第三章第三节金属晶体课件第1-2课时

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) FexO中x值(精确到0.01)为

(2)晶体中的Fen+分别为Fe2+ 、Fe3+ ,在Fe2+和Fe3+总数中,
Fe2+所占分数(用小数表示,精确至0.001)为

(3)此晶体的化学式为?
(4)与某个Fe2+(或Fe3+)距离最近且等距离的O2-围成的空
间几何形状是

(5)在晶体中,铁元素的离子间的最短距离为
每个晶胞含原子数: 2
空间利用率计算
例1:计算体心立方晶胞中金属原子的空间利用率。
解:体心立方晶胞:中心有1个原子, 8个顶点各1个原子,每个 原子被8个 晶胞共享。每个晶胞含有几个原子:1 + 8 × 1/8 = 2
空间利用率计算
设原子半径为r 、晶胞边长为a ,根据勾股定理, 得:2a 2 + a 2 = (4r) 2
12
6
3
54
12
6
3
54

AB
关键是第三层。对第一、二层来说,第三层可以有两种最紧 密的堆积方式。
第一种是将第三层的球对准第一 下图是此种六方
层的球。
紧密堆积的前视图
12
A
6
3
54
B
A
于是每两层形成一个周期,
B
即 AB AB 堆积方式,形成六
A
方紧密堆积。
配位数 12 。 ( 同层 6 ,上下层各 3 。 )
【思考5】试判断钠、镁、铝三种金属熔沸点和硬度 的 大小。
同周期元素,从左到右,价电子数依次增大, 原子(离子)半径依次减弱,则单质中所形成 金属键依次增强,故钠、镁、铝三种金属熔沸
点和硬度的大小顺序是:钠<镁<铝。
资料 金属之最
熔点最低的金属是-------- 汞 [-38.87℃]
熔点最高的金属是-------- 钨 [3410℃]
差别较大
差别较大
无(硅为半导体) 无
导体
实例
金刚石、二氧化硅、 晶体硅、碳化硅
Ar、S等
Au、Fe、Cu、钢 铁等
二、金属晶体的原子堆积模型
金属原子在二维空间(平面)上有二种排列方式
配位数=4
配位数=6
(a)非密置层 (b)密置层
思考与交流 金属晶体可以看成金属原子在三维
空间中堆积而成.那么,非密置层在三维空间里堆积有 几种方式?请比较不同方式堆积时金属晶体的配位 数、原子的空间利用率、晶胞的区别。
知识回顾:三种晶体类型与性质的比较
晶体类型
概念
作用力
构成微粒 熔沸点
物 理 硬度 性 质 导电性
原子晶体
相邻原子之间以共价 键相结合而成具有空
间网状结构的晶体
分子晶体
金属晶体
分子间以范德 华力相结合而
成的晶体
通过金属键形成的 晶体
共价键
范德华力
金属键
原子
很高 很大
分子 很低 很小
金属阳离子 和自由电子
化学:第三章第三节 《金属晶体》课件PPT
(新人教版选修3)
高中《化学》新人教版 选修3
物质结构与性质
3.3《金属晶体》
教学目标
知识与能力 1、了解金属的性质和形成原因 2、掌握金属键的本质——“电子气理论” 3、能用电子气理论和金属晶体的有关知识解释金属
的性质 4、掌握金属晶体的四种原子堆积模型 教学重点:金属具有共同物理性质的解释。金属晶体内
金属阳离子半径越小,所带电荷越多, 自由电子越多, 金属键越强,熔点就相应越高, 硬度也越大
【思考4】已知碱金属元素的熔沸点随原子序数的增 大 而递减,试用金属键理论加以解释。
同主族元素价电子数相同(阳离子所带电荷数 相同),从上到下,原子(离子)半径依次增 大,则单质中所形成金属键依次减弱,故碱金 属元素的熔沸点随原子序数的增大而递减。
晶胞的形状是什么? 含几个原子?
1、简单立方堆积 [ Po ]
配位数: 6 空间占有率: 52%
每个晶胞含原子数: 1
2、体心立方堆积-----钾型
( IA,VB,VIB)
非密置层的另一种堆积是将上层金属 原子填入下层的金属原子形成的凹穴中
金属晶体的堆积方式──体心立方堆积
配位数: 8 空间占有率: 68%
C B A
配位数:12 空间占有率:74% 每个晶胞含原子数:4
空间利用率计算
例2:求面心立方晶胞的空间利用率.
解:晶胞边长为a,原子半径为r. 由勾股定理: a 2 + a 2 = (4r)2
a = 2.83 r 每个面心立方晶胞含原子数目: 8 1/8 + 6 ½ = 4
= (4 4/3 r 3) / a 3
2、金属晶体的定义:通过金属离子与 自由电子之间的较强的相互作用形成的 晶体。 (1)在晶体中,不存在单个分子 (2)金属阳离子被自由电子所包围。
金属晶体
金属原子
自由电子
3、电子气理论:经典的金属键理论叫做 “电子气理论”。它把金属键形象地描绘成 从金属原子上“脱落”下来的大量自由电子 形成可与气体相比拟的带负电的“电子气”, 金属原子则“浸泡”在“电子气”的“海洋” 之中。
(4)石墨中r(C-C)比金刚石中r(C-C) 短。
思考:
(1)石墨为什么很软?
石墨为层状结构,各层之间是范德华力结合,
容易滑动,所以石墨很软。
(2)石墨的熔沸点为什么很高?
石墨的熔点为什么高于金刚石?
它们都有很强的C-C共价键。在石墨 中各层均为平面网状结构,碳原子
熔点 (℃)
之间存在很强的共价键(大π键), C-C键长比金刚石的短,键的强度大, 石墨 3652
多,相互作用就越大, 熔点就会越高。
阅读《资料卡片》并掌握 1、金属晶体的四种堆积模型对比
2、石墨是层状结构的混合型晶体
知识石拓展-石墨 墨 晶 体 结 构
(1)石墨中C原子以sp2杂化; (2)石墨晶体中最小环为六元环,含有C
2个,C-C键为 3; (3)石墨分层,层间为范德华力,硬度小, 可导电;
C.金属晶体中的金属阳离子在外加电场作用 下可发生定向移动 D.金属晶体在外加电场作用下可失去电子
练习
3.下列叙述正确的是( B)
A.任何晶体中,若含有阳离子也一定含有阴 离子 B.原子晶体中只含有共价键 C.离子晶体中只含有离子键,不含有共价键 D.分子晶体中只存在分子间作用力,不含 有其他化学键 4.为什么碱金属单质的熔沸点从上到下逐渐降 低,而卤素单质的熔沸点从上到下却升高?
比较离子晶体、金属晶体导电的区别:
晶体类型
离子晶体
金属晶体
导电时的状态
水溶液或 熔融状态下
晶体状态
导电粒子
自由移动的离子 自由电子
2、金属晶体结构与金属导热性的关系 【讨论2】金属为什么易导热?
自由电子在运动时经常与金属离子碰撞,引 起两者能量的交换。当金属某部分受热时,那 个区域里的自由电子能量增加,运动速度加快, 通过碰撞,把能量传给金属离子。
4、金属晶体结构具有金属光泽和颜色
由于自由电子可吸收所有频率的光,然后很 快释放出各种频率的光,因此绝大多数金属 具有银白色或钢灰色光泽。而某些金属(如 铜、金、铯、铅等)由于较易吸收某些频率 的光而呈现较为特殊的颜色。
当金属成粉末状时,金属晶体的晶面取向杂 乱、晶格排列不规则,吸收可见光后辐射不 出去,所以成黑色。
第二种是将第三层的 球对准第一层的 2,4, 6 位,不同于 AB 两层 的位置,这是 C 层。
12
6
3
54
12
6
3
54
12
6
3
54
第四层再排 A,于是形
A
成 ABC ABC 三层一个周
期。 得到面心立方堆积。
C
B
12
A
6
3
C
54
B
A
配位数 12 。 ( 同层 6 , 上下层各 3 ) 此种立方紧密堆积的前视图
故其熔点金刚石高。
金刚石 3550
沸点 (℃)
4827 4827
(3)石墨属于哪类晶体?
石墨为混合键型晶体。
思考与交流
石墨和金刚石同属于 碳的单质,为什么在 硬度上会相差如此之 大?
晶体具有规则的几何外形,晶体中最基本的重复单位称为是晶 胞。NaCl晶体结构如图所示,已知FexO晶体晶胞结构为NaCl 型,由于晶体缺陷,x值小于1,测知FexO晶体密度为 5.71g/cm3,晶胞边长为4.28×10-10m 。
练习
1. 金属晶体的形成是因为晶体中存在( A.金属离子间的相互作用
)C
B.金属原子间的相互作用
C.金属离子与自由电子间的相互作用
D.金属原子与自由电子间的相互作用
2.金A.属金能属导晶电体的中原金因属是阳(离子)B与自由电子间的 相
互作用较弱 B.金属晶体中的自由电子在外加电场作用下
可发生定向移动
二、金属共同的物理性质
容易导电、导热、有延展性、有金属光泽 等。
三、金属晶体的结构与金属性质的内在联系
1、金属晶体结构与金属导电性的关系
【讨论1】 金属为什么易导电?
在金属晶体中,存在着许多自由电子,这些自由 电子的运动是没有一定方向的,但在外加电场的条件 下自由电子就会发生定向运动,因而形成电流,所以 金属容易导电。
【总结】金属晶体的结构与性质的关系
导电性
导热性
延展性
金属离 自由电子在外 自由电子与 晶体中各原
子和自 加电场的作用 金属离子碰 子层相对滑
由电子 下发生定向移 撞传递热量 动仍保持相

互作用
5、影响金属键强弱的因素: 金属阳离子所带电荷越多、
离子半径越小,金属键越强。
一般情况下,金属晶体熔点由金属键强弱 决定
原子的空间排列方式。金属晶体内原子的空间排列 方式。
教学难点:金属键和电子气理论。金属晶体内原子的空 间排列方式
金属样品 Ti
一、金属的结构
1、金属键的定义:金属离子和自由电子 之间的强烈的相互作用,叫金属键。 (1)金属键的成键微粒是金属阳离子和 自由电子。 (2)金属键存在于金属单质和合金中。 (3)金属键没有方向性也没有饱和性。
3a 2 16r 2
r 3a 4
空间利用率
= 晶胞含有原子的体积 / 晶胞体积 100%
2 4 r3 2 4 ( 3 a)3
=
3 a3
34 a3
100% 68%
思考:密置层的堆积方式有哪些?
第二层对第一层来讲最紧密的堆积方式是将球对准 1,3,5 位。 ( 或对准 2,4,6 位,其情形是一样的 )
密度最小的金属是-------- 锂 [0.53g/cm3]
密度最大的金属是-------- 锇 [22.57g/cm3]
硬度最小的金属是-------- 铯 [0.2]
硬度最大的金属是-------- 铬 [9.0] 延性最好的金属是-------- 铂[铂丝直径:50100 mm] 展性最好的金属是-------- 金[金箔厚: 1001m00m] 最活泼的金属是---------- 铯 最稳定的金属是---------- 金
?m
配位数: 在晶体中,与每个微粒紧密相邻的微粒个数
空间利用率: 晶体的空间被微粒占满的体积百分数,它用来 表示紧密堆积的程度
= (4 4/3 r 3) / (2.83 r ) 3 100 % = 74 %
三、金属晶体的结构特征:
在金属晶体里,金属阳离子有规则地紧密堆积,自由电 子几乎均匀分布在整个晶体中,不专属哪几个特定的金属 离子,而是被许多金属离子共有。
四、金属晶体的熔点变化规律:
(1)金属晶体熔点变化差别较大。如汞在常温下是液 体,熔点很低(-38.9。C)。而铁等金属熔点很高 (1535。C)。这是由于金属晶体紧密堆积方式、金属阳 离子与自由电子的静电作用力不同而造成的差别。 (2)一般情况下(同类型的金属晶体),金属晶体的 熔点由金属阳离子半径、所带的电荷数、自由电子的多少 而定。阳离子半径越小,所带的电荷越多, 自由电子越
按密置层的堆积方式的第一种:六方密堆积
3、镁型 [六方密堆积]
镁型[六方密堆积](Be Mg ⅢB ⅣB ⅦB )
配位数: 12 空间占有率: 74% 每个晶胞含原子数: 2
按密置层的堆积方式的第二种:面心立方堆积 4、铜型 [面心立方]
面心立方
C B A
铜型 [面心立方] (ⅠB Pb Pd Pt )
金属容易导热,是由于自由电子运动时与金 属离子碰撞把能量从温度高的部分传到温度低 的部分,从而使整块金属达到相同的温度。
3、金属晶体结构与金属延展性的关系
【讨论3】金属为什么具有较好的延展性?
原子晶体受外力作用时,原子间的位移必 然导致共价键的断裂,因而难以锻压成型, 无延展性。而金属晶体中由于金属离子与自 由电子间的相互作用没有方向性,各原子层 之间发生相对滑动以后,源自文库可保持这种相互 作用,因而即使在外力作用下,发生形变也 不易断裂。
相关文档
最新文档