2019-2020年浙江省中考数学押题试卷(含答案)

合集下载

浙江省杭州市2019-2020学年中考数学预测卷三(含答案)

浙江省杭州市2019-2020学年中考数学预测卷三(含答案)

浙江省杭州市2019-2020学年中考数学预测卷三(含答案)一、选择题(每小题3分,共30分)1.绝对值大于1而小于3的整数是()A. ±1B. ±2C. ±3D. ±4【答案】B【考点】相反数及有理数的相反数,绝对值及有理数的绝对值2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A. 8×1012B. 8×1013C. 8×1014D. 0.8×1013【答案】B【考点】科学记数法—表示绝对值较大的数3.的值等于()A. B. ﹣ C. ± D.【答案】A【考点】算术平方根4.下列说法正确的是()A. 一组数据的中位数一定等于该组数据中的某个数据B. 一组数据的平均数和中位数一定不相等C. 一组数据的众数可以有几个D. 一组数据的方差一定大于这组数据的标准差【答案】C【考点】平均数及其计算,中位数,方差,极差、标准差,众数5.如图所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则下列说法正确的是()A. ∠AOE与∠BOC互为对顶角B. 图中有两个角是∠EOD的邻补角C. 线段DO大于EO的理由是垂线段最短D. ∠AOC=65°【答案】 D【考点】对顶角、邻补角,垂线,垂线段最短6.如图为某商店的宣传单,小胜到此店同时购买了一件标价为x元的衣服和一条标价为y元的裤子,共节省500元,则根据题意所列方程正确的是()A. 0.6x+0.4y+100=500B. 0.6x+0.4y﹣100=500C. 0.4x+0.6y+100=500D. 0.4x+0.6y﹣100=500【答案】A【考点】二元一次方程组的实际应用-销售问题7.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B. C. D.【答案】D【考点】概率公式8.如图,矩形ABCD的对角线相交于点O,AB=10,∠ACB=30°,则三角形AOD的面积是()A. 25B. 50C. 100D. 100【答案】A【考点】矩形的性质,解直角三角形9.二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)中x与y的部分对应值如下表:给出以下三个结论:(1)二次函数y=ax2+bx+c最小值为﹣4;(2)若y<0,则x的取值范围是0<x<2;(3)二次函数y =ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧,则其中正确结论的个数是()A. 0B. 1C. 2D. 3【答案】(1)C【考点】二次函数的最值,二次函数图像与坐标轴的交点问题,二次函数与不等式(组)的综合应用10.如图,△ABC中,点D,E分别在AB,AC上,∠ADE=∠C,如果AE=4,△ADE的面积为5,四边形BCED的面积为15,那么AB的长为()A. 6B.C. 8D.【答案】C【考点】相似三角形的判定与性质二、填空题(每小题4分,共24分)11.如果单项式3x a+2y b﹣2与5x3y a+2的和为8x3y a+2,那么a﹣b=________.【答案】-4【考点】合并同类项法则及应用12.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.【答案】85°【考点】平行线的性质,矩形的性质13.若x+y=3,xy=﹣2,则x2y+y2x=________.【答案】-6【考点】代数式求值,因式分解的应用14.如图,AB为⊙O的直径,C为圆上(除A、B外)一动点,∠ACB的角平分线交⊙O于D,若AC=8,BC=6,则BD的长为________.【答案】【考点】圆周角定理15.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是________千米.【答案】1.5【考点】分段函数,待定系数法求一次函数解析式,一次函数的性质,通过函数图像获取信息并解决问题16.如图,将长方形纸片ABCD分别沿EF,EB翻折,点D恰好落在AB边上,点C恰好落在D'E上,若FD =5,DE=10,BC=8,则EC的长度为________.【答案】4【考点】平行四边形的判定与性质,矩形的性质,翻折变换(折叠问题)三、解答题(7小题,共66分)17.某市一蔬菜生产基础用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,图中是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC是双曲线y=的一部分.请根据图中的信息解答下列问题:(1)求k的值;(2)恒温系统在一天内保持大鹏温度在15℃及15℃以上的时间有多少小时?【答案】(1)解:把点B(12,20)代入y=,得20=,解得:k=240(2)解:设AD段的解析式为:y=mx+n,把点D(0,10)和A(2,20)代入y=mx+n,得,解得:,∴AD段解析式为:y=5x+10(0≤x≤2),把y=15代入y=5x+10得15=5x+10,解得:x=1,把y=15代入y=得15=,解得:x=16,故16﹣1=15,答:恒温系统在一天内保持大鹏温度在15℃及15℃以上的时间有15小时【考点】反比例函数与一次函数的交点问题,反比例函数的实际应用18.新学期开学时,某校对八年级学生掌握“中学生日常行为规范”的情况进行了知识测试测试成绩全部合格(说明:成绩大于或等于60分合格),学校随机选取了部分学生的成绩,整理并绘制成以下不完整的图表:部分学生测试成绩统计表请根据上述统计图表,解答下列问题:(1)表中a=________,b=________,c=________;(2)补全频数分布直方图.【答案】(1)0.1;0.3;18(2)解:补全频数直方图如下:【考点】频数与频率,频数(率)分布表,频数(率)分布直方图19.已知:如图,在△ABC中,AB=AC=5,BC=8,D,E分别为BC,AB边上一点,∠ADE=∠C.(1)求证:△BDE∽△CAD;(2)若CD=2,求BE的长.【答案】(1)证明:∵AB=AC,∴∠B=∠C.∵∠ADE=∠C,∠DAE=∠BAD,∴∠ADE=∠B,∴∠AED=∠ADB.∵∠BED+∠AED=∠CDA+∠ADB=180°,∴∠BED=∠CDA,∴△BDE∽△CAD(2)解:∵AB=AC=5,BC=8,CD=2,∴BD=6.∵△BDE∽△CAD,∴=,即=,∴BE=.【考点】相似三角形的判定与性质20.参照学习函数的过程与方法,探究函数y=的图象与性质.因为y=,即y=﹣+1,所以我们对比函数y=﹣来探究.列表:﹣y=﹣ 1 ﹣﹣y=描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而________;(填“增大”或“减小”)②y=的图象是由y=﹣的图象向________平移________个单位而得到;③图象关于点________中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.【答案】(1)解:函数图象如图所示:(2)增大;上;1;(0,1)(3)解:∵x1+x2=0,∴x1=﹣x2,∴A(x1,y1),B(x2,y2)关于(0,1)对称,∴y1+y2=2,∴y1+y2+3=5【考点】反比例函数的图象,反比例函数的性质,反比例函数的实际应用21.如图,四边形ABCD中,AD∥BC,BD⊥DC,∠C=45°,BD平分∠ABC.(1)求证:AB⊥BC;(2)已知AD=AB=4,BC=8,点P,Q分别是线段AD,BC上的点,BQ=2AP,过点P作PR∥AB交BD 于R,记y表示△PRQ的面积,x表示线段AP的长度.如果在一个直角三角形中,它的两个锐角都是45°,那么它的两条直角边的长度相等,请你根据题目条件,写出表示变量y与x关系的关系式.(3)当x=________时,s取得最大值________.【答案】(1)证明:∵∠C=45°,∠BDC=90°,∴∠DBC=180°﹣45°﹣90°=45°,∵BD平分∠ABC,∴∠ABD=∠DBC=45°,∴∠ABC=90°;∴AB⊥BC(2)解:延长PR交BC于点F∵AD∥BC,AB⊥BC∴AB⊥AD∵PR∥AB∴PF⊥BC∴∠A=∠ABF=∠PFB=90°∴四边形ABFP是矩形∴PF=AB=4,BF=AP=x,∵BQ=2AP∴BF=FQ=x∵∠DBC=45°,∠PFB=90°∴∠BRF=45°=∠DBC∴RF=BF=x∵S△PRQ=S△PFQ-S△RFQ=FQ PF-FQ RF=×4x-x2=-x2+2x(3)2;2【考点】二次函数的最值,等腰直角三角形,二次函数的实际应用-几何问题22.如图,抛物线y=ax2+ x+c(a≠0)与x轴交于点A,B两点,其中A(﹣1,0),与y轴交于点C(0,2).(1)求抛物线的表达式及点B坐标;(2)点E是线段BC上的任意一点(点E与B、C不重合),过点E作平行于y轴的直线交抛物线于点F,交x轴于点G.①设点E的横坐标为m,用含有m的代数式表示线段EF的长;②线段EF长的最大值是________.【答案】(1)解:将A(﹣1,0)、C(0,2)代入y=ax2+ x+c(a≠0)得:a=﹣,c=2y=﹣x2+ x+2当y=0时,x1=﹣1,x2=4,故点B坐标为(4,0)(2)解:①设直线BC的函数表达式为y=kx+b,将B(4,0)、C(0,2)代入得:y=﹣x+2EF=FG﹣GE=﹣m2+ m+2﹣(﹣m+2)=﹣m2+2m【考点】待定系数法求二次函数解析式,二次函数与一次函数的综合应用,二次函数的实际应用-几何问题23.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x秒.(1)当x为何值时,PQ∥BC;(2)是否存在某一时刻,使△APQ∽△CQB?若存在,求出此时AP的长;若不存在,请说理由;(3)当CQ=10时,求的值.【答案】(1)解:由题可得AP=4x,CQ=3x.∵BA=BC=20,AC=30,∴BP=20﹣4x,AQ=30﹣3x.若PQ∥BC,则有△APQ∽△ABC,∴=,∴=,解得:x=.∴当x=时,PQ∥BC(2)解:存在.∵BA=BC,∴∠A=∠C.要使△APQ∽△CQB,只需=.此时=,解得:x=,∴AP=4x=(3)解:当CQ=10时,3x=10,∴x=,∴AP=4x=,∴===.【考点】相似三角形的判定与性质,几何图形的动态问题11 / 11。

浙江省杭州市2019-2020学年中考数学预测卷一(含答案)

浙江省杭州市2019-2020学年中考数学预测卷一(含答案)

浙江省杭州市2019-2020学年中考数学预测卷一(含答案)一、选择题(共30分)1.下列计算正确的是()A. =±4B. ± =3C. =﹣3D. ()2=3【答案】 D【考点】二次根式的性质与化简,非负数的性质:算术平方根2.如图,已知AB∥CD,AC与BD交于点O,则下列比例中成立的是( )A. B. C. D.【答案】A【考点】平行线分线段成比例3.如图所示的几何体的左视图是()A. B. C. D.【答案】 D【考点】简单几何体的三视图4.为筹备班级的初中毕业联欢会, 班长对全班同学爱吃哪几种水果作民意调查, 从而最终决定买什么水果。

下列调查数据中最值得关注的是()A. 平均数B. 中位数C. 众数D. 方差【答案】C【考点】常用统计量的选择,众数5.一列匀速前进的火车,从它进入500 m的隧道到离开,共需30秒,又知在隧道顶部的一盏固定的灯发出的一束光线垂直照射火车5秒,则这列火车的长度是( )A. mB. 100 mC. 120 mD. 150 m【答案】B【考点】一元一次方程的实际应用-行程问题6.已知矩形的面积为10,则它的长与宽之间的函数关系用图象大致可表示为()A. B. C. D.【答案】B【考点】反比例函数的图象,反比例函数系数k的几何意义7.如图,是⊙O 的直径,是⊙O 的切线,为切点,,则等于()A. 25°B. 50°C. 30°D. 40°【答案】 D【考点】切线的性质8.在Rt△ABC中,∠ACB=90°,AB=10cm,AB边上的高为4cm,则Rt△ABC的周长为( )cm.A. 24B. 6C. 3 +10D. 6 +10【答案】 D【考点】勾股定理9.已知a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a=a;当a=-2时,▽a=0.根据这种运算,计算▽[4+▽(2-5)]的值为()A. -7B. 7C. -1D. 1【答案】C【考点】代数式求值,定义新运算10.在平面直角坐标系中,直线(为常数)与抛物线交于,两点,且点在轴左侧,点坐标为,连结、,有以下说法:① ;②当时,的值随的增大而增大;③当时,;④ 面积的最小值为.其中正确的是()A. ①B. ②C. ③D. ④【答案】 D【考点】二次函数与一次函数的综合应用,二次函数的实际应用-几何问题二、填空题(每题4分,共24分)11.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为________【答案】12米【考点】解直角三角形的应用﹣坡度坡角问题12.一个圆盘被平均分成红、黄、蓝、白、黑5个扇形区域,向其投掷一枚飞镖,且落在圆盘内,则飞镖落在白色区域的概率是________.【答案】【考点】概率公式,概率的简单应用13.已知2a-3b2=7,则代数式9b2-6a+4的值是________。

浙江省嘉兴市2019-2020学年中考数学第四次押题试卷含解析

浙江省嘉兴市2019-2020学年中考数学第四次押题试卷含解析

浙江省嘉兴市2019-2020学年中考数学第四次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AD 是半圆O 的直径,AD =12,B ,C 是半圆O 上两点.若»»»AB BCCD ==,则图中阴影部分的面积是( )A .6πB .12πC .18πD .24π2.下列计算正确的是( )A .a 4+a 5=a 9B .(2a 2b 3)2=4a 4b 6C .﹣2a (a+3)=﹣2a 2+6aD .(2a ﹣b )2=4a 2﹣b 23.已知一组数据1x ,2x ,3x ,4x ,5x 的平均数是2,方差是13,那么另一组数据132x -,232x -,332x -,432x -,532x -,的平均数和方差分别是( ).A .12,3B .2,1C .24,3D .4,34.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a - 5.在如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .6.如图,⊙O 中,弦AB 、CD 相交于点P ,若∠A =30°,∠APD =70°,则∠B 等于( )A .30°B .35°C .40°D .50°7.如图,在△ABC 中,∠ACB=90°,点D 为AB 的中点,AC=3,cosA=13,将△DAC 沿着CD 折叠后,点A 落在点E 处,则BE 的长为( )A .5B .42C .7D .528.以坐标原点为圆心,以2个单位为半径画⊙O ,下面的点中,在⊙O 上的是( )A .(1,1)B .(2,2)C .(1,3)D .(1,2)9.如图,半径为5的A e 中,弦BC ,ED 所对的圆心角分别是BAC ∠,EAD ∠,若6DE =,180BAC EAD ∠+∠=︒,则弦BC 的长等于( )A .8B .10C .11D .1210.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )A .30,28B .26,26C .31,30D .26,2211.已知点1(,3)A x 、2(,6)B x 都在反比例函数3y x =-的图象上,则下列关系式一定正确的是( ) A .120x x << B .120x x << C .210x x <<D .210x x << 12.如图,在菱形纸片ABCD 中,AB=4,∠A=60°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F 、G 分别在边AB 、AD 上.则sin ∠AFG 的值为( )A .217B .277C .5714D .77二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为_________.14.对于实数p q ,,我们用符号min{}p q ,表示p q ,两数中较小的数,如min{1,2}1=.因此,{}min 2,3--= ________;若{}22min (1)1x x -=,,则x =________.15.计算:()()5353+-=_________ . 16.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为__________.17.若方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则x 1+x 2﹣x 1x 2的值为_____.18.如图,在Rt △ABC 中,∠ACB =90°,BC =2,AC =6,在AC 上取一点D ,使AD =4,将线段AD 绕点A 按顺时针方向旋转,点D 的对应点是点P ,连接BP ,取BP 的中点F ,连接CF ,当点P 旋转至CA 的延长线上时,CF 的长是_____,在旋转过程中,CF 的最大长度是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,AB =AC ,点D 是BC 的中点,AB 平分∠DAE ,AE ⊥BE ,垂足为E . 求证:AD =AE .20.(6分)菱形ABCD 的边长为5,两条对角线AC 、BD 相交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,求m 的值.21.(6分)如图,甲、乙为两座建筑物,它们之间的水平距离BC 为30m ,在A 点测得D 点的仰角∠EAD为45°,在B 点测得D 点的仰角∠CBD 为60°.求这两座建筑物的高度(结果保留根号).22.(8分)综合与探究如图,抛物线y=23233x x -x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,直线l 经过B ,C 两点,点M 从点A 出发以每秒1个单位长度的速度向终点B 运动,连接CM ,将线段MC 绕点M 顺时针旋转90°得到线段MD ,连接CD ,BD .设点M 运动的时间为t (t >0),请解答下列问题:(1)求点A 的坐标与直线l 的表达式;(2)①直接写出点D 的坐标(用含t 的式子表示),并求点D 落在直线l 上时的t 的值;②求点M 运动的过程中线段CD 长度的最小值;(3)在点M 运动的过程中,在直线l 上是否存在点P ,使得△BDP 是等边三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.23.(8分)(1)计算:0353tan 60502-+-+sin45° (2)解不等式组:3(1)5211132x x x x ++-⎧⎪+-⎨-≤⎪⎩f 24.(10分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x 1+5x+6,翻开纸片③是3x 1﹣x ﹣1.解答下列问题求纸片①上的代数式;若x 是方程1x =﹣x ﹣9的解,求纸片①上代数式的值.25.(10分)如图,在矩形ABCD 中,AB=1DA ,以点A 为圆心,AB 为半径的圆弧交DC 于点E ,交AD 的延长线于点F ,设DA=1.求线段EC 的长;求图中阴影部分的面积.26.(12分)如图,以△ABC 的一边AB 为直径作⊙O , ⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点E .(1) 求证:DE ⊥AC ;(2) 连结OC 交DE 于点F ,若3sin 4ABC ∠=,求OF FC 的值.27.(12分)研究发现,抛物线21y x 4=上的点到点F(0,1)的距离与到直线l :y 1=-的距离相等.如图1所示,若点P 是抛物线21y x 4=上任意一点,PH ⊥l 于点H ,则PF=PH. 基于上述发现,对于平面直角坐标系xOy 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线21y x 4=的关联距离;当2d 4≤≤时,称点M 为抛物线21y x 4=的关联点.(1)在点()1M 20,,()2M 12,,()3M 45,,()4M 04-,中,抛物线21y x 4=的关联点是_____ ; (2)如图2,在矩形ABCD 中,点()A t 1,,点()C t 13+,,①若t=4,点M 在矩形ABCD 上,求点M 关于抛物线21y x 4=的关联距离d 的取值范围; ②若矩形ABCD 上的所有点都是抛物线21y x 4=的关联点,则t 的取值范围是________.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【详解】∵AB BC CD ==u u u r u u u r u u u r ,∴∠AOB=∠BOC=∠COD=60°.∴阴影部分面积=2606=6360⨯ππ. 故答案为:A.【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.2.B【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.详解:A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、-2a(a+3)=-2a2-6a,故本选项错误;D、(2a-b)2=4a2-4ab+b2,故本选项错误;故选:B.点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.3.D【解析】【分析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.【详解】解:∵数据x1,x2,x3,x4,x5的平均数是2,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;∵数据x1,x2,x3,x4,x5的方差为13,∴数据3x1,3x2,3x3,3x4,3x5的方差是13×32=3,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D.【点睛】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.4.B【解析】【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】A.3332a a a+=,此选项不符合题意;B.826a a a÷=,此选项符合题意;C.235a a a⋅=,此选项不符合题意;D .236()a a -=-,此选项不符合题意;故选:B .【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.5.D【解析】【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y 随x 的增大而减小,且当x=0时,y=4, 当y=0时,x=1.故选D .【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.6.C【解析】分析:欲求∠B 的度数,需求出同弧所对的圆周角∠C 的度数;△APC 中,已知了∠A 及外角∠APD 的度数,即可由三角形的外角性质求出∠C 的度数,由此得解.解答:解:∵∠APD 是△APC 的外角,∴∠APD=∠C+∠A ;∵∠A=30°,∠APD=70°,∴∠C=∠APD-∠A=40°;∴∠B=∠C=40°;故选C .7.C【解析】【分析】连接AE ,根据余弦的定义求出AB ,根据勾股定理求出BC ,根据直角三角形的性质求出CD ,根据面积公式出去AE ,根据翻转变换的性质求出AF ,根据勾股定理、三角形中位线定理计算即可.【详解】解:连接AE ,∵AC=3,cos∠CAB=13,∴AB=3AC=9,由勾股定理得,22AB AC-2,∠ACB=90°,点D为AB的中点,∴CD=12AB=92,S△ABC=12×3×22,∵点D为AB的中点,∴S△ACD=12S△ABC=22,由翻转变换的性质可知,S四边形ACED2,AE⊥CD,则12×CD×2,解得,2,∴2,由勾股定理得,22AD AF-=72,∵AF=FE,AD=DB,∴BE=2DF=7,故选C.【点睛】本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.B【解析】【分析】根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)2<2,因此点在圆内,B选项(2,2) 到坐标原点的距离为2=2,因此点在圆上,C选项(1,3) 到坐标原点的距离为10>2,因此点在圆外D选项(1,2) 到坐标原点的距离为3<2,因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.9.A【解析】作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=1,从而求解.解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,∴AH=12BF=1.∴2222534BH AB AH-=-=,∴BC=2BH=2.故选A.“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.10.B.【解析】试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1.平均数是(22×2+23+1+28+30+31)÷7=1,所以平均数是1.故选B.考点:中位数;加权平均数.11.A【解析】分析:根据反比例函数的性质,可得答案.详解:由题意,得k=-3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选A.点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.12.B【解析】【分析】如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,NE的长,EF的长,则可求sin∠AFG的值.【详解】解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.∵四边形ABCD是菱形,AB=4,∠DAB=60°,∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB∴∠HDE=∠DAB=60°,∵点E是CD中点∴DE=12CD=1在Rt△DEH中,DE=1,∠HDE=60°∴DH=1,3∴AH=AD+DH=5在Rt△AHE中,∴,AE⊥GF,AF=EF∵CD=BC,∠DCB=60°∴△BCD是等边三角形,且E是CD中点∴BE⊥CD,∵BC=4,EC=1∴∵CD∥AB∴∠ABE=∠BEC=90°在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.∴EF=7 2由折叠性质可得∠AFG=∠EFG,∴sin∠EFG= sin∠AFG = 772ENEF==,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【详解】设P(0,b),∵直线APB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=4x-的图象上,∴当y=b,x=-4b,即A点坐标为(-4b,b),又∵点B在反比例函数y=2x的图象上,∴当y=b,x=2b,即B点坐标为(2b,b),∴AB=2b-(-4b)=6b,∴S△ABC=12•AB•OP=12•6b•b=1.14.2或-1.【解析】>∴min{②∵min{(x−1)2,x2}=1,∴当x>0.5时,(x−1)2=1,∴x−1=±1,∴x−1=1,x−1=−1,解得:x1=2,x2=0(不合题意,舍去),当x⩽0.5时,x2=1,解得:x1=1(不合题意,舍去),x2=−1,15.2【解析】【分析】利用平方差公式求解,即可求得答案.【详解】=2-)2=5-3=2.故答案为2.【点睛】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.16.1 42π-.【解析】【分析】连接CD,根据题意可得△DCE≌△BDF,阴影部分的面积等于扇形的面积减去△BCD的面积.【详解】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=1,四边形DMCN是正方形,DM=22.则扇形FDE的面积是:2901= 3604ππ⨯.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,则在△DMG和△DNH中,DMG DNHGDM HDN DM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=12.则阴影部分的面积是:1 42π-.故答案为:1 42π-.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.17.1【解析】根据题意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案为1.1826,10+2.【解析】【分析】当点P旋转至CA的延长线上时,CP=20,BC=2,利用勾股定理求出BP,再根据直角三角形斜边上的中线等于斜边的一半,可得CF的长;取AB的中点M,连接MF和CM,根据直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得FM的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.【详解】当点P旋转至CA的延长线上时,如图2.∵在直角△BCP中,∠BCP=90°,CP=AC+AP=6+4=20,BC=2,∴BP=2222CP BC102226+=+=,∵BP的中点是F,∴CF=12BP=26.取AB的中点M,连接MF和CM,如图2.∵在直角△ABC中,∠ACB=90°,AC=6,BC=2,∴AB22AC BC=+=210.∵M为AB中点,∴CM=12AB=10,∵将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,∴AP=AD=4,∵M为AB中点,F为BP中点,∴FM=12AP=2.当且仅当M、F、C三点共线且M在线段CF上时CF最大,此时CF=CM+FM=10+2.故答案为26,10+2.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半以及勾股定理.根据题意正确画出对应图形是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析【解析】试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证△ADB ≌△AEB 即可. 试题解析:∵AB=AC,点D 是BC 的中点,∴AD ⊥BC,∴∠ADB=90°.∵AE ⊥EB,∴∠E=∠ADB=90°.∵AB 平分∠DAE,∴∠BAD=∠BAE.在△ADB 和△AEB 中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB ≌△AEB(AAS),∴AD=AE.20.3m =-.【解析】【分析】由题意可知:菱形ABCD 的边长是5,则AO 2+BO 2=25,则再根据根与系数的关系可得:AO+BO=−(2m−1),AO∙BO=m 2+3;代入AO 2+BO 2中,得到关于m 的方程后,即可求得m 的值.【详解】解:∵AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根, 设方程的两根为1x 和2x ,可令1OA x =,2OB x =,∵四边形ABCD 是菱形,∴AC BD ⊥,在Rt AOB V 中:由勾股定理得:222OA OB AB +=,∴222125+=x x ,则()21212225x x x x +-=, 由根与系数的关系得:12(21)x x m +=--,2123x x m ⋅=+,∴[]()22(21)2325m m ---+=, 整理得:22150m m --=,解得:15m =,23m =-又∵>0∆,∴()22(21)430--+>m m ,解得114m <-, ∴3m =-.【点睛】此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.21.甲建筑物的高AB 为(303-30)m ,乙建筑物的高DC 为303m【解析】【详解】如图,过A 作AF ⊥CD 于点F ,在Rt △BCD 中,∠DBC=60°,BC=30m ,∵CD BC=tan ∠DBC , ∴3,∴乙建筑物的高度为3;在Rt △AFD 中,∠DAF=45°,∴DF=AF=BC=30m ,∴AB=CF=CD ﹣DF=(330)m ,∴甲建筑物的高度为(330)m .22.(1)A (﹣3,0),y=33(2)①D (t ﹣3t ﹣3),②CD 6;(3)P (2,3,理由见解析.【解析】【分析】(1)当y=0时,23233x x +,解方程求得A (-3,0),B (1,0),由解析式得C (03),待定系数法可求直线l 的表达式;(2)分当点M 在AO 上运动时,当点M 在OB 上运动时,进行讨论可求D 点坐标,将D 点坐标代入直线解析式求得t 的值;线段CD 是等腰直角三角形CMD 斜边,若CD 最小,则CM 最小,根据勾股定理可求点M 运动的过程中线段CD 长度的最小值;(3)分当点M 在AO 上运动时,即0<t <3时,当点M 在OB 上运动时,即3≤t≤4时,进行讨论可求P 点坐标.【详解】(1)当y=0时,﹣23233x x -+=0,解得x 1=1,x 2=﹣3, ∵点A 在点B 的左侧,∴A (﹣3,0),B (1,0),由解析式得C (0,3),设直线l 的表达式为y=kx+b ,将B ,C 两点坐标代入得b=3mk ﹣3,故直线l 的表达式为y=﹣3x+3;(2)当点M 在AO 上运动时,如图:由题意可知AM=t ,OM=3﹣t ,MC ⊥MD ,过点D 作x 轴的垂线垂足为N ,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN ,在△MCO 与△DMN 中,{MD MCDCM DMN COM MND=∠=∠∠=∠,∴△MCO ≌△DMN ,∴3DN=OM=3﹣t ,∴D (t ﹣3t ﹣3);同理,当点M 在OB 上运动时,如图,OM=t﹣3,△MCO≌△DMN,MN=OC=3,ON=t﹣3+3,DN=OM=t﹣3,∴D(t﹣3+3,t﹣3).综上得,D(t﹣3+3,t﹣3).将D点坐标代入直线解析式得t=6﹣23,线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,∵M在AB上运动,∴当CM⊥AB时,CM最短,CD最短,即CM=CO=3,根据勾股定理得CD最小6;(3)当点M在AO上运动时,如图,即0<t<3时,∵tan∠CBO=OCOB3∴∠CBO=60°,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,3,NB=4﹣t3tan∠NBO=DN NB,43t--3t=33经检验t=33是此方程的解,过点P作x轴的垂线交于点Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t=1,OQ=2,P(2;同理,当点M在OB上运动时,即3≤t≤4时,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣1=t﹣tan∠NBD=DNNB,t=3经检验t=3是此方程的解,t=3.故P(2.【点睛】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度.23.(1)7;(2)﹣2<x≤1.【解析】【分析】(1)根据绝对值、特殊角的三角函数值可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.【详解】(1)03-+×2+1(2)(2)()315211132x xx x>①②⎧++-⎪⎨+--≤⎪⎩由不等式①,得x>-2,由不等式②,得x≤1,故原不等式组的解集是-2<x≤1.【点睛】本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.24.(1)7x 1+4x+4;(1)55.【解析】【分析】(1)根据整式加法的运算法则,将(4x 1+5x+6)+(3x 1﹣x ﹣1)即可求得纸片①上的代数式;(1)先解方程1x =﹣x ﹣9,再代入纸片①的代数式即可求解.【详解】解:(1)纸片①上的代数式为:(4x 1+5x+6)+(3x 1﹣x ﹣1)=4x 1+5x+6+3x 1-x-1=7x 1+4x+4(1)解方程:1x =﹣x ﹣9,解得x =﹣3代入纸片①上的代数式得7x 1+4x+4=7×(-3)²+4×(-3)+4 =63-11+4=55即纸片①上代数式的值为55.【点睛】本题考查了整式加减混合运算,解一元一次方程,代数式求值,在解题的过程中要牢记并灵活运用整式加减混合运算的法则.特别是对于含括号的运算,在去括号时,一定要注意符号的变化.25.(1)4-;(1)83π- 【解析】【分析】(1)根据矩形的性质得出AB=AE=4,进而利用勾股定理得出DE 的长,即可得出答案;(1)利用锐角三角函数关系得出∠DAE=60°,进而求出图中阴影部分的面积为:FAE DAE S S 扇形∆-,求出即可.【详解】解:(1)∵在矩形ABCD 中,AB=1DA ,DA=1,∴AB=AE=4,∴= ,∴EC=CD-DE=4-13;(1)∵sin∠DEA=12 ADAE=,∴∠DEA=30°,∴∠EAB=30°,∴图中阴影部分的面积为:S扇形FAB-S△DAE-S扇形EAB=9041304822323 36023603πππ⨯⨯-⨯⨯-=-.【点睛】此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE的长是解题关键.26.(1)证明见解析(2)8 7【解析】【分析】(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.(2)连接AD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解.【详解】解:(1)连接OD . ∵DE是⊙O的切线,∴DE⊥OD,即∠ODE=90° .∵AB是⊙O的直径,∴O是AB的中点.又∵D是BC的中点,.∴OD∥AC .∴∠DEC=∠ODE= 90° .∴DE⊥AC .(2)连接AD . ∵OD∥AC,∴OF OD FC EC=.∵AB为⊙O的直径,∴∠ADB= ∠ADC =90° .又∵D 为BC 的中点,∴AB=AC.∵sin ∠ABC=AD AB =34, 设AD= 3x , 则AB=AC=4x, OD= 2x.∵DE ⊥AC , ∴∠ADC= ∠AED= 90°.∵∠DAC= ∠EAD , ∴△ADC ∽△AED.∴AD AC AE AD=. ∴2AD AE AC =⋅.∴94=AE x . ∴74=EC x . ∴87==OF OD FC EC .27. (1) 12M M ,;(2)①29.d 4≤≤ ②33 1.t -2≤≤2【解析】【分析】(1)根据关联点的定义逐一进行判断即可得;(2))①当t 4=时,()A 41,,()B 51,,()C 53,,()D 43,,可以确定此时矩形ABCD 上的所有点都在抛物线21y x 4=的下方,所以可得d MF =,由此可知AF d CF ≤≤,从而可得4d 29≤≤;②由①知d MF =,分两种情况画出图形进行讨论即可得.【详解】(1)()1M 20,,x=2时,y=21x 4=1,此时P (2,1),则d=1+2=3,符合定义,是关联点; ()2M 12,,x=1时,y=21x 4=14,此时P (1,14),则d=74()2211014⎛⎫-+- ⎪⎝⎭=3,符合定义,是关联点; ()3M 45,,x=4时,y=21x 4=4,此时P (4,4),则()()224014-+-=6,不符合定义,不是关联点;()4M 04-,,x=0时,y=21x 4=0,此时P (0,0),则d=4+5=9,不不符合定义,是关联点, 故答案为12M M ,;(2)①当t 4=时,()A 41,,()B 51,,()C 53,,()D 43,, 此时矩形ABCD 上的所有点都在抛物线21y x 4=的下方, ∴d MF =,∴AF d CF ≤≤,∵AF=4CF=29,,∴4d 29≤≤;②由①d MF =,AF d CF ≤≤,如图2所示时,CF 最长,当CF=4时,即()221(31)t ++-=4,解得:t=231-,如图3所示时,DF 最长,当DF=4时,即DF=22(31)t +-=4,解得 t=23-,故答案为3t 23 1.-≤≤-【点睛】本题考查了新定义题,二次函数的综合,题目较难,读懂新概念,能灵活应用新概念,结合图形解题是关键.。

浙江省宁波市2019-2020学年中考数学第二次押题试卷含解析

浙江省宁波市2019-2020学年中考数学第二次押题试卷含解析

浙江省宁波市2019-2020学年中考数学第二次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围( ) A .1k <B .0k ≠C .1k <且0k ≠D .0k >2.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( ) A .平均数和中位数不变 B .平均数增加,中位数不变 C .平均数不变,中位数增加D .平均数和中位数都增大3.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac . 其中正确的结论有( )A .1个B .2个C .3个D .4个4.﹣3的绝对值是( ) A .﹣3 B .3C .-13D .135.计算--|-3|的结果是( )A .-1B .-5C .1D .56.如图,某厂生产一种扇形折扇,OB=10cm ,AB=20cm ,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为10003π cm 2,则扇形圆心角的度数为( )A .120°B .140°C .150°D .160°7.如图,平行四边形ABCD 中,E ,F 分别为AD ,BC 边上的一点,增加下列条件,不一定能得出BE ∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD8.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.30x﹣361.5x=10 B.36x﹣301.5x=10C.361.5x﹣30x=10 D.30x+361.5x=109.下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A.﹣2 B.﹣1 C.0 D.110.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)11.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.12.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组1020xx+≥⎧⎨->⎩的整数解是_____.14.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是___.15.若⊙O所在平面内一点P到⊙O的最大距离为6,最小距离为2,则⊙O的半径为_____.16.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE 、BC 于点F 、G ,那么AFAG的值为__________.17.如图,AB 是⊙O 的直径,点C 在⊙O 上,AE 是⊙O 的切线,A 为切点,连接BC 并延长交AE 于点D .若AOC=80°,则ADB 的度数为( )A .40°B .50°C .60°D .20° 18.如果不等式组213(1)x x x m->-⎧⎨⎩<的解集是x <2,那么m 的取值范围是_____三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)(1)计算:2(2)(3)12sin 60π︒-+-+-;(2)化简:2121()a a a a a--÷-.20.(6分)问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填“>”“<”“=”); 问题探究(2)如图②,在正方形ABCD 中,P 为CD 边上的一个动点,当点P 位于何处时,∠APB 最大?并说明理由; 问题解决(3)如图③,在一幢大楼AD 上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF 为1.6米,他从远处正对广告牌走近时,在P 处看广告效果最好(视角最大),请你在图③中找到点P 的位置,并计算此时小刚与大楼AD 之间的距离.21.(6分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:“祖冲之奖”的学生成绩统计表:分数/分80 85 90 95人数/人 4 2 10 4根据图表中的信息,解答下列问题:(1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;(2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.22.(8分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.23.(8分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.(10分)计算:﹣12+2132-⎛⎫+-⎪⎝⎭﹣(3.14﹣π)0﹣|1﹣3|.25.(10分)车辆经过润扬大桥收费站时,4个收费通道A.B、C、D中,可随机选择其中的一个通过.一辆车经过此收费站时,选择A通道通过的概率是;求两辆车经过此收费站时,选择不同通道通过的概率.26.(12分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=2,反比例函数y=kx的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=kx图象上时,求点D经过的路径长.27.(12分)已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】根据一元二次方程的定义结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论. 【详解】解:∵关于x 的一元二次方程2690kx x -+=有两个不相等的实数根, ∴ 2(6)490k k ≠⎧⎨=--⨯>⎩V , 解得:k<1且k≠1. 故选:C . 【点睛】本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a 的一元一次不等式组是解题的关键. 2.B 【解析】 【分析】本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数. 【详解】解:设这家公司除经理外50名员工的工资和为a 元,则这家公司所有员工去年工资的平均数是20000051a +元,今年工资的平均数是22500051a +元,显然2000002250005151a a ++<;由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变. 故选B . 【点睛】本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响. 3.C 【解析】首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x=﹣2ba>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断 【详解】由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2ba>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2ba>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a>2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确; 因此正确的结论是①②④. 故选:C . 【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键. 4.B 【解析】 【分析】根据负数的绝对值是它的相反数,可得出答案. 【详解】根据绝对值的性质得:|-1|=1. 故选B . 【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 5.B 【解析】 【分析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值. 【详解】 原式故选:B .此题考查了实数的运算,熟练掌握运算法则是解本题的关键.6.C【解析】【分析】根据扇形的面积公式列方程即可得到结论.【详解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,设扇形圆心角的度数为α,∵纸面面积为10003π cm2,∴22301010003603603a aπππ⋅⨯⋅⨯-=,∴α=150°,故选:C.【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积=2 360n Rπ.7.B【解析】【分析】由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD 均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.【详解】Q四边形ABCD是平行四边形,∴AD//BC,AD=BC,A、∵AE=CF,∴DE=BF,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF;B、∵BE=DF,∴四边形BFDE是等腰梯形,∴本选项不一定能判定BE//DF;C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF;D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF.故选B.【点睛】本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.8.A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可. 【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系. 9.A【解析】【分析】由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解.【详解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四个数表示在数轴上,它们对应的点中,离原点最远的是-1. 故选A . 【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想. 10.D 【解析】设分配x 名工人生产螺栓,则(27-x )人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x ),故选D. 11.C 【解析】 【分析】根据左视图是从左面看所得到的图形进行解答即可. 【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间. 故选:C . 【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图. 12.B 【解析】试题分析:∵AB ∥CD , ∴∠D=∠1=34°, ∵DE ⊥CE , ∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°. 故选B .考点:平行线的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.﹣1、0、1 【解析】 【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案. 【详解】1020x x +≥⎧⎨->⎩,Q 解不等式10x +≥得:1x ≥-,解不等式20x ->得:2x <,∴不等式组的解集为12x -≤<, ∴不等式组的整数解为-1,0,1.故答案为:-1,0,1. 【点睛】本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解. 14.1:4 【解析】∵两个相似三角形对应边上的高的比为1∶4, ∴这两个相似三角形的相似比是1:4 ∵相似三角形的周长比等于相似比, ∴它们的周长比1:4, 故答案为:1:4.【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比. 15.2或1 【解析】 【分析】点P 可能在圆内.也可能在圆外,因而分两种情况进行讨论. 【详解】解:当这点在圆外时,则这个圆的半径是(6-2)÷2=2; 当点在圆内时,则这个圆的半径是(6+2)÷2=1. 故答案为2或1. 【点睛】此题主要考查点与圆的位置关系,解题的关键是注意此题应分为两种情况来解决. 16.35【解析】 【分析】由题中所给条件证明△ADF ~△ACG ,可求出AFAG的值. 【详解】解:在△ADF 和△ACG 中, AB=6,AC=5,D 是边AB 的中点 AG 是∠BAC 的平分线,∴∠DAF=∠CAG ∠ADE=∠C∴△ADF~△ACG∴35 AF ADAG AC==.故答案为3 5 .【点睛】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.17.B.【解析】试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.考点:圆的基本性质、切线的性质.18.m≥1.【解析】分析:先解第一个不等式,再根据不等式组()2131x xx m⎧->-⎨<⎩的解集是x<1,从而得出关于m的不等式,解不等式即可.详解:解第一个不等式得,x<1,∵不等式组()2131x xx m⎧->-⎨<⎩的解集是x<1,∴m≥1,故答案为m≥1.点睛:本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)3(2)11 aa+ -.【解析】【分析】(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;(3)根据分式的减法和除法可以解答本题.【详解】(1)())22π12sin60︒-+-+-=4+1+|1﹣2×2|=4+1+|11(2)2a 12a 1a a a --⎛⎫÷- ⎪⎝⎭ =()()2a 1a 1a 2a 1aa+--+÷=()()()2a 1a 1a·a a 1+--=a 1a 1+-. 【点睛】本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.20.(1)>;(2)当点P 位于CD 的中点时,∠APB 最大,理由见解析;(3)米. 【解析】 【分析】(1)过点E 作EF ⊥AB 于点F ,由矩形的性质和等腰三角形的判定得到:△AEF 是等腰直角三角形,易证∠AEB=90°,而∠ACB <90°,由此可以比较∠AEB 与∠ACB 的大小(2)假设P 为CD 的中点,作△APB 的外接圆⊙O ,则此时CD 切⊙O 于P ,在CD 上取任意异于P 点的点E ,连接AE ,与⊙O 交于点F ,连接BE 、BF ;由∠AFB 是△EFB 的外角,得∠AFB >∠AEB ,且∠AFB 与∠APB 均为⊙O 中弧AB 所对的角,则∠AFB=∠APB ,即可判断∠APB 与∠AEB 的大小关系,即可得点P 位于何处时,∠APB 最大;(3)过点E 作CE ∥DF ,交AD 于点C ,作AB 的垂直平分线,垂足为点Q ,并在垂直平分线上取点O ,使OA=CQ ,以点O 为圆心,OB 为半径作圆,则⊙O 切CE 于点G ,连接OG ,并延长交DF 于点P ,连接OA ,再利用勾股定理以及长度关系即可得解. 【详解】解:(1)∠AEB >∠ACB ,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为:>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米,AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键. 21.(1)刘徽奖的人数为40人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)P(点在第二象限)29 .【解析】【分析】(1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;(2)根据中位数和众数的定义求解可得;(3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.【详解】(1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:故答案为40;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.故答案为90、90;(3)列表法:∵第二象限的点有(﹣2,2)和(﹣1,2),∴P(点在第二象限)29 .【点睛】本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.22.(1)详见解析;(2)详见解析;(3).【解析】(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.(1)证明:连接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=AC,∠CBD=∠C=45°,∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB,在△AED和△BFD中,∠A=∠FBD,AD=BD,∠EDA=∠FDB,∴△AED≌△BFD(ASA),∴AE=BF;(2)证明:连接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF;(3)∵AE=BF,AE=1,∴BF=1,在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2,∵EB=2,BF=1,∴EF=,∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF=,∵EF=,∴DE=×,∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴,即GE•ED=AE•EB,∴•GE=2,即GE=,则GD=GE+ED=.23.(1);(2)列表见解析,.【解析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:小华-1 0 2小丽-1 (-1,-1)(-1,0)(-1,2)0 (0,-1)(0,0)(0,2)2 (2,-1)(2,0)(2,2)共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,∴P(点M落在如图所示的正方形网格内)==.考点:1列表或树状图求概率;2平面直角坐标系.24.1.【解析】【分析】直接利用绝对值的性质以及零指数幂的性质和负指数幂的性质分别化简得出答案.【详解】解:原式=﹣3﹣13﹣1)=﹣3﹣13=1.【点睛】本题考查了实数的运算,零指数幂,负整数指数幂,解题的关键是掌握幂的运算法则.25.(1)14;(2)34.【解析】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.试题解析:(1)选择A通道通过的概率=14,故答案为14;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率=1216=34.26.(1)k=2;(2)点D经过的路径长为6.【解析】【分析】(1)根据题意求得点B的坐标,再代入kyx=求得k值即可;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.【详解】(1)∵△AOB和△COD为全等三的等腰直角三角形,OC=2,∴AB=OA=OC=OD=2,∴点B坐标为(2,2),代入kyx=得k=2;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,∵2,∠AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函数图象上,∴t(t+2)=2,解得1或t=1(舍去),∴D′1+1),∴=,即点D.【点睛】本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.27.(1)c>﹣2;(2) x1=﹣1,x2=1.【解析】【分析】(1)根据抛物线与x轴有两个交点,b2-4ac>0列不等式求解即可;(2)先求出抛物线的对称轴,再根据抛物线的对称性求出抛物线与x轴的另一个交点坐标,然后根据二次函数与一元二次方程的关系解答.【详解】(1)解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得抛物线的对称轴为直线x=1,∵抛物线经过点(﹣1,0),∴抛物线与x轴的另一个交点为(1,0),∴方程﹣2x2+4x+c=0的根为x1=﹣1,x2=1.【点睛】考查了抛物线与x轴的交点问题、二次函数与一元二次方程,解题关键是运用了根与系数的关系以及二次函数的对称性.。

2019-2020年浙江省中考数学绝密预测押题卷(附答案)

2019-2020年浙江省中考数学绝密预测押题卷(附答案)

2019-2020浙江省中考数学绝密预测押题试卷温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标是)442(2ab ac a b --,. 卷 Ⅰ一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1. 在2,-2,8,6这四个数中,互为相反数的是( ▲ )A .-2与2B .2与8C .-2与6D .6与8 2.如图几何体的俯视图是( ▲ )3.方程022=-x x 的解为 ( ▲ ),关于这组数据说法A .2B .1C .0D .-16.若点(1x ,y 1),(2x ,y 2),(3x ,y 3)都在反比例函数2y x=-的图象上,且1230x x x <<<,则y 1,y 2,y 3的大小关系是( ▲ )A.231y y y <<B. 312y y y <<C. 321y y y <<D. 132y y y <<7.下列图形中,既是轴对称图形又是中心对称图形的有( ▲ )A .4个B .3个C .2个D .1个 8.已知圆锥的底面半径为6cm ,高为8cm ,则这个圆锥的母线长为( ▲ )A .12cmB .10cmC .8cmD .6cm9.某展览大厅有3个入口和2个出口,其示意图如下,参观者从 任意一个入口进入,参观结束后从任意一个出口离开.小明从 入口1进入并从出口A 离开的概率是( ▲ )A .16B .15C .13D .1210如图,正方形ABCD 中,E 为边AB 上一动点,DF ⊥DE 交BCA .B .C .D . 入口1入口2入口3出口A出口BA D延长线于F ,EF 交AC 于G .给出下列结论:①△DEF 是等腰直角三角形;②G 是EF 的中点;③若DC 平分GF ,则tan ∠ADE =14.其中正确结论的个数为( ▲ ) A .0个 B .1个 C .2个D .3个卷 Ⅱ说明:本卷共有2大题,14小题,共90分. 答题请用0.5毫米及以上的黑色签字笔书写在“答题纸”的对应位置上. 二、填空题(本题有6小题,每小题4分,共24分) 11. 40.5°=40° ▲ ′; 12.分解因式x 2-4= ▲ ;13.浙江省委作出“五水共治”决策.某广告公司用形状大小完全相同的材料分别制作了“治污水”、“防洪水”、“排涝 水”、“保供水”、“抓节水”5块广告牌,从中随机抽取一块 恰好是“治污水”广告牌的概率是 ▲ . 14. 如图,有一圆通过四边形ABCD 的三顶点A 、B 、 D ,且此圆的半径为10。

2019-2020年浙江省中考数学绝密预测押题试卷(含答案)

2019-2020年浙江省中考数学绝密预测押题试卷(含答案)

2019-2020浙江省中考数学绝密预测押题试卷亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平.答题时,请注意以下几点:1. 全卷共4页,有三大题,24小题.全卷满分150分.考试时间120分钟. 2. 答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效. 3. 答题前,认真阅读答题纸上的《注意事项》,按规定答题. 祝你成功!参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是24(,)24b ac b a a--卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选, 均不给分)1.下列各数属于无理数的是( ▲ ) A .5 BC .73D .2π2.如图是一个圆锥的立体图形,则它的主视图为( ▲ )3.某校园足球队由13位男生组成,体育课上统计了所有男生所穿运动鞋的尺码,列表如下:则这13双运动鞋尺码的众数和中位数分别是( ▲ )A .40码、39码B .39码、40码C .39码、39码D .40码、40码 4.下列运算正确的是( ▲ )主视方向(第2题图) AB C DA .325x x x ⋅=B .336()x x = C .5510x x x += D .422x x x -= 5.将二次函数2y x =的图象先向右平移1个单位,再向上平移2单位后,所得图象的函数表达式是( ▲ )A .()212y x =++ B .()212y x =-+ C .()212y x =-- D .()212y x =+-6.如图所示,直线m ∥n ,AB ⊥m ,∠ABC =130°,那么∠ɑ为( ▲ ) A .60° B .50° C .40° D .30° 7.若一个多边形的内角和是900°,则这个多边形的边数是( ▲ ) A .5 B .6 C .7 D .88.一元一次不等式组21332x x x -<⎧⎨+>⎩的解是( ▲ )A .23x -<<B .32x -<<C .3x <-D .2x < 9.在反比例函数ky x=(0k >)的图象中,阴影部分的面积不等于k 的是( ▲ )10.如图,∠MON =90°,线段AB 的长是一个定值,点A 在射线OM 上,点B 在射线ON 上.以AB 为边向右上方作正方形ABCD ,对角线AC 、BD 交于点P ,在点A 从上往下,点B 从左到右运动的过程中,下列说法正确的是( ▲ ) A .点P 始终在∠MON 的平分线上,且线段OP 的长有最大值等于AB B .点P 始终在∠MON 的平分线上,且线段OPAB C .点P 不一定在∠MON 的平分线上,但线段OP 的长有最小值等于AB D .点P 不一定在∠MON 的角平分线上,但线段OPAB 卷II二、填空题(本题有6题,每小题5分,共30分)(第6题图)ABCD(第10题图)11.分解因式:32x xy -= ▲ . 12.方程组122x y x y -=⎧⎨+=⎩的解是 ▲ .13.合作小组的4位同学坐在课桌旁讨论问题,学生A 的座位如图所示,学生B 、C 、D 随机坐到其他三个位置上,则学生B 坐在2号座位的概率是 ▲ . 14x 的取值范围是 ▲ . 15.如图,某广告牌竖直矗立在水平地面上,经测量,得到如下相关数据:CD =2m ,∠CAB=30°,∠DBF=45°,则广告牌的高EF= ▲ m .(结果保留根号) 16.如图,矩形ABCD 中,AD =4,O 是BC 边上的点,以OC 为半径作⊙O 交AB 于点E ,BE =35AE ,把四边形AECD 沿着CE 所在的直线对折(线段AD 对应A'D'),当⊙O 与A'D'相切时,线段AB 的长是 ▲ .三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程) 17.(本题10分)(1)计算:11(23π-⎛⎫+-+- ⎪⎝⎭. (2)解方程:311x x x -=-.18.(本题8分)如图是由边长都是1的小正方形组成的网格.请以图中线段BC 为边,作△PBC ,使P 在格点上,并满足:(1)图甲中的△PBC 是直角三角形,且面积是△ABC 面积2倍; (2)图乙中的△PBC 是等腰非直角三角形.(第13题图) (第15题图)19.(本题10分)如图,AB∥CD,E是AB上一点,DE交AC于点F,AE=CD,分别延长DE和CB交于点G.(1)求证:△AEF≌△CDF;(2)若GB=2,BC=4,BE=1,求AB的长.20.(本题8分)随着人们法制意识的加强,“开车不喝酒,喝酒不开车”的观念逐步深入人心.某记者随机选取了我县几个停车场对开车司机进行了相关调查,这次调查结果有四种情况:A.醉酒后仍开车;B.喝酒后不开车或请专业代驾;C.不开车的时候会喝酒,喝酒的时候不开车;D.从不喝酒.将这次调查情况绘制了如下尚不完整的统计图1和图2,请根据相关信息,解答下列问题:(I)该记者本次一共调查了▲ 名司机;(II)图1中情况D所在扇形的圆心角为▲ °;(III)补全图2;(第19题图)(第20题图1)(第18题图)(第18题图甲)(第18题图乙)(第20题图2)(IV )若我县约有司机20万人,其中30岁以下占30﹪,则30岁以下的司机朋友中不违反“酒驾”禁令的人数为多少万人?21.(本题8分)如图,抛物线2y x bx c =-++与x 轴交于A 、B 点,与y 轴交于C 点,,顶点为D ,其中点A 、C 的坐标分别是(-1,0)、(0,3). (1)求抛物线的表达式与顶点D 的坐标;(2)连结BD ,过点O 作OE ⊥BD 于点E ,求OE 的长. 结BD ,过点O 作OE ⊥BD 于点E ,求OE 的长.22.(本题10分)如图,在△ABC 中, O 是BC 上的点,⊙O 经过A ,B 两点,与BC 交于点E ,D 是下半圆的点,且OD ⊥BC 于点O ,并连结AD 交BC 于点F ,若AC 是⊙O 的切线.(1)求证:AC=FC .(2)若FE =CE =2,求OF 的长.23.(本题12分)某中学为筹备校庆,准备印制一批纪念册,每册由4张彩页,6张黑白页构成.印制该纪念册的总费用由制版费...和印刷费...两部分组成,其中制版费的价格为:彩页300元/张,黑白页50元/张;印刷费用与印数的关系见下表:(1 元印刷费...元;(2)若印制这批纪念册共需y 元,则(第21题图)(第22题图)①当1≤x <5时,求y 关于x 的函数表达式; ②当y ≤60 080元,最多能印多少册?24.(本题14分)如图1,在平面直角坐标系中,直线l 的函数表达式是2+-=x y .菱形ABCD 的对角线AC 、BD 在坐标轴上,点A 、B 的坐标分别是(0,4),(-6,0).P 是折线B -A -D 上的动点,过点P 作PQ ∥y 轴交折线B -C -D 于点Q .作PG ⊥l 于点G ,连结GQ .设直线l 与x 轴交于点E ,点P 的横坐标为m , (1)求菱形ABCD 的面积; (2)当点P 在AD 上运动时,①求线段PQ 的长(用关于m 的代数式表示); ②若△PQG 为等腰三角形,求m 的值;(3)如图2,连结QE ,当点P 在AB 上运动时,过点Q 作QH ⊥l 于H ,若tan ∠HQE =31,直接写出m 的值.(第24题图1)(第24题图2)数学参考答案一. 仔细选一选(本题有10个小题,每小题4分,共40分)二. 认真填一填(本题有6个小题,每小题5分,共30分)11. ;12. ;13; 14. x ≥-1且 x ≠0 ; 15. ; 16. . 三.全面答一答(本题有8个小题,共80分) 17.(本题10分)(1)解:原式=4+1-3+2 ……4' (2)解:方程两边都乘以x (x -1),得=4 ……1' x 2-x (x -1)=3(x -1) ……2'∴23=x ……2' 经检验23=x 是原方程的根 ……1'18.(本题8分)))((y x y x x -+3132P·Py ⎧⎨=⎩●●(P 点也可在黑点处) 19.(本题8分)(1)证明:∵AB ∥CD,∵∠A =∠ACD ,∠AEF =∠D , ……2' 又AE =CD ……1' ∴△AEF ≌△CDF (ASA ) ……1' (2)解:∵AB ∥CD∴△GBE ∽△GCD ……1' ∴621==CD GC GB CD BE 即 ∴CD = AE =3 ……2' ∴AB =AE +BE =3+1=4 ……1'20.(本题8分)(I ) 200 ; (II ) 162 °; (III )补全图2; (IV )5.7万人.21.(本题10分)(1)解:把A (-1,0),C (0,3)分别代入抛物线,得:103b c c --+=⎧⎨=⎩, ∴23b c =⎧⎨=⎩. ……2'∴抛物线的表达式为y =-x 2+2x +3, ……1'∴y =-x 2+2x +3 =-(x -1)2+4,∴顶点坐标D (1,4). ……2' (2)解:连结OD ,设对称轴与x 轴交于点F ,则DF =4, ∵A (-1,0),对称轴为x =1,∴B (3,0),BF =2, 由勾股定理得BD === ……2'(第18题图甲) (第18题图乙) (第21题图)F·∵S △OBD =1122OB DF BD OE ⋅=⋅,∴34OE ⨯=,∴OE =. ……3' (本题也可以先证△DFB ∽△OEB ,再用相似比计算)22.(本题10分)(1)证明:连结OA . ……1'∵AC 是⊙O 的切线,见 ∴OA ⊥AC ,∴∠OAD +∠CAF =90° ……1' ∵OD ⊥BC , ∴∠D +∠OFD =90°, ……1' ∵OA =OD , ∴∠D =∠OAD ; ……1' 即∠CAF =∠OFD =∠AFC∴AC =FC . ……1'(2)设OF =x ,则OC=4+x ,OA =2+x ……1'∵∠OAC =90°,∴由勾股定理得:222OA AC OC +=,∴()22224(4)x x ++=+ ……2' 解得x =1,即OF =1 ……2'23.(本题12分)(1)印制这批纪念册需制版费 1500 元,印制1千册纪念册的印刷费... 13000 元; ……4' (2)①由题意得:y =1500+1000x ·(2.2×4+0. 7×6)∴y =13000x +1500. ……4' ②当1≤x <5时,13000x +1500≤60 080∴x ≤4.5. ……不写不扣分当x ≥5时,此时y =1500+1000x ·(2.0×4+0.6×6)=11600x +1500, ……2' 当11600x +1500≤60 080时, ∴x ≤5.05,∴最多能印5.05千册. ……2'(第22题图)24.(本题14分)(1)解:∵A (0,4),B (-6,0)∴AO =4,OB =6, ……1' ∴S 菱形ABCD =4S △AOB =4×21×4×6=48. ……2'(2)①易得D (6,0),C (0,-4),∴直线AD 的函数表达式为y=432+-x ; 直线CD 的函数表达式为y=432-x . ……1' ∴当x =m 时,PQ =)432()432(--+-m m ),即PQ =83.4+-m . ……2'②易得∠GPQ =45°,E (2,0),当GP =GQ 时,∠GQP =∠GPQ =45°,∠PGQ =90°. 设PQ 与x 轴交于F ,则PQ =2E F ,即,)2(2834-=+-m m , ∴m=518. ……2'当PG=PQ 时,见右图:延长PQ 交l 于点H ,则GP=GH ,在△GPH 中,PH =,即244(2)833m m m ⎛⎫⎫-+--+=-+ ⎪⎪⎝⎭⎭∴m . ……2'当QP =QG 时,则∠PQG =Rt ∠,GQ ∥x 轴.∵P (m ,432+-m ),则Q (m ,432-m ),G (432,326--m m ), ∴QG =m -(635)326-=-m m ,∴834635+-=-m m ,11 ∴m =314. ……2' 综上所述:当m=181453时,△PQG 为等腰三角形. (3)m 的值是 . ……2'0718或。

浙江省杭州市2019-2020学年中考最新终极猜押数学试题含解析

浙江省杭州市2019-2020学年中考最新终极猜押数学试题含解析

浙江省杭州市2019-2020学年中考最新终极猜押数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a <1;④abc>1.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③2.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=()A.5B.32C.35D.723.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ4.关于▱ABCD的叙述,不正确的是()A.若AB⊥BC,则▱ABCD是矩形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D .若AB =AD ,则▱ABCD 是菱形5.如图,在Rt △ABC 中,∠C=90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E ,若BC=3,则DE 的长为( )A .1B .2C .3D .46.如果一元二次方程2x 2+3x+m=0有两个相等的实数根,那么实数m 的取值为( )A .m >98B .m 89fC .m=98D .m=897.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <.则k 的取值范围为( ) A .1k < B .1k ³ C .1k > D .1k <8.在0,-2,5,14,-0.3中,负数的个数是( ). A .1 B .2 C .3 D .49.如图所示的工件,其俯视图是( )A .B .C .D .10.若a 与﹣3互为倒数,则a=( )A .3B .﹣3C .D .-11.如图,用一个半径为6cm 的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G 向下移动了3πcm ,则滑轮上的点F 旋转了( )A .60°B .90°C .120°D .45°12.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx-k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将直线y=x沿y轴向上平移2个单位长度后,所得直线的函数表达式为_________,这两条直线间的距离为_____.14.计算(2a)3的结果等于__.15.若点(a,1)与(﹣2,b)关于原点对称,则b a=_______.16.已知扇形的圆心角为120°,弧长为6π,则扇形的面积是_____.17.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使点B 落在AC边上的B′处,则∠ADB′等于_____.18.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=_____度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛.若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是.若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率.20.(6分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上.年龄组x7 8 9 10 11 12 13 14 15 16 17男生平均身高y115.2 118.3 122.2 126.5 129.6 135.6 140.4 146.1 154.8 162.9 168.2(1)该市男学生的平均身高从岁开始增加特别迅速.(2)求直线AB所对应的函数表达式.(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?21.(6分)已知函数1yx=的图象与函数()0y kx k=≠的图象交于点()P m n,.(1)若2m n=,求k的值和点P的坐标;(2)当m n≤时,结合函数图象,直接写出实数k的取值范围.22.(8分)求抛物线y=x2+x﹣2与x轴的交点坐标.23.(8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x 的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?24.(10分)先化简,再求值:()2111xx⎛⎫-÷-⎪+⎝⎭,其中x为方程2320x x++=的根.25.(10分)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.分别求出y1,y2与x之间的关系式;当甲、乙两个商场的收费相同时,所买商品为多少件?当所买商品为5件时,应选择哪个商场更优惠?请说明理由.26.(12分)﹣(﹣1)2018+4﹣(13)﹣127.(12分)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣32与x轴交于点A(1,0)和点B(﹣3,0).绕点A旋转的直线l:y=kx+b1交抛物线于另一点D,交y轴于点C.(1)求抛物线的函数表达式;(2)当点D在第二象限且满足CD=5AC时,求直线l的解析式;(3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出△ACE面积的最大值;(4)如图2,在抛物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C 位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;③由抛物线的开口向下知a<1,∵对称轴为1>x=﹣>1,∴2a+b<1,故本选项正确;④对称轴为x=﹣>1,∴a、b异号,即b>1,∴abc<1,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.2.C【解析】【分析】由正方形的性质知DG=CG-CD=2、AD∥GF,据此证△ADM∽△FGM得AD DMFG GM=, 求出GM的长,再利用勾股定理求解可得答案.【详解】解:∵四边形ABCD和四边形CEFG是正方形,∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,∴DG=CG-CD=2,AD∥GF,则△ADM∽△FGM,∴AD DMFG GM=,即123GMGM-=,解得:GM=32,∴=,故选:C.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点.3.D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D .【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.4.B【解析】【分析】由矩形和菱形的判定方法得出A 、C 、D 正确,B 不正确;即可得出结论.【详解】解:A 、若AB ⊥BC ,则ABCD Y 是矩形,正确;B 、若AC BD ,则ABCD Y 是正方形,不正确;C 、若AC BD =,则ABCD Y 是矩形,正确;D 、若AB AD =,则ABCD Y 是菱形,正确;故选B .【点睛】本题考查了正方形的判定、矩形的判定、菱形的判定;熟练掌握正方形的判定、矩形的判定、菱形的判定是解题的关键.5.A【解析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE 垂直平分AB , ∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB , ∵∠C=90°,∴3∠CAD=90°, ∴∠CAD=30°, ∵AD 平分∠CAB ,DE ⊥AB ,CD ⊥AC , ∴CD=DE=BD , ∵BC=3, ∴CD=DE=1 考点:线段垂直平分线的性质6.C【解析】试题解析:∵一元二次方程2x 2+3x+m=0有两个相等的实数根,∴△=32-4×2m=9-8m=0,解得:m=98. 故选C .7.B【解析】【分析】求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可.【详解】解:解不等式组29611x xx k+>+⎧⎨-<⎩,得21xx k<⎧⎨<+⎩.∵不等式组29611x xx k+>+⎧⎨-<⎩的解集为x<2,∴k+1≥2,解得k≥1.故选:B.【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中.8.B【解析】【分析】根据负数的定义判断即可【详解】解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1.故选B.9.B【解析】试题分析:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选B.点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线.10.D【解析】试题分析:根据乘积是1的两个数互为倒数,可得3a=1,∴a=,故选C.考点:倒数.11.B【解析】【分析】由弧长的计算公式可得答案.【详解】 解:由圆弧长计算公式l=180n r π,将l=3π代入, 可得n =90o ,故选B.【点睛】 本题主要考查圆弧长计算公式l=180n r π,牢记并运用公式是解题的关键. 12.B【解析】试题分析:当x 1<x 2<0时,y 1>y 2,可判定k >0,所以﹣k <0,即可判定一次函数y=kx ﹣k 的图象经过第一、三、四象限,所以不经过第二象限,故答案选B .考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.y=x+1【解析】【分析】已知直线 y=x 沿y 轴向上平移1 个单位长度,根据一次函数图象的平移规律即可求得平移后的解析式为y=x+1.再利用等面积法求得这两条直线间的距离即可.【详解】∵直线 y=x 沿y 轴向上平移1个单位长度,∴所得直线的函数关系式为:y=x+1.∴A (0,1),B (1,0),∴,过点 O 作 OF ⊥AB 于点 F ,则12AB•OF=12OA•OB , ∴OF=222OA OB AB ⋅==, 即这两条直线间的距离为2.故答案为y=x+1,2.【点睛】本题考查了一次函数图象与几何变换:一次函数y=kx+b (k 、b 为常数,k≠0)的图象为直线,当直线平移时 k 不变,当向上平移m 个单位,则平移后直线的解析式为 y=kx+b+m .14.8【解析】试题分析:根据幂的乘方与积的乘方运算法则进行计算即可考点:(1)、幂的乘方;(2)、积的乘方15.12. 【解析】【详解】∵点(a ,1)与(﹣2,b )关于原点对称,∴b=﹣1,a=2,∴b a =12-=12.故答案为12. 考点:关于原点对称的点的坐标.16.27π【解析】 试题分析:设扇形的半径为r .则1206180r ππ=,解得r=9,∴扇形的面积=21209360π⨯=27π.故答案为27π. 考点:扇形面积的计算.17.40°.【解析】【详解】∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案为40°.18.1.【解析】试题分析:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=12BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=12×50°=1°.考点:菱形的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1);(2)【解析】【分析】1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.【详解】解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是: ;(2)画树状图得:∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,∴恰好选中甲、乙两人的概率为:【点睛】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.(1)11;(2)y =3.6x+90;(3)该市18岁男生年龄组的平均身高大约是174cm 左右.【解析】【分析】(1)根据统计图仔细观察即可得出结果(2)先设函数表达式,选取两个点带入求值即可(3)先设函数表达式,选取两个点带入求值,把x 18=带入预测即可.【详解】解:(1)由统计图可得,该市男学生的平均身高从 11 岁开始增加特别迅速,故答案为:11;(2)设直线AB 所对应的函数表达式y kx b =,+ ∵图象经过点7115.211129.6(,)、(,),则115.27129.611k b k b =+⎧⎨=+⎩, 解得k 3.6b 90=⎧⎨=⎩. 即直线AB 所对应的函数表达式:y 3.6x 90+=;(3)设直线CD 所对应的函数表达式为:y mx n +=,135.612154.815m+n m n =+⎧⎨=⎩,得 6.458.8m n =⎧⎨=⎩, 即直线CD 所对应的函数表达式为:y 6.4x 58.8=,+把x 18=代入y 6.4x 58.8+=得y 174=, 即该市18岁男生年龄组的平均身高大约是174cm 左右.【点睛】此题重点考察学生对统计图和一次函数的应用,熟练掌握一次函数表达式的求法是解题的关键. 21.(1)12k =,P ⎭,或P ⎛- ⎝⎭;(2) 1k ≥. 【解析】【分析】(1)将P (m ,n )代入y=kx ,再结合m=2n 即可求得k 的值,联立y=1x 与y=kx 组成方程组,解方程组即可求得点P 的坐标;(2)画出两个函数的图象,观察函数的图象即可得.【详解】(1)∵函数()y kx k 0=≠的图象交于点()P m n ,,∴n=mk ,∵m=2n ,∴n=2nk ,∴k=12, ∴直线解析式为:y=12x , 解方程组112y x y x ⎧=⎪⎪⎨⎪=⎪⎩,得112x y ⎧=⎪⎨=⎪⎩,222x y ⎧=⎪⎨=-⎪⎩, ∴交点P 的坐标为:,2)或(,-2); (2)由题意画出函数1y x =的图象与函数y kx =的图象如图所示, ∵函数1y x=的图象与函数y kx =的交点P 的坐标为(m ,n ), ∴当k=1时,P 的坐标为(1,1)或(-1,-1),此时|m|=|n|,当k>1时,结合图象可知此时|m|<|n|, ∴当m n ≤时, k ≥1.【点睛】本题考查了反比例函数与正比例函数的交点,待定系数法等,运用数形结合思想解题是关键. 22.(1,0)、(﹣2,0)【解析】试题分析:抛物线与x 轴交点的纵坐标等于零,由此解答即可.试题解析:解:令0y =,即220x x +-=.解得:11x =,22x =-.∴该抛物线与x 轴的交点坐标为(-2,0),(1,0).23. (1) 0≤x <20;(2) 降价2.5元时,最大利润是6125元【解析】【分析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x 的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.【详解】(1)根据题意得y=(70−x−50)(300+20x)=−20x 2+100x+6000,∵70−x−50>0,且x≥0,∴0≤x<20.(2)∵y=−20x 2+100x+6000=−20(x−52)2+6125, ∴当x=52时,y 取得最大值,最大值为6125, 答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点睛】本题考查的知识点是二次函数的应用,解题的关键是熟练的掌握二次函数的应用.24.1【解析】【分析】先将除式括号里面的通分后,将除法转换成乘法,约分化简.然后解一元二次方程,根据分式有意义的条件选择合适的x 值,代入求值.解:原式=()()()21111111x x x x x x x --+-÷=-⋅=--+--. 解2320x x ++=得,122,?1x x =-=-,∵1x =-时,21x +无意义, ∴取2x =-.当2x =-时,原式=()211---=. 25.(1);y 2=2250x ;(2)甲、乙两个商场的收费相同时,所买商品为6件;(3)所买商品为5件时,应选择乙商场更优惠.【解析】试题分析:(1)由两家商场的优惠方案分别列式整理即可;(2)由收费相同,列出方程求解即可;(3)由函数解析式分别求出x=5时的函数值,即可得解试题解析:(1)当x=1时,y 1=3000;当x >1时,y 1=3000+3000(x ﹣1)×(1﹣30%)=2100x+1.∴;y 2=3000x (1﹣25%)=2250x ,∴y 2=2250x ;(2)当甲、乙两个商场的收费相同时,2100x+1=2250x ,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y 1=2100x+1=2100×5+1=11400, y 2=2250x=2250×5=11250,∵11400>11250,∴所买商品为5件时,应选择乙商场更优惠.考点:一次函数的应用26.-1.【解析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.【详解】原式=﹣1+1﹣3=﹣1.【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.27.(1)y =12x 2+x ﹣32;(2)y =﹣x+1;(3)当x =﹣2时,最大值为94;(4)存在,点D 的横坐标为﹣3或7或﹣7.【解析】【分析】(1)设二次函数的表达式为:y =a (x+3)(x ﹣1)=ax 2+2ax ﹣3a ,即可求解;(2)OC ∥DF ,则1,5AC AO CD OF == 即可求解; (3)由S △ACE =S △AME ﹣S △CME 即可求解;(4)分当AP 为平行四边形的一条边、对角线两种情况,分别求解即可.【详解】(1)设二次函数的表达式为:y =a (x+3)(x ﹣1)=ax 2+2ax ﹣3a ,即:332a -=-,解得:12a =, 故函数的表达式为: 21322y x x =+-①; (2)过点D 作DF ⊥x 轴交于点F ,过点E 作y 轴的平行线交直线AD 于点M ,∵OC ∥DF ,∴1,5AC AO CD OF ==OF =5OA =5, 故点D 的坐标为(﹣5,6),将点A 、D 的坐标代入一次函数表达式:y =mx+n 得:650m n m n =-+⎧⎨=+⎩,解得:11.m n =-⎧⎨=⎩即直线AD 的表达式为:y =﹣x+1,(3)设点E 坐标为213,22x x x ⎛⎫+- ⎪⎝⎭, 则点M 坐标为(),1x x -+,则221315122222EM x xx x x =-+--+=--+, ()211912244ACE AME CME S S S EM x V V V ,=-=⨯⨯=-++ ∵104a =-<,故S △ACE 有最大值, 当x =﹣2时,最大值为94; (4)存在,理由:①当AP 为平行四边形的一条边时,如下图,设点D 的坐标为213,22t t t ⎛⎫+- ⎪⎝⎭, 将点A 向左平移2个单位、向上平移4个单位到达点P 的位置,同样把点D 左平移2个单位、向上平移4个单位到达点Q 的位置,则点Q 的坐标为215222t t t ⎛⎫-++ ⎪⎝⎭,, 将点Q 的坐标代入①式并解得:3t ;=- ②当AP 为平行四边形的对角线时,如下图,设点Q 坐标为213,22t t t ⎛⎫+- ⎪⎝⎭,点D 的坐标为(m ,n ), AP 中点的坐标为(0,2),该点也是DQ 的中点,则:20213222,2m t n t t +⎧=⎪⎪⎨++-⎪=⎪⎩ 即: 2111,22m t n t t =-⎧⎪⎨=--+⎪⎩将点D 坐标代入①式并解得:7m =.-或.故点D的横坐标为:3【点睛】本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方法求解点的坐标,本题难度大.。

浙江省杭州市2019-2020学年中考数学第二次押题试卷含解析

浙江省杭州市2019-2020学年中考数学第二次押题试卷含解析

浙江省杭州市2019-2020学年中考数学第二次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知x 1,x 2是关于x 的方程x 2+ax -2b =0的两个实数根,且x 1+x 2=-2,x 1·x 2=1,则b a 的值是( ) A .B .-C .4D .-12.某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为( ) A .1.6×104人B .1.6×105人C .0.16×105人D .16×103人3.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为()A .215B .8C .210D .2134.当函数y=(x-1)2-2的函数值y 随着x 的增大而减小时,x 的取值范围是( ) A .x 0>B .x 1<C .x 1>D .x 为任意实数5.下列计算正确的是( ) A .(﹣2a )2=2a 2 B .a 6÷a 3=a 2 C .﹣2(a ﹣1)=2﹣2aD .a•a 2=a 26.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .110B .19C .16D .157.若一次函数(1)y m x m =++的图像过第一、三、四象限,则函数2y mx mx =-( ) A .有最大值4m B .有最大值4m -C .有最小值4m D .有最小值4m -8.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )A .a b 0+>B .ab<0C .a>bD .b a 0->9.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A .B .C .D .10.下列各式计算正确的是( ) A .633-=B .1236⨯=C .3535+=D .1025÷=11.如图,在△ABC 中,过点B 作PB ⊥BC 于B ,交AC 于P ,过点C 作CQ ⊥AB ,交AB 延长线于Q ,则△ABC 的高是( )A .线段PB B .线段BC C .线段CQD .线段AQ12.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.方程1125x x ++-=的根为_____.14.如图,AB 是⊙O 的直径,CD 是弦,CD ⊥AB 于点E ,若⊙O 的半径是5,CD =8,则AE =______.15.分解因式:4m 2﹣16n 2=_____.16.在平面直角坐标系xOy 中,若干个半径为1个单位长度,圆心角是60o 的扇形按图中的方式摆放,动点K 从原点O 出发,沿着“半径OA →弧AB →弧BC →半径CD →半径DE ⋯”的曲线运动,若点K 在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒π3个单位长度,设第n 秒运动到点K ,(n 为自然数),则3K 的坐标是____,2018K 的坐标是____17.如图,已知P 是线段AB 的黄金分割点,且PA >PB .若S 1表示以PA 为一边的正方形的面积,S 2表示长是AB 、宽是PB 的矩形的面积,则S 1_______S 2.(填“>”“="”“" <”)18.如图,A 、B 、C 是⊙O 上的三点,若∠C=30°,OA=3,则弧AB 的长为______.(结果保留π)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:(1)求购进的第一批文化衫的件数;(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?20.(6分)解不等式组:2(3)47{22x x x x +≤++>并写出它的所有整数解.21.(6分)如图,半圆O 的直径AB =5cm ,点M 在AB 上且AM =1cm ,点P 是半圆O 上的动点,过点B 作BQ ⊥PM 交PM (或PM 的延长线)于点Q .设PM =xcm ,BQ =ycm .(当点P 与点A 或点B 重合时,y 的值为0)小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 1 1.5 2 2.5 3 3.5 4y/cm 0 3.7 ______ 3.8 3.3 2.5 ______ (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60°时,PM的长度约为______cm.22.(8分)解方程311(1)(2)xx x x-=--+.23.(8分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.24.(10分)如果a2+2a-1=0,求代数式24()2aaa a-⋅-的值.25.(10分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。

浙江省金华市2019-2020学年中考数学第四次押题试卷含解析

浙江省金华市2019-2020学年中考数学第四次押题试卷含解析

浙江省金华市2019-2020学年中考数学第四次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知△ABC ,AB =AC ,将△ABC 沿边BC 翻转,得到的△DBC 与原△ABC 拼成四边形ABDC ,则能直接判定四边形ABDC 是菱形的依据是( )A .四条边相等的四边形是菱形B .一组邻边相等的平行四边形是菱形C .对角线互相垂直的平行四边形是菱形D .对角线互相垂直平分的四边形是菱形2.下面调查中,适合采用全面调查的是( )A .对南宁市市民进行“南宁地铁1号线线路”B .对你安宁市食品安全合格情况的调查C .对南宁市电视台《新闻在线》收视率的调查D .对你所在的班级同学的身高情况的调查3.﹣23的绝对值是( ) A .﹣322 B .﹣23 C .23 D .3224.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为( )A 2B .2C .3D .45.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为( ) A .485×105 B .48.5×106 C .4.85×107 D .0.485×1086.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉( )A .6.5千克B .7.5千克C .8.5千克D .9.5千克7.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是( )A .480480420x x-=- B .480480204x x -=+ C .480480420x x -=+ D .480480204x x -=- 8.一、单选题 如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF等于()A.75 B.100 C.120 D.1259.如图是测量一物体体积的过程:步骤一:将180 mL的水装进一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().A.10 cm3以上,20 cm3以下B.20 cm3以上,30 cm3以下C.30 cm3以上,40 cm3以下D.40 cm3以上,50 cm3以下10.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF 的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD11.tan45º的值为()A.12B.1 C.22D212.下列各数中,无理数是()A.0 B.227C4D.π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算a3÷a2•a的结果等于_____.14.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小等于__________度.15.计算:(12)﹣1﹣(5﹣π)0=_____.16.一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限.则k的取值范围是_____.17.2的平方根是_________.18.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,后求值:(1﹣11a+)÷(2221a aa a-++),其中a=1.20.(6分)解不等式组:426113x xxx>-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解.21.(6分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.(问题引入)(1)如图1,若点P为AC的中点,求ADDO的值.温馨提示:过点C作CE∥AO交BD于点E.(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:PD ADPB AO=.(问题解决)(3)如图2,若AO=BO,AO⊥BO,14ADAO=,求tan∠BPC的值.22.(8分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A31)在反比例函数y =kx的图象上.(1)求反比例函数y=kx的表达式;(2)在x轴上是否存在一点P,使得S△AOP=12S△AOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由.23.(8分)先化简222211(1)11x x xxx x-+-÷-+--,然后从﹣5<x<3的范围内选取一个合适的整数作为x的值代入求值.24.(10分)在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD的长.25.(10分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:本次调查人数共人,使用过共享单车的有人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?26.(12分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是,推断的数学依据是.(2)如图②,在△ABC中,∠B=15°,2,BC=8,AD为边BC的中线,求边BC的中垂距.(3)如图③,在矩形ABCD中,AB=6,AD=1.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.27.(12分)如图,已知CD=CF,∠A=∠E=∠DCF=90°,求证:AD+EF=AE参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.【详解】∵将△ABC 延底边 BC 翻折得到△DBC ,∴AB=BD , AC=CD ,∵AB=AC ,∴AB=BD=CD=AC ,∴四边形 ABDC 是菱形;故选A.【点睛】本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.2.D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】A 、对南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;B 、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;C 、对南宁市电视台《新闻在线》收视率的调查适宜采用抽样调查方式;D 、对你所在的班级同学的身高情况的调查适宜采用普查方式;故选D .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.C【解析】【分析】根据负数的绝对值是它的相反数,可得答案.【详解】│A 错误;│-3│=3,B 错误;│2│=2,D 错误;│3│=3,故选C. 【点睛】本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.4.B【解析】【分析】圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.【详解】解:∵圆内接正六边形的边长是1,∴圆的半径为1.那么直径为2.圆的内接正方形的对角线长为圆的直径,等于2.∴圆的内接正方形的边长是.故选B.【点睛】本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.5.C【解析】【分析】依据科学记数法的含义即可判断.【详解】解:48511111=4.85×117,故本题选择C.【点睛】把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.6.C【解析】【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.【详解】设每个小箱子装洗衣粉x千克,由题意得:4x+2=36,解得:x=8.5,即每个小箱子装洗衣粉8.5千克,故选C.【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.7.C【解析】【分析】本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【详解】解:原计划用时为:480x,实际用时为:48020x+.所列方程为:480480420x x-=+,故选C.【点睛】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.8.B【解析】【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1.故选:B.【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.9.C【解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x,则有3300180 4300180 xx-⎧⎨-⎩<>解得30<x<1.故一颗玻璃球的体积在30cm3以上,1cm3以下.故选C.点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x 的取值范围.10.B【解析】【分析】由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD 均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.【详解】Q四边形ABCD是平行四边形,∴AD//BC,AD=BC,A、∵AE=CF,∴DE=BF,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF;B、∵BE=DF,∴四边形BFDE是等腰梯形,∴本选项不一定能判定BE//DF;C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF;D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF.故选B.【点睛】本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.11.B【解析】【分析】【详解】解:根据特殊角的三角函数值可得tan45º=1,故选B.【点睛】本题考查特殊角的三角函数值.12.D【解析】【分析】利用无理数定义判断即可.【详解】解:π是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a1【解析】【分析】根据同底数幂的除法法则和同底数幂乘法法则进行计算即可.【详解】解:原式=a3﹣1+1=a1.故答案为a1.【点睛】本题考查了同底数幂的乘除法,关键是掌握计算法则.14.45【解析】试题解析:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°-∠ACE=90°-x-y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°-y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.考点:1.等腰三角形的性质;2.三角形内角和定理.。

浙江省绍兴市2019-2020学年中考数学预测卷三(含答案)

浙江省绍兴市2019-2020学年中考数学预测卷三(含答案)

浙江省绍兴市2019-2020学年中考数学预测卷三(含答案)一、选择题(本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(-2)2004+3×(-2)2003的值为()A. -22003B. 22003C. -22004D. 22004【答案】A【考点】有理数的乘法运算律2.当x=1时,代数式x3+x+m的值是7,则当x=-1时,这个代数式的值是()A. 7B. 3C. 1D. -7【答案】B【考点】代数式求值3.以下3个说法中:①在同一直线上的4点A、B、C、D只能表示5条不同的线段;②经过两点有一条直线,并且只有一条直线;③同一个锐角的补角一定大于它的余角.说法都正确的结论是()A. ②③B. ③C. ①②D. ①【答案】A【考点】余角、补角及其性质4.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A. 30°B. 35°C. 40°D. 50°【答案】C【考点】平行线的性质5.在△ABC中,∠A=90°,AB=3cm,AC=4cm,若以A为圆心3cm为半径作⊙O,则BC与⊙O的位置关系是()A. 相交B. 相离C. 相切D. 不能确定【答案】A【考点】三角形的面积,勾股定理,直线与圆的位置关系6.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A. 19B. 18C. 16D. 15【答案】B【考点】二元一次方程组的实际应用-鸡兔同笼问题7.以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为()A. 4月份三星手机销售额为65万元B. 4月份三星手机销售额比3月份有所上升C. 4月份三星手机销售额比3月份有所下降D. 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额【答案】B【考点】条形统计图,折线统计图,利用统计图表分析实际问题8.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A. x≥11B. 11≤x<23C. 11<x≤23D. x≤23【答案】C【考点】一元一次不等式组的应用9.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD 的最小值为()A. 4B. 5C. 6D. 7【答案】B【考点】轴对称的应用-最短距离问题10.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()A. 1个B. 2个C. 3个D. 4个【答案】 D【考点】全等三角形的判定与性质,平行四边形的性质,菱形的判定与性质二、填空题(本大题共6小题,每小题5分,共30分)11.从甲、乙两班分别任抽10名学生进行英语口语测验,其测试成绩的方差是s甲2=13,s乙2=26,,则________班学生的成绩比较整齐.【答案】甲【考点】方差12.如图,一副三角板△AOC和△BCD如图摆放,则∠AOB=________.【答案】165°【考点】三角形的外角性质13.如图,△ABC的三条角平分线交于O点,已知△ABC的周长为20,OD⊥AB,OD=5,则△ABC的面积=________ .【答案】50【考点】角平分线的性质14.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立,根据图乙,利用面积的不同表示方法,仿照上边的式子写出一个等式________.【答案】(a+b)(a+2b)=a2+3ab+2b2【考点】整式的混合运算15.已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是________.【答案】<m<【考点】二元一次方程组的解,分式方程的解,解一元一次不等式16.如图1,在△ABC中,∠BAC=90°,AB=AC=2 ,D、E两点分别在AC、BC上,且DE∥AB,DC=2 ,将△CDE绕点C顺时针旋转得到△CD′E′,如图2,点D、E对应点分别为D′、E′、D′、E′与AC相交于点M,当E′刚好落在边AB上时,△AMD′的面积为________.【答案】3 ﹣5【考点】相似三角形的判定与性质,锐角三角函数的定义,特殊角的三角函数值,旋转的性质,等腰直角三角形三、解答题(本大题共8小题,共80分)17.(1)计算:﹣sin60°+|2﹣|+(2)解分式方程:+2=【答案】(1)解:原式= ×3 ﹣× +2﹣+= +2﹣=2;(2)解:去分母得,x﹣1+2(x﹣2)=﹣3,3x﹣5=﹣3,解得x= ,检验:把x= 代入x﹣2≠0,所以x= 是原方程的解.【考点】实数的运算,解分式方程18.如图,BP、CP分别是△ABC的内角或外角平分线,请你根据下面的三种情形分别画出点P到△ABC三边所在直线的距离.【答案】解:直接过点向各边所在直线做垂线即可【考点】作图-垂线19.随着航母编队的成立,我国海军日益强大.2018年4月12日,中央军委在南海海域隆重举行海上阅兵,在阅兵之前我军加强了海上巡逻,如图,我军巡逻舰在某海域航行到A处时,该舰在观测点P的南偏东45°的方向上,且与观测点P的距离PA为400海里;巡逻舰继续沿正北方向航行一段时间后,到达位于观测点P的北偏东30°方向上的B处,问此时巡逻舰与观测点P的距离PB为多少海里?(参考数据:≈1.414,≈1.732,结果精确到1海里).【答案】解:在△APC中,∠ACP=90°,∠APC=45°,则AC=PC.∵AP=400海里,∴由勾股定理知,AP2=AC2+PC2=2PC2,即4002=2PC2,故PC=200 海里.又∵在直角△BPC中,∠PCB=90°,∠BPC=60°,∴PB= =2PC=400 ≈566(海里).答:此时巡逻舰与观测点P的距离PB约为566海里.【考点】解直角三角形的应用﹣方向角问题20.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC= = =5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【考点】角平分线的性质,勾股定理,平行四边形的性质,矩形的判定21.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)求九(1)班的学生人数,并把条形统计图补充完整;(2)扇形统计图中m=________,n=________,表示“足球”的扇形的圆心角是________度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.【答案】(1)解:九(1)班的学生人数为:12÷30%=40(人),喜欢足球的人数为:40﹣4﹣12﹣16=40﹣32=8(人)补全统计图如图所示;(2)10;20;72(3)解:根据题意画出树状图如下:一共有12种情况,恰好是1男1女的情况有6种,∴P(恰好是1男1女)= = .【考点】扇形统计图,条形统计图,列表法与树状图法,概率公式22.如图,在平面直角坐标系中,直线l与x轴相交于点M,与y轴相交于点N,Rt△MON的外心为点A (,﹣2),反比例函数y= (x>0)的图象过点A.(1)求直线l的解析式;(2)在函数y= (x>0)的图象上取异于点A的一点B,作BC⊥x轴于点C,连接OB交直线l于点P.若△ONP的面积是△OBC面积的3倍,求点P的坐标.【答案】(1)解:∵Rt△MON的外心为点A(,﹣2),∴A为MN中点,即M(3,0),N(0,﹣4),设直线l解析式为y=mx+n(m≠0),将M与N代入得:,解得:m= ,n=﹣4,则直线l解析式为y= x﹣4;(2)解:将A(,﹣2)代入反比例解析式y= 得:k=﹣3,∴反比例解析式为y=﹣,∵B为反比例函数图象上的点,且BC⊥x轴,∴S△OBC= ,∵S△ONP=3S△OBC,∴S△ONP= ,设P横坐标为a(a>0),∴ON•a= ,即a= ,把x=a= 代入y= x﹣4,得y=﹣1.则P坐标为(,﹣1).【考点】待定系数法求一次函数解析式,反比例函数系数k的几何意义,待定系数法求反比例函数解析式,三角形的面积,三角形的外接圆与外心23.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长.【答案】(1)解:结论:BQ=CP.理由:如图1中,作PH∥AB交CO于H.在Rt△ABC中,∵∠ACB=90°,∠A=30°,点O为AB中点,∴CO=AO=BO,∠CBO=60°,∴△CBO是等边三角形,∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°,∴∠CHP=∠CPH=60°,∴△CPH是等边三角形,∴PC=PH=CH,∴OH=PB,∵∠OPB=∠OPQ+∠QPB=∠OCB+∠COP,∵∠OPQ=∠OCP=60°,∴∠POH=∠QPB,∵PO=PQ,∴△POH≌△QPB,∴PH=QB,∴PC=BQ(2)解:成立:PC=BQ.理由:作PH∥AB交CO的延长线于H.在Rt△ABC中,∵∠ACB=90°,∠A=30°,点O为AB中点,∴CO=AO=BO,∠CBO=60°,∴△CBO是等边三角形,∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°,∴∠CHP=∠CPH=60°,∴△CPH是等边三角形,∴PC=PH=CH,∴OH=PB,∵∠POH=60°+∠CPO,∠QPO=60°+∠CPQ,∴∠POH=∠QPB,∵PO=PQ,∴△POH≌△QPB,∴PH=QB,∴PC=BQ.(3)解:如图3中,作CE⊥OP于E,在PE上取一点F,使得FP=FC,连接CF.∵∠OPC=15°,∠OCB=∠OPC+∠POC ,∴∠POC=45°,∴CE=EO,设CE=CO=a,则FC=FP=2a,EF= a,在Rt△PCE中,PC= = = ,∵PC+CB=4,∴,解得a= ,∴PC= ,由(2)可知BQ=PC,∴BQ= .【考点】全等三角形的判定与性质,等边三角形的判定与性质,勾股定理24.学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【答案】(1)解:设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)解:设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【考点】二元一次方程组的实际应用-销售问题11 / 11。

浙江省丽水、金华市2019-2020学年中考数学预测卷(含答案)

浙江省丽水、金华市2019-2020学年中考数学预测卷(含答案)

浙江省丽水、金华市2019-2020学年中考数学预测卷(含答案)一、选择题(每小题3分,共30分)1.下列比较大小,正确的是( )A. -3<-4B. -(-3)<|-3|C. ->-D. >-【答案】 D【考点】有理数大小比较2.下列运算正确的是()A. x2+x3=x6B. (x3)2=x6C. 2x+3y=5xyD. x6÷x3=x2【答案】B【考点】幂的乘方与积的乘方,同底数幂的除法3.如图,同位角是()A. ∠1和∠2B. ∠3和∠4C. ∠2和∠4D. ∠1和∠4【答案】D【考点】同位角、内错角、同旁内角4.若分式的值为零,则x等于()A. 0B. 2C. ±2D. ﹣2【答案】 D【考点】分式的值为零的条件5.由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A. 5B. 6C. 7D. 8【答案】A【考点】由三视图判断几何体6.如图是12个大小相同的小正方形,其中5个小正方形已涂上阴影,现随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是( )A. B. C. D.【答案】B【考点】几何概率7.如图,⊙O的半径为1,动点P从点A处沿圆周以每秒45°圆心角的速度逆时针匀速运动,即第1秒点P 位于如图所示位置,第2秒B点P位于点C的位置,……,则第2017秒点P所在位置的坐标为()A. (,)B. (- , )C. (0,﹣1)D. (,- )【答案】A【考点】坐标与图形性质,正多边形和圆,探索图形规律8.如图,我校本部教师楼AD上有“育才中学”四个字的展示牌DE,某数学兴趣小组的同学准备利用所学的三角函数知识估测该教师楼的高度,由于场地有限,不便测量,所以小明沿坡度i=:1的阶梯从看台前的B处前行50米到达C处,测得展示牌底部D的仰角为45°,展示牌顶部E的仰角为53°(小明的身高忽略不计),已知展示牌高DE=15米,则该教师楼AD的高度约为()米.(参考数据:Sin37°≈0,6,cos 37°≈0,8,tan37°≈0.75,≈1.7)A. 102.5B. 87.5C. 85D. 70【答案】B【考点】解直角三角形的应用﹣仰角俯角问题9.如图,在平面直角坐标系xOy中,直线经过第一象限内一点A,且OA=4过点A作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,则点C的坐标为()A. (- ,2)B. (- ,1)C. (-2,)D. (-1,)【答案】 D【考点】正比例函数的图象和性质,旋转的性质10.如图,已知直线l的解析式是y= x-4,并且与x轴、y轴分别交于A,B两点.一个半径为1.5的☉C,圆心C 从点(0,1.5)开始以每秒移动0.5个单位长度的速度沿着y轴向下运动,当☉C与直线l相切时,则该圆运动的时间为( )A. 3 s或6 sB. 6 s或10 sC. 3 s或16 sD. 6 s或16 s【答案】 D【考点】切线的判定,一次函数图像与坐标轴交点问题,几何图形的动态问题二、填空题(每小题4分,共24分)11.如果,,则=________.【答案】3【考点】代数式求值,因式分解的应用12.如图,线段AE,BD交于点C,AB=DE,请你添加一个条件________,使得△ABC≌△DEC.【答案】∠A=∠E(或∠B=∠D)【考点】三角形全等的判定13.重庆市上周每天的最高气温(单位:)分别为25,27,29,27,25,23,25,则这组数据的中位数和众数之和为________.【答案】50【考点】中位数,众数14.如果是整数,且,那么我们规定一种记号,例如,那么记作(3,9)=2,根据以上规定,求(−2,16)=________.【答案】4【考点】定义新运算15.如图,矩形中,,,点从开始沿折线以的速度运动,点从开始沿边以的速度移动,如果点、分别从、同时出发,当其中一点到达时,另一点也随之停止运动,设运动时间为,当________时,四边形也为矩形.【答案】4【考点】矩形的性质,几何图形的动态问题16.如图,将边长为的正方形绕点顺时针旋转到的位置,旋转角为30°,则点运动到点时所经过的路径长为________.【答案】【考点】正方形的性质,弧长的计算,旋转的性质三、解答题(8小题,共66分)17.(1);(2)(﹣3a)2•(a2)3÷a3.【答案】(1)解:原式=1﹣4+(﹣3× )2018=﹣3+(﹣1)2018=﹣3+1=﹣2;(2)解:原式=9a2•a6÷a3=9a8÷a3=9a5【考点】实数的运算,整式的混合运算18.(1)解方程=2;(2)解不等式组.【答案】(1)解:去分母,得x+3=2(x-1).解得x=5.经检验:x=5时,x-1≠0所以,x=5是原方程的解.(2)解:解不等式①,得x≤4,解不等式②,得x>-1,在数轴上表示这两个不等式的解集:∴原不等式组的解集为:-1<x≤4【考点】解分式方程,在数轴上表示不等式(组)的解集,解一元一次不等式组19.某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个随机抽取了部分学生的听写结果,绘制成如下的图表.101525mn根据以上信息完成下列问题:(1)统计表中的=________,=________,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是________;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.【答案】(1)30;20(2)90°(3)解:估计这所学校本次听写比赛不合格的学生人数为:900×(10%+15%+25%)=450人【考点】用样本估计总体,频数(率)分布表,频数(率)分布直方图,扇形统计图20.如图,在□ABCD中,E、F分别是BC、AD上的一点,BE=DF.(1)求证:AE=CF.(2)若,求∠B的度数.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,在△ABE和△CDF中,,∴△ABE≌△CDF,∴AE=CF;(2)解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠BCD=180°,又∵∠BCD=2∠B,∴∠B=60°.【考点】全等三角形的判定与性质,平行四边形的性质21.如图,AB是⊙O的直径,C是的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE 的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.【答案】(1)解:连接,∵是中点,是的直径,∴,∵是的切线,∴,∴,∵,∴(2)解:连接BC,∵是的中点,∴,在中,,,,,∴,∵,∴,∴,∵是直径,∴,∴,∴.【考点】圆的综合题22.如图,已知抛物线y=x2-(2m+1)x+m2+m-2与x轴交于A、B两点,点A在点B的左边,与y轴交于点C,P(s,t)为抛物线上A、B之间一点(不包括A、B),连接AP、BP分别交y轴于点E、D(1)若m=-1,求A、B两点的坐标(2)若s=1,求ED的长度(3)若∠BAP=∠ODP,求t的值【答案】(1)解:A(-2,0)、B(1,0)(2)解:∵y=[x-(m+2)][x-(m-1)]∴A(m-1,0)、B(m+2,0)∵s=1∴P(1,m2-m-2)∴直线AP的解析式为y=-(m+1)x+m2-1直线BP的解析式为y=-(m-2)x+m2-4∴DE=m2-1-(m2-4)=3(3)解:∵∠BAP=∠ODP∴∠DPE=∠AOE=90°过点P作PQ⊥x轴于Q由射影定理得,t2=(s-x A)(x B-s)∴s(x A+x B)-s2-x A x B=t2∴s·(2m+1)-s2-(m-1)(m+2)=t2当x=s时,t=s2-(2m+1)s+(m-1)(m+2)∴t2=-t,解得t=-1【考点】二次函数图像与坐标轴的交点问题,二次函数的实际应用-几何问题23.如图,已知,A(0,6),B(-4.5,0),C(3,0),D为B点关于AC的对称点,反比例函数y=的图象经过D点.(1)点D的坐标是________;(2)求此反比例函数的解析式;(3)已知在y= 的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M 点的坐标.【答案】(1)(7.5,6)(2)解:反比例函数y= 的图象经过D点,∴,∴∴反比例函数的解析式为:y=(3)解:∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,AN是BM经过平移得到的,∴首先BM向右平移了4.5个单位长度,N点的横坐标为4.5,代入y= ,得y= 10,∴M点的纵坐标为10-6=4;∴M点的坐标为:(0,4).【考点】待定系数法求反比例函数解析式,平行四边形的性质,几何图形的动态问题24.如图(甲),在正方形中,是上一点,是延长线上一点,且.(1)求证: ;(2)在如图(甲)中,若在上,且,则成立吗?证明你的结论.(3)运用(1)(2)解答中积累的经验和知识,完成下题:如图(乙)四边形中( ),,,点是上一点,且,,求的长.【答案】(1)解:在正方形ABCD中CB=CD,∠B=∠CDA=90°,∴∠CDF=∠B=90°.在△BCE和△DCF中,∴△BCE≌△DCF(SAS).∴CE=CF(2)解:GE=BE+GD成立.理由如下:∵∠BCD=90°,∠GCE=45°,∴∠BCE+∠GCD=45°.∵△BCE≌△DCF(已证),∴∠BCE=∠DCF.∴∠GCF=∠GCD+∠DCF=∠GCD+∠BCE=45°.∴∠ECG=∠FCG=45°.在△ECG和△FCG中,,∴△ECG≌△FCG(SAS).∴GE=FG.∵FG=GD+DF,∴GE=BE+GD(3)解:①如图2,过点C作CG⊥AD,交AD的延长线于点G,由(2)和题设知:DE=DG+BE,设DG=x,则AD=6-x,DE=x+3,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(6-x)2+32=(x+3)2,解得x=2.∴DE=2+3=5.【考点】全等三角形的判定与性质,正方形的性质11 / 11。

浙江省杭州市2019-2020学年中考数学第四次押题试卷含解析

浙江省杭州市2019-2020学年中考数学第四次押题试卷含解析

浙江省杭州市2019-2020学年中考数学第四次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)2.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.23D.333.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>34.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a=32b B.a=2b C.a=52b D.a=3b5.已知二次函数y=3(x ﹣1)2+k 的图象上有三点A (2,y 1),B (2,y 2),C (﹣5,y 3),则y 1、y 2、y 3的大小关系为( ) A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 16.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .547.如图给定的是纸盒的外表面,下面能由它折叠而成的是( )A .B .C .D .8.把8a 3﹣8a 2+2a 进行因式分解,结果正确的是( ) A .2a (4a 2﹣4a+1) B .8a 2(a ﹣1)C .2a (2a ﹣1)2D .2a (2a+1)29.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是( )A .13;13B .14;10C .14;13D .13;1410.设a ,b 是常数,不等式10x a b +>的解集为15x <,则关于x 的不等式0bx a ->的解集是( )A .15x >B .15x <-C .15x >-D .15x <11.如图,已知▱ABCD 中,E 是边AD 的中点,BE 交对角线AC 于点F ,那么S △AFE :S 四边形FCDE 为( )A .1:3B .1:4C .1:5D .1:612.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动一个单位,依次得到点P 1(0,1);P 2(1,1);P 3(1,0);P 4(1,﹣1);P 5(2,﹣1);P 6(2,0)……,则点P 2019的坐标是_____.14.如图,在平面直角坐标系中,抛物线y=﹣x 2+4x 与x 轴交于点A ,点M 是x 轴上方抛物线上一点,过点M 作MP ⊥x 轴于点P ,以MP 为对角线作矩形MNPQ ,连结NQ ,则对角线NQ 的最大值为_________.15.若2216a b -=,13a b -=,则+a b 的值为 ________ .16. 一般地,当α、β为任意角时,sin (α+β)与sin (α﹣β)的值可以用下面的公式求得:sin (α+β)=sinα•cosβ+cosα•sinβ;sin (α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin (60°+30°)=sin60°•cos30°+cos60°•sin30°=331122⨯+⨯=1.类似地,可以求得sin15°的值是_______. 17.如图,在同一平面内,将边长相等的正三角形和正六边形的一条边重合并叠在一起,则∠1的度数为_____.18.计算22111x x x +--的结果为 . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)计算:|﹣3|﹣16﹣2sin30°+(﹣12)﹣2(2)化简:22222()x x y x yx y x y x y +--÷++-. 20.(6分)如图,把两个边长相等的等边△ABC 和△ACD 拼成菱形ABCD ,点E 、F 分别是CB 、DC 延长上的动点,且始终保持BE=CF ,连结AE 、AF 、EF .求证:AEF 是等边三角形.21.(6分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题: (1)这次知识竞赛共有多少名学生?(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.22.(8分)现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?23.(8分)如图,在大楼AB 的正前方有一斜坡CD ,CD=13米,坡比DE:EC=1:125,高为DE ,在斜坡下的点C 处测得楼顶B 的仰角为64°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中A 、C 、E 在同一直线上.求斜坡CD 的高度DE ;求大楼AB 的高度;(参考数据:sin64°≈0.9,tan64°≈2).24.(10分)我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确数字x 人数A 0≤x<8 10B 8≤x<16 15C 16≤x<24 25D 24≤x<32 mE 32≤x<40 n根据以上信息解决下列问题:(1)在统计表中,m=,n=,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)有三位评委老师,每位老师在E组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E组学生王云参加鄂州市“汉字听写”比赛的概率.25.(10分)先化简,再求值:(1a﹣a)÷(1+212aa),其中a2<a2的整数解.26.(12分)解方程(1)x1﹣1x﹣1=0(1)(x+1)1=4(x﹣1)1.27.(12分)如图,点A的坐标为(﹣4,0),点B的坐标为(0,﹣2),把点A绕点B顺时针旋转90°得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:(1)直接写出AB所在直线的解析式、点C的坐标、a的值;(2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;(3)是否存在这样的点P,使得∠QPO=∠OBC,若不存在,请说明理由;若存在,请你直接写出此时P 点的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】根据题意知小李所对应的坐标是(7,4).故选C.2.C【解析】【分析】由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.【详解】∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB , ∵BE :ED=1:3, ∴BE :OB=1:2, ∵AE ⊥BD , ∴AB=OA , ∴OA=AB=OB , 即△OAB 是等边三角形, ∴∠ABD=60°, ∵AE ⊥BD ,AE=3,∴AB=30AEcos,故选C . 【点睛】此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB 是等边三角形是解题关键. 3.B 【解析】试题分析:观察图象可知,抛物线y=x 2+bx +c 与x 轴的交点的横坐标分别为(﹣1,0)、(1,0), 所以当y <0时,x 的取值范围正好在两交点之间,即﹣1<x <1. 故选B .考点:二次函数的图象.106144 4.B 【解析】 【分析】从图形可知空白部分的面积为S 2是中间边长为(a ﹣b )的正方形面积与上下两个直角边为(a+b )和b 的直角三角形的面积,再与左右两个直角边为a 和b 的直角三角形面积的总和,阴影部分的面积为S 1是大正方形面积与空白部分面积之差,再由S 2=2S 1,便可得解. 【详解】 由图形可知,S 2=(a-b )2+b (a+b )+ab=a 2+2b 2, S 1=(a+b )2-S 2=2ab-b 2, ∵S 2=2S 1,∴a 2+2b 2=2(2ab ﹣b 2), ∴a 2﹣4ab+4b 2=0,即(a ﹣2b )2=0, ∴a =2b , 故选B . 【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解. 5.D 【解析】试题分析:根据二次函数的解析式y =3(x -1)2+k ,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y 3>y 2>y 1. 故选D点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证. 6.B 【解析】 【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可. 【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置, ∴AE=AB ,∠E=∠B=90°, 又∵四边形ABCD 为矩形, ∴AB=CD , ∴AE=DC , 而∠AFE=∠DFC , ∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ), ∴EF=DF ;∵四边形ABCD 为矩形, ∴AD=BC=6,CD=AB=4,∵Rt△AEF≌Rt△CDF,∴FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=133,则FD=6-x=5 3 .故选B.【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.7.B【解析】【分析】将A、B、C、D分别展开,能和原图相对应的即为正确答案:【详解】A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选B.8.C【解析】【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【详解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故选C.【点睛】本题因式分解中提公因式法与公式法的综合运用.9.C 【解析】 【分析】根据统计图,利用众数与中位数的概念即可得出答案. 【详解】从统计图中可以得出这一周的气温分别是:12,15,14,10,13,14,11 所以众数为14;将气温按从低到高的顺序排列为:10,11,12,13,14,14,15 所以中位数为13 故选:C . 【点睛】本题主要考查中位数和众数,掌握中位数和众数的求法是解题的关键. 10.C 【解析】 【分析】 根据不等式10x a b+>的解集为x <15 即可判断a,b 的符号,则根据a,b 的符号,即可解不等式bx-a<0【详解】 解不等式10x a b+>, 移项得:1-x a b>∵解集为x<15∴1-5a b = ,且a<0∴b=-5a>0,15 15a b=-解不等式0bx a ->, 移项得:bx >a 两边同时除以b 得:x >a b, 即x >-15故选C 【点睛】此题考查解一元一次不等式,掌握运算法则是解题关键11.C【解析】【分析】根据AE ∥BC ,E 为AD 中点,找到AF 与FC 的比,则可知△AEF 面积与△FCE 面积的比,同时因为△DEC面积=△AEC 面积,则可知四边形FCDE 面积与△AEF 面积之间的关系.【详解】解:连接CE ,∵AE ∥BC ,E 为AD 中点, ∴12AE AF BC FC == . ∴△FEC 面积是△AEF 面积的2倍.设△AEF 面积为x ,则△AEC 面积为3x ,∵E 为AD 中点,∴△DEC 面积=△AEC 面积=3x .∴四边形FCDE 面积为1x ,所以S △AFE :S 四边形FCDE 为1:1.故选:C .【点睛】本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.12.D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(673,0)【解析】【分析】由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n ,纵坐标为0,据此可解. 【详解】解:由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n ,纵坐标为0, ∵2019÷3=673,∴P 2019 (673,0)则点P 2019的坐标是 (673,0).故答案为 (673,0).【点睛】 本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上. 14.4【解析】∵四边形MNPQ 是矩形,∴NQ=MP ,∴当MP 最大时,NQ 就最大.∵点M 是抛物线24y x x =-+在x 轴上方部分图象上的一点,且MP ⊥x 轴于点P ,∴当点M 是抛物线的顶点时,MP 的值最大.∵224(2)4y x x x =-+=--+,∴抛物线24y x x =-+的顶点坐标为(2,4),∴当点M 的坐标为(2,4)时,MP 最大=4,∴对角线NQ 的最大值为4.15.-12. 【解析】分析:已知第一个等式左边利用平方差公式化简,将a ﹣b 的值代入即可求出a+b 的值.详解:∵a 2﹣b 2=(a+b )(a ﹣b )=16,a ﹣b=13,∴a+b=12. 故答案为12. 点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.16.4. 【解析】试题分析:sin15°=sin (60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°=12222-⨯=4.故答案为624-. 考点:特殊角的三角函数值;新定义.17.60°【解析】 【分析】 先根据多边形的内角和公式求出正六边形每个内角的度数,然后用正六边形内角的度数减去正三角形内角的度数即可.【详解】(6-2)×180°÷6=120°,∠1=120°-60°=60°.故答案为:60°. 【点睛】题考查了多边形的内角和公式,熟记多边形的内角和公式为(n-2) ×180°是解答本题的关键.18.11x - 【解析】【分析】直接把分子相加减即可.【详解】22111x x x +--=11(1)(1)1x x x x +=+--,故答案为:11x -. 【点睛】本题考查了分式的加减法,关键是要注意通分及约分的灵活应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)2;(2) x ﹣y .【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识 点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.详解:(1)原式=3﹣4﹣2×+4=2;(2)原式=•=x ﹣y .点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.20.见解析【解析】分析:由等边三角形的性质即可得出∠ABE=∠ACF,由全等三角形的性质即可得出结论.详解:证明:∵△ABC和△ACD均为等边三角形∴AB=AC,∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°,∵BE=CF,∴△ABE≌△ACF,∴AE=AF,∴∠EAB=∠FAC,∴∠EAF=∠BAC=60°,∴△AEF是等边三角形.点睛:此题是四边形综合题,主要考查了等边三角形的性质和全等三角形的判定和性质,直角三角形的性质,相似三角形的判定和性质,解题关键是判断出△ABE≌△ACF.21.(1)200;(2)72°,作图见解析;(3)3 10.【解析】【分析】(1)用一等奖的人数除以所占的百分比求出总人数;(2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360°乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数;(3)用获得一等奖和二等奖的人数除以总人数即可得出答案.【详解】解:(1)这次知识竞赛共有学生2010%=200(名);(2)二等奖的人数是:200×(1﹣10%﹣24%﹣46%)=40(人),补图如下:“二等奖”对应的扇形圆心角度数是:360°×40200=72°;(3)小华获得“一等奖或二等奖”的概率是:2040200+=310.【点睛】本题主要考查了条形统计图以及扇形统计图,利用统计图获取信息是解本题的关键.22.(1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价是2480元.【解析】【分析】(1)设顾客购买x元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x的值说明在什么情况下购物合算(2)根据(1)中所求即可得出怎样购买合算,以及节省的钱数;(3)设进价为y元,根据售价-进价=利润,则可得出方程即可.【详解】解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.根据题意,得300+0.8x=x,解得x=1500,所以当顾客消费等于1500元时,买卡与不买卡花钱相等;当顾客消费少于1500元时,300+0.8x>x不买卡合算;当顾客消费大于1500元时,300+0.8x<x买卡合算;(2)小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480元.【点睛】此题主要考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.23.(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:125,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:125,∴1512125DEEC==,设DE=5x米,则EC=12x米,∴(5x)2+(12x)2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=ABAC,∴2=ABAC,解得,x=29,AB=x+5=34,即大楼AB的高度是34米.24.(1)m=30,n=20,图详见解析;(2)90°;(3)727.【解析】分析:(1)、根据B的人数和百分比得出总人数,从而根据总人数分别求出m和n的值;(2)、根据C的人数和总人数的比值得出扇形的圆心角度数;(3)、首先根据题意画出树状图,然后根据概率的计算法则得出答案.详解:(1)∵总人数为15÷15%=100(人),∴D组人数m=100×30%=30,E组人数n=100×20%=20,补全条形图如下:(2)扇形统计图中“C组”所对应的圆心角的度数是360°×=90°,(3)记通过为A、淘汰为B、待定为C,画树状图如下:由树状图可知,共有27种等可能结果,其中获得两位评委老师的“通过”有7种情况,∴E组学生王云参加鄂州市“汉字听写”比赛的概率为7 27.点睛:本题主要考查的就是扇形统计图、条形统计图以及概率的计算法则,属于基础题型.解决这个问题,我们一定要明白样本容量=频数÷频率,根据这个公式即可进行求解.25.()211aa-+,1.【解析】【分析】首先化简(1a﹣a)÷(1+212aa+),然后根据a2<a2的整数解,求出a的值,再把求出的a的值代入化简后的算式,求出算式的值是多少即可.【详解】解:(1a﹣a)÷(1+212aa+)=21aa-×()221aa+=()211aa-+,∵a2<a2的整数解,∴a=﹣1,1,1,∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,当a=1时,原式=() 21111⨯-+=1.26.(1)x13,x1=13(1)x1=3,x1=13.【解析】【分析】(1)配方法解;(1)因式分解法解.【详解】(1)x 1﹣1x ﹣1=2,x 1﹣1x+1=1+1,(x ﹣1)1=3,x ﹣1=,x=1x 1=1x 1=1(1)(x+1)1=4(x ﹣1)1.(x+1)1﹣4(x ﹣1)1=2.(x+1)1﹣[1(x ﹣1)]1=2.(x+1)1﹣(1x ﹣1)1=2.(x+1﹣1x+1)(x+1+1x ﹣1)=2.(﹣x+3)(3x ﹣1)=2.x 1=3,x 1=13. 【点睛】考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.27.(1)a=12;(2)OP+AQ 的最小值为P 的坐标为(﹣1,12);(3)P (﹣4,8)或(4,8),【解析】【分析】(1)利用待定系数法求出直线AB 解析式,根据旋转性质确定出C 的坐标,代入二次函数解析式求出a 的值即可;(2)连接BQ ,可得PQ 与OB 平行,而PQ=OB ,得到四边形PQBO 为平行四边形,当Q 在线段AB 上时,求出OP+AQ 的最小值,并求出此时P 的坐标即可;(3)存在这样的点P ,使得∠QPO=∠OBC ,如备用图所示,延长PQ 交x 轴于点H ,设此时点P 的坐标为(m ,12m 2),根据正切函数定义确定出m 的值,即可确定出P 的坐标. 【详解】解:(1)设直线AB 解析式为y=kx+b , 把A (﹣4,0),B (0,﹣2)代入得:402k b b -+=⎧⎨=-⎩,解得:1 2 2kb⎧=-⎪⎨⎪=-⎩,∴直线AB的解析式为y=﹣12x﹣2,根据题意得:点C的坐标为(2,2),把C(2,2)代入二次函数解析式得:a=12;(2)连接BQ,则易得PQ∥OB,且PQ=OB,∴四边形PQBO是平行四边形,∴OP=BQ,∴OP+AQ=BQ+AQ≥5(等号成立的条件是点Q在线段AB上),∵直线AB的解析式为y=﹣12x﹣2,∴可设此时点Q的坐标为(t,﹣12t﹣2),于是,此时点P的坐标为(t,﹣12t),∵点P在抛物线y=12x2上,∴﹣12t=12t2,解得:t=0或t=﹣1,∴当t=0,点P与点O重合,不合题意,应舍去,∴OP+AQ的最小值为5P的坐标为(﹣1,12);(3)P(﹣4,8)或(4,8),如备用图所示,延长PQ交x轴于点H,设此时点P 的坐标为(m ,12m 2), 则tan ∠HPO=2212m OH PH m m ==, 又,易得tan ∠OBC=12, 当tan ∠HPO=tan ∠OBC 时,可使得∠QPO=∠OBC , 于是,得212m =, 解得:m=±4, 所以P (﹣4,8)或(4,8).【点睛】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键.。

浙江省温州市2019-2020学年中考数学第四次押题试卷含解析

浙江省温州市2019-2020学年中考数学第四次押题试卷含解析

浙江省温州市2019-2020学年中考数学第四次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-42.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.13B.22C.24D.2233.如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°4.已知a-2b=-2,则4-2a+4b的值是()A.0 B.2 C.4 D.85.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB 的大小为()A.30°B.45°C.60°D.75°6.﹣22×3的结果是()A.﹣5 B.﹣12 C.﹣6 D.127.某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A.B.C.D.8.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣39.下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C.3yx=D.3yx=-10.如图的立体图形,从左面看可能是()A.B.C.D.11.如图,反比例函数kyx=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.412.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=108二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,直线y=x+2与反比例函数y=kx的图象在第一象限交于点P.若OP10,则k的值为________.14.阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l 和直线l 外一点P.用直尺和圆规作直线PQ ,使PQ ⊥l 于点Q .”小艾的作法如下:(1)在直线l 上任取点A ,以A 为圆心,AP 长为半径画弧.(2)在直线l 上任取点B ,以B 为圆心,BP 长为半径画弧.(3)两弧分别交于点P 和点M(4)连接PM ,与直线l 交于点Q ,直线PQ 即为所求.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是_____.15. “若实数a ,b ,c 满足a <b <c ,则a+b <c”,能够说明该命题是假命题的一组a ,b ,c 的值依次为_____.16.分式方程213024x x x -=+-的解为x =__________. 17.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020浙江省中考数学押题试卷亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平.答题时,请注意以下几点:1. 全卷共4页,有三大题,24小题.全卷满分150分.考试时间120分钟. 2. 答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效. 3. 答题前,认真阅读答题纸上的《注意事项》,按规定答题. 祝你成功!参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是24(,)24b ac b a a--卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选, 均不给分)1.下列各数属于无理数的是( ▲ ) A .5 BC .73D .2π2.如图是一个圆锥的立体图形,则它的主视图为( ▲ )3.某校园足球队由13位男生组成,体育课上统计了所有男生所穿运动鞋的尺码,列表如下:则这13双运动鞋尺码的众数和中位数分别是( ▲ )A .40码、39码B .39码、40码C .39码、39码D .40码、40码 4.下列运算正确的是( ▲ )主视方向(第2题图) AB C DA .325x x x ⋅=B .336()x x = C .5510x x x += D .422x x x -= 5.将二次函数2y x =的图象先向右平移1个单位,再向上平移2单位后,所得图象的函数表达式是( ▲ )A .()212y x =++ B .()212y x =-+ C .()212y x =-- D .()212y x =+-6.如图所示,直线m ∥n ,AB ⊥m ,∠ABC =130°,那么∠ɑ为( ▲ ) A .60° B .50° C .40° D .30° 7.若一个多边形的内角和是900°,则这个多边形的边数是( ▲ ) A .5 B .6 C .7 D .88.一元一次不等式组21332x x x -<⎧⎨+>⎩的解是( ▲ )A .23x -<<B .32x -<<C .3x <-D .2x < 9.在反比例函数ky x=(0k >)的图象中,阴影部分的面积不等于k 的是( ▲ )10.如图,∠MON =90°,线段AB 的长是一个定值,点A 在射线OM 上,点B 在射线ON 上.以AB 为边向右上方作正方形ABCD ,对角线AC 、BD 交于点P ,在点A 从上往下,点B 从左到右运动的过程中,下列说法正确的是( ▲ ) A .点P 始终在∠MON 的平分线上,且线段OP 的长有最大值等于AB B .点P 始终在∠MON 的平分线上,且线段OPAB C .点P 不一定在∠MON 的平分线上,但线段OP 的长有最小值等于AB D .点P 不一定在∠MON 的角平分线上,但线段OPAB 卷II二、填空题(本题有6题,每小题5分,共30分)(第6题图)ABCD(第10题图)11.分解因式:32x xy -= ▲ . 12.方程组122x y x y -=⎧⎨+=⎩的解是 ▲ .13.合作小组的4位同学坐在课桌旁讨论问题,学生A 的座位如图所示,学生B 、C 、D 随机坐到其他三个位置上,则学生B 坐在2号座位的概率是 ▲ . 14x 的取值范围是 ▲ . 15.如图,某广告牌竖直矗立在水平地面上,经测量,得到如下相关数据:CD =2m ,∠CAB=30°,∠DBF=45°,则广告牌的高EF= ▲ m .(结果保留根号) 16.如图,矩形ABCD 中,AD =4,O 是BC 边上的点,以OC 为半径作⊙O 交AB 于点E ,BE =35AE ,把四边形AECD 沿着CE 所在的直线对折(线段AD 对应A'D'),当⊙O 与A'D'相切时,线段AB 的长是 ▲ .三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程) 17.(本题10分)(1)计算:11(23π-⎛⎫+-+- ⎪⎝⎭. (2)解方程:311x x x -=-.18.(本题8分)如图是由边长都是1的小正方形组成的网格.请以图中线段BC 为边,作△PBC ,使P 在格点上,并满足:(1)图甲中的△PBC 是直角三角形,且面积是△ABC 面积2倍; (2)图乙中的△PBC 是等腰非直角三角形.(第13题图) (第15题图)19.(本题10分)如图,AB∥CD,E是AB上一点,DE交AC于点F,AE=CD,分别延长DE和CB交于点G.(1)求证:△AEF≌△CDF;(2)若GB=2,BC=4,BE=1,求AB的长.20.(本题8分)随着人们法制意识的加强,“开车不喝酒,喝酒不开车”的观念逐步深入人心.某记者随机选取了我县几个停车场对开车司机进行了相关调查,这次调查结果有四种情况:A.醉酒后仍开车;B.喝酒后不开车或请专业代驾;C.不开车的时候会喝酒,喝酒的时候不开车;D.从不喝酒.将这次调查情况绘制了如下尚不完整的统计图1和图2,请根据相关信息,解答下列问题:(I)该记者本次一共调查了▲ 名司机;(II)图1中情况D所在扇形的圆心角为▲ °;(III)补全图2;(第19题图)(第20题图1)(第18题图)(第18题图甲)(第18题图乙)(第20题图2)(IV )若我县约有司机20万人,其中30岁以下占30﹪,则30岁以下的司机朋友中不违反“酒驾”禁令的人数为多少万人?21.(本题8分)如图,抛物线2y x bx c =-++与x 轴交于A 、B 点,与y 轴交于C 点,,顶点为D ,其中点A 、C 的坐标分别是(-1,0)、(0,3). (1)求抛物线的表达式与顶点D 的坐标;(2)连结BD ,过点O 作OE ⊥BD 于点E ,求OE 的长. 结BD ,过点O 作OE ⊥BD 于点E ,求OE 的长.22.(本题10分)如图,在△ABC 中, O 是BC 上的点,⊙O 经过A ,B 两点,与BC 交于点E ,D 是下半圆的点,且OD ⊥BC 于点O ,并连结AD 交BC 于点F ,若AC 是⊙O 的切线.(1)求证:AC=FC .(2)若FE =CE =2,求OF 的长.23.(本题12分)某中学为筹备校庆,准备印制一批纪念册,每册由4张彩页,6张黑白页构成.印制该纪念册的总费用由制版费...和印刷费...两部分组成,其中制版费的价格为:彩页300元/张,黑白页50元/张;印刷费用与印数的关系见下表:(1 元印刷费...元;(2)若印制这批纪念册共需y 元,则(第21题图)(第22题图)①当1≤x <5时,求y 关于x 的函数表达式; ②当y ≤60 080元,最多能印多少册?24.(本题14分)如图1,在平面直角坐标系中,直线l 的函数表达式是2+-=x y .菱形ABCD 的对角线AC 、BD 在坐标轴上,点A 、B 的坐标分别是(0,4),(-6,0).P 是折线B -A -D 上的动点,过点P 作PQ ∥y 轴交折线B -C -D 于点Q .作PG ⊥l 于点G ,连结GQ .设直线l 与x 轴交于点E ,点P 的横坐标为m , (1)求菱形ABCD 的面积; (2)当点P 在AD 上运动时,①求线段PQ 的长(用关于m 的代数式表示); ②若△PQG 为等腰三角形,求m 的值;(3)如图2,连结QE ,当点P 在AB 上运动时,过点Q 作QH ⊥l 于H ,若tan ∠HQE =31,直接写出m 的值.(第24题图1)(第24题图2)数学参考答案一. 仔细选一选(本题有10个小题,每小题4分,共40分)二. 认真填一填(本题有6个小题,每小题5分,共30分)11. ;12. ;13; 14. x ≥-1且 x ≠0 ; 15. ; 16. . 三.全面答一答(本题有8个小题,共80分) 17.(本题10分)(1)解:原式=4+1-3+2 ……4' (2)解:方程两边都乘以x (x -1),得=4 ……1' x 2-x (x -1)=3(x -1) ……2'∴23=x ……2' 经检验23=x 是原方程的根 ……1'18.(本题8分)(P 点也可在黑点处)(第18题图甲) (第18题图乙) ))((y x y x x -+3132P ·P 0y ⎧⎨=⎩●●19.(本题8分)(1)证明:∵AB ∥CD,∵∠A =∠ACD ,∠AEF =∠D , ……2' 又AE =CD ……1' ∴△AEF ≌△CDF (ASA ) ……1' (2)解:∵AB ∥CD∴△GBE ∽△GCD ……1' ∴621==CD GC GB CD BE 即 ∴CD = AE =3 ……2' ∴AB =AE +BE =3+1=4 ……1'20.(本题8分)(I ) 200 ; (II ) 162 °; (III )补全图2; (IV )5.7万人.21.(本题10分)(1)解:把A (-1,0),C (0,3)分别代入抛物线,得:103b c c --+=⎧⎨=⎩, ∴23b c =⎧⎨=⎩. ……2'∴抛物线的表达式为y =-x 2+2x +3, ……1'∴y =-x 2+2x +3 =-(x -1)2+4,∴顶点坐标D (1,4). ……2' (2)解:连结OD ,设对称轴与x 轴交于点F ,则DF =4, ∵A (-1,0),对称轴为x =1,∴B (3,0),BF =2, 由勾股定理得BD === ……2'∵S △OBD =1122OB DF BD OE ⋅=⋅,∴34OE ⨯=,(第21题图)F·∴OE =. ……3'(本题也可以先证△DFB ∽△OEB ,再用相似比计算)22.(本题10分)(1)证明:连结OA . ……1'∵AC 是⊙O 的切线,见 ∴OA ⊥AC ,∴∠OAD +∠CAF =90° ……1' ∵OD ⊥BC , ∴∠D +∠OFD =90°, ……1' ∵OA =OD , ∴∠D =∠OAD ; ……1' 即∠CAF =∠OFD =∠AFC∴AC =FC . ……1'(2)设OF =x ,则OC=4+x ,OA =2+x ……1'∵∠OAC =90°,∴由勾股定理得:222OA AC OC +=,∴()22224(4)x x ++=+ ……2' 解得x =1,即OF =1 ……2'23.(本题12分)(1)印制这批纪念册需制版费 1500 元,印制1千册纪念册的印刷费... 13000 元; ……4' (2)①由题意得:y =1500+1000x ·(2.2×4+0. 7×6)∴y =13000x +1500. ……4' ②当1≤x <5时,13000x +1500≤60 080∴x ≤4.5. ……不写不扣分当x ≥5时,此时y =1500+1000x ·(2.0×4+0.6×6)=11600x +1500, ……2' 当11600x +1500≤60 080时, ∴x ≤5.05,∴最多能印5.05千册. ……2'24.(本题14分)(1)解:∵A (0,4),B (-6,0)(第22题图)∴AO =4,OB =6, ……1' ∴S 菱形ABCD =4S △AOB =4×21×4×6=48. ……2'(2)①易得D (6,0),C (0,-4),∴直线AD 的函数表达式为y=432+-x ; 直线CD 的函数表达式为y=432-x . ……1' ∴当x =m 时,PQ =)432()432(--+-m m ),即PQ =83.4+-m . ……2'②易得∠GPQ =45°,E (2,0),当GP =GQ 时,∠GQP =∠GPQ =45°,∠PGQ =90°. 设PQ 与x 轴交于F ,则PQ =2E F ,即,)2(2834-=+-m m , ∴m=518. ……2'当PG=PQ 时,见右图:延长PQ 交l 于点H ,则GP=GH ,在△GPH 中,PH =,即244(2)833m m m ⎛⎫⎫-+--+=-+ ⎪⎪⎝⎭⎭∴m . ……2'当QP =QG 时,则∠PQG =Rt ∠,GQ ∥x 轴.∵P (m ,432+-m ),则Q (m ,432-m ),G (432,326--m m ), ∴QG =m -(635)326-=-m m ,∴834635+-=-m m , ∴m =314. ……2'综上所述:当m =181453时,△PQG 为等腰三角形.11 (3)m 的值是 . ……2'0718或。

相关文档
最新文档