人教A版高中数学必修3课时作业概率的意义

合集下载

高中数学人教A版必修3作业312概率的意义

高中数学人教A版必修3作业312概率的意义

课时提升作业十六概率的意义(25分钟60分)一、选择题(每小题5分,共25分)1.某篮球运动员投篮命中率为98%,估算该运动员投篮1 000次命中的次数为( )【解析】选B.1 000次命中的次数为98%×1 000=980.2.下列命题中是真命题的有( )①做9次抛掷一枚均匀硬币的试验,结果有5次出现正面,因此,出现正面的概率是;②盒子中装有大小均匀的3个红球,3个黑球,2个白球,那么每种颜色的球被摸到的可能性相同;③从4,3,2,1,0,1,2中任取一个数,取得的数小于0和不小于0的可能性相同;④分别从2名男生,3名女生中各选一名作为代表,那么每名学生被选中的可能性相同.【解析】①中,抛掷一枚硬币出现正面的概率是;命题②中摸到白球的概率要小于摸到红球与黑球的概率;命题③中取得小于0的数的概率大于取得不小于0的数的概率;命题④中男生被抽到的概率为,而每名女生被抽到的概率为.3.(2018·荆州高一检测)高考数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是,某家长说:“要是都不会做,每题都随机选择其中一个选项,则一定有3道题答对.”这句话( )【解析】选B.把解答一个选择题作为一次试验,答对的概率是说明了对的可能性大小是.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题,也可能都选错,或有2,3,4,…甚至12个题都选择正确.4.某工厂生产的产品合格率是99.99%,这说明( )A.该厂生产的10 000件产品中不合格的产品一定有1件B.该厂生产的10 000件产品中合格的产品一定有9 999件C.合格率是99.99%,很高,说明该厂生产的10 000件产品中没有不合格产品D.该厂生产的产品合格的可能性是99.99%【解析】选D.合格率是99.99%,是指该工厂生产的每件产品合格的可能性大小,即合格的概率.5.下列叙述中的事件最能体现概率是0.5的是( )A.抛掷一枚骰子10次,其中数字6朝上出现了5次,抛掷一枚骰子数字6向上的概率B.某地在8天内下雨4天,该地每天下雨的概率C.进行10 000次抛掷硬币试验,出现5 001次正面向上,那么抛掷一枚硬币正面向上的概率D.某人买了2张体育彩票,其中一张中500万大奖,那么购买一张体育彩票中500万大奖的概率【解析】选C.A,B,D中试验次数较少,只能说明相应事件发生的频率是0.5.二、填空题(每小题5分,共15分)6.已知某厂的产品合格率为90%,抽出10件产品检查,其中的合格产品最可能有件.【解析】因为产品的合格率为90%,所以抽出10件产品时,合格产品最可能有10×90%=9(件).答案:97.(2018·佛山高一检测)对某厂生产的某种产品进行抽样检查,数据如表所示:调查件数50 100 200 300 500 合格件数47 92 192 285 478 根据表中所提供的数据,若要从该厂生产的此种产品中抽到950件合格品,大约需抽查件产品.【解析】由表中数据知:抽查5次,产品合格的频率依次为0.94,0.92,0.96,0.95,0.956,可见频率在0.95附近摆动,故可估计该厂生产的此种产品合格的概率约为0.95.设大约需抽查n件产品,则=0.95,所以n=1 000.答案:1 0008.小明和小颖按如下规则做游戏:桌面上放有5支铅笔,每次取1支或2支,最后取完铅笔的人获胜,你认为这个游戏规则.(填“公平”或“不公平”)【解析】当第一个人第一次取2支时,还剩余3支,无论第二个人取1支还是2支,第一个人在第二次取铅笔时,都可取完,即第一个人一定能获胜.所以不公平.答案:不公平三、解答题(每小题10分,共20分)9.某种彩票的抽奖是从写在36个球上的36个号码中随机摇出7个.有人统计了过去中特等奖的号码,声称某一号码在历次特等奖中出现的次数最多,它是一个幸运号码,人们应该买这一号码;也有人说,若一个号码在历次特等奖中出现的次数最少,由于每个号码出现的机会相等,应该买这一号码,你认为他们的说法对吗?【解析】体育彩票中标有36个号码的36个球大小、重量是一致的,严格地说,为了保证公平,每次用的36个球,应该只允许用一次,除非能保证用过一次后,球没有磨损、变形.因此,当把这36个球看成每次抽奖中只用了一次时,不难看出,以前抽奖的结果对今后抽奖的结果没有任何影响,上述两种说法都是错的.10.在一个试验中,一种血清被注射到500只豚鼠体内,最初,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞,被注射这种血清之后,没有一个具有圆形细胞的豚鼠被感染,50个具有椭圆形细胞的豚鼠被感染,具有不规则形状细胞的豚鼠全部被感染.根据试验结果,估计具有(1)圆形细胞;(2)椭圆形细胞;(3)不规则形状细胞的豚鼠分别被这种血清感染的概率. 【解析】(1)记“圆形细胞的豚鼠被感染”为事件A,由题意知,A为不可能事件,所以P(A)=0.(2)记“椭圆形细胞的豚鼠被感染”为事件B,由题意知P(B)==.(3)记“不规则形状细胞的豚鼠被感染”为事件C,由题意知事件C为必然事件,所以P(C)=1.(20分钟40分)一、选择题(每小题5分,共10分)1.总数为10万张的彩票,中奖率是,则下列说法中正确的是( )B.买1 000张一定中奖C.买2 000张一定中奖D.买2 000张不一定中奖【解析】选D.注意区分概率和频率的本质区别.中奖率只是刻画了中奖的可能性,而不是买1 000张就一定中奖.【补偿训练】从12件同类产品中(其中10件正品,2件次品),任意抽取6件产品,下列说法中正确的是( )A.抽出的6件产品必有5件正品,1件次品B.抽出的6件产品中可能有5件正品,1件次品C.抽取6件产品时,逐个不放回地抽取,前5件是正品,第6件必是次品D.抽取6件产品时,不可能抽得5件正品,1件次品【解析】=,抽到次品的概率为=,所以抽出的6件产品中可能有5件正品,1件次品.2.甲、乙两人做游戏,下列游戏中不公平的是( )A.抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜B.同时抛掷两枚硬币,恰有一枚正面向上则甲胜,两枚都是正面向上则乙胜C.从一副不含大、小王的扑克牌中抽一张,扑克牌是红色的则甲胜,是黑色的则乙胜D.甲、乙两人各写一个数字,若是同奇或同偶则甲胜,否则乙胜【解析】选B.A项,P(点数为奇数)=P(点数为偶数)=;B项,P(一枚正面向上)=,P(两枚都正面向上)=;C项,P(牌色为红)=P(牌色为黑)=;D项,P(同奇或同偶)=P(不同奇偶)=.二、填空题(每小题5分,共10分)3.蜜蜂包括小蜜蜂和黑小蜜蜂等很多种类.在我国的云南及周边各省都有分布.春暖花开的时候是放蜂的大好季节.养蜂人甲在某地区放养了100箱小蜜蜂和1箱黑小蜜蜂,养蜂人乙在同一地区放养了1箱小蜜蜂和100箱黑小蜜蜂.某中学生物小组在上述地区捕获了1只黑小蜜蜂.那么,生物小组的同学认为这只黑小蜜蜂是养蜂人放养的比较合理.【解析】从养蜂人甲放的蜜蜂中,捕获一只小蜜蜂是黑小蜜蜂的概率为,而从养蜂人乙放的蜜蜂中,捕获一只小蜜蜂是黑小蜜蜂的概率为,所以,现在捕获的这只小蜜蜂是养蜂人乙放养的可能性较大. 答案:乙4.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车,乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应先调查公司的车辆较合理.【解析】由于甲公司桑塔纳出租车所占的比例为=,乙公司桑塔纳出租车所占的比例为=,根据极大似然法可知,先调查乙公司的车辆较合理.答案:乙三、解答题(每小题10分,共20分)5.张明拿着一个罐子来找陈华玩,罐子里有四个一样大小的玻璃球,两个黑色,两个白色.张明说,使劲摇晃罐子,使罐中的小球位置打乱,等小球落定后,如果是黑白相间地排列(如图所示)就算甲方赢,否则就算乙方赢.试问陈华要当甲方还是乙方?请你给陈华出个主意. 【解析】建议陈华当乙方.理由:四个球的排列有如下几种情况: 黑、黑、白、白;白、白、黑、黑;黑、白、黑、白;白、黑、白、黑;黑、白、白、黑;白、黑、黑、白.其中只有两种情况黑白相间地排列,故甲方赢的概率为=,乙方赢的概率为=,所以建议陈华当乙方.6.(2018·温州高一检测)有一个转盘游戏,转盘被平均分成10等份,如图所示,转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:“是奇数”或“是偶数”.“是4的整数倍数”或“不是4的整数倍数”.“是大于4的数”或“不是大于4的数”.请回答下列问题:(1)如果你是乙,为了尽可能获胜,你会选哪种猜数方案,并且怎样猜?为什么?(2)为了保证游戏的公平性,你认为应选哪种猜数方案?为什么?(3)请你设计一种其他的猜数方案,并保证游戏的公平性.【解析】(1)可以选择B,猜“不是4的整数倍数”.或选择C,猜“是大于4的数”.“不是4的整数倍数”的概率为=0.8,“是大于4的数”的概率为=0.6,它们都超过了0.5,故乙获胜希望较大.“是奇数”或“是偶数”的概率均为0.5,从而保证了该游戏是公平的.(3)可以设计为猜“是大于5的数”或“小于6的数”,也可以保证游戏的公平性.(答案不唯一)。

高中数学必修三课时作业9:3.1.2 概率的意义

高中数学必修三课时作业9:3.1.2 概率的意义

3.1.2 概率的意义一、选择题1.若在同等条件下进行n 次重复试验得到某个事件A 发生的频率f (n ),则随着n 的逐渐增加,有( )A .f (n )与某个常数相等B .f (n )与某个常数的差逐渐减小C .f (n )与某个常数差的绝对值逐渐减小D .f (n )在某个常数附近摆动并趋于稳定 [答案] D[解析] 随着n 的增大,频率f (n )会在概率附近摆动并趋于稳定,这也是频率与概率的关系. 2.先后抛掷两枚均匀的五角、一元的硬币,观察落地后硬币的正反面情况,则下列哪个事件的概率最大( )A .至少一枚硬币正面向上B .只有一枚硬币正面向上C .两枚硬币都是正面向上D .两枚硬币一枚正面向上,另一枚反面向上 [答案] A[解析] 抛掷两枚硬币,其结果有“正正”,“正反”,“反正”,“反反”四种情况.至少有一枚硬币正面向上包括三种情况,其概率最大. 3.在下列各事件中,发生的可能性最大的为( ) A .任意买1张电影票,座位号是奇数 B .掷1枚骰子,点数小于等于2C .有10000张彩票,其中100张是获奖彩票,从中随机买1张是获奖彩票D .一袋中装有8个红球,2个白球,从中随机摸出1个球是红球 [答案] D[解析] 概率分别是P A =12,P B =13,P C =1100,P D =45,故选D.4.某医院治疗一种疾病的治愈率为15,前4位病人都未治愈,则第5位病人的治愈率为( )A .1B.15C.45D .0[答案] B[解析] 治愈率为15,表明每位病人被治愈的概率均为15,并不是5人中必有1人被治愈.故选B.5.每道选择题有4个选项,其中只有1个选项是正确的,某次考试共有12道选择题,某人说:“每个选项正确的概率是14,我每题都随机地选择其中一个选项,则一定有3道选择题结果正确.”这句话( ) A .正确 B .错误 C .不一定正确 D .以上都不对[答案] B[解析] 虽然答对一道题的概率为14,但实际问题中,并不意味着一定答对3道,可能全对,可能对3道,也可能全不对等.6.甲、乙两人做游戏,下列游戏中不公平的是( )A .抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜B .同时抛掷两枚硬币,恰有一枚正面向上则甲胜,两枚都是正面向上则乙胜C .从一副不含大、小王的扑克牌中抽一张,扑克牌是红色则甲胜,是黑色则乙胜D .甲、乙两人各写一个数字,若是同奇或同偶则甲胜,否则乙胜. [答案] B[解析] A 项,P (点数为奇数)=P (点数为偶数)=12;B 项,P (恰有一枚正面向上)=12,P (两枚都正面向上)=14;C 项,P (牌色为红)=P (牌色为黑)=12;D 项,P (同奇或同偶)=P (奇偶不同)=12. 二、填空题7.某班某次测验中,全班53人,有83%的人及格,则“从该班中任意抽出10人,仅有1人及格”这件事________发生.(选填“可能”或“不可能”) [答案] 可能[解析] 全班及格人数为53×83%≈44,所以不及格人数为53-44=9.所以任意抽出10人,是有可能包含全部不及格的学生的.8.如果从一个不透明的口袋中摸出白球的概率为16,已知袋中白球有3个,那么袋中球的总个数为________. [答案] 18[解析] 设袋中有x 个球,因为摸出白球的概率为16,且袋中白球有3个,所以3x =16.所以x =18.9.一个袋中装有数量差别较大的白球和黑球,从中任取一球,取出的是白球,估计袋中数量少的球是________. [答案] 黑球[解析] 根据极大似然法,知袋中数量较多的是白球,因此黑球数量较少.10.玲玲和倩倩是一对好朋友,她俩都想去观看某歌星的演唱会,可手里只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛两枚同样的一元硬币,如果落地后一正一反,我就去,如果落地后两面一样,你就去!”这个办法________.(选填“公平”或“不公平”) [答案] 公平[解析] 同样抛掷两枚硬币落地的结果共4种:(正,正),(正,反),(反,正),(反,反).由此可见,她们两人得到门票的概率都是12,所以公平.三、解答题11.判断下列说法是否正确,并说明理由.(1)如果一件事成功的概率是0.1%,那么它必然不会成功;(2)某校九年级共有学生400人,为了了解他们的视力情况,抽查了20名学生的视力并对所得数据进行整理,若视力在0.95~1.15范围内的频率为0.3,则可估计该校九年级学生的视力在0.95~1.15范围内的人数为120;(3)甲袋中有12个黑球,4个白球,乙袋中有20个黑球,20个白球.摸出1个球,要想摸出1个黑球,由于乙袋中黑球的个数多些,故选择乙袋成功的机会较大.解 (1)不正确,因为0.1%表示试验很多次,平均每1000次有1次成功,不是不可能成功,只是成功的机会小. (2)正确,400×0.3=120.(3)不正确,因为在甲袋中P (摸到黑球)=34,在乙袋中P (摸到黑球)=12,12<34,所以选择甲袋成功的机会较大.12.设人的某一特征是由一对基因所决定的,以d 代表显性基因,r 代表隐性基因,则具有dd 基因的人为纯显性,具有rr 基因的人为纯隐性,具有rd 或dr 基因的人为混合性,纯显性与混合性的人都显露显性基因决定的某一特征.孩子从父母身上各得到一个基因,假定父母的基因都是混合性的,求他们的一个孩子显露显性基因决定的特征的概率.解 如图,由图可知,他们的孩子可能的基因有4种,即dd ,dr ,rd ,rr ,它们的概率分别为14,14,14,14,当基因为dd ,dr ,rd 时,孩子显露显性基因决定的特征,所以他们的一个孩子显露显性基因决定的特征的概率为34.13.如图所示,有两个可以自由转动的均匀转盘A 、B .转盘A 被平均分成3等份,分别标上1,2,3三个数字;转盘B 被平均分成4等份,分别标上3,4,5,6四个数字.有人为甲、乙两人设计了一个游戏规则:自由转动转盘A 与B ,转盘停止后,指针各指向一个数字,将指针所指的两个数字相加,如果和是6,那么甲获胜,否则乙获胜.你认为这样的游戏规则公平吗?如果公平,请说明理由;如果不公平,怎样修改规则才能使游戏对双方公平?解 列表如下:由表可知,等可能的结果有因为P (和为6)=312=14,所以甲、乙获胜的概率不相等.所以这样的游戏规则不公平.如果将规则改为“和是6或7,则甲胜,否则乙胜”,那么此时游戏规则是公平的.。

人教版高中数学高一人教A版必修3习题 概率的意义

人教版高中数学高一人教A版必修3习题 概率的意义

第三章 概率3.1 随机事件的概率3.1.2 概率的意义A 级 基础巩固一、选择题1.给出下列三个命题,其中正确命题的个数是( ) ①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是37; ③随机事件发生的频率就是这个随机事件发生的概率.A .0B .1C .2D .3解析:①概率指的是可能性,错误;②频率为37,而不是概率,故错误;③频率不是概率,错误.答案:A2.天气预报中预报某地降水概率为10%,则下列解释正确的是( )A .有10%的区域降水B .10%太小,不可能降水C .降水的可能性为10%D .是否降水不确定,10%没有意义解析:A 、B 、D 三个选项错误地理解了概率的意义,只有C 项正确.答案:C3.一枚质地均匀的硬币如果连续抛掷100次,那么第99次出现反面朝上的概率是( )A.1100B.99100C.12D.199解析:由于每次试验出现正、反面朝上的概率是相等的,均为12. 答案:C4.从一批电视机中随机抽出10台进行检验,其中有1台次品,则关于这批电视机,下列说法正确的是( )A .次品率小于10%B .次品率大于10%C .次品率等于10%D .次品率接近10%解析:抽出的样本中次品的频率为110,即10%,所以样本中次品率为10%,所以总体中次品率大约为10%.答案:D5.同时掷两颗骰子,得到点数和为6的概率是( )A.512B.536C.19D.518解析:列表可得所有可能情况是36种,而“点数和为6”即(1,5),(5,1),(2,4),(4,2),(3,3),所以“点数和为6”的概率为536. 答案:B二、填空题6.利用简单抽样法抽查某校150名男学生,其中身高为1.65米的有32人,若在此校随机抽查一名男学生,则他身高为1.65米的概率大约为________.(保留两位小数)解析:所求概率为32150≈0.21.答案:0.217.给出下列四个命题:①设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品;②做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是51 100;③抛掷骰子100次,得点数是1的结果是18次,则出现1点的频率是950.其中正确命题有________.解析:①错,次品率是大量产品的估计值,并不是针对200件产品来说的.②混淆了频率与概率的区别.③正确.答案:③8.某地区牛患某种病的概率为0.25,且每头牛患病与否是互不影响的,今研制一种新的预防药,任选12头牛做试验,结果这12头牛服用这种药后均未患病,则此药________(填“有效”或“无效”).解析:若此药无效,则12头牛都不患病的概率为(1-0.25)12≈0.032,这个概率很小,故该事件基本上不会发生,所以此药有效.答案:有效三、解答题9.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵孵出8 513条鱼苗,根据概率的统计定义解答下列问题:(1)这种鱼卵的孵化概率(孵化率)是多少?(2)30 000个鱼卵大约能孵化出多少条鱼苗?解:(1)这种鱼卵的孵化频率为8 51310 000=0.851 3,把它近似作为孵化的概率,即这种鱼卵的孵化概率是0.851 3.(2)设能孵化出x条鱼苗,则x30 000=0.851 3,所以x=25 539,即30 000个鱼卵大约能孵化出25 539条鱼苗.10.社会调查人员希望从对人群的随机抽样调查中得到对他们所提问题诚实的回答,但是被采访者常常不愿意如实做出应答.1965年Stanley·L.Warner发明了一种应用概率知识来消除这种不愿意情绪的方法.Warner的随机化应答方法要求人们随机地回答所提问题中的一个,而不必告诉采访者回答的是哪个问题,两个问题中有一个是敏感的或者是令人为难的,另一个是无关紧要的,这样应答者将乐意如实地回答问题,因为只有他知道自己回答的是哪个问题.假如在调查运动员服用兴奋剂情况的时候,无关紧要的问题是:你的身份证号码的尾数是奇数吗;敏感的问题是:你服用过兴奋剂吗.然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.例如我们把这个方法用于200个被调查的运动员,得到56个“是”的回答,请你估计这群运动员中大约有百分之几的人服用过兴奋剂.解:因为掷硬币出现正面的概率是0.5,大约有100人回答了第一个问题,因为身份证号码尾数是奇数或偶数的可能性是相同的,因而在回答第一个问题的100人中大约有一半人,即50人回答了“是”,其余6个回答“是”的人服用过兴奋剂,由此我们估计这群人中大约有6%的人服用过兴奋剂.B级能力提升1.每道选择题有4个选项,其中只有1个选项是正确的,某次考试共12道选择题,某同学说:“每个选项正确的概率是14,若每题都选择第一个选项,则一定有3道题的选择结果正确.”这句话() A.正确B.错误C.有一定道理D.无法解释解析:从四个选项中正确选择选项是一个随机事件,14是指这个事件发生的概率,实际上,做12道选择题相当于做12次试验,每次试验的结果是随机的,因此每题都选择第一个选项可能没有一个正确,也可能有1个、2个、3个……12个正确.因此该同学的说法是错误的.答案:B2.周二数学课,数学老师拿出外形完全相同的两个箱子要给学生做一个游戏,甲箱有99个白球、1个黑球,乙箱有1个白球、99个黑球.老师让同学们闭上眼睛,随机地抽取一箱,再从取出的一箱中抽取一球,同学们睁开眼睛看到是白球.老师问:“这球最有可能从________箱子中取出的.”解析:甲箱中得到白球的可能性是99100,乙箱中得到白球的可能性是1100.从甲箱中抽出白球的概率比从乙箱中抽出白球的概率大得多.由极大似然法做出统计推断:该白球是从甲箱中抽出的.答案:甲3.设人的某一特征(眼睛的大小)是由他的一对基因所决定,以d 表示显性基因,r 表示隐性基因,则具有dd 基因的人为纯显性,具有rr 基因的人为纯隐性,具有rd 基因的人为混合性,纯显性与混合性的人都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,问:(1)1个孩子由显性决定特征的概率是多少?(2)“该父母生的2个孩子中至少有1个由显性决定特征”,这种说法正确吗?解:父母的基因分别为rd ,rd.则孩子从父母身上各得一个基因的所有可能性为rr ,rd ,rd ,dd ,共4种,故具有dd 基因的可能性为14,具有rr 基因的可能性也为14,具有rd 基因的可能性为12. (1)1个孩子由显性决定特征的概率是34. (2)这种说法不正确,2个孩子中每个由显性决定特征的概率均相等,为34.。

高中数学 第三章 概率 3.1.2 概率的意义课时提升作业2 新人教A版必修3(2021年最新整理)

高中数学 第三章 概率 3.1.2 概率的意义课时提升作业2 新人教A版必修3(2021年最新整理)

高中数学第三章概率3.1.2 概率的意义课时提升作业2 新人教A版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章概率3.1.2 概率的意义课时提升作业2 新人教A版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章概率3.1.2 概率的意义课时提升作业2 新人教A版必修3的全部内容。

概率的意义一、选择题(每小题3分,共18分)1.某人连续抛掷一枚均匀的硬币24000次,则正面向上的次数最有可能是()A.12002B.11012C.13012 D。

14000【解析】选A。

抛掷一枚硬币正面向上的概率是,随着试验次数的增加,正面向上的次数越来越接近×24000=12000,选项中12002最接近12000,故选A.2。

下列说法正确的是()A.一次摸奖活动中,中奖概率为,若摸5张票,前4张都未中奖,则第5张一定中奖B.一次摸奖活动中,中奖概率为,则摸5张票,一定有一张中奖C.10张票中有2张奖票,10人去摸,谁先摸则谁摸到的可能性大D.10张票中有2张奖票,10人去摸,无论谁先摸,摸到奖票的概率都是【解析】选D.无论谁先摸,摸到奖票的概率都是。

3.从12件同类产品中(其中10件正品,2件次品),任意抽取6件产品,下列说法中正确的是()A。

抽出的6件产品必有5件正品,1件次品B。

抽出的6件产品中可能有5件正品,1件次品C。

抽取6件产品时,逐个不放回地抽取,前5件是正品,第6件必是次品D。

抽取6件产品时,不可能抽得5件正品,1件次品【解析】选B.从12个产品中抽到正品的概率为=,抽到次品的概率为=,所以抽出的6件产品中可能有5件正品,1件次品。

2020-2021学年高中人教A版数学必修3作业:3.1.2 概率的意义

2020-2021学年高中人教A版数学必修3作业:3.1.2 概率的意义

课时分层作业(十六)概率的意义(建议用时:60分钟)一、选择题1.老师讲一道数学题,李峰能听懂的概率是0.8,是指()A.老师每讲一题,该题有80%的部分能听懂,20%的部分听不懂B.老师在讲的10道题中,李峰能听懂8道C.李峰听懂老师所讲这道题的可能性为80%D.以上解释都不对C[概率的意义就是事件发生的可能性大小,即李峰听懂老师所讲这道题的可能性为80%.]2.掷一枚质地均匀的正方体骰子(六个面上分别写有1,2,3,4,5,6),若前3次连续掷到“6点朝上”,则对于第4次抛掷结果的预测,下列说法中正确的是() A.一定出现“6点朝上”B.出现“6点朝上”的概率大于1 6C.出现“6点朝上”的概率等于1 6D.无法预测“6点朝上”的概率C[随机事件具有不确定性,与前面的试验结果无关,由于正方体骰子质地均匀,所以它出现哪一面朝上的可能性都是1 6.]3.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有() A.64个B.640个C.16个D.160个C[80×(1-80%)=16.]4.先后抛掷两枚均匀的五角、一元的硬币,观察落地后硬币的正反面情况,则下列哪个事件的概率最大()A.至少一枚硬币正面朝上B .只有一枚硬币正面朝上C .两枚硬币都正面朝上D .两枚硬币一枚正面朝上,另一枚反面朝上A [两枚硬币落地共有四种结果:(正、正);(正、反);(反、正);(反、反).至少一枚硬币正面朝上包括三种情况,其概率最大.]5.甲、乙两人做游戏,下列游戏中不公平的是( )A .抛掷一枚骰子,向上的点数为奇数则甲获胜,向上的点数为偶数则乙获胜B .同时抛掷两枚硬币,恰有一枚正面向上则甲获胜,两枚都正面向上则乙获胜C .从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则甲获胜,扑克牌是黑色的则乙获胜D .甲、乙两人各写一个数字1或2,如果两人写的数字相同则甲获胜,否则乙获胜B [B 中,同时抛掷两枚硬币,恰有一枚正面向上的概率为12,两枚都正面向上的概率为14,所以对乙不公平.]二、填空题6.某班某次测验中,全班53人,有83%的人及格,则“从该班中任意抽出10人,仅有1人及格”这件事________发生.(填“可能”或“不可能”)可能 [全班及格人数为53×83%≈44人,所以不及格人数为9人,所以任意抽出10人,是有可能包含全部不及格学生的.]7.公元1053年,大元帅狄青奉旨率兵征讨侬智高,出征前狄青拿出100枚“宋元天宝”铜币,向众将士许愿:“如果钱币扔在地上,有字的一面会全部向上,那么这次出兵一定可以打败敌人!”在千军万马的注目之下,狄青用力将铜币向空中抛去,奇迹发生了:100枚铜币,枚枚有字的一面向上.顿时,全军欢呼雀跃,将士个个认为是神灵保佑,战争必胜无疑.事实上铜币有可能是________.(填序号)①铜币两面均有字;②铜币质量不均匀;③神灵保佑;④铜币质量均匀. ①② [由极大似然法思想知,100枚铜币质量不均匀或者铜币的两面均有字.]8.给出下列四个命题:①设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品; ②做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是51100;③随机事件发生的频率就是这个随机事件发生的概率;④抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是950.其中正确命题有________.(填序号)④ [①错,次品率是大量产品的估计值,并不是针对200件而言的;②③混淆了频率与概率的区别;④正确.]三、解答题9.设人的某一特征(眼睛的大小)是由他的一对基因所决定的,以d 表示显性基因,r 表示隐性基因,则具有dd 基因的人为纯显性,具有rr 基因的人为纯隐性,具有rd 基因的人为混合性,纯显性与混合性的人都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,问:(1)1个孩子由显性决定特征的概率是多少?(2)“该父母生的2个孩子中至少有1个由显性决定特征”,这种说法正确吗?[解] 父母的基因分别为rd 、rd ,则这孩子从父母身上各得一个基因的所有可能性为rr ,rd ,rd ,dd ,共4种,故具有dd 基因的可能性为14,具有rr 基因的可能性也为14,具有rd 的基因的可能性为12.(1)1个孩子由显性决定特征的概率是34.(2)这种说法不正确,2个孩子中每个由显性决定特征的概率均相等,为34.10.元旦就要到了,某校将举行联欢活动,每班派一人主持节目,高二(1)班的小明、小华和小丽实力相当,都争着要去,班主任决定用抽签的方法来决定.小强给小华出主意要小华先抽,说先抽的机会大,你是怎么认为的?说说看.[解] 我们取三张卡片,上面标有1,2,3,抽到1就表示中签,假设抽签的次序为甲、乙、丙,则可以把所有的情况填入下表:人名甲112233乙231312丙323121甲中签;第三、五种情况,乙中签;第四、六种情况,丙中签.由此可知,甲、乙、丙中签的可能性都是相同的,即甲、乙、丙中签的机会是一样的,先抽后抽,机会是均等的.1.下列说法正确的是()A.由生物学知道生男生女的概率约为0.5,一对夫妇先后生两小孩,则一定为一男一女B.一次摸奖活动中,中奖概率为0.2,则摸5张票,一定有一张中奖C.10张票中有1张奖票,10人去摸,谁先摸则谁摸到奖票的可能性大D.10张票中有1张奖票,10人去摸,无论谁先摸,摸到奖票的概率都是0.1 D[一对夫妇生两小孩可能是(男,男),(男,女),(女,男),(女,女),所以A不正确;中奖概率为0.2是说中奖的可能性为0.2,当摸5张票时,可能都中奖,也可能中一张、两张、三张、四张,或者都不中奖,所以B不正确;10张票中有1张奖票,10人去摸,每人摸到的可能性是相同的,即无论谁先摸,摸到奖票的概率都是0.1,所以C不正确;D正确.]2.为了了解我国机动车的所有人缴纳车船使用税的情况,调查部门在某大型停车场对机动车的所有人进行了如下的随机调查:向被调查者提出三个问题:(1)你的车牌号码的最后一位是奇数吗?(2)你缴纳了本年度的车船使用税吗?(3)你的家庭电话号码的倒数第二位是偶数吗?调查人员给被调查者准备了一枚质地均匀的骰子,让被调查者背对调查人员掷一次骰子.如果出现一点或二点则回答第一个问题;如果出现三点或四点则回答第二个问题;如果出现五点或六点则回答第三个问题(被调查者不必告诉调查人员自己回答的是哪一个问题,只需回答“是”或“否”,所有人都如实做了回答).结果被调查的 3 000人中 1 200人回答了“否”,由此估计这3 000人中没有缴纳车船使用税的人数为()A.600 B.200C.400 D.300A[因为骰子出现一点或二点、三点或四点、五点或六点的概率相等,都等于13,所以应有1 000人回答了第一个问题.因为车牌号码的最后一位数是奇数还是偶数的概率也是相等的,所以在这1 000人中应有500人的车牌号码是偶数,这500人都回答了“否”;同理也有1 000人回答了第三个问题,在这1 000人中有500人回答了“否”.因此在回答“否”的1 200人中约有200人是对第二个问题回答了“否”,根据用样本特征估计总体特征知识可知,在这3 000人中约有600人没有缴纳车船使用税.]3.有以下一些说法:①昨天没有下雨,则说明“昨天气象局的天气预报降水概率为95%”是错误的;②“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖;③做10次抛硬币的试验,结果3次正面朝上,因此正面朝上的概率为3 10;④某厂产品的次品率为2%,但该厂的50件产品中可能有2件次品.其中错误说法的序号是________.①②③[①中降水概率为95%,仍有不降水的可能,故①错;②中“彩票中奖的概率是1%”表示在购买彩票时,有1%的机会中奖,但不一定买100张彩票一定有1张会中奖,故错误;③中正面朝上的频率为310,概率仍为12,故③错误;④中次品率为2%,但50件产品中可能没有次品,也可能有1件或2件或3件……,故④的说法正确.]4.下面有三个游戏规则,袋子中分别装有球.游戏3[游戏1中,取两球的所有可能情况是(黑1,黑2)(黑1,黑3)(黑2,黑3)(黑1,白)(黑2,白)(黑3,白),∴甲胜的概率为12,游戏是公平的.游戏2中,显然甲胜的概率为12,游戏是公平的.游戏3中,取两球的所有可能情况是(黑1,黑2)(黑1,白1)(黑2,白1)(黑1,白2)(黑2,白2)(白1,白2),甲胜的概率为13,游戏是不公平的.]5.有A,B两种乒乓球,A种乒乓球的次品率是1%,B种乒乓球的次品率是5%.(1)甲同学买的是A种乒乓球,乙同学买的是B种乒乓球,但甲买到的是次品,乙买到的是正品,从概率的角度如何解释?(2)如果你想买到正品,应选择哪种乒乓球?[解](1)因为A种乒乓球的次品率是1%,所以任选一个A种乒乓球是正品的概率是99%.同理,任选一个B种乒乓球是正品的概率是95%.由于99%>95%,因此“买一个A种乒乓球,买到的是正品”的可能性比“买一个B种乒乓球,买到的是正品”的可能性大.但并不表示“买一个A种乒乓球,买到的是正品”一定发生.乙买一个B种乒乓球,买到的是正品,而甲买一个A 种乒乓球,买到的却是次品,即可能性较小的事件发生了,而可能性较大的事件却没有发生,这正是随机事件发生的不确定性的体现.(2)因为任意选取一个A种乒乓球是正品的可能性为99%,因此如果做大量重复买一个A种乒乓球的试验,出现“买到的是正品”的频率会稳定在0.99附近.同理,做大量重复买一个B种乒乓球的试验,出现“买到的是正品”的频率会稳定在0.95附近.因此若希望买到的是正品,则应选择A种乒乓球.。

高中数学人教A版必修三课时作业:第3章 概率 3.1.2 Word版含答案

高中数学人教A版必修三课时作业:第3章 概率 3.1.2 Word版含答案
8.某人抛掷一枚硬币100次,结果正面朝上有53次.设正面朝上为事件A,则事件A出现的频数为________,事件A出现的频率为________.
答案:530.53
9.掷一颗骰子,骰子落地时向上的数是偶数但不是3的倍数的概率是________.
答案:
解析:由题意,骰子落地时向上的点数为2,4,占全部结果的 = .
3.1.2概率的意义
课时目标
1.能够正确地理解概率的意义,会用概率的观点解释某些自然或社会现象.
2.能够正确认识概率思想在决策中的指导意义.
识记强化
概率的正确理解
随机事件在一次试验中发生与否是随机的,但随机性中含有规律性,认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性.
课时作业
3
4
5
6
7
2点
3
4
5
6
7
8
3点
4
5
6
7
8
9
4点
5
6
7
8
9
10
5点
6
7
8
9
10
11
6点
7
8
9
10
11
12
由表格可以看出:两个骰子的点数相加之和为7的情形有6种,而两个骰子的点数相加之和为9的情形只有4种,所以小王赢的概率大.
11.在孟德尔豌豆试验中,若用纯黄色圆粒和纯绿色皱粒作为父本进行杂交,试求子一代结果中性状分别为黄色圆粒、黄色皱粒、绿色圆粒和绿色皱粒的比例约为多少?
A.0.53 B.0.5
C.0.47 D.0.37
答案:A
解析:取到号码为奇数Байду номын сангаас次数为10+8+6+18+11=53.∴f= =0.53.

高中数学(人教版A版必修三)配套课件:3.1.2概率的意义

高中数学(人教版A版必修三)配套课件:3.1.2概率的意义
场景记忆法小妙招
超级记忆法--身体法
1. 头--神经系统 2. 眼睛--循环系统 3. 鼻子--呼吸系统 4. 嘴巴--内分泌系统 5. 手--运动系统 6. 胸口--消化系统 7. 肚子--泌尿系统 8. 腿--生殖系统
超级记忆法-记忆方法
TIP1:在使用身体记忆法时,可以与前面提到过的五感法结合起来,比如产生 一些听觉、视觉、触觉、嗅觉、味觉,记忆印象会更加深刻; TIP2:采用一些怪诞夸张的方法,比如上面例子中腿上面生长出了很多植物, 正常在我们常识中不可能发生的事情,会让我们印象更深。
如何利用规律实现更好记忆呢?
超级记忆法-记忆规律
第四个记忆周期是 1天 第五个记忆周期是 2天 第六个记忆周期是 4天 第七个记忆周期是 7天 第八个记忆周期是15天 这五个记忆周期属于长期记忆的范畴。 所以我们可以选择这样的时间进行记忆的巩固,可以记得更扎实。
如何利用规律实现更好记忆呢?
超级记忆法--场景法
答案
返回
题型探究
重点难点 个个击破
类型一 概率的正确理解
例1 下列说法正确的是( ) A.由生物学知道生男生女的概率约为0.5,一对夫妇先后生两个小孩, 则
一定为一男一女
B.一次摸奖活动中,中奖概率为0.2,则摸5张票,一定有一张中奖 C.10张票中有1 张奖票,10人去摸,谁先摸则谁摸到奖票的可能性大 D.10张票中有1 张奖票,10人去摸,无论谁先摸,摸到奖票的概率都是0.1
第三章 §3.1 随机事件的概率
3.1.2 概率的意义
学习目标
1.通过实例进一步理解概率的意义; 2.了解概率在公平性、决策和预报等方面的应用; 3.理解概率统计中随机性与规律性的关系.
问题导学

精选高中数学第3章概率3.1.2概率的意义课时作业新人教A版必修3

精选高中数学第3章概率3.1.2概率的意义课时作业新人教A版必修3

3.1.2 概率的意义 课时目标 1.通过实例,进一步理解概率的意义.2.会用概率的意义解释生活中的实例.3.了解“极大似然法”和遗传机理中的统计规律.1.对概率的正确理解随机事件在一次试验中发生与否是随机的,但随机性中含有________,认识了这种随机性中的________,就能比较准确地预测随机事件发生的________.2.游戏的公平性(1)裁判员用抽签器决定谁先发球,不管哪一名运动员先猜,猜中并取得发球的概率均为______,所以这个规则是______的.(2)在设计某种游戏规则时,一定要考虑这种规则对每个人都是______的这一重要原则.3.决策中的概率思想如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“_____________”可以作为决策的准则,这种判断问题的方法称为极大似然法,极大似然法是统计中重要的统计思想方法之一.4.天气预报的概率解释天气预报的“降水”是一个________,“降水概率为90%”指明了“降水”这个随机事件发生的______为90%,在一次试验中,概率为90%的事件也________,因此,“昨天没有下雨”并不能说明“昨天的降水概率为90%”的天气预报是______的.5.孟德尔与遗传机理中的统计规律孟德尔在自己长达七、八年的试验中,观察到了遗传规律,这种规律是一种统计规律.一、选择题1.某气象局预报说,明天本地降雪的概率为90%,下列解释正确的是( ) A .明天本地有90%的区域下雪,10%的区域不下雪.B .明天本地下雪的可能性是90%.C .明天本地全天有90%的时间下雪,10%的时间不下雪.D .明天本地一定下雪.2.已知某厂的产品合格率为90%,现抽出10件产品检查,则下列说法正确的是( ) A .合格产品少于9件B .合格产品多于9件C .合格产品正好是9件D .合格产品可能是9件3.每道选择题有4个选择项,其中只有1个选择项是正确的,某次考试共有12道选择题,某人说:“每个选择项正确的概率是14,我每题都选择第一个选择项,则一定有3道题选择结果正确”,这句话( )A .正确B .错误C .不一定D .无法解释4.同时向上抛掷100个质量均匀的铜板,落地时这100个铜板全都正面向上,则这100个铜板更可能是下面哪种情况( )A .这100个铜板两面是一样的B .这100个铜板两面是不一样的C .这100个铜板中有50个两面是一样的,另外50个两面是不一样的D .这100个铜板中有20个两面是一样的,另外80个两面是不一样的5.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车,乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应先调查哪个公司的车辆较合理( ) A .甲公司 B .乙公司C .甲与乙公司D .以上都对6.从12个同类产品(其中10个正品,2个次品),任意抽取6件产品,下列说法中正确的是( )A .抽出的6件产品中必有5件正品,一件次品B .抽出的6件产品中可能有5件正品,一件次品C .抽取6件产品时逐个不放回抽取,前5件是正品,第6件必是次品7.盒中装有4只白球5只黑球,从中任意取出1只球.(1)“取出的球是黄球”是________事件,它的概率是________;(2)“取出的球是白球”是________事件,它的概率是________;(3)“取出的球是白球或黑球”是________事件,它的概率是________.8.管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条.根据以上数据可以估计该池塘约有________条鱼. 9.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498497 501 502 504 496497 503 506 508 507492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g ~501.5 g 之间的概率约为________.三、解答题10.解释下列概率的含义:(1)某厂生产产品合格的概率为0.9;(2)一次抽奖活动中,中奖的概率为0.2.11.在一个试验中,一种血清被注射到500只豚鼠体内,最初,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞,被注射这种血清之后,没有一个具有圆形细胞的豚鼠被感染,50个具有椭圆形细胞的豚鼠被感染,具有不规则形状细胞的豚鼠全部被感染.根据试验结果,估计具有(1)圆形细胞;(2)椭圆形细胞;(3)不规则形状细胞的豚鼠分别被这种血清感染的概率.能力提升12.掷一枚骰子得到6点的概率是16,是否意味着把它掷6次一定能得到一次6点?13.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵化8513尾鱼苗,根据概率的统计定义解答下列问题:(1)这种鱼卵的孵化概率(孵化率)是多少?(2)30 000个鱼卵大约能孵化多少尾鱼苗?(3)要孵化5 000尾鱼苗,大概需备多少个鱼卵?(精确到百位)答案:3.1.2 概率的意义知识梳理1.规律性规律性可能性 2.(1)0.5 公平(2)公平 3.使得样本出现的可能性最大 4.随机事件概率可能不出现错误作业设计1.B [概率的本质是从数量上反映一个事件发生的可能性的大小.]2.D3.B [解答一个选择题作为一次试验,每次试验选择的正确与否都是随机的,经过大量的试验其结果呈随机性,即选择正确的概率是14.做12道选择题,即进行12次试验,每个结果都是随机的,不能保证每题的结果选择正确,但有3道题选择结果正确的可能性比较大.同时也有可能都选错,或有2道题,4道题,甚至12道题都选择正确.故这句话是错误的.]4.A [一枚质量均匀的铜板,抛掷一次正面向上的概率为0.5,从题意中知抛掷100枚结果正面都向上,因此这100个铜板两面是一样的可能性最大.]5.B [由于甲公司桑塔纳的比例为100100+3 000=131, 乙公司桑塔纳的比例为 3 0003 000+100=3031,根据极大似然法可知应选B .] 6.B7.(1)不可能 0 (2)随机 49(3)必然 1 8.750解析 设池塘约有n 条鱼,则含有标记的鱼的概率为30n ,由题意得:30n×50=2,∴n =750.9.0.25解析 袋装食盐质量在497.5 g ~501.5 g 之间的共有5袋,所以其概率约为520=0.25. 10.解 (1)说明该厂产品合格的可能性为90%.也就是说每100件该厂的产品中大约有90件是合格品.(2)说明参加抽奖的人中有20%的人可能中奖,也就是说,若有100个人参加抽奖,约有20人中奖.11.解 (1)记“圆形细胞的豚鼠被感染”为事件A ,由题意知,A 为不可能事件,∴P(A)=0.(2)记“椭圆形细胞的豚鼠被感染”为事件B ,由题意知P(B)=50250=15=0.2. (3)记“不规则形状细胞的豚鼠被感染”为事件C ,由题意知事件C 为必然事件,所以P(C)=1.12.解 抛掷一枚骰子得到6点的概率是16,多次抛掷骰子,出现6点的情况大约占16,并不意味着掷6次一定得到一次6点,实际上,掷6次作为抛掷骰子的6次试验,每一次结果都是随机的.13.解 (1)这种鱼卵的孵化概率P =8 51310 000=0.851 3. (2)30 000个鱼卵大约能孵化30 000×8 51310 000=25 539(尾)鱼苗. (3)设大概需备x 个鱼卵,由题意知5 000x =8 51310 000. ∴x=5 000×10 0008 513=5 900(个).∴大概需备5 900个鱼卵.。

高中数学必修三课时作业10:3.1.2 概率的意义

高中数学必修三课时作业10:3.1.2 概率的意义

3.1.2 概率的意义一、选择题1.从一批准备出厂的电视机中随机抽取10台进行质量检查,其中有1台是次品,若用C 表示抽到次品这一事件,则对C 的说法正确的是( )A .概率为110B .频率为110C .概率接近110D .每抽10台电视机,必有1台次品2.高考数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是14,某家长说:“要是都不会做,每题都随机选择其中一个选项,则一定有3道题答对.”这句话( )A .正确B .错误C .不一定D .无法解释3.某篮球运动员投篮命中率为98%,估算该运动员投篮1 000次命中的次数为( )A .98B .980C .20D .9984.从12件同类产品中(其中10件正品,2件次品),任意抽取6件产品,下列说法中正确的是( )A .抽出的6件产品必有5件正品,1件次品B .抽出的6件产品中可能有5件正品,1件次品C .抽取6件产品时,逐个不放回地抽取,前5件是正品,第6件必是次品D .抽取6件产品时,不可能抽得5件正品,1件次品5.蜜蜂包括小蜜蜂和黑小蜜蜂等很多种类.在我国的云南及周边各省都有分布.春暖花开的时候是放蜂的大好季节.养蜂人甲在某地区放养了100箱小蜜蜂和1箱黑小蜜蜂,养蜂人乙在同一地区放养了1箱小蜜蜂和100箱黑小蜜蜂.某中学生物小组在上述地区捕获了1只黑小蜜蜂.那么,生物小组的同学认为这只黑小蜜蜂是哪位养蜂人放养的比较合理( )A .甲B .乙C.甲和乙D.以上都对二、填空题6.某家具厂为足球比赛场馆生产观众座椅.质检人员对该厂所生产的2 500套座椅进行抽检,共抽检了100套,发现有2套次品,试问该厂所生产的2 500套座椅中大约有________套次品.7.对某厂生产的某种产品进行抽样检查,数据如下表所示:调查件数50100200300500合格件数4792192285478根据表中所提供的数据,若要从该厂生产的此种产品中抽到950件合格品,大约需抽查________件产品.8.下面有三个游戏规则,袋子中分别装有球.游戏1游戏2游戏33个黑球和1个白球1个黑球和1个白球2个黑球和2个白球取1个球,再取1个球取1个球取1个球,再取1个球取出的两个球同色→甲胜取出的球是黑球→甲胜取出的两个球同色→甲胜取出的两个球不同色→乙胜取出的球是白球→乙胜取出的两个球不同色→乙胜若从袋中无放回地取球,问其中不公平的游戏是________.三、解答题9.为了估计某自然保护区中天鹅的数量,可以使用以下方法:先从该保护区中捕出一定数量的天鹅,例如200只,给每只天鹅做上记,不影响其存活,然后放回保护区,经过适当的时间,让其和保护区中其余的天鹅充分混合,再从保护区中捕出一定数量的天鹅,例如150只,查看其中有记号的天鹅,设有20只,试根据上述数据,估计该自然保护区中天鹅的数量.10.社会调查人员希望从对人群的随机抽样调查中得到对他们所提问题诚实的回答,但是被采访者常常不愿意如实做出应答.1965年Stanley·l·Warner发明了一种应用概率知识来消除这种不愿意情绪的方法.Warner的随机化应答方法要求人们随机地回答所提问题中的一个,而不必告诉采访者回答的是哪个问题,两个问题中有一个是敏感的或者是令人为难的,另一个是无关紧要的,这样应答者将乐意如实地回答问题,因为只有他知道自己回答的是哪个问题.假如在调查运动员服用兴奋剂情况的时候,无关紧要的问题是:你的身份证号码的尾数是奇数吗;敏感的问题是:你服用过兴奋剂吗.然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.例如我们把这个方法用于200个被调查的运动员,得到56个“是”的回答,请你估计这群运动员中大约有百分之几的人服用过兴奋剂.11.有一个转盘游戏,转盘被平均分成10等份(如图3-1-1所示),转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:图3-1-1A.猜“是奇数”或“是偶数”.B.猜“是4的整数倍数”或“不是4的整数倍数”.C.猜“是大于4的数”或“不是大于4的数”.请回答下列问题:(1)如果你是乙,为了尽可能获胜,你会选哪种猜数方案,并且怎样猜?为什么?(2)为了保证游戏的公平性,你认为应选哪种猜数方案?为什么?(3)请你设计一种其他的猜数方案,并保证游戏的公平性.参考[答案]1.【[解析]】事件C发生的频率为110,由于只做了一次试验,故不能得出概率接近110的结论.【[答案]】 B2.【[解析]】 把解答一个选择题作为一次试验,答对的概率是14说明了对的可能性大小是14.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题,也可能都选错,或有2,3,4,…甚至12个题都选择正确. 【[答案]】 B3.【[解析]】 1 000次命中的次数为98%×1 000=980. 【[答案]】 B4.【[解析]】 从12件产品中抽到正品的概率为1012=56,抽到次品的概率为212=16,所以抽出的6件产品中可能有5件正品,1件次品. 【[答案]】 B5.【[解析]】 从放蜂人甲放的蜜蜂中,捕获一只小蜜蜂是黑小蜜蜂的概率为1100,而从放蜂人乙放的蜜蜂中,捕获一只小蜜蜂是黑小蜜蜂的概率为99100,所以,现在捕获的这只小蜜蜂是放蜂人乙放养的可能性较大.故选B. 【[答案]】 B6.【[解析]】 设有n 套次品,由概率的统计定义,知n 2 500=2100,解得n =50,所以该厂所生产的2 500套座椅中大约有50套次品. 【[答案]】 507.【[解析]】 由表中数据知:抽查5次,产品合格的频率依次为0.94,0.92,0.96,0.95,0.956,可见频率在0.95附近摆动,故可估计该厂生产的此种产品合格的概率约为0.95.设大约需抽查n 件产品,则950n =0.95,所以n ≈1 000.【[答案]】 1 0008.【[解析]】 游戏1中,取两球的所有可能情况是(黑1,黑2)(黑1,黑3)(黑2,黑3)(黑1,白)(黑2,白)(黑3,白),∴甲胜的概率为12,游戏是公平的.游戏2中,显然甲胜的概率为12,游戏是公平的.游戏3中,取两球的所有可能情况是(黑1,黑2)(黑1,白1)(黑2,白1)(黑1,白2)(黑2,白2)(白1,白2),甲胜的概率为13,游戏是不公平的.【[答案]】 游戏39.解 设保护区中天鹅的数量为n ,假设每只天鹅被捕到的可能性是相等的,从保护区中任捕一只.设事件A ={带有记号的天鹅},则P (A )=200n,第二次从保护区中捕出150只天鹅,其中有20只带有记号, 由概率的统计定义可知P (A )=20150,∴200n =20150, 解得n =1 500,∴该自然保护区中约有天鹅1 500只.10.解 因为掷硬币出现正面的概率是0.5,大约有100人回答了第一个问题,因为身份证号码尾数是奇数或偶数的可能性是相同的,因而在回答第一个问题的100人中大约有一半人,即50人,回答了“是”,其余6个回答“是”的人服用过兴奋剂,由此我们估计这群人中大约有6%的人服用过兴奋剂.11.解 (1)可以选择B ,猜“不是4的整数倍数”.或选择C ,猜“是大于4的数”.“不是4的整数倍数”的概率为810=0.8,“是大于4的数”的概率为610=0.6,它们都超过了0.5,故乙获胜希望较大.(2)为了保证游戏的公平性,应当选择方案A.因为方案A 猜“是奇数”或“是偶数”的概率均为0.5,从而保证了该游戏是公平的.(3)可以设计为猜“是大于5的数”或“小于6的数”,也可以保证游戏的公平性.。

3.概率的意义-高中数学人教A版必修3精品课件

3.概率的意义-高中数学人教A版必修3精品课件

3.1.2概率的意义-高中数学人教A版必 修3第 三章课 件
3.决策中的概率思想
如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚 骰子的质地均匀吗?为什么?
若骰子质地均匀,连续10次都出现1点的概率为
1 6
10
0.000000016538
它几乎不可能发生,称之为小概率事件
3.1.2概率的意义-高中数学人教A版必 修3第 三章课 件
[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)
上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为
二等品的概率为( )
A.0.09 B.0.20
C.0.25
D.0.45
解析:设二等品的频率为a,
根据频率分布直方图得: a+5×0.02+5×0.06+5×0.03=1 a=0.45
这是指( ) A.明天该地区有85%的地区降水,其他15%的地区不降水 B.明天该地区约有85%的时间降水,其他时间不降水 C.气象台的专家中,有85%的人认为会降水,另外15%的专家认为不降水 D.明天该地区降水的可能性为85%
2.成语“千载难逢”的意思是说某事( )
A.一千年中只能发生一次 B.一千年中一次也不能发生 C.发生的概率很小 D.为不可能事件,根本不会发生
3.1.2概率的意义-高中数学人教A版必 修3第 三章课 件
事实上, “两次正面朝上”的概率为0.25, “两次反面朝上”的概率为0.25, “一次正面朝上,一次反面朝上”的概率为0.5.
随机事件在一次试验中发生与否是随机的,但随机中含有 规律性.
认识了这种随机性中的规律性,就能为我们比较准确地预测 随机事件发生的可能性.

【人教A版】必修3《3.1.2概率的意义》课时提升作业含解析

【人教A版】必修3《3.1.2概率的意义》课时提升作业含解析

课时提升作业(十六)概率的意义(15分钟30分)一、选择题(每小题4分,共12分)1.某工厂生产的产品合格率是99.99%,这说明( )A.该厂生产的10 000件产品中不合格的产品一定有1件B.该厂生产的10 000件产品中合格的产品一定有9 999件C.合格率是99.99%,很高,说明该厂生产的10 000件产品中没有不合格产品D.该厂生产的产品合格的可能性是99.99%【解析】选D.合格率是99.99%,是指该工厂生产的每件产品合格的可能性大小,即合格的概率.【误区警示】本题易错选为A或B,其原因是错误理解概率的意义,概率只是说明事件发生的可能性大小,其发生具有随机性.2.(2015·厦门高一检测)在天气预报中,有“降水概率预报”,例如,预报“明天降水概率为78%”,这是指( )A.明天该地区有78%的地区降水,其他22%的地区不降水B.明天该地区降水的可能性大小为78%C.气象台的专家中,有78%的人认为会降水,另外22%的专家认为不降水D.明天该地区约有78%的时间降水,其他时间不降水【解析】选B.本题主要考查概率的意义.“明天降水概率为78%”是指明天该地区降水的可能性大小为78%.3.(2015·台州高一检测)每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是,我每题都选择第一个选项,则一定有3道题选择结果正确”这句话( )A.正确B.错误C.不一定D.无法解释【解析】选 B.解答一个选择题作为一次试验,每次选择的正确与否都是随机的.经过大量的试验,其结果呈随机性,即选择正确的概率是.做12道选择题,即进行了12次试验,每个结果都是随机的,不能保证每题的选择结果都正确,但有3题选择结果正确的可能性比较大.同时也有可能都选错,亦或有2题,4题,甚至12道题都选择正确.【误区警示】解答本题时易出现凭感觉想当然认为选A的错误.二、填空题(每小题4分,共8分)4.利用简单抽样法抽查某校150名男学生,其中身高为1.65米的有32人,若在此校随机抽查一名男学生,则他身高为1.65米的概率大约为(保留两位小数).【解析】所求概率为≈0.21.答案:0.215.某射击教练评价一名运动员时说:“你射中的概率是90%.”你认为下面两个解释中能代表教练的观点的为.①该射击运动员射击了100次,恰有90次击中目标②该射击运动员射击一次,中靶的机会是90%【解析】射中的概率是90%说明中靶的可能性大小,即中靶机会是90%,所以①不正确,②正确.答案:②三、解答题6.(10分)(2015·邵阳高一检测)为了估计某自然保护区中天鹅的数量,可以使用以下方法:先从该保护区中捕出一定数量的天鹅,例如200只,给每只天鹅做上记号,不影响其存活,然后放回保护区,经过适当的时间,让其和保护区中其余的天鹅充分混合,再从保护区中捕出一定数量的天鹅,例如150只,查看其中有记号的天鹅,设有20只,试根据上述数据,估计该自然保护区中天鹅的数量.【解析】设保护区中天鹅的数量约为n,假定每只天鹅被捕到的可能性是相等的,从保护区中任捕一只,设事件A={带有记号的天鹅},则P(A)=,①第二次从保护区中捕出150只天鹅,其中有20只带有记号,由概率的统计定义可知P(A)=,②由①②两式,得=,解得n=1 500,所以该自然保护区中天鹅的数量约为1 500只.(15分钟30分)一、选择题(每小题5分,共10分)1.(2015·广州高一检测)某医院治疗一种疾病的治愈率为,前4个病人都未治愈,则第5个病人的治愈率为( )A.1B.C.0D.【解析】选D.因为第5个病人治愈与否,与其他四人无任何关系,故治愈率仍为.2.(2015·佛山高一检测)先后抛掷两枚均匀的五角、一元的硬币,观察落地后硬币的正反面情况,则下列哪个事件的概率最大( )A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上【解题指南】将两枚硬币落地可能出现的情况一一列举出来再求解. 【解析】选 A.抛掷两枚硬币,其结果有“正正”,“正反”,“反正”,“反反”四种情况.至少有一枚硬币正面向上包括三种情况,其概率最大.二、填空题(每小题5分,共10分)3.小明和小颖按如下规则做游戏:桌面上放有5支铅笔,每次取1支或2支,最后取完铅笔的人获胜,你认为这个游戏规则.(填“公平”或“不公平”)【解析】当第一个人第一次取2支时,还剩余3支,无论第二个人取1支还是2支,第一个人在第二次取铅笔时,都可取完,即第一个人一定能获胜.所以不公平.答案:不公平4.(2015·赣州高一检测)张明与张华两人做游戏,下列游戏中不公平的是.①抛掷一枚骰子,向上的点数为奇数则张明获胜,向上的点数为偶数则张华获胜②同时抛掷两枚硬币,恰有一枚正面向上则张明获胜,两枚都正面向上则张华获胜③从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则张明获胜,扑克牌是黑色的则张华获胜④张明、张华两人各写一个数字6或8,如果两人写的数字相同张明获胜,否则张华获胜【解题指南】分别计算各选项中张明、张华获胜的概率,若二人获胜的概率相等,则公平,否则不公平.【解析】在②中,张明获胜的概率是,而张华获胜的概率是,故不公平,而①③④中张明、张华获胜的概率都为,公平.答案:②【拓展延伸】游戏的公平性的判定利用概率的意义可以判定规则的公平性,在各类游戏中,如果每个人获胜的概率相等,那么游戏就是公平的.三、解答题5.(10分)设人的某一特征(眼睛的大小)是由他的一对基因所决定,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人为纯隐性,具有rd基因的人为混合性,纯显性与混合性的人都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,问:(1)1个孩子由显性决定特征的概率是多少?(2)“该父母生的2个孩子中至少有1个由显性决定特征”,这种说法正确吗?【解析】父、母的基因分别为rd,rd,则这孩子从父母身上各得一个基因的所有可能性为rr,rd,rd,dd,共为4种,故具有dd基因的可能性为,具有rr基因的可能性也为,具有rd基因的可能性为.(1)1个孩子由显性决定特征的概率是.(2)这种说法不正确,2个孩子中每个由显性决定特征的概率均相等,为.【补偿训练】某中学从参加高一年级上学期期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)估计这次考试的及格率(60分及以上为及格).(2)从成绩是70分以上(包括70分)的学生中选一人,求选到第一名学生的概率(第一名学生只一人).【解析】(1)依题意,60分及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.03+0.025+0.005)×10=0.75,所以,这次考试的及格率是75%.(2)成绩在[70,100]的人数是18,15,3.所以从成绩是70分以上(包括70分)的学生中选一人,选到第一名学生的概率P=.。

人教A版高中数学必修3:概率的意义_课件1

人教A版高中数学必修3:概率的意义_课件1

思考6:奥地利遗传学家孟德尔从1856年开始 用豌豆作试验,他把黄色和绿色的豌豆杂交, 第一年收获的豌豆都是黄色的.第二年,他把 第一年收获的黄色豌豆再种下,收获的豌豆既 有黄色的又有绿色的.同样他把圆形和皱皮豌 豆杂交,第一年收获的豌豆都是圆形的.第二 年,他把第一年收获的圆形豌豆再种下,收获 的豌豆却既有圆形豌豆,又有皱皮豌豆.类似 地,他把长茎的豌豆与短茎的豌豆杂交,第一 年长出来的都是长茎的豌豆. 第二年,他把这 种杂交长茎豌豆再种下,得到的却既有长茎豌 豆,又有短茎豌豆.试验的具体数据如下:
例2 在足球点球大战中,球的运行只有 两种状态,即进球或被扑出.球员射门有6个 方向:中下,中上,左下,左上,右下,右 上,门将扑球有5种选择:不动.左下,右下, 左上,右上.如果 ①不动可扑出中下和中上两个方向的点球; ②左下可扑出左下和中下两个方向的点球; ③右下可扑出右下和中下两个方向的点球; ④左上可扑出左上方向的点球; ⑤右上可扑出右上方向的点球. 那么球员应选择哪个方向射门,才能使进球 的概率最大?
思考3:如果连续10次掷一枚骰子,结果
都是出现1点,你认为这枚骰子的质地是
均匀的,还是不均匀的?如何解释这种
现象?
这枚骰子的质地不均匀,标有6点的那面
比较重,会使出现1点的概率最大,更有
可能连续10次都出现1点. 如果这枚骰子
的质地均匀,那么抛掷一次出现1点的概
率为,连续10次都出现1点的概率
为 .这是一个小概率事
22 4
22 4
P( AB) 1 1 1 1 44 2
黄色豌豆(AA,AB)︰绿色豌豆(BB)
≈3︰1
知识迁移
例1 为了估计水库中的鱼的尾数,先 从水库中捕出2 000尾鱼,给每尾鱼作上 记号(不影响其存活),然后放回水 库.经过适当的时间,让其和水库中其 余的鱼充分混合,再从水库中捕出500尾 鱼,其中有记号的鱼有40尾,试根据上 述数据,估计这个水库里鱼的尾数.

高中数学人教A版必修3课时作业:153.1.2 概率的意义含解析

高中数学人教A版必修3课时作业:153.1.2 概率的意义含解析
(2)选出1人是男生的概率是 ;
(3)选出1人是女生的概率是 ;
(4)在女生中选出1人是班长的概率是0.
A.(1)(2) B.(1)(3)
C.(3)(4) D.(1)(4)
解析:本班共有40人,1人为班长,故(1)对;而“选出1人是男生”的概率为 = ;“选出1人为女生”的概率பைடு நூலகம் = ,因班长是男生,所以“在女生中选班长”为不可能事件,概率为0.
答案:不公平
13.某种病治愈的概率是0.3,那么前7个人没有治愈,后3个人一定能治愈吗?如何理解治愈的概率是0.3?
解析:如果把治疗一个病人作为一次试验,“治愈的概率是0.3”指随着试验次数的增加,即治疗人数的增加,大约有30%的人能够治愈,对于一次试验来说,其结果是随机的,因此前7个病人没有治愈是可能的,对后3个人来说,其结果仍然是随机的,有可能治愈,也可能没有治愈.
答案:D
4.若在同等条件下进行n次重复试验得到某个事件A发生的频率f(n),则随着n的逐渐增加,有()
A.f(n)与某个常数相等
B.f(n)与某个常数的差逐渐减小
C.f(n)与某个常数差的绝对值逐渐减小
D.f(n)在某个常数附近摆动并趋于稳定
解析:随着n的增大,频率f(n)会在概率附近摆动并趋于稳定,这也是频率与概率的关系.
课时作业
|
一、选择题(每小题5分,共25分)
1.概率是指()
A.事件发生的可能性大小
B.事件发生的频率
C.事件发生的次数
D.无任何意义
解析:概率是指事件发生的可能性大小.
答案:A
2.某班有男生25人,其中1人为班长,女生15人,现从该班选出1人,作为该班的代表参加座谈会,下列说法中正确的是()

高中数学必修三课时作业12:3.1.2 概率的意义

高中数学必修三课时作业12:3.1.2 概率的意义

3.1.2 概率的意义1.每道选择题有4个选项,其中只有1个选项是正确的,某次考试共12道选择题,某同学说:“每个选项正确的概率是14,若每题都选择第一个选项,则一定有3道题的选择结果正确”.这句话()A.正确B.错误C.有一定道理D.无法解释[解析]从四个选项中正确选择选项是一个随机事件,14是指这个事件发生的概率,实际上,做12道选择题相当于做12次试验,每次试验的结果是随机的,因此每题都选择第一个选项可能没有一个正确,也可能有1个,2个,3个,…,12个正确.因此该同学的说法是错误的.[答案] B2.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车,乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应先调查哪个公司的车辆较合理()A.甲公司B.乙公司C.甲与乙公司D.以上都对[解析]由于甲公司桑塔纳的比例为100100+3 000=131,乙公司桑塔纳的比例为3 0003 000+100=3031,根据极大似然法可知应选B.[答案] B3.投掷一枚普通的正方体骰子,四位同学各自发表了以下见解:①出现“点数为奇数”的概率等于出现“点数为偶数”的概率;②只要连掷6次,一定会“出现1点”;③投掷前默念几次“出现6点”:投掷结果“出现6点”的可能性就会加大;④连续投掷3次,出现的点数之和不可能等于19.其中正确的见解有()A.1个B.2个C.3个D.4个[解析]①掷一枚骰子,出现奇数点和出现偶数点的概率都是12,故①正确;②“出现1点”是随机事件,故②错误;③概率是客观存在的,不因为人的意念而改变,故③错误;④连续掷3次,每次都出现最大点数6,则三次之和为18,故④正确.故选B.[答案] B4.根据天气预报,明天降水概率为20%,后天降水概率为80%,假如你准备明天或后天去放风筝,你选________天为佳.[解析]明天降水的可能性较小,而后天降水的可能性较大,故选明天.[答案]明天5.小明和小展按如下规则做游戏:桌面上放有5支铅笔,每次取1支或2支,最后取完铅笔的人获胜,你认为这个游戏规则________(填“公平”或“不公平”). [解析]当第一个人第一次取2支时,还剩余3支,无论是第二个人取1支还是取2支,第一个人在第二次取铅笔时,都可取完,即第一个人一定能获胜,所以不公平.[答案]不公平6.经统计,某篮球运动员的投篮命中率为90%,对此有人解释为其投篮100次一定有90次命中,10次不中,你认为这种解释正确吗?说说你的理由.解这种解释不正确,理由如下:因为“投篮命中”是一个随机事件,90%是指“投篮命中”这个事件发生的概率.我们知道,概率为90%的事件也可能不发生,所以这种解释不正确.7.如图所示,有两个可以自由转动的均匀转盘A ,B ,转盘A 被平均分成3等份,分别标上1,2,3三个数字;转盘B 被平均分成4等份,分别标上3,4,5,6四个数字.现为甲、乙两人设计游戏规则:自由转动转盘A 和B ,转盘停止后,指针分别指向一个数字,将指针所指的两个数字相加,如果和是6,那么甲获胜,否则乙获胜,你认为这个规则公平吗?解 不公平,列表如下:由表可知,可能的结果有12种,和为6的结果只有3种,因此甲获胜的概率为312=14,乙获胜的概率为912=34,甲、乙获胜的概率不相等,所以这种游戏规则不公平.能力提升8.先后抛掷两枚均匀的五角、一元的硬币,观察落地后硬币的正反面情况,则下列哪个事件的概率最大( )A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上[解析]先后掷两枚均匀的五角、一元硬币,其结果有(正,正),(正,反),(反,正),(反,反)4种情况,至少有一枚硬币正面向上包括三种情况,故其概率大.[答案] A9.在下列各事件中,发生的可能性最大的为()A.任意买1张电影票,座位号是奇数B.掷1枚骰子,点数小于等于2C.有10 000张彩票,其中100张是获奖彩票,从中随机买1张是获奖彩票D.一袋中装有8个红球,2个白球,从中随机摸出1个球是红球[解析]概率分别是P A=12,P B=13,P C=1100,P D=45,故选D.[答案] D10.一个袋中装有数量差别较大的白球和黑球,从中任取一球,取出的是白球,估计袋中数量少的球是________.[解析]根据极大似然法,知袋中数量较多的是白球,因此黑球数量较少.[答案]黑球11.在调查运动员是否服用过兴奋剂的时候,给出两个问题作答,无关紧要的问题是:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你服用过兴奋剂吗?”然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.由于回答哪一个问题只有被测试者自己知道,所以应答者一般乐意如实地回答问题.如我们把这种方法用于300个被调查的运动员,得到80个“是”的回答,则这群人中服用过兴奋剂的百分率大约为________.[解析]因为掷硬币出现正面向上的概率为12,大约有150人回答第一个问题,又身份证号码的尾数是奇数或偶数是等可能的,在回答第一个问题的150人中大约有一半人,即75人回答了“是”,另外5个回答“是”的人服用兴奋剂.因此我们估计这群人中大约有3.33%的人服用过兴奋剂.[答案] 3.33%12.在一个试验中,一种血清被注射到500只豚鼠体内.最初,这些豚鼠中有150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞.被注射这种血清之后,具有圆形细胞的豚鼠没有被感染,50只具有椭圆形细胞的豚鼠被感染,具有不规则形状细胞的豚鼠全部被感染.根据实验结果估计,分别具有圆形细胞、椭圆形细胞、不规则形状细胞的豚鼠被这种血清感染的概率.解(1)记“具有圆形细胞的豚鼠被感染”为事件A,则由题意可知,A为不可能事件,所以P(A)=0.(2)记“具有椭圆形细胞的豚鼠被感染”为事件B,则由题意,得P(B)=50250=15=0.2.(3)记“具有不规则形状细胞的豚鼠被感染”为事件C,则由题意可知,C为必然事件,P(C)=1.13.(选做题)元旦就要到了,某校将举行联欢活动,每班派一人主持节目,高二(1)班的小明、小华和小丽实力相当,都争着要去,班主任决定用抽签的方法来决定.小强给小华出主意要小华先抽,说先抽的机会大,你是怎么认为的?说说看.解我们取三张卡片,上面标有1,2,3,抽到1就表示中签,假设抽签的次序为甲、乙、丙,则可以把所有的情况填入下表:从上表可以看出:甲、乙、丙依次抽签,一共有六种情况,第一、二种情况,甲中签;第三、五种情况,乙中签;第四、六种情况,丙中签.由此可知,甲、乙、丙中签的可能性都是相同的,即甲、乙、丙中签的机会是一样的,先抽后抽,机会是均等的.。

高中数学(人教版A版必修三)配套课时作业:第三章 概率 3.2.2 Word版含答案

高中数学(人教版A版必修三)配套课时作业:第三章 概率 3.2.2 Word版含答案

3.2.2 (整数值)随机数(random numbers)的产生课时目标 1.了解随机数的意义.2.会用模拟方法(包括计算器产生随机数进行模拟)估计概率.3.理解用模拟方法估计概率的实质.1.随机数要产生1~n(n ∈N *)之间的随机整数,把n 个____________相同的小球分别标上1,2,3,…,n ,放入一个袋中,把它们__________,然后从中摸出一个,这个球上的数就称为随机数. 2.伪随机数计算机或计算器产生的随机数是依照__________产生的数,具有________(________很长),它们具有类似________的性质.因此,计算机或计算器产生的并不是______,我们称它们为伪随机数.3.利用计算器产生随机数的操作方法:用计算器的随机函数RANDI(a ,b )或计算机的随机函数RANDBETWEEN(a ,b )可以产生从整数a 到整数b 的取整数值的随机数. 4.利用计算机产生随机数的操作程序每个具有统计功能的软件都有随机函数,以Excel 软件为例,打开Excel 软件,执行下面的步骤:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter 键,则在此格中的数是随机产生的0或1.(2)选定A1格,按Ctrl +C 快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl +V 快捷键,则在A2至A100的数均为随机产生的0或1,这样相当于做了100次随机试验.(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter 键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数.(4)选定D1格,键入“=1-C1/100”按Enter 键,在此格中的数是这100次试验中出现1的频率.一、选择题1.从含有3个元素的集合的所有子集中任取一个,所取的子集是含有2个元素的集合的概率是( ) A.310 B.112 C.4564 D.38 2.用计算机随机模拟掷骰子的试验,估计出现2点的概率,下列步骤中不正确的是( ) A .用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间的取整数值的随机数x ,如果x =2,我们认为出现2点 B .我们通常用计算器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C .出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D .程序结束,出现2点的频率mn作为概率的近似值3.假定某运动员每次投掷飞镖正中靶心的概率为40%,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数: 93 28 12 45 85 69 68 34 31 2573 93 02 75 56 48 87 30 11 35据此估计,该运动员两次掷镖恰有一次正中靶心的概率为( ) A .0.50 B .0.45 C .0.40 D .0.354.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( ) A.45 B.35 C.25 D.155.从1,2,3,…,30这30个数中任意选一个数,则事件“是偶数或能被5整除的数”的概率是( ) A.710 B.35 C.45 D.1106.任取一个三位正整数N ,对数log 2N 是一个正整数的概率为( ) A.1225 B.3899 C.1300 D.14507.对一部四卷文集,按任意顺序排放在书架的同一层上,则各卷自左到右或由右到左卷号恰为1,2,3,4顺序的概率等于________.8.盒子里共有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,则它们颜色不同的概率是________.9.通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 7884 2604 3346 0952 6807 9706 5774 5725 6576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射击中恰有三次击中目标的概率约为________. 三、解答题10.掷三枚骰子,利用Excel 软件进行随机模拟,试验20次,计算出现点数之和是9的概率.11.某篮球爱好者做投篮练习,假设其每次投篮命中的概率是60%,那么在连续三次投篮中,三次都投中的概率是多少?能力提升12.从4名同学中选出3人参加物理竞赛,其中甲被选中的概率为( ) A.14 B.12 C.34D .以上都不对 13.甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,试用随机模拟的方法求乙获胜的概率.1.(1)常用的随机数的产生方法主要有抽签法,利用计算器或计算机.(2)利用摸球或抽签得到的数是真正意义上的随机数,用计算器或计算机得到的是伪随机数.2.用整数随机模拟试验时,首先要确定随机数的范围,利用哪个数字代表哪个试验结果: (1)试验的基本结果等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及范围.答案:3.2.2 (整数值)随机数(random numbers )的产生知识梳理1.大小、形状 充分搅拌 2.确定算法 周期性 周期 随机数 真正的随机数 作业设计1.D [所有子集共8个,∅,{a},{b},{c},{a ,b},{a ,c},{b ,c},{a ,b ,c},含两个元素的子集共3个,故所求概率为38.]2.A [计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生的是1到7之间的整数,包括7,共7个整数.]3.A [两次掷镖恰有一次正中靶心表示随机数中有且只有一个数为1,2,3,4中的之一.它们分别是93,28,45,25,73,93,02,48,30,35共10个,因此所求的概率为1020=0.5.]4.D [由题意知基本事件为从两个集合中各取一个数,因此基本事件总数为5×3=15. 满足b>a 的基本事件有(1,2),(1,3),(2,3)共3个,∴所求概率P =315=15.]5.B6.C [N 取[100,999]中任意一个共900种可能,当N =27,28,29时,log 2N 为正整数,∴P=1300.] 7.112解析 用树形图可以列举基本事件的总数. ①②③④ ②①③④ ③①②④ ④①②③ ①②④③ ②①④③ ③①④② ④①③② ①③②④ ②③①④ ③②①④ ④②③① ①③④② ②③④① ③②④① ④②①③ ①④②③ ②④①③ ③④①② ④③①② ①④③② ②④③① ③④②① ④③②①总共有24种基本事件,故其概率为P =224=112.8.12解析 给3只白球分别编号为a ,b ,c,1只黑球编号为d ,基本事件为ab ,ac ,ad ,bc ,bd ,cd 共6个,颜色不同包括事件ad ,bd ,cd 共3个,因此所求概率为36=12.9.14解析 由题意四次射击中恰有三次击中对应的随机数有3个数字在1,2,3,4,5,6中,这样的随机数有3013,2604,5725,6576,6754共5个,所求的概率约为520=14.10.解 操作步骤:(1)打开Excel 软件,在表格中选择一格比如A 1,在菜单下的“=”后键入“=RANDBETWEEN(1,6)”,按Enter 键,则在此格中的数是随机产生的1~6中的数. (2)选定A 1这个格,按Ctrl +C 快捷键,然后选定要随机产生1~6的格,如A 1∶T 3,按Ctrl +V 快捷键,则在A 1∶T 3的数均为随机产生的1~6的数. (3)对产生随机数的各列求和,填入A 4∶T 4中. (4)统计和为9的个数S ;最后,计算概率S /20.11.解我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以产生0到9之间的取整数值的随机数.我们用1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%.因为是投篮三次,所以每三个随机数作为一组.例如,产生20组随机数:812932569683271989730537925 834907113966191432256393027556755这就相当于做了20次试验,在这组数中,如果3个数均在1,2,3,4,5,6中,则表示三次都投中,它们分别是113,432,256,556,即共有4个数,我们得到了三次投篮都投中的概率近似为4=20%.2012.C[4名同学选3名的事件数等价于4名同学淘汰1名的事件数,即4种情况,甲被选中的情况共3种,∴P=34.]13.解利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数(可借助教材103页的随机数表).034743738636964736614698637162 332 616 804 560 111 410 959 774246 762 428 114 572 042 533 237 322707 360 751就相当于做了30次试验.如果恰有2个或3个数在6,7,8,9中,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为1130≈0.367.。

2016-2017学年高中数学 第三章 概率 3.1.2 概率的意义课时作业 新人教版必修3

2016-2017学年高中数学 第三章 概率 3.1.2 概率的意义课时作业 新人教版必修3

3.1.2 概率的意义 课时目标 1.通过实例,进一步理解概率的意义.2.会用概率的意义解释生活中的实例.3.了解“极大似然法”和遗传机理中的统计规律.1.对概率的正确理解随机事件在一次试验中发生与否是随机的,但随机性中含有________,认识了这种随机性中的________,就能比较准确地预测随机事件发生的________.2.游戏的公平性(1)裁判员用抽签器决定谁先发球,不管哪一名运动员先猜,猜中并取得发球的概率均为______,所以这个规则是______的.(2)在设计某种游戏规则时,一定要考虑这种规则对每个人都是______的这一重要原则.3.决策中的概率思想如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“_____________”可以作为决策的准则,这种判断问题的方法称为极大似然法,极大似然法是统计中重要的统计思想方法之一.4.天气预报的概率解释天气预报的“降水”是一个________,“降水概率为90%”指明了“降水”这个随机事件发生的______为90%,在一次试验中,概率为90%的事件也________,因此,“昨天没有下雨”并不能说明“昨天的降水概率为90%”的天气预报是______的.5.孟德尔与遗传机理中的统计规律孟德尔在自己长达七、八年的试验中,观察到了遗传规律,这种规律是一种统计规律.一、选择题1.某气象局预报说,明天本地降雪的概率为90%,下列解释正确的是( ) A .明天本地有90%的区域下雪,10%的区域不下雪.B .明天本地下雪的可能性是90%.C .明天本地全天有90%的时间下雪,10%的时间不下雪.D .明天本地一定下雪.2.已知某厂的产品合格率为90%,现抽出10件产品检查,则下列说法正确的是( ) A .合格产品少于9件B .合格产品多于9件C .合格产品正好是9件D .合格产品可能是9件3.每道选择题有4个选择项,其中只有1个选择项是正确的,某次考试共有12道选择题,某人说:“每个选择项正确的概率是14,我每题都选择第一个选择项,则一定有3道题选择结果正确”,这句话( )A .正确B .错误C .不一定D .无法解释4.同时向上抛掷100个质量均匀的铜板,落地时这100个铜板全都正面向上,则这100个铜板更可能是下面哪种情况( )A .这100个铜板两面是一样的B .这100个铜板两面是不一样的C .这100个铜板中有50个两面是一样的,另外50个两面是不一样的D .这100个铜板中有20个两面是一样的,另外80个两面是不一样的5.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车,乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应先调查哪个公司的车辆较合理( ) A .甲公司 B .乙公司C .甲与乙公司D .以上都对6.从12个同类产品(其中10个正品,2个次品),任意抽取6件产品,下列说法中正确的是( )A .抽出的6件产品中必有5件正品,一件次品B .抽出的6件产品中可能有5件正品,一件次品C .抽取6件产品时逐个不放回抽取,前5件是正品,第6件必是次品7.盒中装有4只白球5只黑球,从中任意取出1只球.(1)“取出的球是黄球”是________事件,它的概率是________;(2)“取出的球是白球”是________事件,它的概率是________;(3)“取出的球是白球或黑球”是________事件,它的概率是________.8.管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条.根据以上数据可以估计该池塘约有________条鱼. 9.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498497 501 502 504 496497 503 506 508 507492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g ~501.5 g 之间的概率约为________.三、解答题10.解释下列概率的含义:(1)某厂生产产品合格的概率为0.9;(2)一次抽奖活动中,中奖的概率为0.2.11.在一个试验中,一种血清被注射到500只豚鼠体内,最初,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞,被注射这种血清之后,没有一个具有圆形细胞的豚鼠被感染,50个具有椭圆形细胞的豚鼠被感染,具有不规则形状细胞的豚鼠全部被感染.根据试验结果,估计具有(1)圆形细胞;(2)椭圆形细胞;(3)不规则形状细胞的豚鼠分别被这种血清感染的概率.能力提升12.掷一枚骰子得到6点的概率是16,是否意味着把它掷6次一定能得到一次6点?13.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵化8513尾鱼苗,根据概率的统计定义解答下列问题:(1)这种鱼卵的孵化概率(孵化率)是多少?(2)30 000个鱼卵大约能孵化多少尾鱼苗?(3)要孵化5 000尾鱼苗,大概需备多少个鱼卵?(精确到百位)答案:3.1.2 概率的意义知识梳理1.规律性规律性可能性 2.(1)0.5 公平(2)公平 3.使得样本出现的可能性最大 4.随机事件概率可能不出现错误作业设计1.B [概率的本质是从数量上反映一个事件发生的可能性的大小.]2.D3.B [解答一个选择题作为一次试验,每次试验选择的正确与否都是随机的,经过大量的试验其结果呈随机性,即选择正确的概率是14.做12道选择题,即进行12次试验,每个结果都是随机的,不能保证每题的结果选择正确,但有3道题选择结果正确的可能性比较大.同时也有可能都选错,或有2道题,4道题,甚至12道题都选择正确.故这句话是错误的.]4.A [一枚质量均匀的铜板,抛掷一次正面向上的概率为0.5,从题意中知抛掷100枚结果正面都向上,因此这100个铜板两面是一样的可能性最大.]5.B [由于甲公司桑塔纳的比例为100100+3 000=131, 乙公司桑塔纳的比例为 3 0003 000+100=3031,根据极大似然法可知应选B .] 6.B7.(1)不可能 0 (2)随机 49(3)必然 1 8.750解析 设池塘约有n 条鱼,则含有标记的鱼的概率为30n ,由题意得:30n×50=2,∴n =750.9.0.25解析 袋装食盐质量在497.5 g ~501.5 g 之间的共有5袋,所以其概率约为520=0.25. 10.解 (1)说明该厂产品合格的可能性为90%.也就是说每100件该厂的产品中大约有90件是合格品.(2)说明参加抽奖的人中有20%的人可能中奖,也就是说,若有100个人参加抽奖,约有20人中奖.11.解 (1)记“圆形细胞的豚鼠被感染”为事件A ,由题意知,A 为不可能事件,∴P(A)=0.(2)记“椭圆形细胞的豚鼠被感染”为事件B ,由题意知P(B)=50250=15=0.2. (3)记“不规则形状细胞的豚鼠被感染”为事件C ,由题意知事件C 为必然事件,所以P(C)=1.12.解 抛掷一枚骰子得到6点的概率是16,多次抛掷骰子,出现6点的情况大约占16,并不意味着掷6次一定得到一次6点,实际上,掷6次作为抛掷骰子的6次试验,每一次结果都是随机的.13.解 (1)这种鱼卵的孵化概率P =8 51310 000=0.851 3. (2)30 000个鱼卵大约能孵化30 000×8 51310 000=25 539(尾)鱼苗. (3)设大概需备x 个鱼卵,由题意知5 000x =8 51310 000. ∴x=5 000×10 0008 513=5 900(个).∴大概需备5 900个鱼卵.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

|能力提升|(20分钟,40分)
11.任取一个由50名同学组成的班级(称为一个标准班),至少有两位同学的生日在同一天(记为事件A)的概率是0.97.据此我们知道()
A.取定一个标准班,A发生的可能性是97%
B.取定一个标准班,A发生的概率大概是0.97
C.任意取定10 000个标准班,其中大约9 700个班A发生
D.随着抽取的标准班数n不断增大,A发生的频率逐渐稳定在0.97,且在它附近摆动
解析:对于给定的一个标准班来说,A发生的可能性不是0就是1,故A与B均不对;对于任意取定10 000个标准班,在极端情况下,事件A有可能都不发生,故C也不对;请注意:本题中A,B,C选项中错误的关键原因是“取定”这两个字,表示“明确了结果,结果是确定的”.
答案:D
12.玲玲和倩倩下象棋,为了确定谁先走第一步,玲玲对倩倩说:“拿一个飞镖射向如图所示的靶中,若射中区域所标的数字大于3,则我先走第一步,否则你先走第一步.”你认为这个游戏规则公平吗?
答:________.
解析:如题图所示,所标的数字大于3的区域有5个,而小于或
,倩倩先走的概等于3的区域则只有3个,所以玲玲先走的概率是5
8
率3
8.所以不公平.
答案:不公平
13.某种病治愈的概率是0.3,那么前7个人没有治愈,后3个人一定能治愈吗?如何理解治愈的概率是0.3?
解析:如果把治疗一个病人作为一次试验,“治愈的概率是0.3”指随着试验次数的增加,即治疗人数的增加,大约有30%的人能够治。

相关文档
最新文档