52℃十柱散热量:Q=5.8259×52 =926W每柱散热量926 W÷10柱=92.6W/柱3.当进水温度70℃,出水温度50℃,室内温度18℃时:△T =(70℃+50℃)/2-18℃=42℃十柱散热量:Q=5.8259×42 =704.4W每柱散热量704.4W ÷10柱=70.4W/柱(二)从检验报告中的散热量与计算温差的关系曲线图像中找出散热量:我们先在横坐标上找出温差,例如64.5℃,然后从这一点垂直向上与曲线相交M点,从M点向左水平延伸与竖坐标相交的那一点,就是它的散热量(W)。

散热量计算公式

散热量计算公式

一、标准散热量标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。

而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=82.5摄氏度,室温18摄氏度,计算温差△T=82.5摄氏度-18摄氏度=64.5摄氏度,这是散热器的主要技术参数。

散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。

那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。

二、工程上采用的散热量与标准散热量的区别标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=64.5摄氏度时的散热量。

而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。

因此,在对工程热工计算中必须按照工程上的散热量来进行计算。

在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。

欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。

而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,所对应的计算温差△T=50摄氏度。

欧洲标准散热量是在温差△T=50摄氏度的散热量。

那么怎么计算散热器在不同温差下的散热量呢?散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=64.5摄氏度时的散热量)。

但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度,出水温度和室内温度,来计算出温差△T,然后计算各种温差下的散热量。

附表三:各工部设备散热量计算表

附表三:各工部设备散热量计算表

喷砂室 抛光室 发电机部
0.4 10.8 0.025 室温 50 室温 80 不定 不定 室温 50 70 室温 50 70 90 70 120 室温 室温 室温 室温 70
0.025
17 17
0.25 0.3
13.38 13.73
0.48 1.2
1.96 3.68
0.60317 0.1061 0.7093 1.162107 0.5218 1.6839
部分工部电动设备、热槽散热量计算表 部分工部电动设备、
设备外 室内平 室内空 表面积 溶液表 溶液温 均计算 气流速 传热系 面面积 v 度 温度 数α (m2) (m/s (℃) tnp W/(m2 ) (℃) ·℃) 设备外 设备外表 溶液表 各工部 设备总 设备台 表面积 面积的散 面的散 设备散 数 散热量 热量 A 热量 热量 (KW) (台) (m2) (KW) (KW) (KW)
17 17 17 17 17 17 17
0.25 0.3 0.35 0.3 0.3 0.3 0.3
13.38 13.73 14.08 13.73 13.73 13.73 13.73
0.48 0.6 0.6 0.3 0.8 0.3 0.3
1.96 2.56 2.56 1.54 2.88 1.54 1.54
编号
工部名称
设备编号
设备名称
设备规格
Ⅱ Ⅲ Ⅳ



*1、2 喷砂室 φ1000×650×750 *3、4 抛光机 布轮φ200,N=0.8KW 5、6 电动发电机 ZJ1500/750 N=9KW 机组效率η=0.625 7 去毛滚筒 重量50Kg N=0.1KW 8、11 冷水槽 800×600×700 *9 有色金属腐蚀槽 1500×800×800 准备工部 10、14 热水槽 800×600×700 *12 黑色金属腐蚀槽 1500×800×800 *13 化学去油槽 1500×800×800 *15 溶液配置槽 600×500×700 溶液配置室 *16 溶液配置槽 600×500×700 *17、23 酸洗槽 1000×600×800 18、40、32 热水槽 800×600×700 19、22、24、29、33、37、39 冷水槽 800×600×700 *20、21 电解除油槽 1000×600×800 25 回收槽 800×600×700 *26 镀铬槽 1000×600×800 *27 苏打槽 600×500×700 电镀部 *28 磷化槽 1000×800×800 Vx=0.3m/s *30 皂液槽 600×500×700 31 油槽 600×500×700 *34 镀镍槽 1000×800×800 *35 镀铜槽 1000×800×800 36 中和槽 800×600×700 *38 镀锌槽 1000×800×800 *41 镀锡槽 1000×800×800

电缆直径和电缆流过电流计算以及对照表分享

电缆直径和电缆流过电流计算以及对照表分享

电缆直径和电缆流过电流计算以及对照表分享1、综述铜芯线的压降与其电阻有关,其电阻计算公式:20℃时:17.5÷截面积(平方毫米)=每千米电阻值(Ω)75℃时:21.7÷截面积(平方毫米)=每千米电阻值(Ω)其压降计算公式(按欧姆定律):V=R×A线损是与其使用的压降、电流有关。

其线损计算公式: P=V×AP-线损功率(瓦特)V-压降值(伏特)A-线电流(安培)2、铜芯线电源线电流计算法1平方毫米铜电源线的安全载流量--17A。

1.5平方毫米铜电源线的安全载流量--21A。

2.5平方毫米铜电源线的安全载流量--28A。

4平方毫米铜电源线的安全载流量--35A6平方毫米铜电源线的安全载流量--48A10平方毫米铜电源线的安全载流量--65A。

16平方毫米铜电源线的安全载流量--91A25平方毫米铜电源线的安全载流量--120A。

单相负荷按每千瓦4.5A(COS">3、铜芯线与铝芯线的电流对比法2.5平方毫米铜芯线等于4平方毫米铝芯线4平方毫米铜芯线等于6平方毫米铝芯线6平方毫米铜芯线等于10平方毫米铝芯线即:2.5平方毫米铜芯线=20安培=4400 瓦;4平方毫米铜芯线=30安培=6600 瓦;6平方毫米铜芯线=50安培=11000 瓦土方法是铜芯线1个平方1KW,铝芯2个平方1KW.单位是平方毫米就是横截面积(平方毫米)电缆载流量根据铜芯/铝芯不同,铜芯你用2.5(平方毫米)就可以了其标准:0.75/1.0/1.5/2.5/4/6/10/16/25/35/50/70/95/120/150/185/240/300/400...还有非我国标准如:2.0铝芯1平方最大载流量9A,铜芯1平方最大载流量13.5A二点五下乘以九,往上减一顺号走。

三十五乘三点五,双双成组减点五。

条件有变加折算,高温九折铜升级。

穿管根数二三四,八七六折满载流。

1、“二点五下乘以九,往上减一顺号走”说的是:2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。

散热量计算公式

散热量计算公式

一、标准散热量标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。

而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=82.5摄氏度,室温18摄氏度,计算温差△T=82.5摄氏度-18摄氏度=64.5摄氏度,这是散热器的主要技术参数。

散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。

那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。

二、工程上采用的散热量与标准散热量的区别标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=64.5摄氏度时的散热量。

而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。

因此,在对工程热工计算中必须按照工程上的散热量来进行计算。

在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。

欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。

而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,所对应的计算温差△T=50摄氏度。

欧洲标准散热量是在温差△T=50摄氏度的散热量。

那么怎么计算散热器在不同温差下的散热量呢?散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=64.5摄氏度时的散热量)。

但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度,出水温度和室内温度,来计算出温差△T,然后计算各种温差下的散热量。

保温伴热(电伴热)

保温伴热(电伴热)
3.4 电热带结构的选择
根据安装环境和条件进行结构选择
1)在塑料或表面涂有油漆,而不能可靠接地的容器和管道上选用屏蔽型产品。
2)在易燃易爆地区,或管内介质是易燃易爆介质,应选用屏蔽型防爆电伴热产品。
3)管道内介质如有腐蚀性,或电缆有可能接触腐蚀屏蔽层的化学品,则应采用防护型产品。
3.5 其他事项
1)电伴热带的电源接线截面要大于伴热电缆导体截面。
3)列出管内介质的名称、操作温度,维持温度,可能最高温度,最低环境温度、温差、散热损
失、危险区域分类;
4) 列出电伴热带的规格,数量及其在维持温度时的发热量以及电器设备的数量、规格、型号及其他附件。
五:电伴热设施的安装
5.1 安装前的准备
1) 所有电伴热带均须进行电路连续性和绝缘性能的测试,不符合规定的不能使用。
14) 多回路电热带从同一接线盒接出时,各母线都要有绝缘套隔离,以防短路。
15) 接线盒应密封,防止雨水进入。
5.4电伴热系统的现场测试与检查
1) 电热带的连续性和绝缘电阻,用1000V摇表检查,系统绝缘电阻大于50MΩ为合格。
2) 电热带安装完毕,每个电伴热回路的测试结果应有记录和报告。
3) 检查人员应按照工程规定对伴热系统的安装进行中间检查和最终核实、验收。
4.1 电伴热系统图绘制原则
1)每个单一电源电的电伴热系统,应绘制各自的电伴热系统图。
2)电伴热系统图以该被伴热管道配管图为依据,用轴侧投影图表示。
3)电伴热系统图是示意图,可以不按比例绘制。
4.2 电伴热系统图图示要求
1)电伴热系统图应列出管道编号、管径、材质,保温材质和保温厚度;
2)应标出管道上的阀门、管件、支架、法兰的位置及管道的长度,同时标出接线盒的位置;

电缆载流量计算书

电缆载流量计算书

电缆载流量计算书1、载流量计算使用条件及必要系数:具体计算公式如下:()[]()()()4321211432115.0T T nR T nR RT T T T n T W I d +++++++++-∆=λλλθ其中:I:载流量(A)△θ:导体温度与环境温度之差(℃)R:90℃时导体交流电阻(Ω/m)n:电缆中载流导体数量W d:绝缘介质损耗λ1:护套和屏蔽损耗因数λ2:金属铠装损耗因数T1:导体与金属护套间绝缘层热阻(k·m/w)T2:金属护套与铠装层之间内衬层热阻(k·m/w) T3:电缆外护层热阻(k·m/w)T4:电缆表面与周围媒介之间热阻(k·m/w) 1.导体交流电阻R的计算R=R'(1+y s+y p)R'=R0[1+α20(θ-20)]其中:R':最高运行温度下导体直流电阻(Ω/m)y s:集肤效应因数y p:邻近效应因数R0:20℃时导体直流电阻(Ω/m)θ:最高运行温度90℃α20:20℃时铜导体的温度系数448.0192sss X X y +=s s k R fX 72108-⨯=π其中:对于分割导体ks=0.435。

⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+++⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+=27.08.019218.1312.08.0192442244p p c c p p s X X s d s d X X ys p k R fX 72108-⨯=π其中:d c :导体直径(mm ) s:各导体轴心之间距离(mm ) 对于分割导体ks=0.37。

2.介质损耗W d 的计算W d =ωCU 02tg δ 其中:ω=2πf C:电容F/m U 0:对地电压(V )91018-⨯⎪⎪⎭⎫ ⎝⎛=c id D Ln c ε其中:ε=2.3D i 为绝缘外径(mm ) d c 为内屏蔽外径(mm )3.金属屏蔽损耗λ1的计算λ1=λ1'+λ1〃 其中:λ1'为环流损耗 λ1〃为涡流损耗 λ1〃的计算:()()⎥⎦⎤⎢⎣⎡⨯+∆+∆+=1241210110121s s st g RR βλλ()6.11013174.1-⎪⎪⎭⎫⎝⎛+=-ss s s D D t g βsρπϖβ71104=其中:ρ:金属护套电阻率(Ω·m) R :金属护套电阻(Ω/m) D :金属护套外径,对于皱纹铝护套sitoc t D D D ++=2(mm)t :金属护套厚度(mm) D oc :皱纹铝套最大外径(mm) D it :皱纹铝套最小内径(mm) a.三角形排列时2220213⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+=s d m m λ()66.192.045.21233.014.1+⎪⎭⎫⎝⎛+=∆m s d m△2=0 b.平行排列时1)中心电缆2220216⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+=s d m m λ7.04.108.31286.0+⎪⎭⎫⎝⎛=∆m s d m△2=0其中:710-=sR m ϖ2)外侧超前相2220215.1⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+=s d m m λ216.07.0127.4+⎪⎭⎫⎝⎛=∆m s d m 06.547.13.32221+⎪⎭⎫⎝⎛=∆m s d m3)外侧滞后相2220215.1⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+=s d m m λ()()125.0123.02274.0+⎪⎭⎫⎝⎛-++=∆m s d m m m27.32292.0+⎪⎭⎫⎝⎛=∆m s d m4.铠装损耗λ2的计算λ2=05.热阻的计算5.1热阻T 1的计算热阻⎪⎪⎭⎫⎝⎛+=c Td t Ln T 112121πρ式中:ρT1—绝缘材料热阻系数(k ·m/w) d c —导体直径(mm)t 1—导体和护套之间的绝缘厚度(mm)5.2热阻T2的计算热阻T2=05.3外护套热阻T3的计算()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=s it oc oc T t D D t D Ln T s 22233πρ其中:t s -外护套厚度ρT3-外护套(非金属)热阻系数5.4外部热阻T4计算5.4.1空气中敷设()25.0*41s e h D T θπ∆=()ED Zh ge +=*其中:D e *:电缆外径(mm) h:散热系数()41θ∆计算:()()41141411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆+∆+∆=∆+n s A dn K θθθθ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++-⎪⎪⎭⎫ ⎝⎛-++=∆212212112111λλλλλθT n T W d d()()⎥⎦⎤⎢⎣⎡+++++++=21312121*111λλλλλπT T n T hD K e A令()241=∆n s θ,求出()411+∆n s θ,反复叠代直至()411+∆n s θ-()41n s θ∆≤0.001时为止,此时的()411+∆n s θ值即为()41n s θ∆值。

电源机房散热量的估算

电源机房散热量的估算

电源机房的散热量计算通信综合楼常设有高低压变配电机房、电力室、电池室、油机房等电源机房,各机房内的电源设备对环境温度和进风量有不同要求。

本文结合工程实例,提出高低压变配电机房、电力室、电池室的散热量计算方法,以供参考。

一、通风设计的重要性出于综合造价等成本因素的考虑,近年来新建高层建筑的变配电机房多位于主楼地下层,随之带来机房内通风散热困难的问题。

如不加以妥善解决,将直接影响变配电设备的工作效率,甚至对设备造成严重损坏,发生停电事故。

以变压器为例:变压器的允许温度主要决定于绕组的绝缘材料。

若变压器的温度长时间超过允许值,则绝缘材料将因长期受热而老化,且温度越高,老化越快,变压器的使用寿命相应缩短。

使用年限的减少一般可按"八度规则"计算,即温度每升高8℃,使用年限将减少1/2。

当绝缘老化到一定程度时,在运行振动和电动力作用下,绝缘容易破裂,且易发生电气击穿而造成故障。

因此,变压器必须在其允许的温度范围内运行,以保证供电安全。

而工程中普遍采用的密封阀控铅酸蓄电池也对环境温度有较高要求。

低温,会使得电池容量降低,充电接收能力下降,充放电循环寿命下降;高温,会加快电池失水,甚至产生热失控效应,加剧板栅腐蚀,极板变形膨胀、电池外壳鼓胀或开裂,从而导致电池容量快速下降,电池寿命缩短。

蓄电池的工作温度可以在-5℃~40℃,但其最佳工作温度在20~25℃。

在25℃的环境下蓄电池可获得较长的寿命,长期运行温度若升高10℃,使用寿命约减少一半。

工程设计中,工程设计人员需对通信综合楼内各电源机房的散热量进行较准确估算,以便合理地解决机房内电源设备的通风散热问题。

二、各电源机房的散热量估算电力设备的电能的损耗转化为热量散发到机房内,排风量应以能排除这些余热来确定。

1.高低压变配电机房(1)变压器的散热量:变压器损耗为空载损耗和负载损耗之和,即:⊿P=⊿PO+⊿PB。

变压器的空载损耗(⊿PO)是固定值,只与变压器的容量以及电压的高低有关,一般在产品说明书或出厂试验报告中注明。

城市综合管廊通风系统设计

城市综合管廊通风系统设计

城市综合管廊通风系统设计1 综合管廊通风系统功能 (1)2 综合管廊通风设计原则 (1)3 各舱室通风量计算 (2)4 通风设备选型 (5)5 通风口布置 (6)6 控制与运行策略 (6)7 工程实例分析 (7)1 综合管廊通风系统功能综合管廊内空间属于地下封闭空间,通风条件差。

为保证管廊内各种市政管线在适宜的环境中正常运行,保证进入管廊巡视的维护人员在安全卫生的环境中工作,需要对管廊进行通风换气,以排除其内部废气、余热。

当管廊内发生火灾时,通风系统应能协助控制火势蔓延。

在火灾后,通风系统应能及时排除管廊内积聚的有毒烟气。

综合管廊通风系统的主要功能包括以下几个方面:1) 保证及时排出管廊内各种管线的余热,控制管廊内的温度最高不超过40℃;2)控制燃气舱内天然气浓度在其爆炸下限浓度值(体积分数)的20%以内;3)控制污水舱内H2S,CH4气体浓度不超过环境与设备监控系统的设定值;4)为检修人员提供适量的新鲜空气,保证氧气体积分数不低于19.5%;5)发生事故时能实现密闭灭火,并实现灭火后的强制通风排烟,为后续工程抢修人员提供符合要求的内部空气环境。

2 综合管廊通风设计原则2.1通风方式选择GB 50838—2015《城市综合管廊工程技术规范》第7.2.1条规定:“综合管廊宜采用自然进风和机械排风相结合的通风方式。

天然气管道舱和含有污水管道的舱室应采用机械进、排风的通风方式”。

因此,燃气舱、污水舱采用“机械进+机械排”的通风方式,其他舱室可根据工程的具体情况确定通风方式,推荐采用“自然进+机械排”或“机械进+机械排”的通风方式。

2.2 通风区间设置综合管廊中2个相邻的通风口之间形成1个完整的通风区间。

由于综合管廊长度一般在数KM左右,作为管廊通风,不可能只划分为1个通风区间。

规范中对综合管廊通风区间的长度未作具体要求,但在实际工程中,通风区间的长度主要受限于通风口的位置,而通风口位置又受限于地面风亭的位置,需根据项目情况具体确定。

4.3-4.5 电力电缆的损耗和热阻计算

4.3-4.5 电力电缆的损耗和热阻计算
Fe k d 2 d1 d d k ...... nK (其中不包括 KK 项) d1k d 2 k d nk d Kk
(3)管道中敷设的电缆
管道中外部热阻由三部分组成:电缆表面和管道内表面之间空 气热阻 T4' 、管道本身热阻T4'' (金属管道热阻忽略不计)、管道 外部热阻T ''' 。载流量公式的 T4 是各部分的总和,即:
4.3.4 钢带铠装的损耗

一般单芯电缆没有钢带铠装,不用考虑铠装损耗。 三芯电缆金属护套中的损耗可以忽略不计,只考虑铠装层中的 损耗,铠装层中的损耗系数 2 可写成
2 2 2

查相关标准的经验公式进行计算
2
和 分别为铠装层中磁滞和涡流损耗与线芯损耗之比,可
2
4.4 电力电缆各层的热阻
这样敷设的电缆在土壤中建 立的热流场和一根直径为De、 离地面距离为L的导体所建立的 电场完全类似。
根据电场镜象法原理,这样的热流场与相距 (与地面的距离 2l 为 )的线热所产生的热流场完全相同,电缆和它的镜像间的温 l 差为: 2 T 4 2 L 2L ln 1 D De e
为了确定电缆的温升及其载流量,不仅应知道电缆本 身各组成部分的热阻,而且还应知道电缆周围媒质的热 阻,即单位热流从电缆表面散发到周围媒质中所产生的 温差。电力电缆最典型的敷设情况是:直接敷设在土壤 中、架设在空气中和敷设在水底。
4.5.1 埋地电缆
(1)单根孤立埋地电缆
直接敷设在土壤中是最常用的敷设方式。可近似地认为电缆表 4 面和大地表面均为等温面,土壤为均匀煤质,其热阻系数为 T , 电缆散发到土壤的热流均流向大地表面。

散热量计算公式

散热量计算公式

散热量计算公式(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、标准散热量标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。

而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=摄氏度,室温18摄氏度,计算温差△T=摄氏度-18摄氏度=摄氏度,这是散热器的主要技术参数。

散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。

那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。

二、工程上采用的散热量与标准散热量的区别标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=摄氏度时的散热量。

而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。

因此,在对工程热工计算中必须按照工程上的散热量来进行计算。

在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。

欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。

而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,所对应的计算温差△T=50摄氏度。

欧洲标准散热量是在温差△T=50摄氏度的散热量。

那么怎么计算散热器在不同温差下的散热量呢散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=摄氏度时的散热量)。

电气设备发热量的估算及计算方法

电气设备发热量的估算及计算方法

高压柜、低压柜、变压器的发热量计算方法变压器损耗可以在生产厂家技术资料上查到铜耗加铁耗;高压开关柜损耗按每台200W估算;高压电容器柜损耗按3W/kvar估算;低压开关柜损耗按每台300W估算;低压电容器柜损耗按4W/kvar估算.一条n芯电缆损耗功率为:Pr=nI2r/s,其中I为一条电缆的计算负荷电流A,r为电缆运行时平均温度为摄氏50度时电缆芯电阻率Ωmm2/m,铜芯为,铝芯为,S为电缆芯截面mm2;计算多根电缆损耗功率和时,电流I要考虑同期系数. 上面公式中的"2"均为上标,平方.一、如果变压器无资料可查,可按变压器容量的1~%左右估算;二、高、低压屏的单台损耗取值200~300W,指标稍高尤其是高压柜;三、除设备散热外,还应考虑通过围护结构传入的太阳辐射热.主要电气设备发热量电气设备发热量继电器小型继电器 ~1W中型继电器 1~3W励磁线圈工作时8~16W功率继电器 8~16W灯全电压式带变压器灯的W数带电阻器灯的W数+约10W控制盘电磁控制盘依据继电器的台数,约300W程序盘主回路盘低压控制中心 100~500W高压控制中心 100~500W高压配电盘 100~500W变压器变压器输出kW1/效率-1 KW电力变换装置半导体盘输出kW1/效率-1 KW照明灯白炽灯灯W数放电灯灯W数假设变压器为1000KVA,其有功输出为680KW,则其效率大致为680/850=,根据上述计算损耗的公式,该变压器的损耗为6801/=170KW 变压器的热损失计算公式:△Pb=Pbk+△Pb-变压器的热损失kW Pbk-变压器的空载损耗kW Pbd-变压器的短路损耗kW具体的计算方法:一、 发电机组发热量发电机组的散热量主要来自于两个方面,一是发电机组的盖板传热和机壳围护结构传热,另一是发电机组的冷却循环风的漏风所带来的热量.大、中型发电机组的冷却方式通常采用封闭式空气自循环冷却方式,发电机绕组的损耗传给冷却空气,空气的热量再通过机组水冷却器由冷却水带走.根据实测的数据,定子排出的空气温度一般不超过65℃,而进入转子的空气温度一般不低于5℃.发电机机壳的散热量可以按下式计算:()n g t t KA q k -=w 1 1其中:K ——发电机机壳的传热系数 w/㎡·℃A ——发电机机壳的面积 ㎡gt ——发电机冷却循环风的平均温度℃n t ——室内空气温度℃发电机的漏风散热量可以按下式计算:()n f t t vc q f -=γβw 1 2其中:β——漏风系数,钢盖板取%v ——发电机的冷却循环风量m3/h c ——空气比热 w/kg ·℃γ——空气容重取m3f t ——发电机漏风温度℃ n t ——室内空气温度℃根据发电机组内部的冷却风温和发电机的表面积,我们不难计算机组壳体的传热量.但漏风热量的计算上却有较大的差异,随着机械制造技术的不断提高,特别是空气冷却器的效率的提高,发电机组的冷却循环风量各个厂商有较大区别.例如按机电设计手册计算,30万KW 机组的冷却循环风量约为200m 3/h,但多数国际厂商提供的冷却风量约为120m 3/h,这就给计算结果产生较大的出入.机组的冷却风量不仅和机组的容量有关,而且和机组的水头、转速、尺寸有关.一般情况下,冷却风温越低,发电机的线圈温度也越低,发电机的效率就越高,但是冷却风温受冷却器的布置尺寸影响,冷却器大,机组的制造难度相对增大,经济性下降,冷却风温不可能无限降低,机组制造厂设计时考虑一个经济区域,达到机组的最大性价比.因此,在实际的设计计算中,应由发电机厂商提供冷却循环风量参数对漏风热量加以核算.二、 变压器发热量变压器散热散热主要指变压器内部的能量损耗,由铜损电阻损耗和铁损铁磁损耗两部分组成,其中铜损是随负荷大小而变化,而铁损与负荷的大小无关,可以看成一定值.通常将额定负荷时的铜损定为短路损耗,额定电压下的铁损定为空载损耗.自冷、风冷和干式变压器的损耗,全部散发到周围空气中,而水冷变压器的损耗则大部份由水冷却系统带走,一小部份由于油温高于周围空气温度而将热量散入空气中.一般情况下,封闭厂房、地下厂房和抽水蓄能电站,布置于厂房内部或地下的主变多采用库水冷却的主变,而电站中的其他变压器还有厂用变、照明变、事故变、励磁变等,多采用风冷或干式变压器.风冷变压器的散热量,简单地可以按下式计算:dk P P Q +=Kw 3其中:k P ——变压器的空载损耗 KwdP ——变压器的短路损耗 Kw水冷变压器的散热量可以按下式计算:()325.1n y 105.5-⨯-⨯=A t t Q Kw 1 4其中:y t——油箱的平均油温 ℃,一般在65~70℃之间n t ——室内气温 ℃A ——油箱的散热面积 ㎡电站的水冷却主变,受到冷却水温和水冷却器效率的影响较大,特别是抽水蓄能电站,由于库容较小,冷却水温受季节的影响较大,应按正常运行时,可能产生的最高水温核算变压器的散热量.三、 母线、电缆发热量在电站中,发电机和变压器之间的连接多用自冷却式封闭母线.母线的发热量包括母线的功率损耗发热和外壳感应散热两部分.由于主线的两端分别分别连接发电机和变压器设备,实际上母线与外壳之间的空气是封闭的,外壳起到一个保护和屏蔽电磁波的作用,以减少母线电磁场对周围电气设备和环境的影响,并没有减小母线的散热.母线的功率损耗散热传给母线和外壳间的空气,然后通过外壳壳体传入环境.而外壳感应散热则直接传入环境.母线功率损耗引起的散热量可以按下式计算:3s Z 2103-⨯⨯=L R I q s ϕKw 1 5母线外壳感应散热量可以按下式计算:3k k 2103-⨯⨯=L R I q k ϕKw 1 6其中:I ——母线的相电流AZ R ——母线在工作温度时的直流电阻Ω/m k R ——母线外壳在工作温度时的直流电阻Ω/ms ϕ——母线集肤效应系数k ϕ——母线外壳集肤效应系数L ——母线的长度m以下是某电站的母线参数:表1 母线参数序基本参数主母线分支母线启动母线号1额定电压 KV1818182工作电压KV3额定电流A1300025030004导体正常温度℃8750745外壳正常温度℃6747546导体截面积mm221375335833587外壳截面积mm215944836983698导体电阻μΩ/m9外壳电阻μΩ/m按上面两式计算,主母线单相的散热量约为550W/m,和母线制造商提供的母相散热损耗600 W/m基本相近.母线的发热损耗和母线的材质、制造技术、焊接工艺水平关系较大.材质越好,母线接头的焊接工艺水平越高,其直流电阻就越小,发热损耗也就越小.另外,在水电站厂房内敷设了各种电压等级的动力、照明、控制电缆,在运行中会散发出一定的热量,如果电缆温度过高,将导致电缆表面绝缘老化,电缆的载流量下降.在各种电缆中,低压动力电缆发热量较大,电气设计手册上,对电缆损耗大于150W/m的有通风要求.一般的3000V以下的铜芯电缆的散热损失较小.电缆截面3×50mm的发热量约为25W/m,3×150mm的发热量约为40W/m,电压等级越高,散热量越小.因此,除在主厂房中设有大量的电缆桥架如母线层、母线洞、水轮机层等和专门的电缆层、电缆廊道应核算电缆的发热量,其他部位的电缆发热可以忽略不计.四、 电抗器发热量电抗器用于较大容量的配电装置中,起到限制短路电流的作用,也可以用于整流装置中作滤波电抗器.电抗器的散热量可以按下式计算:P Q 21ηη=Kw 7其中:1η——电抗器的利用系数,一般取1η=2η——电抗器的负荷系数,一般取2η=P ——电抗器在额定功率下的功率损耗Kw,根据额定电流、额定电抗和型号确定.电抗器是由绕组组成的,发热特性是热容量和发热量较大,达到稳定发热量需要一段时间.如果是长期运行的电抗器,其发热量是稳定的,如果是间歇运行的电抗器,应按运行时间和电抗器的发热特性曲线确定发热量.五、 高、低压盘柜发热量高压配电盘柜的散热量可以按下式计算:e 2egq II Q ⎪⎪⎭⎫ ⎝⎛=Kw 1 8其中:g I——高压开关的工作电流 Ae I ——高压开关的额定电流 Aeq ——高压开关的额定电流时的散热量 Kw高压开关柜分为进线开关柜和馈电开关柜,一般说来进线开关柜的发热量要比馈电开关柜的发热量大.低压配电盘柜的散热量可以按下式计算:P ex Q ∑=Kw 9其中:e ——盘柜的利用系数x ——盘柜的实耗系数——低压盘柜的功率损耗之和 KwP由于电站内各种盘柜的用途不同,盘柜的工作电流不同,一般说来,工作电流越大,盘柜内的电器元件发热量也越大.对于集中布置的配电盘柜尽可能由设备制造商提供发热量较为准确.特别的,对于重要的配电盘柜,由于制造商对盘柜内的电气元件的保护,防止运行湿度过大,绝缘性能的下降,在盘柜内本身另设有电加热器.一般每只盘柜在~左右,集中布置的继电保护室等应加以考虑.在高压盘柜中,励磁柜的发热量较大.根据某电站外商提供的发热资料:表2 励磁柜的发热量名称发热量序号1整流闸管8Kw2母线组2Kw3散热风机2Kw4其它继电器2Kw5合计14Kw由于励磁系统关系到机组的安全启动和运行,对于集中或封闭布置的励磁盘柜应较为准确地核算其发热量.六、SFC静态变频启动装置发热量SFC称为静态变频启动装置,主要用于抽水蓄能电站的机组抽水工况的启动.它由输入电抗器、输出电抗器、滤波器、功率柜和直流电抗器组成.某个单机容量30万千瓦的抽水蓄能电站,根据外商提供的SFC装置各设备的容量如下:表3 SFC装置的容量序设备名称运行时停止时号1输入电抗器27Kw3Kw2输出电抗器63Kw03滤波器83Kw28Kw4功率柜15Kw6Kw5直流电抗器200Kw06合计388Kw37Kw 我们可以看出,如果按照满负荷计算,SFC装置的热量高达388Kw.按照一些已运行的抽水蓄能电站的实际运行分析统计,一台机组的启动,从静止拖动到并网时间仅需240秒,六台机组的启动时间约为25分钟.根据外商提供的SFC装置运行特性曲线,输入电抗器、输出电抗器和直流电抗器运行25分钟,发热达到额定发热量的20%,滤波器、功率柜发热达到额定发热量的70%左右.按此计算SFC装置的发热量约为,是额定发热量的%.SFC装置的发热量和SFC的容量、运行时间有极为密切的关系,如果要较为准确的确定设备发热量,应请有关制造商提供设备的运行特性曲线,然后根据设备的容量和运行时间确定.七、照明设备发热量大、中型电站随着建筑装修景观设计对灯光的需求,照明功率有增加的趋势.虽然照明设备的发展,电站的照明应用从白炽灯和荧光灯向碘钨灯和金卤灯等高亮度灯源转变.但照明设备散热量属于稳定得热,只要电压、功率稳定,散热量是不变化的.照明所耗电能的一部分直接转化为热能,此热能以对流、传导和向周围散出.光能以红外辐射方式向外辐射,但红外辐射不能直接被空气吸收,而是透过空气被周围物体吸收,尔后再给予空气.转化为光的那部分也是先射向周围物体,被物体吸收后再转化为热能,再以对流、传导或辐射等方式传给空气和其他物体.照明发热量为:QNKw 1 10n1其中:1n——镇流器消耗的功率系数,一般取N——照明灯具功率 Kw一般情况下,全厂的照明发热量约为照明变压器容量的80%左右.但随着电站自动化程度的提高和无人值班的推广,厂房内部的实际照明设备开启情况变化较大,可考虑正常运行时照明的利用系数.。

电气计算、发热电缆阻值表

电气计算、发热电缆阻值表

如有你有帮助,请购买下载,谢谢!第一节、交流电路电线规格、直径一、发热电缆系统的设计:发热电缆的布线间距应根据其线性功率和单位面积安装功率,按正式确定:2S=Px/q×1000式中S—发热电缆布线间距(mm)PX—发热电缆线性功率(w/m)q—单位面积安装功率(w/m2)电缆每米是20W÷每平200W (10米线)=0,1×1000=间距也就是100常用公式:求电流:I=U÷R I=P÷U。

功率:P=U2÷R P=I2×U一、计算:欧姆定律二、电压的平方就是220×220=48400电流I=电阻R÷电压U(1-1)。

式中I—支路电流A。

U—支路二端电压V。

R—电阻Ω。

上式也可表现成电压U=电流I×电阻R(1-2)电阻R=电流I÷电压U(1-3)1、电压除÷以电流=阻值2、功率除÷以电压=电流3,电压除×电流=功率4,电流×电阻=电压三、负载三种状态1感性,2,容性,3,纯阻性提问:单相交流电路中,两端电压为220v,流过电流10a,已知电压超前电流60度求有功功率,回答:P=UIcosφ,代入数值得P=0.22*10*0.5=1.1kW。

感性负载使电流负超前即滞后于电压,容性负载相反,纯阻性负载时这个角度为0,余弦值即功率因数为1,此时有功功率等于视在功率;其它情况有功功率均小于视在功率,因为还有无功功率。

视在功率S^2=P^2+Q^2。

一,交流电基本性质(一)交流电的周期,频率和角频率周期或频率是用来衡量交流电变化快慢的物理量1,周期交流电变化一周所需的时间称周期,用T表示,单位是S,周期越短,表示交流电变化的赶快。

2频率在单位时间(1s)内,频率越高,表示交流电变化的赶快。

频率的单位还有1Hz和MHz。

1MHz=106Hz:1KHz=103Hz我国工业电力网频率为50Hz(工频)周期为0,02s3频率和周期的关系或4角频率交流电单位时间内变化的角度,单位是rad/s,用ω表示。

散热量计算公式

散热量计算公式

散热量计算公式(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、标准散热量标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。

而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=摄氏度,室温18摄氏度,计算温差△T=摄氏度-18摄氏度=摄氏度,这是散热器的主要技术参数。

散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。

那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。

二、工程上采用的散热量与标准散热量的区别标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=摄氏度时的散热量。

而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。

因此,在对工程热工计算中必须按照工程上的散热量来进行计算。

在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。

欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。

而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,所对应的计算温差△T=50摄氏度。

欧洲标准散热量是在温差△T=50摄氏度的散热量。

那么怎么计算散热器在不同温差下的散热量呢散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=摄氏度时的散热量)。

热稳定电流计算

热稳定电流计算

热稳定电流计算
1、热时间常数(τ):
式中:K t:单位长度电线的热容量,J/(m·℃);
S:单位长度散热面积,m2/m;
h:电缆表面散热系数W/ m2·(℃)5/4
2、单位长度电线的热容量
K t= Kc+ 0.5*Kp=ρc*Vc+0.5*ρp* Vp
式中:ρc 铜的热容量系数, 3.5×106; J/K·m3
ρp:交联聚烯烃系数,2.4×106; J/K·m3
Vc;单位长度电线的铜导体体积;
Vp:单位长度电线的交联聚烯烃体积
3、散热系数(h):
h=Z/(De)g+E
式中:Z、g、E:电缆表面散热系数计算常数值;
De:电缆外径,m;
4、热时间常数计算值
5、当3τ>t >5s 时,短时负荷,在125℃时,导体的载流量为I 0;t 时间内允许通过的电流I N ;
I N =
I 0

1−e −t
τ
6、当t ≤5s 时,短路电流
I C =KS √1t ln(θ2+β
θ1+β
)
式中:K :与导体有关的常数,铜:226;
S :导体导体截面积,mm 2; Θ2:短路允许最高温度:250℃; Θ1:最高允许长期工作温度:125℃; β:0℃导体温度系数的倒数。

铜:234.5。

电气发热与计算模板

电气发热与计算模板

I
2 d
0
(1
)l S
dt
C
Sld
I
2 d
0
CS2
dt
d 1
1
d(1 ) 1
设时间积分区间为

t 0
t, td
温度积分区间为


0 d
td 0
Id2 S2
dt
C0 0
d (1 )d 0 1
C0 0
[2
ln 1 d 1 0
(d
0 )]
热稳定电流:在电器标准中热稳定电流是以稳态电流(额
相邻导线流过高频电流时,由于电磁作用使电 流偏向导线一侧分布的特性,称为邻近效应。
若两根导线流过的电流方向相反,则相邻近的 一侧电流密度比较大;
若两根导线流过的电流方向相同,则相邻的一 侧电流密度较小,相反的一侧电流密度较大。
基本磁滞回线
铁磁质物质内 的磁感强度
Br—— 剩余磁感应强度;
HC—— 矫顽力
P=KfjI2R
交流电阻: R l
S
电阻系数与温度的关系:
0 (1 2 )
0 —— 0C 时的电阻系数;

100C
0(1)
Kfj——附加损耗系数,考虑交变电流集肤效 应和邻近效应的影响;
集肤效应
邻近效应
当交变电流流过导线时,导线周围变化的磁 场也要在导线中产生感应电流,从而使沿导线截面 的电流分布不均匀。尤其当频率较高时,此电流几 乎是在导线表面附近的一薄层中流动,这就是所谓 的集肤效应现象。
以合适的树脂粘合或浸渍涂覆后的云母、玻璃纤维、石棉等, F 155 以及其他无机材料,合适的有机材料或其组合物所组成的绝缘
结构

城市电缆隧道发热量及通风量的计算分析

城市电缆隧道发热量及通风量的计算分析

城市电缆隧道发热量及通风量的计算分析彭金龙;吴炜【摘要】通过对电缆发热量的计算分析,结合城市电缆隧道通风需要满足的几种运行工况,给出城市电缆隧道通风量的计算办法,指出设计时应注意的事项,以期对类似工程具有参考价值.同时,通过对城市电缆隧道通风系统有关方面的探讨,希望起到抛砖引玉的作用,共同完善城市电缆隧道的通风设计.【期刊名称】《铁道标准设计》【年(卷),期】2010(000)0z2【总页数】4页(P70-73)【关键词】城市电缆隧道;运行工况;发热量;通风量计算【作者】彭金龙;吴炜【作者单位】中铁二院工程集团有限责任公司地下铁道设计研究院,成都,610031;中铁二院工程集团有限责任公司地下铁道设计研究院,成都,610031【正文语种】中文【中图分类】TM726.4;U231+.5目前,现代城市中的高压输电线路,考虑到城市规划、景观、安全及维护管理方便等的需要,越来越多地采用地下电缆隧道进行电缆敷设,图1给出了广州某地目前采用电缆隧道进行电缆敷设的一个工程实例。

图1 电缆隧道实景从图1可以看出,电缆隧道内布置有各种电压等级的动力、照明、控制电缆,在运行中会散发出一定的热量,导致隧道内温度升高,如果隧道内温度过高,会加速电缆外表面绝缘层的老化,电缆载流量也会下降,从而影响工艺性能[1]。

文献[1~2]指出电缆隧道的发热量大于150 W/m时才有通风要求,通过对已投入使用的部分城市电缆隧道的实际调查,笔者发现隧道内霉味较重,空气品质较差,不满足巡视人员的劳动卫生条件,而现场也设有通风设备,分析原因,主要是隧道内电缆发热量远小于设计计算值,风机长期不运行所致;部分工程甚至还将原来设计安装的中型离心风机箱拆除后换成普通小型轴流风机,给工程造成了浪费。

因此,研究如何正确计算城市电缆隧道通风量就显得非常必要,而通风量的计算自然引出针对隧道内电缆发热量如何确定这一客观问题。

1 城市电缆隧道发热量计算1.1 传统电缆发热量的计算通过对既有工程的实际调研得知:部分工程计算电缆发热量时,采用有内热源的多层圆筒壁一维稳态导热公式[3],图2给出了目前高压电缆110 kV采用的断面示意图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档