质量管理统计分析方法
质量管理统计分析方法
右端点所对应的累计频率值,所得折线称为累计频率折线或
叫巴列特曲线,见图10—6。 • 5)记录必要事项。如标题、搜集数据的方法和时间等。
• 图10—6为上例砌筑工程质量排列图。 • 2.排列图的观察与分析 • (1)观察直方形。排列图中的每个直方形都表示一个质量问 题或影响因素。影响程度与各直方形高度成正比。
7
• (2)确定主次因素。利用ABC分类法确定主次因素,具体做
法是将累计频率值分(o%—80%)、(80% — 90%)、(90 % — 100%)三部分,与其对应的影响因素分别为A、B、C 三类,即图10—6中虚线所示的三条线。A类所含因素为主 要因素,B类所含因素为次要因素,C类所含因素为一般因
2
• 然后对原始资料进行整理,将频数较少的轴线位移、标高 和游丁走缝三项合并为“其它”项。按频数由大到小顺序 排列各检查项目,“其它”项排列最后,计算各项相应的 频率和累计频率:结果见表10-3。
• •
序 1 2 3 4 5 6 7 8 合
不合格点数统计表
号 检查项目 轴线位移 基础和楼面标高 垂直度 表面平整度 水平灰缝厚度 水平灰缝平直度 游丁走缝 门窗洞口宽度 计
表10-2
不合格点数 1 1 24 18 54 39 4 9 150
3
不合格点项目频数统计表
序 号 1 2 3 4 5 6 合 计 项 目 频 数 54 39 24 18 9 6 150
水平灰缝厚度 水平灰缝平直度 垂直度 表面平整度 门窗洞口宽度
表10-3
频 率% 36 26 16 12 6 4 100 累计频率% 36 36+26=62 62+16=78 78+12=90 90+6=96 96+4=100 —
质量管理的6个常用的分析方法
质量管理的6个常用的分析方法(一)分层法分层法是质量管理中常用的整理数据的方法之一。
所谓分层法,就是把收集到的原始质量数据,按照一定的目的和要求加以分类整理,以便分析质量问题及其影响因素的一种方法。
分层的目的是要把性质相同、在同一条件下收集的数据归在一起,以便展开分析。
因此,在分层时,应使一层内的数据波动幅度尽可能小,而各层之间的差别则尽可能大,这是应用分层法进行质量问题及其影响因素分析的关键。
过程控制中进行分层的标志常有:操作者、设备、原材料、操作方法、时间、检测手段、缺陷项目等。
(二)调查表法调查表也称检查表或核对表,是为了分层收集数据而设计的一类统计图表。
调查表法,就是利用这类统计图表进行数据收集、整理和粗略分析的一种方法。
操作中,可根据调查目的的不同,采用不同的调查表。
常用的调查表有:1 .缺陷位置调查表这类调查表用来调查产品各部位的缺陷情况,可将其发生缺陷位置标记在调查图表中产品示意图上,不同缺陷采用不同的符号或颜色标出。
2.不良项目调查表为了调查产品缺陷的种类及其所占的比重,可对不良项目分门别类地进行调查统计。
3.不良原因调查表为弄清不良品发生的原因,以操作者、操作设备、操作方法、加工对象、时间等为标志进行分层调查统计,找出关键的影响因素。
4.过程分布调查表为掌握过程能力,对过程中加工对象的技术特征进行检测和记录,并进行调查数据的分布分析,掌握过程分布的特征。
(三)排列图法排列图又称主次因素分析图或帕累托图。
帕累托是意大利经济学家,是有关收入分布的帕累托法则的首创者。
这一法则揭示了“关键的少数和无关紧要的多数”的规律。
这一法则后来被广泛应用于各个领域,并被称为ABC分析法。
这一法则被引入质量管理领域后,成为寻找影响产品质量主要因素的一种有效工具。
(四)因果分析图法因果分析图又称特性要因图、树枝图和鱼刺图,在质量管理中主要用于整理和分析产生质量问题的因素及各因素与质量问题之间的因果关系。
工程项目质量管理统计方法有哪些
工程项目质量管理统计方法有哪些管理方法一(一)直方图的用途直方图法即频数分布直方图法,它是将收集到的质量数据进行分组整理,绘制成频数分布直方图,用以描述质量分布状态的一种分析方法,所以又称质量分布图法。
作用①通过直方图的观察与分析,可了解产品质量的波动状况,掌握质量特性的分布规律,以便对质量状况进行分析推断。
②可通过质量数据特征值的计算,估算施工生产过程总体的不合格品率,评价过程能力等。
二、控制图法(二)控制图的定义及其用途 1.控制图的定义控制图又称管理图。
它是在直角坐标系内画有控制界限,描述生产过程中产品质量波动状态的图形。
利用控制图区分质量波动原因,判明生产过程是否处于稳定状态的方法称为控制图法。
2.控制图的用途控制图是用样本数据来分析推断生产过程是否处于稳定状态的有效工具。
它的用途主要有两个:(1)过程分析,即分析生产过程是否稳定。
为此,应随机连续收集数据,绘制控制图,观察数据点分布状况并判定生产过程状态。
(2)过程控制,即控制生产过程质量状态。
为此,要按时抽样取得数据,将其变为点子描在图上,发现并及时消除生产过程中的失调现象,预防不合格品的产生。
管理方法二(1)统计调查表法。
是利用专门制定的统计表对质量数据进行收集、整理和粗略分析质量状态的一种方法。
(2)分层法。
是将调查收集的原始数据,依据不同的目的和要求,按某一性质进行分组、整理的分析方法。
(3)排列图法。
是利用排列图寻找影响质量主次因素的一种有效方法。
(4)因果分析图法。
是利用因果分析图来系统整理分析某个质量问题(结果)与其产生原因之间关系的有效工具。
(5)直方图法。
它是将收集到的质量数据进行分组整理,绘制成频数分布直方图,用以描述质量分布状态的一种分析方法。
(6)控制图。
用途主要有两个:过程分析,即分析生产过程是否稳定。
过程控制,即控制生产过程质量状态。
管理方法三(1)保持"责任人负责制'的原则。
在管理层签订质量责任书,在劳务层签订质量指标合同,执行优质优价,返工重罚的措施,既做到全员重视质量,又有具体人员负责质量。
质量管理中常用的统计分析方法
质量管理中常⽤的统计分析⽅法第六节质量管理中常⽤的统计分析⽅法在西⽅,“统计”(statistics)⼀词是由“国家”(state)⼀词演化⽽来的。
它的意思是指收集和整理国情资料、信息的⼀种活动。
随着现代科学技术的飞速发展,统计⽅法得到了⽇益⼴泛和深⼊的应⽤,对⼈类认识和改造世界产⽣重⼤影响。
质量管理中,⽆论何时、何处都会⽤到数理统计⽅法,⽽且这些统计⽅法所表达的观点对于质量管理的整个领域都有深刻的影响。
那么统计⽅法是什么呢?——所谓统计⽅法,是指有关收集、整理、分析和解释统计数据,并对其所反映的问题做出⼀定的结论的⽅法。
它的⽤途有以下⼏个⽅⾯:提供表⽰事物特征的数据(如平均值、⽅差、极差等);⽐较两事物的差异;分析影响事物变化的因素(如因果图、分层法等);分析事物之间的相关关系;研究取样和试验⽅法,确定合理的试验⽅案,发现质量问题,分析和掌握质量数据的分布状况和动态变化(如排列图、控制图等);描述质量形成过程(如控制图等)。
在这⾥应当指出,统计⽅法是在质量管理中起到的是归纳、分析问题,显⽰事物的客观规律的作⽤,⽽不是具体解决质量问题的⽅法。
就像医⽣为病⼈诊断⼀样,体温表、⾎压计、X光透视机、⼼电图仪、B超仪、核磁共搌仪等仪表器具,只是帮助医⽣作出正确诊断的⼯具,其诊断并不等于治疗。
要想治病,还应当吃药打针等。
因此,统计⽅法也是在质量管理中探索质量症结所在,分析产⽣质量问题的原因,但要解决质量问题和提⾼产品质量还需依靠各专业技术和组织管理措施。
⼀、分层法分层( stratification)法⼜叫分类法、分组法。
它是按照⼀定的标志,把搜集到的⼤量有关某⼀特定主题的统计数据加以归类、整理和汇总的⼀种⽅法。
但在使⽤中,分层法常与其他统计⽅法结合起来应⽤,如分层直⽅图法、分层排列法、分层控制图法、分层散布图法和分层因果图法等等。
1、应⽤分层法的步骤:1.0收集数据;1.1 将采集到的数据根据不同的选择分层标志;1.2 分层;1.3 按层分类;1.4 画分层归类图。
质量管理中的质量统计分析方法有哪些
质量管理中的质量统计分析方法有哪些在当今竞争激烈的市场环境中,产品和服务的质量成为企业立足和发展的关键。
质量管理作为确保质量的重要手段,其中的质量统计分析方法起着至关重要的作用。
通过科学合理地运用这些方法,企业能够准确识别质量问题、追溯根源,并采取有效的改进措施,从而不断提升产品和服务的质量水平,满足客户的需求和期望。
质量统计分析方法众多,以下为您介绍几种常见且实用的方法:一、分层法分层法是将数据按照不同的特征或因素进行分类,以便更清晰地了解数据的分布和规律。
例如,按照产品的型号、生产批次、操作人员、原材料供应商等因素进行分层。
通过分层,可以发现不同层次之间的质量差异,从而有针对性地采取措施。
比如,在一家汽车制造企业中,如果发现某一批次的汽车出现较多的质量问题,通过分层法分析可能发现是该批次所使用的特定零部件供应商存在质量不稳定的情况。
这样就能够迅速锁定问题的根源,并与供应商合作解决问题,避免类似问题在未来的生产中再次出现。
二、因果图因果图,也称为鱼骨图,是用于寻找质量问题产生原因的一种图形工具。
它将问题的结果放在鱼头位置,然后将可能导致该结果的因素沿着鱼骨的大骨和小骨逐步展开。
这些因素通常包括人员、机器、材料、方法、环境和测量等方面。
以一家电子厂生产的电路板出现短路问题为例,通过绘制因果图,可以分析出可能是操作人员操作不当、生产设备老化、原材料质量不佳、生产工艺不合理、工作环境湿度大或者检测手段不准确等原因导致的。
在找出可能的原因后,进一步收集数据和证据,确定主要原因,从而采取有效的改进措施。
三、排列图排列图又称为帕累托图,它是根据“关键的少数和次要的多数”的原理制作而成。
通过对质量问题的各类原因进行统计分析,计算出每种原因所导致的问题数量占总问题数量的百分比,并按照百分比的大小进行排列,从而找出影响质量的主要因素。
例如,在一家服装厂,对一段时间内出现的质量问题进行统计分析,发现“缝线不牢固”占总质量问题的 30%,“尺寸偏差”占 25%,“布料瑕疵”占20%,“色差”占15%,“其他”占 10%。
常用质量管理统计方法11.doc
常用质量管理统计方法11常用质量管理统计方法常用的质量管理统计方法包括:旧QC七大手法(检查表、数据分层法、排列图、因果图、散布图、直方图、控制图)和新QC七大手法(亲和图、树图、关联图、箭条图、PDPC、矩阵图、矩阵数据分析法),以及其它一些方法如:头脑风暴法、对策表、流程图、水平对比法等。
简介如下:一、检查表(调查表、统计分析表)1、概念:系统地收集资料和累积资料,确认事实并对资料进行粗略的整理和简单分析的统计图表。
2、分类:不合格品项目检查表、缺陷位置检查表、质量分布检查表、矩陈检查表、用于非数字数据分析用的检查表。
3、用途:用在对现状的调查,以备今后作分析。
4、制作步骤(1)确定搜集资料的具体目的。
(2)确定为达到目的所需搜集的数据资料。
(3)确定对资料的的分析方法、所釆用的统计工具。
(4)根据不同目的,设计用于记录资料的调查表格式。
(5)用收集和记录的部分资料进行表格试用,目的是检查表格设计的合理性。
(6)如有必要应评审和修改调查表。
5、注意事项(1)应能迅速、正确、简易地收集到数据,记录时只要在必要项目上加注记号;(2)记录时要考虑到层別,按人员、机台、原料、时间等分类;(3)数据来源要清楚:由谁检查、检查时间、检查方法、检查班次、检查机台,均应写清楚,其他测定或检查条件也要正确地记录下來;(4)尽可能以记号、图形标记,避免使用文字;(5)检查项目不宜太多,以4-6项为宜(针对重要的几项就可),其他可能发生的项目采用“其他”栏。
二、数据分层法(分类法、分组法)1、概念:数据分层法就是性质相同的,在同一条件下收集的数据归纳在一起,以便进行比较分析。
2、分类方法:数据分层可根据实际情况按多种方式进行。
例如,按不同时间,不同班次进行分层,按使用设备的种类进行分层,按原材料的进料时间,原材料成分进行分层,按检查手段,使用条件进行分层,按不同缺陷项目进行分层等等。
数据分层法经常与统计分析表结合使用。
质量统计分析方法
质量统计分析方法质量统计分析是一种用来评估产品或服务质量的方法,通过收集和分析数据,可以帮助企业了解产品或服务的质量状况,找出存在的问题,并采取改进措施。
在质量管理中,统计分析方法起着至关重要的作用,它能够为企业提供客观的数据支持,帮助企业制定科学的决策,提高产品或服务的质量水平。
一、数据收集。
在进行质量统计分析时,首先需要收集相关的数据。
数据可以来源于产品的生产过程、客户的反馈、市场调研等多个方面。
通过收集大量的数据,可以更全面地了解产品或服务的质量状况,为后续的分析提供充分的依据。
二、质量测量指标。
在进行质量统计分析时,需要选择合适的质量测量指标。
常用的质量测量指标包括产品的合格率、不良品率、客户投诉率、服务满意度等。
通过这些指标的测量,可以客观地评估产品或服务的质量水平,找出存在的问题,并进行针对性的改进。
三、统计分析方法。
在进行质量统计分析时,可以运用多种统计分析方法。
比如,可以利用控制图来监控产品质量的稳定性,通过对比实际数据和标准数据的差异,及时发现异常情况;可以运用散点图来分析产品的相关性,找出影响产品质量的关键因素;还可以利用回归分析来建立质量预测模型,预测产品或服务的质量表现。
四、质量改进措施。
通过质量统计分析,可以找出产品或服务存在的问题,并制定相应的改进措施。
比如,可以通过质量成本分析,找出造成质量问题的成本,并采取降低成本、提高质量的措施;可以通过质量功能展开(QFD)分析,了解客户需求,为产品设计和生产提供指导;还可以通过六西格玛方法,系统地改进生产过程,提高产品的质量水平。
五、持续改进。
质量统计分析不是一次性的工作,而是需要持续进行的过程。
通过不断地收集数据、分析数据,发现问题、改进问题,可以实现产品或服务质量的持续提升。
因此,企业需要建立健全的质量管理体系,将质量统计分析纳入到日常的管理工作中,形成持续改进的机制。
总结。
质量统计分析是企业质量管理的重要手段,通过收集和分析数据,可以客观地评估产品或服务的质量状况,找出存在的问题,并采取改进措施。
质量管理的统计方法
质量管理的统计方法早期,最常采用的统计技术是抽样检验。
它是以小批量的抽样为基准进行检验,以确定大量或批量产品质量的最常使用的方法。
现在,在质量控制方面已转为以预防为重点了。
人们正努力研究一种消除不合格品根源的方法。
基于这一目的,近年来,推出了七种重要的方法,这些方法不需要做大量的统计计算,因此容易被工厂基层职员所掌握。
1 分层法2 排列图法3 因果分析图法4 直方图法5 散布图法6 控制图法7 调查表法1 分层法分层法又称分类法,就是将零乱的质量数据按某一属性进行分类,找出影响产品质量问题的主要原因。
如某班某日生产中出现了40件次品,按生产时间(班次)、操作者进行分层,得到表8-1所示的资料。
从表8-1可以看出,次品数量与时间(班次)没有多大关系,但受设备的影响较为明显,甲设备生产的次品总比乙设备要多。
由此可见,甲设备是导致产品不合格的主要原因。
表8-1 某班日生产分层运用分层法时,常用的分层标志有:1. 操作者:包括操作者的姓名、年龄、工种、性别、技术级别等。
2. 生产手段:如机器、输入设备、输出设备、工艺装备等。
3. 操作方法:指操作规程、工序名称等。
4. 原材料:包括供应厂家、批次、成分等。
5. 检查条件:指检查人员、测试仪器、测试方法等。
6. 时间:如日期、班次等。
7. 环境条件:包括地区、温度、清洁度、湿度、震动等。
运用分层法进行数据分层时往往可以按几个不同的层别分层而分别得到某一方面的结论,但是不同层别的数据之间存在着有机联系时,即因素之间存在着交互作用时,孤立分层进行分析将会导致错误的结论,这时应将不同层中有关联的因素放在一起进行综合考虑。
2 排列图法排列图又称主次因素排列图,是质量管理工作中常用的一种统计工具,是找出影响产品质量主要因素的一种有效方法。
排列图是由意大利经济学家帕累特(Pareot)最先提出和应用的,故又称为帕累特图。
1906年,帕累特在研究社会财富分布问题时,首先运用了排列图,借助于排列图这一工具,他发现占人口极少数的富人占有社会财富的大部分,而占人口总数绝大多数的穷人却处于贫苦的边缘,即发现了关键的少数和次要的多数的规律。
常用质量管理统计方法1
常用质量管理统计方法常用的质量管理统计方法包括:旧QC七大手法(检查表、数据分层法、排列图、因果图、散布图、直方图、控制图)和新QC七大手法(亲和图、树图、关联图、箭条图、PDPC、矩阵图、矩阵数据分析法),以及其它一些方法如:头脑风暴法、对策表、流程图、水平对比法等。
简介如下:一、检查表(调查表、统计分析表)1、概念:系统地收集资料和累积资料,确认事实并对资料进行粗略的整理和简单分析的统计图表。
2、分类:不合格品项目检查表、缺陷位置检查表、质量分布检查表、矩陈检查表、用于非数字数据分析用的检查表。
3、用途:用在对现状的调查,以备今后作分析。
4、制作步骤(1)确定搜集资料的具体目的。
(2)确定为达到目的所需搜集的数据资料。
(3)确定对资料的的分析方法、所釆用的统计工具。
(4)根据不同目的,设计用于记录资料的调查表格式。
(5)用收集和记录的部分资料进行表格试用,目的是检查表格设计的合理性。
(6)如有必要应评审和修改调查表。
5、注意事项(1)应能迅速、正确、简易地收集到数据,记录时只要在必要项目上加注记号;(2)记录时要考虑到层別,按人员、机台、原料、时间等分类;(3)数据来源要清楚:由谁检查、检查时间、检查方法、检查班次、检查机台,均应写清楚,其他测定或检查条件也要正确地记录下來;(4)尽可能以记号、图形标记,避免使用文字;(5)检查项目不宜太多,以4-6项为宜(针对重要的几项就可),其他可能发生的项目采用“其他”栏。
6、应用实例二、数据分层法(分类法、分组法)1、概念:数据分层法就是性质相同的,在同一条件下收集的数据归纳在一起,以便进行比较分析。
2、分类方法:数据分层可根据实际情况按多种方式进行。
例如,按不同时间,不同班次进行分层,按使用设备的种类进行分层,按原材料的进料时间,原材料成分进行分层,按检查手段,使用条件进行分层,按不同缺陷项目进行分层等等。
数据分层法经常与统计分析表结合使用。
3、应用步骤(1)收集数据。
质量管理常用七种方法
线硬
缆线
不宜
责任心不强 漆
技术水平低
不执行工艺 包 表
刮线
一次除漆多
炉口
炉口温度高
不及时更 换毛毡硬
设备
工. 艺
环境
注意:图中用方框框起来的原因为“要因”
质尘 温度低
面 疙 瘩
12
⑵工序分类型
工序分类型的作法是,首先按工艺流程把各工序作为影响产品质
量的平行的主次原因找出来,然后把各工序中影响工序质量的原因查
都差不多,有必要考虑重新确定分层原则,再进行分层。也可以考虑改变
计量单位,以便更好的反映“关键的少数”,如将按“件数”计算变成按
“损
失金额”计算。
⑸ 不太主要的项目很多时,可以把最次要的几个项目合并为“其他”项,排
列
在柱形条最右边。
⑹ 收集数据的时间不宜太长,一般以1~3个月为好。时间太长,情况变化
一、定义(七大统计手法)
1、排列法
将质量改进项目从最重要到最次要进行排列而采用的一种简单的图示技术。
2、层别法
把收集来的原始数据按照一定的目的和要求加以分类整理,以便进行比较分
析的一种方法。
3、因果分析图
能简明、准确表示事物的因果关系,进而识别和发现问题的原因和改进方向
4、检查表
它是用来系统地收集资料(数字与非数字)、确认事实并对资料进行粗略整理 和分析的图表。
4、因果分析图类型
⑴ 结果分解型(图15)
其特点是沿着“为什么会发生这种结果”这一主题,进行层层解剖。 这种方法的优点是,对问题进行了原因追究,可以系统地掌握纵向之间 的因果关系;其缺点是,容易忽视某些平行问题或横向之间的关系。
图15
粘度 杂质
质量统计分析管理办法
质量统计分析管理办法1目的:藉由运用合适之统计技术,以稳定制程质量及降低不良率,进需常握问题了解质量,管理系统的适用性与有效性,掌握何处有改善空间。
2适用范围:经由本程序所鉴定出的统计需求项目均适用之。
3作业内容需求项目统计方式/资料来源运用手法周期担当1.进料检验不合格率进料不格批────── *100%/每周质量异常统计表总进料批数如:柏拉图、推移图等每月品管2.制程检验不合格率生产不格批────── *100%/每周质量异常统计表总生产批数如:柏拉图、推移图等每月品管3.成品检验不合格率总检验数────── *100%/每周质量异常统计表总生产数如:柏拉图、推移图等每月品管4.顾客满意度分析依客户满意度管理办法如:柏拉图、推移图等每半年营业5.客户抱怨件数/退货金额分析及质量异常分析a.客户抱怨(退货)处理单(附表1)b.销退单c.质量异常反应(处理单)如:柏拉图、推移图等每季品管6.内部质量稽核结果项目、原因或单位别统计及分析如:柏拉图、推移图等每半年营运中心7.质量目标/流程监测项目依质量目标管理办法如:柏拉图、推移图等每月各单位8.各产品主要特性a.每类产品应依实际状况设定重要特性b.各类产品成品出货检验记录表如:柏拉图、推移图等每季品管9.供货商考核分析依供货商评比管理办法如:柏拉图、推移图等每季品管3-1依设定周期汇整,运用适当的统计手法如柏拉图、推移图等、统计分析各项质量数据,并提供相关单位作为改善之依据。
3-2经统计分析后,发现有重大问题须改善时,依据持续改善实施办法处理。
3-3应用统计分析以数量化表示资料来源:3-3-1各产品进料、制程、成品检验记录表。
3-4对于各项重要质量特性,依统计品管分析步骤进行资料整理统计、分析、改善及管制作业。
3-5当统计分析实施过程中,发生异常时应记载发生原因及采取改善措施,并记录于质量异常反应(处理)单(附表2),并做统计分析及做为矫正措施之依据。
质量管理中的统计方法
质量管理中的统计方法
在质量管理中,统计方法是用于收集、分析和解释数据,从而帮助组织做出更明智的决策。
以下是一些在质量管理中常用的统计方法:
1. 控制图: 控制图是一种用于监测过程稳定性和识别突变的方法,例如常见的X-bar和R图。
2. 直方图: 通过将数据分为不同的组并显示其频率分布,直方图可以帮助质量人员了解数据分布情况。
3. 散点图: 用于观察两个变量之间的关系,以便识别可能的相关性或影响。
4. 回归分析: 用于研究一个变量如何受到一个或多个其他变量的影响。
5. 假设检验: 通过对样本数据进行假设检验,以评估所得结果的可信度。
这些统计方法可以帮助质量管理人员更好地理解过程
和产品的特征,从而做出更明智的决策。
这些方法也有助于确定潜在的问题,并提供基于数据的解决方案。
质量管理常用的统计方法
测量(Measure):测量设备、试验手段和测试方法等; 环境(Environment):工作场地的温度、湿度、含尘度、 照明、噪声、震动等;
第三节、产品质量波动性的规律
由概率统计理论可知,任何一个随机变 量一般都有一个相应的概率分布。
总体和样本
总体:指在某一次统计分析中研究对
象的全体,又叫母体,用N表示。
个体 个体
个体
个体
组成总体的每 个单元
从总体中随机抽取出来并且要对 它进行详细研究分析的一部分个 体、子样,叫样本,用n表示。
抽样和随机抽样
抽样:指从总体中抽取样品组 成样本的过程。 随机抽样:使总体中的每一个 个体(产品)都有同等机会被 抽取出来的组成样本的过程。
准、规格、公差而言的。一个零件和产品不符合
标准、规格、公差的质量项目叫不良项目,也称
不合格项目。
如表4—1
表4-1
不良品项目调查表
项目 日期
交合 验格 数数
不良品
废品数
次品 数
返修品数
废品类型
不良品类型
次品类型
返修品类 型
良品率 (%)
2. 缺陷位置调查表
缺陷位置调查表宜与措施相联系,能充分反映 缺陷发生的位置,便于研究缺陷为什么集中在那 里,有助于进一步观察、探讨发生的原因。缺陷 位置调查表可根据具体情况画出各种不同的缺陷 位置调查表,图上可以划区,以便进行分层研究 和对比分析。如表4—2。
二、产品质量特性值的波动性
同一个人用同一批原材料在同一台 机器设备上所生产出来的同一种零件, 其质量特性值不会完全一样。这就是 我们常说的产品质量特性值有波动 (或称分散、差异)的现象。这种现 象反映了产品质量具有“波动性”这 个特点。
常用的几种质量管理统计方法(QC7手法实例)
常用的几种质量管理统计方法统计方法是一种科学的方法,其理论基础是数理统计学,它是以概率论为基础的一门数分支。
广泛应用于各个领域,包括质量管理领域。
人们为了解决实践中出现的各种质量问题,往往先搜集各种数据,然后,对数据归纳加工整理,对比分析,由表及里,去粗取精,去伪存真,找出其中的统计规律,对症下药,问题才能迎刃而解。
这一切都须运用科学的统计方法。
全面质量管理的基础要求之一,是尊重客观事实,一切凭数据说话。
因此,统计方法是质量管理不可缺少的得力工具,通过对产品质量形成全过程数据的收集、分析和使用,有助于预防质量缺陷、维持合格质量、达到质量的不断改进。
所以,对所有企业而言,统计方法的应用都是需要的,只是应用的程度不同而已。
这里有两点必须加为说明:第一,统计方法对所有企业虽然都是需要的,但并不是不分企业类型、产品性质,强求使用某些统一的统计方法。
各企业应根据自身的实际需要,规定适用的统计技术的选定程序。
第二,统计方法是一种帮助企业搞好质量管理的工具,可借助它揭示质量形成的客观规律,找出质量问题的症结所在,至于能否实现质量突破,尚有待于进一步采取有效的改进措施。
因此不能误认为应用了几种质量管理统计方法就是全面质量管理。
本章对企业生产过程中最常用的几种统计方法介绍如下:第一节排列图一、什么是排列图排列图是寻找主要质量问题或寻找影响质量的主要原因的一种有效的统计方法。
排列图由两个纵坐标(项目、因素)、几个从左到右,由高向低,按顺序依次排列的长方块(问题项目)和一条累计百分比曲线(帕累托曲线)所组成,它的基本图形见图7-1。
在生产中即使是同一批次的产品,其质量也不可能是完全一致的,由于受多种原因的影响,会出现不同的质量问题。
为了辨别质量问题的主次要性及影响这些问题的主次原因,排列图应用“关键的少数,次要的多数”的原理,可抓住主要矛盾,集中加以解决,取得事半功倍的效果。
二、排列图的绘制1.采集数据采集一段时期内的质量问题数据,并按问题的不同项目进行分类。
第八章 质量管理统计分析方法案例[13页]
案例2统计过程控制在企业产品质 量管理中的应用
• 为了研究统计控制过程图在企业质量管理 上的应用,本案例抽取汽车发动机组装厂 加工凸轮轴的样本数据。凸轮轴长度不符 合规格是一个长期以来的问题,它引起装 配时配合不良,导致废品率和返工率都居 高不下。现在一个月中从工厂使用的所有 凸轮轴收集共 125个观测值(25个样本, 每个样本中 5 个凸轮轴),如表
一、案例分析
• 1.影响产品质量的主要因素分析
由ABC分析可知,影响铜锁质量不 良的主要原因是裂纹和气孔,其不 合格件次占全部不合格件次的 79.66%,特别是裂纹一项就占了全 部不合格件次的68.09%
2. 影响铜锁裂纹的主要原因
• (1)人员方面。主要原因有两个:一是操作 新工人太多。没有进行较好的上岗前培训 ,操作技术不规范。二是操作人员岗位变 动过于频繁,加之责任心不强。由于这些 因素影响,使得炉料添加不合理,达不到 工艺要求。
第八章 质量管理统计分析方法案例
案例1 光明锁厂产品质量分析
案例2 统计过程控制在企业产品质量管理 中的应用
案例1 光明锁厂产品质量分析
• 在过去的一年里,由于原材料供应紧张,价格持续 上涨等原因,为减少成本费用,提高经济效益,光 明锁厂对铜锁生产采取了水平连铸新工艺,使铜锁 锁体全部由价格便宜的黄杂铜代替了价格较贵的电 解铜,全年共消耗黄杂铜1680吨,每公斤进价2.86 元。而电解铜每公斤的进价为14.6元。但是,由此 也出现了锁体质量不稳定,正品率下降等问题。是 什么原因致使铜锁的正品率下降呢?
据这 一事实首先提出了控制图。
• 2.均值-标准差控制图 • 均值控制图主要用于判断生产过程中
的均值是否处于或保持在所要求的统 计控制状态,标准差控制图主要用于 判断生产过程的标准差是否处于或保 持在所要求的统计控制状态,这两张 图通常一起用,因此称为源自值-标准 差控制图一、分析过程
质量管理小组活动常用统计方法
质量管理小组活动常用统计方法1. 质量管理小组的乐趣嘿,朋友们!说到质量管理小组,大家可能脑海里浮现出一群人围在一起,认真讨论数字和图表。
其实,这个过程就像是拼图游戏,有时候搞得一团糟,但最后拼成的画面可是特别美丽。
我们今天就来聊聊那些常用的统计方法,让大家在质量管理的旅途中轻松愉快,不再像在读枯燥的教科书。
1.1. 数据收集的重要性首先,数据收集可真是个不得不提的环节。
俗话说,“没有数据,谈何质量?”你想想,如果没有可靠的数据支撑,我们的决策就像是瞎子摸象,真是叫人捉急。
所以,收集数据的时候,一定要仔细、耐心,就像是寻宝一样。
你不知道这些数据将来会给你带来什么惊喜,可能是提升产品质量的金钥匙,或者是让你发现潜在问题的放大镜。
1.2. 描述性统计接下来我们聊聊描述性统计。
听上去好像很高大上,其实它就是对数据的简单总结和描述。
就好比你去饭店点了一道菜,服务员告诉你这道菜的特色和口感——这就是描述性统计。
我们可以用均值、中位数、众数来了解数据的中心趋势,用标准差、方差来看看数据的波动程度。
这样一来,我们就能迅速抓住数据的脉络,不再是个无头苍蝇了。
2. 数据分析的魔法说到数据分析,简直就是一场魔法表演!统计方法可以帮助我们从复杂的数据中提炼出有用的信息,真是“取之于数据,用之于决策”。
其中,最常见的就是图表分析,听起来就像是艺术创作,其实不过是把数据变得更直观。
通过折线图、柱状图、饼图等各种图表,我们能一眼看出趋势,找出问题,简直是清晰得不得了。
2.1. 直方图的魅力比如,直方图就像是在为数据举办一场派对。
你可以清楚地看到每个数据区间的人气如何,哪些数据表现优异,哪些又有待提升。
通过观察直方图的形状,我们甚至能发现一些潜在的规律,就像是在解密一样,让人心潮澎湃。
2.2. 相关性分析而说到相关性分析,就像是在说“我和我的小伙伴们”,它帮助我们找出两个变量之间的关系。
比如说,产品的质量和生产速度之间可能存在某种关系,通过计算相关系数,我们就能知道这两者之间到底是亲密无间,还是相互拉扯。
质量管理常用的七种统计方法1
质量管理常用的七种统计方法日本质量管理专家石川馨博士将全面质量管理中应用的统计方法分为初级、中级、高级三类,本节将要介绍的七种统计分析方法是他的这种分类中的初级统计分析方法。
日本规格协会10年一度对日本企业推行全面质量管理的基本情况作抽样统计调查,根据1979年的统计资料,在企业制造现场应用的各种统计方法中,应用初级统计分析方法的占98%。
由此可见,掌握好这七种方法,在质量管理中非常之必要;同时,在我国企业的制造现场,如何继续广泛地推行这七种质量管理工具(即初级的统计分析方法),仍然是开展全面质量管理的重要工作。
一、排列图排列图法又叫帕累特图法,也有的称之为ABC分析图法或主项目图法。
它是寻找影响产品质量主要因素,以便对症下药,有的放矢进行质量改善,从而提高质量,以达到取得较好的经济效益的目的。
故称排列法。
由于这种方法最初是由意大利经济学家帕累特(Pareto)用来分析社会财富分布状况的,他发现少数人占有社会的大量财富,而多数人却仅有少量财富,即发现了“关键的少数和次要的多数”的关系。
因此这一方法称为帕累特图法。
后来美国质量管理专家朱兰(J.M.Juran)博士将此原理应用于质量管理,作为在改善质量活动中寻找影响产品质量主要因素的一种方法.在应用这种方法寻找影响产品质量的主要因素时,通常是将影响质量的因素分为A、B、C三类,A类为主要因素,B类为次要因素,C 类为一般因素。
根据所作出的排列图进行分析得到哪些因素属于A类,哪些属于B类,哪些属于C类,因而这种方法又把它叫做ABC分析图法。
由于根据排列图我们可以一目了然地看出哪些是影响产品质量的关键项目,故有的亦把它叫主项目图法。
所谓排列图,它是由一个横坐标、两个纵坐标、几个直方形和一条曲线所构成的图。
其一般形式如图1所示,其横坐标表示影响质量的各个因素(即项目),按影响程度的大小从左到右排列;两个纵坐标中,左边的那个表示频数(件数、金额等),右边的那个表示频率(以百分比表示);直方形表示影响因素,有直方形的高度表示该因素影响的大小;曲线表示各影响因素大小的累计百分数,这条曲线称为帕累特曲线。
质量管理常用的统计方法
4)双峰型:两组机器、或材料、或操作工人施工; 然后把这两方面数据混在一起整理产生的。
双峰型
5)陡壁型:有意将不合格的产品剔除;
陡壁型
对于正常型直方图,将其分布范围B=[S,L](S 为一批数据中的最小值,L为一批数据中的最大 值)与标准范围T=[SL,Su], SL为标准下界限, Su为标准上界限)进行比较,就可以看出产品质 量特性值的分布是否在标准范围内,从而可以 了解生产过程或工序加工能力是否处于所希望 的状态。为了方便,可在直方图上标出标准下 界限值和标准上界限值。
i 1
加权算数平均数
k
X
x1
f1
x2
f2
k
xk
fk
xi fi
i1 k
fi
fi
i1
i1
xi 第i组组中值 fi 第i组的频数
列表计算例6-4中50个混凝土试块的平均强度
k
xi fi
X
i1 k
fi
i1
18880 37.76 50
②计算中位数 X~
中位数是全部数据由小到大顺次排列中位置居
中的那个数据,其确定方法有两种。
当出现非正常型直方图时,表明生产过程或 者数据的收集、整理方法存在问题,需要进一步分 析判断,找出原因,采取相应措施加以纠正。
折齿型、缓坡型、孤岛型、双峰型、绝壁型
1)折齿型:是由于分组不当或组距确定不当 出现的分布状态
折齿型
2)缓坡型:主要是由于操作中上限或下限控 制太严造成的。
缓坡型
3)孤岛型:原材料一时发生变化,工人一时变换;
(3)数据分组。包括确定组数、组距和划分组限。 ①确定组数k。原则是使分组的结果能正确反映数 据的分布规律,参考表6-7.例6-4中,取k=9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
右端点所对应的累计频率值,所得折线称为累计频率折线或
叫巴列特曲线,见图10—6。 • 5)记录必要事项。如标题、搜集数据的方法和时间等。
• 图10—6为上例砌筑工程质量排列图。 • 2.排列图的观察与分析 • (1)观察直方形。排列图中的每个直方形都表示一个质量问 题或影响因素。影响程度与各直方形高度成正比。
质量管理统计分析方法
• • 一、质量管理常用的统计分析方法 质量管理中常用的统计方法有七种:它们是:分层法、排 列图法、因果分析图法、频数分布直方图法、控制图法、相 关图法和统计调查表法。这七种方法通常又称为质量管理的
七种工具。
• • (一)排列图法 排列图又称主次因素分析图或称巴列特图,它是由两个 纵坐标、一个横坐标、几个直方图形和一条曲线所组成。利 用排列图寻找影响质量主次因素的方法叫排列图法。
1
• 1.排列图的作法
• • (1)搜集整理数据 在质量管理中,排列图主要用来寻找影响质量的主要因素, 因此,应搜集各质量特性的影响因素或各种缺陷(简称项目)的 不合格点数。
• [例10—1] 某施工队砌筑工程的质量检查结果是;在全部检
查八个项目中不合格点有150个,为了进一步提高质量,应对 这些不合格点进行分析,以便找出砌筑工程中的薄弱环节。 首先搜集不合格点的原始资料,见表10-2。
7
• (2)确定主次因素。利用ABC分类法确定主次因素,具体做
法是将累计频率值分(o%—80%)、(80% — 90%)、(90 % — 100%)三部分,与其对应的影响因素分别为A、B、C 三类,即图10—6中虚线所示的三条线。A类所含因素为主 要因素,B类所含因素为次要因素,C类所含因素为一般因
图10-6
砌砖工程质量排列图
5
• 2)画纵坐标。左端的纵坐标表示频数,右端的纵坐标表
示频率,要求总频数应对应于频率坐标的100%。如该列
中150应与100%在一条水平线上。 • 3)画频数直方形。以频数为高画出各项目的直方形,见 图10—6。
6
• 4)画累计频率折线。从横坐标右端点开始,依次连接各项目
绘制步骤是:
10
• 1.明确质量问题—结果。画出质量特性的主干线。
• 2.确定影响质量特性大的方面的原因。一般来说,影响质 量因素有五大因素,即人、机械、材料、工艺、环境等。另 外还可以按产品生产工序进行分析。 • 3.将每种大原因进一步分解为中原因、小原因等,直至分
解的原因可以采取具体措施加以解决为止。
• 4.检查图中所列原因是否齐全,可以对初步分析结果进行 广泛征求意见,并做必要修改和补充。 • 5.选择出影响较大的因素做出标记。
11
• 例如混凝土强度不够的因果分析图。从人、材料、机械、 工艺、环境等几个方面把主要影响因素列出来,可以从这 几个方面采取措施,提高质量,如图l0—8所示。 • 绘制因果分析图不是最终目的。根据图中所反映的主要原 因,制订改进措施和对策,限期解决问题,保证产品质量
不断提高,这才是目的。具体实施时,一般应编制一个对
策计划表。 • 表10—4是混凝土强度不足的对策计划表。
12
料
砂石含泥 量大 未筛 洗
机
搅拌机 失修 振捣器常 坏
人
分工不 明确 施工未 交底 混 凝 土 强 度 不 足 新工人未 培训 技术水平低
水泥过 期
场地太 窄
气温太 低 环境
责任性 图快 差 偷懒 称量不 准 水灰比不 准 坍落度 振捣 未覆盖 不宜 差 模板跑 浆 配合比不 当 工艺 混凝土强度不足因果分析图
其
它
• (2)画排列图 • 1)画横坐标。将横坐标按项目等分,并按频数由大到小 从左至右顺序排列,该例题中横坐标分六等份,如图10—6。
4
150
C类 B类
100 90
120 频 90 数 60
80
A类
60
频 率
40 (%) 20
30 0
水平灰
缝厚度
水平灰缝 垂直度
垂直度
表面平
整度
门窗洞
口宽度
其它
0
2
• 然后对原始资料进行整理,将频数较少的轴线位移、标高 和游丁走缝三项合并为“其它”项。按频数由大到小顺序 排列各检查项目,“其它”项排列最后,计算各项相应的 频率和累计频率:结果见表10-3。
• •
序 1 2 3 4 5 6 7 8 合
不合格点数统计表
号 检查项目 轴线位移 基础和楼面标高 垂直度 表面平整度 水平灰缝厚度 水平灰缝平直度 游丁走缝 门窗洞口宽度 计
素。
• 累计频率达78%,属于A类,是影响质量的主要因素,表面 平整度属于B类,是次要因素。其余属C类,为一般因素。 • 3.排列图的应用 • (1)按不合格点的缺陷形式分类,可以分析出造成质量问题
的薄弱环节。
8
• (2)按生产工序分类,可以找出生产不合格品最多的关键工序。
• (3)按生产班组或单位分类,可以分析比较各单位技术水平和 质量管理水平。 • (4)将采取提高质量措施前后的排列图对比,可以分析措施是 否有效。 • (5)此外还可以用于成本费用分析、安全问题分析等。 • (二)因果分析图法 • 因果分析图法是用因果分析图来整理分析 质量问题(结果)与其产生原因之间关系的有效工具。因果分 析图也称特性要因图,又因其形状常被称为树枝图或鱼刺图。
养护 差
图10-8
13
•
项目 人 2 3 工 艺 4 序号 1
对策计划表
产生问题原因 分工不明确 缺乏基本知识 配比不当 水灰比控制不严
表10-2
不合格点数 1 1 24 18 54 39 4 9 150
3
不合格点项目频数统计表
序 号 1 2 3 4 5 6 合 计 项 目 频 数 54 39 24 18 9 6 150
水平灰缝厚度 水平灰缝平直度 垂直度 表面平整度 门窗洞口宽度
表10-3
频 率% 36 26 16 12 6 4 100 累计频率% 36 36+26=62 62+16=78 78+12=90 90+6=96 96+4=100 —
9
•因果分析图基本形式如 图10—7所示。
大原因 小原因 中原因 更小原因
• 从图10—7可见,因果 分析图由质量特性(质量 结果)、要因、枝干、主
某个质量
主干
中原因
问题结果
中枝 小制步 骤与图中箭头方向恰恰 相反,是从结果开始将 原因逐层分解的,具体
图10-7 因果分析图的基本形式