主板时钟电路工作原理
时钟电路基本原理

1时钟供电组成时钟电路主要由时钟发生器(时钟芯片)、、、和等组成。
● 时钟芯片时钟芯片主要有S. Winbond、 PhaseLink. C-Media、IC. IMI等几个品牌,主板上见得最多的是ICS和Winbond两种,如图6-1、图6-2所示。
● 晶振时钟芯片通常使用的晶振,如图6-3所示。
晶振与组成一个谐振回路,从晶振的两脚之问产生的输入到时钟芯片,如图6-4所示。
判断品振是否工作,可以用测量晶振两脚分别对地是否有(以上),这是晶振工作的前提条件,再用示波器测量晶振任意一脚是否有与标称频率相同的振荡正弦波输出(这是最准确的方法)。
在没有示波器的情况下,可以直接更换新的晶振和谐振电容,用替换法来排除故障。
2 时钟电路工作原理时钟电路的1=作原理图,如图6-5所示。
时钟芯片有电压输入后(有的时钟芯片还有一组电压),再有一个好信号,表示主板各部位所有的供电止常,于是时钟芯片开始工作。
晶振两脚产生的基本频率输入到时钟芯片内部的,从振荡器出来的基本频率经过“频率扩展锁相网路”进行频率扩展后输入到各个,最后得到不同频率的时钟输出。
初始默认输出频率由频率选择锁存器输入引脚FS(4:0)设置,之后可以通过IIC总线再进行设置。
多数时钟芯片都支持IIC总线控制,通过一根双向的数据线(SD ATA)和一根时钟线( SCLK)对芯片的时钟输出频率进行设置。
图6-5中:48MHz USB与48MHz DOT为固定48MHz时钟输出;3V66(3:1)共3组为的66MHz时钟输出:CPUCLKT (2:0)共3组为CPU时钟输出;CPUCLKC (2:0)共3组为CPU时钟输出,与CPUCLKT互为;CLK (6:0)共7组为 33MHz 的PCI时钟输出,输出到PCI插槽,有多少个PCI插槽就使用多少组。
主板的时钟分布如图6-6所示,内存总线时钟由北桥供给,部分主板电路设计有独立的内存时钟发生器,如图中虚线所示。
电脑主板时钟电路

系统时钟电路还负责协调 不同硬件模块之间的通信 和同步。
总线时钟电路
01
总线时钟电路是电脑主板上用于 驱动系统总线(如PCI、PCIe等 )的时钟电路。
02
它通过将系统时钟信号分频或倍 频,产生适合不同总线规范的时
钟信号。
总线时钟电路对于确保总线数据 传输的稳定性和正确性至关重要 。
03
总线时钟电路还支持总线上的设 备之间的通信和同步操作。
电脑主板时钟电路
目录
CONTENTS
• 电脑主板时钟电路概述 • 电脑主板时钟电路的类型 • 电脑主板时钟电路的元件与组件 • 电脑主板时钟电路的故障诊断与维修 • 电脑主板时钟电路的未来发展
01 电脑主板时钟电路概述
定义与功能
定义
电脑主板时钟电路是电脑主板上负责 产生和管理时钟信号的电路,为电脑 各部分提供稳定的时钟基准。
故障排除的关键
在电脑故障排除中,主板时钟电路的 检测是关键步骤之一,因为很多故障 可能与时钟电路有关。
02 电脑主板时钟电路的类型
实时时钟(RTC)电路
01
实时时钟(RTC)电路是电脑主板上用于提供系统当前时间和日期的 电路。
02
它通常由石英晶体振荡器驱动,以提供稳定的计时基准。
03
RTC电路通常具有后备电池,以在系统断电时保持时钟的连续运行。
高精度时钟电路的发展将推动相关领域的技术进步,例如通信协议、数据 处理算法等。技术进步Fra bibliotek创新01
随着材料科学、微电子学和封 装技术的发展,电脑主板时钟 电路的性能将得到进一步提升 。
02
新的设计理念和算法将不断涌 现,例如基于人工智能的时钟 同步算法、基于云计算的时钟 服务等等。
主板时钟电路工作原理

主板时钟电路工作原理一、引言主板时钟电路是计算机主板上的一个重要组成部分,它负责产生和分配各个硬件设备所需的时钟信号,确保计算机系统的正常运行。
本文将详细介绍主板时钟电路的工作原理。
二、主板时钟电路的组成主板时钟电路主要由以下几个部分组成:1. 晶体振荡器:晶体振荡器是主板时钟电路的核心部件,它通过振荡产生稳定的时钟信号。
晶体振荡器通常由一个晶体谐振器和振荡电路组成,晶体谐振器的振荡频率决定了时钟信号的频率。
2. 时钟发生器:时钟发生器负责将晶体振荡器产生的时钟信号进行分频和倍频处理,以产生不同频率的时钟信号,供不同硬件设备使用。
3. 时钟分配器:时钟分配器将时钟信号分配给各个硬件设备,确保它们能够按照正确的时序进行工作。
三、主板时钟电路的工作原理主板时钟电路的工作原理如下:1. 晶体振荡器工作原理:当外部施加一个电场时,晶体谐振器中的晶体会发生压电效应,产生机械振动,并将这种振动转化为电信号。
晶体振荡器的振荡频率由晶体的物理特性和谐振器的电路参数决定。
晶体振荡器产生的时钟信号非常稳定,可以提供高精度的时钟信号。
2. 时钟发生器工作原理:时钟发生器接收晶体振荡器产生的时钟信号,通过分频和倍频的方式,将时钟信号的频率调整到不同的倍数。
例如,将晶体振荡器产生的1MHz时钟信号经过倍频处理,可以得到2MHz、4MHz等频率的时钟信号。
时钟发生器的倍频和分频比例可以根据不同的硬件设备的需求进行调整。
3. 时钟分配器工作原理:时钟分配器将时钟信号分配给各个硬件设备,确保它们能够按照正确的时序进行工作。
时钟分配器通常采用多级分配结构,将时钟信号从主时钟线上分配到各个从时钟线上,以减小时钟信号的延迟和失真。
时钟分配器还可以根据不同硬件设备的需求,提供不同的时钟相位和时钟频率。
四、主板时钟电路的优化措施为了提高主板时钟电路的性能和稳定性,可以采取以下优化措施:1. 选择高质量的晶体振荡器:晶体振荡器的质量对时钟信号的稳定性有很大影响,选择质量好的晶体振荡器可以提供更稳定的时钟信号。
主板各电路工作原理

主板各电路工作原理主板是计算机中最重要的硬件设备之一,它充当着其他硬件设备之间的连接器,起到传输信号、供电、数据处理等重要功能。
主板中的各个电路起着关键作用,下面将对主板的几个重要电路进行详细介绍。
1.电源电路:主板上的电源电路负责将电源转换为各个部件所需要的电压和电流。
一般来说,电源电路主要由电源插槽、变压器、整流电路、滤波电路、稳压电路等组成。
电源插槽用于连接电源,变压器用于将电源的交流电转换为适合主板工作的直流电,整流电路将交流电转换为直流电,滤波电路消除电源中的杂波,稳压电路则确保主板上各个部件获得稳定的电压。
2.时钟电路:时钟电路是主板上的一个重要部分,它负责产生和分发时钟信号,为其他设备提供稳定的时钟信号。
主板的时钟电路通常由晶体振荡器和时钟发生器组成。
晶体振荡器负责产生基础时钟信号,时钟发生器则将基础时钟信号分频、倍频,并进行相应的调整与校准,以确保主板各个部件工作在正确的频率下。
3.CPU电路:CPU电路是主板上最为复杂的电路之一,它主要负责将处理器与其他部件连接起来。
CPU电路由前端总线电路、复位电路、时序电路、存储器控制电路、数据总线电路、地址总线电路等组成。
前端总线电路负责将处理器与其他硬件设备连接,复位电路在启动或者重新启动时将处理器初始化为初始状态,时序电路根据时钟信号控制数据传输的时序,存储器控制电路负责管理存储器操作,数据总线电路负责传输数据,地址总线电路负责传输内存地址等。
4.显卡电路:显卡电路是用于处理显示输出的电路,它负责将计算机内部的图形数据转换为显示器可识别的信号进行显示。
显卡电路主要由图形芯片、显存、DAC(数字到模拟转换器)等组成。
图形芯片负责生成和处理图像数据,显存用于存储图形数据,DAC将数字信号转换为模拟信号以供显示器显示。
5.声卡电路:声卡电路是用于处理声音输入和输出的电路,它主要负责将声音信号转换为计算机可识别的数字信号或者将数字信号转换为声音信号。
主板时钟电路工作原理

主板时钟电路工作原理主板时钟电路是计算机硬件中的一个重要组成部分,它负责产生和管理计算机系统中的各种时钟信号,确保各个硬件设备能够按照统一的时间基准进行工作。
本文将详细介绍主板时钟电路的工作原理。
一、主板时钟电路的作用主板时钟电路的主要作用是为计算机系统提供统一的时钟信号,以保证各个硬件设备之间的协调工作。
时钟信号的产生和分配是计算机系统中非常重要的一个环节,它直接影响到计算机的稳定性和性能。
二、主板时钟电路的组成主板时钟电路由时钟发生器、时钟分频器和时钟分配器三部分组成。
1. 时钟发生器时钟发生器是主板时钟电路中的核心部件,它负责产生基准时钟信号。
基准时钟信号的频率通常为几十兆赫兹,它是计算机系统中所有时钟信号的参考。
时钟发生器可以采用晶体振荡器或者压控振荡器等元件来产生高精度的时钟信号。
2. 时钟分频器时钟分频器用于将基准时钟信号进行分频,得到不同频率的时钟信号,以满足各个硬件设备的工作需求。
分频器通常采用计数器和锁存器等元件来实现,它可以将基准时钟信号分频为CPU时钟、内存时钟、总线时钟等不同频率的时钟信号。
3. 时钟分配器时钟分配器负责将分频后的时钟信号分配给各个硬件设备。
它通过时钟总线将时钟信号传输到不同的硬件设备上,确保它们按照统一的时间基准进行工作。
时钟分配器通常采用多路选择器和缓冲器等元件来实现,它可以根据不同的时钟信号需求将时钟信号分配给不同的硬件设备。
三、主板时钟电路的工作原理主板时钟电路的工作原理可以分为时钟信号的产生、分频和分配三个步骤。
1. 时钟信号的产生主板时钟电路首先通过时钟发生器产生基准时钟信号。
时钟发生器可以根据晶体振荡器或者压控振荡器的工作原理,产生稳定的时钟信号。
基准时钟信号的频率通常为几十兆赫兹,它是计算机系统中所有时钟信号的参考。
2. 时钟信号的分频基准时钟信号经过时钟分频器进行分频,得到不同频率的时钟信号。
时钟分频器通常采用计数器和锁存器等元件,根据预设的分频系数将基准时钟信号进行分频。
主板时钟电路工作原理

主板时钟电路工作原理标题:主板时钟电路工作原理引言概述:主板时钟电路是计算机主板中的一个重要部份,它负责控制计算机系统中各个部件的时序和频率,确保它们能够正常运行。
了解主板时钟电路的工作原理对于维护和升级计算机系统非常重要。
本文将详细介绍主板时钟电路的工作原理。
一、时钟信号的生成1.1 晶振振荡器:主板时钟电路中通常采用晶振振荡器来产生稳定的时钟信号。
1.2 分频器:晶振振荡器输出的时钟信号经过分频器进行分频,得到不同频率的时钟信号。
1.3 时钟信号输出:分频后的时钟信号通过时钟发生器输出到主板的各个部件。
二、时钟信号的分配2.1 CPU时钟信号:主板时钟电路会将时钟信号分配给CPU,以控制CPU的运行速度。
2.2 内存时钟信号:时钟信号还会被分配给内存模块,确保内存能够按照正确的时序读写数据。
2.3 其他部件时钟信号:主板时钟电路还会将时钟信号分配给其他重要的部件,如显卡、硬盘等。
三、时钟信号的同步3.1 时钟同步电路:为了确保各个部件能够同步运行,主板时钟电路中会设置时钟同步电路。
3.2 时序控制:时钟同步电路会控制各个部件的时序,确保它们按照正确的顺序进行数据处理。
3.3 时钟分频:时钟同步电路还会根据各个部件的需要对时钟信号进行分频,以满足不同部件的工作频率要求。
四、时钟信号的调节4.1 时钟频率调节:主板时钟电路中通常会设置时钟频率调节器,可以根据需要调节时钟频率。
4.2 时钟延迟调节:时钟电路还会设置时钟延迟调节器,用于调节时钟信号的延迟时间。
4.3 时钟相位调节:时钟电路还会设置时钟相位调节器,用于调节时钟信号的相位。
五、时钟信号的稳定性5.1 电源稳定性:主板时钟电路对于电源的稳定性要求很高,确保时钟信号的稳定性。
5.2 温度影响:温度的变化会影响晶振振荡器的频率稳定性,主板时钟电路会采取措施来降低温度对时钟信号的影响。
5.3 信号干扰:主板时钟电路还会采取屏蔽措施,减少外部信号对时钟信号的干扰,确保时钟信号的稳定性。
主板时钟电路工作原理

主板时钟电路工作原理一、引言主板时钟电路是计算机主板上的一个重要组成部分,它负责产生和分配时钟信号,为计算机的各个组件提供同步的时钟信号。
本文将详细介绍主板时钟电路的工作原理。
二、主板时钟电路的作用主板时钟电路的主要作用是产生稳定的时钟信号,并将其分配给计算机的各个组件,以保证它们能够按照预定的频率和时间序列进行工作。
时钟信号在计算机中起到了类似于心脏的作用,是计算机各个部件之间进行协调和同步的关键。
三、主板时钟电路的组成1. 晶体振荡器:主板时钟电路中的核心部件是晶体振荡器。
晶体振荡器由一个晶体和相关的电路组成,它能够产生稳定的振荡信号。
晶体振荡器的频率由晶体的物理特性决定,一般为几十兆赫兹(MHz)或更高。
晶体振荡器的输出信号经过分频电路进行分频后,得到计算机所需的各个频率的时钟信号。
2. 时钟分频电路:主板时钟电路中的另一个重要组成部分是时钟分频电路。
时钟分频电路能够将晶体振荡器输出的高频信号进行分频,得到计算机所需的各个频率的时钟信号。
例如,CPU常用的时钟频率有100MHz、133MHz等。
时钟分频电路一般采用锁相环(PLL)技术,通过调整分频比例来实现对时钟频率的精确控制。
3. 时钟分配电路:主板时钟电路还包括时钟分配电路,它负责将分频后的时钟信号分配给计算机的各个组件。
时钟分配电路一般采用时钟信号缓冲器和分配器,以确保时钟信号能够准确地传递给各个组件,并保持信号的稳定性和一致性。
四、主板时钟电路的工作原理主板时钟电路的工作原理可以分为以下几个步骤:1. 晶体振荡器产生振荡信号:晶体振荡器中的晶体受到外界的激励后,会产生一个稳定的振荡信号。
晶体振荡器的频率由晶体的物理特性决定。
2. 时钟分频电路进行分频:晶体振荡器的输出信号经过时钟分频电路进行分频,得到计算机所需的各个频率的时钟信号。
时钟分频电路通过调整分频比例来实现对时钟频率的精确控制。
3. 时钟分配电路分配时钟信号:分频后的时钟信号经过时钟分配电路的缓冲和分配,被传递给计算机的各个组件。
简述主板时钟电路的工作过程及检修流程

母板上的时钟电路就像大交响乐团的指挥器,协调了所有截肢者的和
谐操作。
这是系统的大师,确保CPU,记忆,和外围人物都跳到同一个节拍上。
你问它怎么工作的?嗯,一切都从水晶振荡器开始,一
个小的守时病毒,设置完美的节奏。
频率分配器步入调整节奏仅正
确的速度使截肢者跳动。
我们不要忘记控制逻辑——这个技术管弦
乐团的舞台管理者,确保所有信号在正确的时间发出,以保持整个系统的同步。
这是一次精细的表演让你的仆人能顺利地哼唱!
在修复母板的时钟电路时,重要的是要采取分步骤的方法。
检查水晶
振荡器任何物理损害或问题。
如果效果不好,就换一个符合规格的新型。
接下来,使用特殊工具来测试频率划分器和控制逻辑,以确保他
们完成任务。
如果任何部件有问题,就替换它们,使时钟电路回到轨
道上。
检查时钟电路与主板其他部分之间的连接,以了解任何松散或
损坏的电线,因为它们可以干扰时钟信号。
通过遵循这个计划,可以
发现并解决母板的时钟电路的任何问题。
本质上,母板的时钟电路在截肢器的操作中发挥着至关重要的作用,
促进了各种系统员的必要同步。
这个电路使一个晶体振荡器,频率划
分器,和控制逻辑共同工作,生成和分配稳定的时钟信号。
在处理时
钟电路问题时,必须彻底检查和测试每一方,以查明和纠正任何缺陷。
通过系统的方法,技术人员可以确保母板的时钟电路的正常运行,从
而对输出器系统的可靠操作作出贡献。
主板时钟电路工作原理

主板时钟电路工作原理时钟电路是计算机主板上的一个重要组成部份,它负责产生和控制计算机系统中各个部件的时序信号,确保它们能够按照正确的时间顺序进行工作。
本文将详细介绍主板时钟电路的工作原理。
一、时钟信号的产生主板时钟电路通常由一个晶体振荡器和相应的频率分频电路组成。
晶体振荡器是主板时钟电路的核心部件,它通过利用晶体的谐振特性来产生稳定的振荡信号。
晶体振荡器的频率由晶体的物理特性决定,通常为4MHz、8MHz或者更高的频率。
晶体振荡器产生的振荡信号经过频率分频电路进行分频,得到不同频率的时钟信号。
这些时钟信号被用于驱动计算机系统中的各个部件,如CPU、内存、总线等。
二、时钟信号的分频时钟信号的分频是为了将高频率的振荡信号转换为适合不同部件工作的低频率信号。
不同的部件对时钟信号的要求不同,因此需要根据实际情况进行分频。
例如,CPU对时钟信号的要求较高,通常需要一个较高频率的时钟信号来驱动其内部的运算逻辑。
而内存则对时钟信号的要求相对较低,通常使用较低频率的时钟信号即可。
在主板时钟电路中,通常会使用锁相环(PLL)来实现时钟信号的分频。
PLL是一种电路,可以根据输入的参考信号和反馈信号来产生稳定的输出时钟信号。
三、时钟信号的分配主板时钟电路会将分频后的时钟信号分配给不同的部件。
通常会有一个时钟分配器来实现这个功能。
时钟分配器可以根据不同的部件的时钟需求,将合适的时钟信号分配给它们。
时钟分配器通常会有多个时钟输出通道,每一个通道可以输出不同的时钟频率。
这样可以满足不同部件对时钟信号频率的需求。
四、时钟信号的同步在计算机系统中,不同部件之间需要进行数据的传输和交互。
为了确保数据的正确传输,时钟信号的同步是非常重要的。
主板时钟电路中通常会有一个时钟同步电路,用于确保各个部件的时钟信号保持同步。
时钟同步电路通常会使用锁存器等元件来实现。
时钟同步电路会根据输入的时钟信号,生成一个同步的时钟信号,并将其分配给各个部件。
电脑主板时钟电路

以时钟芯片为中心的电路即称之为时钟电路。
时钟电路组成:
时钟电路原理:
1.供电
3.发出时钟信号
2.PG
VRM
PG
时钟电路原理:
1. 3.3v供电给时钟芯片,有的有2.5v供电
2.收到cpu电源芯片发出的pg(power good 电源好)信号后开始工 作
DDR2
137# 138# 185# 186# 220# 221#
DDR3
63# 64# 184# 185#
接口: AGP PCI BIOS PCI—E SOCKET 370 SOCKET 478 SOCKET 775 SOCKET 754 SOCKET 940
频率: 66 MHZ 33 MHZ 33 MHZ 100 MHZ 66/100/133 MHZ 100/133/200 MHZ
1.供电的查找:
1.供电线比较粗 2.供电线上有保 险电阻和电感 3.有大的滤波电 容
时钟电路
时钟电路原理与维修
时钟电路作用?
发出时钟信号送到主板的各个芯片。让主板各 个芯片协调统一的工作。
时钟信号==口令信号
时钟电路识别:
时钟芯片: 1。长条形两边有脚,Байду номын сангаас些板例如单桥板无时钟芯片 2。有14.318MHZ晶振 3。有的在内存附近还有个副时钟芯片 4。常见型号:ICS, WINBOND,PLL,RTM
电压: 1.6V 左右 1.5 V 左右 1.5 V 左右 0.5 V 左右 0.8—1.2V 0.2—0.8V 0.2—0.8V 1.5—2.5V 1.5—2.5V
电压:
主板时钟电路工作原理

时钟电路工作原理:3.3v电源经过二极管和电感进入分频器后,分频器开始工作,和晶体一起产生振荡,在晶体的两脚均可以看到波形。
晶体的两脚之间的阻值在450---700欧之间。
在它的两脚各有1V左右的电压,由分频器提供。
晶体两脚常生的频率总和是14.318M。
总频(OSC)在分频器出来后送到PCI槽的B16脚和ISA的B30脚。
这两脚叫OSC测试脚。
也有的还送到南桥,目的是使南桥的频率更加稳定。
在总频OSC线上还电容。
总频线的对地阻值在450---700欧之间,总频时钟波形幅度一定要大于2V电平。
如果开机数码卡上的OSC灯不亮,先查晶体两脚的电压和波形;有电压有波形,在总频线路正常的情况下,为分频器坏;无电压无波形,在分频器电源正常情况下,为分频器坏;有电压无波形,为晶体坏。
没有总频,南、北桥、CPU、CACHE、I/O、内存上就没有频率。
有了总频,也不一定有频率。
总频一定正常,可以说明晶体和分频器基本上正常,主要是晶体的振荡电路已经完全正常,反之就不正常。
当总频产生后,分频器开始分频,R2将分频器分过来的频率送到南桥,在南桥处理过后送到P CI槽B8和ISA的B20脚,这两脚叫系统测试脚,这个测试脚可以反映主板上所有的时钟是否正常。
系统时钟的波形幅度一定要大于1.5V,这两脚的阻值在450---700欧之间,由南桥提供。
在主板上RESET和CLK者是南桥处理的,在总频正常下,如果RESET和CLK都没有,在南桥电源正常情况下,为南桥坏。
主板不开机,RESET不正常,先查总频。
在主板上,时钟线比AD线要粗一些,并带有弯曲。
二、主板时钟芯片电路及时序关系讲解1、概述主板时钟芯片电路提供给CPU,主板芯片组和各级总线(CPU总线,AGP总线,PCI总线,ISA总线等)和主板各个接口部分基本工作频率,有了它,电脑才能在CPU控制下,按步就班,协调地完成各项功能工作:2、石英晶体多谐振荡器a、解释说明,主板时钟芯片即分频器的原始工作振荡频率,由石英晶体多谐振荡器的谐振频率来产生,提供给分频率一个基准的14.318MHZ的振荡频率,它是一个多谐振荡器的正反馈环电路,也就是说它把输入作为输出,把输出作为输入的反馈频率,象这样一个永无休止的循环自激过程。
主板电路工作原理

主板各电路工作原理主要内容:1、主板开机电路2、主板供电电路(含主供电及其他供电电路)3、时钟电路4、复位电路5.1 主板开机电路5.1.1软开机电路的大致构成及工作原理开机电路又叫软开机电路,是利用电源(绿线被拉成低电平之后,电源其它电压就可以输出)的工作原理,在主板自身上设计的一个线路,此电路以南桥或I/O为核心,由门电路、电阻、电容、二极管(少见)三极管、门电路、稳压器等元件构成,整个电路中的元件皆由紫线5V提供工作电压,并由一个开关来控制其是否工作,(如图4-1)当操作者瞬间触发开机之后,会产生一个瞬间变化的电平信号,即0或1的开机信号,此信号会直接或间接地作用于南桥或I/O内部的开机触发电路,使其恒定产生一个0或1的的信号,通过外围电路的转换之后,变成一个恒定的低电平并作用于电源的绿线。
当电源的绿线被拉低之后,电源就会输出各路电压(红5V、橙3.3V、黄12V等)向主板供电,此时主板完成整个通电过程。
图5-1 主板通电电路的工作原理图5.1.2学习重点:①主板软开机电路的大致构成及工作原理;②软开机线路的寻找;④主板不通电故障的检修;⑤实际检修中需注意的特殊现象。
5.1.3实例剖析:一款MS-6714主板,故障为不能通电,其开机电路如图5-2所示(图5-2)通过以上线路发现,开机电路由W83627HF-AW组成整个线路,按照主板不通电故障的检修流程进行检修,测其67脚没有3.3V左右的控制电压,此时就算更换I/O仍是不能工作的,于是查找相关线路,发现此点的控制电压是由FW82801DB直接发出,再查此南桥的1.5V的待机电压异常,跟寻此点线路,发现南桥旁一个型号为702的场效应管损坏,更换此管后,故障排除。
注:W83627系列I/O在Intel芯片组的主板中从Intel810主板开始,到目前的主板当中,都有广泛的应用,而且在实际维修中极容易损坏.5.1.4目前主板中常见的几种开机电路图:ASROCK P4S61 开机电路图5.2 主板供电电路5.2.1主板供电电路(见图5-3 )是主板中最容易损坏的部分,在实际的维修中占有相当大的比例,在学习本节之前,我们先来了解一下主板的供电机制。
主板时钟电路工作原理

主板时钟电路工作原理一、引言主板时钟电路是计算机系统中的重要组成部分,它负责提供系统时钟信号,为计算机的各个部件提供统一的时序参考。
本文将详细介绍主板时钟电路的工作原理及其相关知识。
二、主板时钟电路的作用主板时钟电路的主要作用是为计算机内部的各个部件提供统一的时序参考信号。
它通过产生稳定的时钟信号,确保计算机内部各个部件的协调工作。
时钟信号的频率和稳定性对计算机系统的性能和稳定性有着重要影响。
三、主板时钟电路的组成主板时钟电路一般由以下几个部分组成:1. 振荡器:振荡器是主板时钟电路的核心部件,它负责产生稳定的时钟信号。
常见的振荡器有晶体振荡器和压控振荡器等。
晶体振荡器具有高稳定性和精确的频率特性,被广泛应用于主板时钟电路。
2. 预分频器:预分频器用于将振荡器输出的高频时钟信号分频为较低的频率,以适应不同部件的工作频率要求。
预分频器一般采用可编程分频器,可以根据需要进行设置。
3. 时钟分配器:时钟分配器将预分频器输出的时钟信号分配给不同的部件,以满足各个部件的时钟需求。
时钟分配器一般采用时钟树结构,可以实现多路时钟选择和分频功能。
4. 时钟缓冲器:时钟缓冲器用于放大和驱动时钟信号,确保时钟信号的质量和稳定性。
时钟缓冲器一般采用高速缓冲器,具有较低的时钟延迟和较高的驱动能力。
四、主板时钟电路的工作原理主板时钟电路的工作原理如下:1. 振荡器产生稳定的时钟信号,通常为晶体振荡器,其频率由晶体的特性决定。
2. 振荡器输出的时钟信号经过预分频器进行分频,得到适合不同部件工作频率要求的时钟信号。
3. 预分频器输出的时钟信号经过时钟分配器进行选择和分配,分配给不同的部件。
4. 时钟信号经过时钟缓冲器进行放大和驱动,确保时钟信号的质量和稳定性。
5. 各个部件根据接收到的时钟信号进行相应的操作和计算。
五、主板时钟电路的注意事项在设计和使用主板时钟电路时,需要注意以下几个方面:1. 振荡器的选取:选择适合的振荡器对主板时钟电路的性能和稳定性至关重要。
主板时钟电路工作原理

主板时钟电路工作原理摘要:主板时钟电路是计算机内部一个重要的电路模块,它负责提供准确的时钟信号以同步计算机内部各个组件的工作。
本文将介绍主板时钟电路的工作原理,并详细解析其组成和功能,以及对计算机性能的影响。
一、引言计算机的各个组件需要一个统一的时钟信号来进行协调和同步,以确保它们按照特定的顺序和速度工作。
主板时钟电路就是为了提供这个时钟信号而存在的。
二、主板时钟电路的组成主板时钟电路由以下几个主要组成部分组成:1. 晶振晶振是主板时钟电路中的关键部件,它通过使用压电效应使晶体振荡,并产生一个准确稳定的信号频率。
晶振通常由石英晶体制成,并具有很高的准确性和稳定性。
2. 预分频器预分频器用于将晶振产生的高频信号降低到可供计算机内部各个组件使用的频率。
预分频器可以根据需要将信号进行分频,以提供不同的时钟频率。
常见的时钟频率有1Hz、10Hz、100Hz等。
3. 锁相环(PLL)锁相环是主板时钟电路中的一个关键电路,它可以将输入信号的频率和相位与参考信号进行比较,然后通过调整输出信号的频率和相位,使其与参考信号同步。
这可以保证时钟信号的稳定性和准确性。
4. 时钟分配器时钟分配器负责将时钟信号分发给计算机内部的各个组件。
它通过设计合理的布线和电路分配,确保时钟信号能够及时到达每个组件,并满足其工作的时序要求。
三、主板时钟电路的工作原理主板时钟电路的工作原理可以概括为以下几个步骤:1. 晶振产生高频信号主板时钟电路中的晶振通过压电效应,使晶体产生高频信号。
晶振中的晶体根据信号的频率和相位,以固定的方式振荡。
2. 预分频器降低频率晶振产生的高频信号通过预分频器降低频率。
预分频器根据需要选择适当的分频比例,以提供合适的时钟频率给锁相环。
3. 锁相环同步信号预分频器将降低频率的信号输入到锁相环中。
锁相环通过比较输入信号和参考信号的频率和相位,控制输出信号的频率和相位,使其与参考信号同步。
4. 时钟分配器分发信号锁相环产生的同步时钟信号通过时钟分配器分发给计算机内部的各个组件。
主板时钟电路工作原理

主板时钟电路工作原理一、引言主板时钟电路是计算机主板上的一个重要部分,它负责为计算机系统提供准确的时钟信号,保证各个硬件设备的协调工作。
本文将详细介绍主板时钟电路的工作原理。
二、主板时钟电路的组成主板时钟电路主要由晶体振荡器、时钟发生器、时钟分频器和时钟缓冲器等组成。
1. 晶体振荡器晶体振荡器是主板时钟电路的核心部件,它采用了压电效应使晶体在电场的作用下发生机械振动,产生稳定的频率信号。
常见的晶体振荡器有石英晶体振荡器和陶瓷晶体振荡器。
2. 时钟发生器时钟发生器接收晶体振荡器的频率信号,并根据需求生成不同频率的时钟信号。
它通常由锁相环(PLL)和频率合成器组成,能够根据需要调整时钟频率。
3. 时钟分频器时钟分频器接收时钟发生器的时钟信号,并将其分频为较低频率的时钟信号,以供不同硬件设备使用。
分频器通常采用计数器实现,通过设定计数器的初始值和计数规则来实现分频功能。
4. 时钟缓冲器时钟缓冲器接收分频后的时钟信号,并通过放大和整形等处理,将时钟信号的幅度和波形调整为适合各个硬件设备使用的标准信号。
三、主板时钟电路的工作原理主板时钟电路的工作原理可以分为以下几个步骤:1. 晶体振荡器产生频率稳定的振荡信号。
晶体振荡器通过晶体的压电效应使其发生机械振动,产生频率稳定的振荡信号。
晶体的振荡频率由晶体的物理特性决定,一般为几十MHz至几百MHz。
2. 时钟发生器根据需要生成不同频率的时钟信号。
时钟发生器接收晶体振荡器的振荡信号,并通过锁相环和频率合成器等技术,将其转换为稳定的时钟信号,并根据需要生成不同频率的时钟信号。
3. 时钟分频器将时钟信号分频为较低频率的时钟信号。
时钟分频器接收时钟发生器的时钟信号,通过计数器的计数规则和初始值设定,将时钟信号分频为较低频率的时钟信号,以供不同硬件设备使用。
4. 时钟缓冲器调整时钟信号的幅度和波形。
时钟缓冲器接收分频后的时钟信号,通过放大和整形等处理,将时钟信号的幅度和波形调整为适合各个硬件设备使用的标准信号。
主板时钟电路工作原理

主板时钟电路工作原理时钟电路是计算机主板上的一个重要组成部分,它负责产生和分配计算机各个部件所需的时钟信号。
时钟信号是计算机内部各个部件同步工作的基础,它提供了一个统一的时间基准,确保各个部件按照正确的时间序列进行工作,从而保证计算机整体的稳定性和性能。
一、主板时钟电路的组成主板时钟电路主要由以下几个部分组成:1. 晶体振荡器:晶体振荡器是时钟电路的核心部件,它负责产生稳定的时钟信号。
晶体振荡器通常由一个晶体和一个放大器构成,晶体的振荡频率决定了时钟信号的频率。
晶体振荡器通常采用石英晶体,因为石英晶体具有稳定性高、温度稳定性好等特点。
2. 时钟分频器:时钟分频器用于将晶体振荡器产生的高频时钟信号分频为各个部件所需的低频时钟信号。
不同的部件对时钟信号的要求不同,时钟分频器可以根据需要将时钟信号分频为不同的频率。
时钟分频器通常由计数器和触发器组成,通过控制计数器和触发器的工作状态,可以实现不同的分频比。
3. 时钟缓冲器:时钟缓冲器用于放大和稳定时钟信号,以确保时钟信号能够准确地传输到各个部件。
时钟缓冲器通常由放大器和稳压电路组成,放大器负责放大时钟信号的幅度,稳压电路负责稳定时钟信号的电压。
4. 时钟分配器:时钟分配器用于将时钟信号分配给计算机主板上的各个部件。
时钟分配器通常由时钟信号输入端、时钟信号输出端和多路选择器组成,通过控制多路选择器的工作状态,可以将时钟信号分配给不同的部件。
二、主板时钟电路的工作原理主板时钟电路的工作原理如下:1. 晶体振荡器工作原理:晶体振荡器通过晶体的振荡产生稳定的时钟信号。
晶体振荡器的工作原理基于晶体的压电效应,当施加电场或机械应力时,晶体会产生机械振动,从而产生电荷。
晶体振荡器利用晶体的压电效应,通过放大器将晶体产生的微弱振荡信号放大为稳定的时钟信号。
2. 时钟分频器工作原理:时钟分频器通过计数器和触发器将高频时钟信号分频为低频时钟信号。
计数器根据设定的分频比进行计数,当计数值达到设定值时,触发器会改变输出状态,产生一个低电平或高电平的脉冲信号,从而实现分频功能。
主板维修课程第七课时钟CLK电路

AMD
25.000MHZ
基准时钟
三、时钟IC的供电: P3 有两组供电: 3.3v和2.5v P4 只有一组供电3.3v: (由ATX电源经贴片电感进入时钟发生器)
四、 时钟IC的工作条件:
1、 供电; 2、14.318晶体要启振; 3、系统管理总线.由南桥控制.电压约为3V.部分板需要;
4 、PG信号。(此脚有1.0V电平就OK)
五、时钟电路工作原理: 时钟电路工作条件都满足后,时钟芯片会把14.318MHZ的基准时钟进行升
频或降频,产生不同频率的时钟信号,通过时钟芯片的外围电路送到各级电路 上,有了基本工作频率,电脑才能在CPU的控制下,按部钟电路图:
七、主板时钟测试点:
内存种类:
前端总线 内存速度
1066/800/533 800/667/533
800/533/400 400/333/266
2、14.318晶体是否启振: 换时钟IC 换I/O芯片(FDD接口34#无5V电压) 拆除时钟IC旁边的开关管 也有可能是南北桥引起
3、更换时钟IC。
九、数据带宽=总线频率×数据位宽/8 除8是将bit换算为 1BYTE=8bit
字節和字長﹕CPU在單位時間內(同一時間)能處理的二進制數的位數叫字長﹒一個字節等于八 位(1byte=8bit)﹒如32位的CPU能在單位時間內同時處理字長為32位的二進制﹒通常8位稱一個字 節﹒32位的CPU一次只能同時處理4個字節﹒
频率: 66 MHZ 33 MHZ 33 MHZ 100 MHZ 66/100/133 MHZ 100/133/200 MHZ
电压: 1.6V 左右 1.5 V 左右 1.5 V 左右 0.5 V 左右 0.8—1.2V 0.2—0.8V 0.2—0.8V 1.5—2.5V 1.5—2.5V
主板时钟电路工作原理

主板时钟电路工作原理标题:主板时钟电路工作原理引言概述:主板时钟电路是计算机主板上一个非常重要的部分,它负责控制计算机系统的时钟信号,确保各个组件之间的协调运作。
了解主板时钟电路的工作原理对于维护和优化计算机系统性能至关重要。
一、主板时钟电路的基本构成1.1 时钟信号发生器:主板时钟电路的核心部分,负责产生系统时钟信号。
1.2 时钟信号分配器:将时钟信号分配给各个组件,确保它们同步运作。
1.3 时钟信号调节器:调整时钟信号的频率和相位,以适应不同的工作环境和需求。
二、主板时钟电路的工作原理2.1 时钟信号发生器工作原理:通过晶体振荡器产生基准频率信号,再经过分频和倍频电路得到系统所需的时钟信号。
2.2 时钟信号分配器工作原理:根据不同的时钟信号需求,将时钟信号分配给CPU、内存、总线等组件。
2.3 时钟信号调节器工作原理:根据系统负载和功耗情况,调节时钟信号的频率和相位,以保证系统稳定运行。
三、主板时钟电路的重要性3.1 系统同步性:时钟信号的准确性和稳定性对于各个组件的同步运作至关重要。
3.2 性能优化:通过调节时钟信号频率和相位,可以提高系统的性能和响应速度。
3.3 系统稳定性:合理设计和维护主板时钟电路可以确保系统的稳定性和可靠性。
四、主板时钟电路的故障排除方法4.1 检查时钟信号发生器:如果系统时钟不稳定或频率不准确,首先检查时钟信号发生器是否正常工作。
4.2 检查时钟信号分配器:如果某些组件无法同步运作,可能是时钟信号分配出现问题。
4.3 检查时钟信号调节器:如果系统性能下降或出现异常,可能是时钟信号调节器需要调整或更换。
五、主板时钟电路的优化方法5.1 更新固件:定期更新主板固件可以优化时钟电路的性能和稳定性。
5.2 清洁维护:保持主板时钟电路的清洁和良好维护可以延长其使用寿命。
5.3 调整参数:根据实际需求和工作环境,适时调整主板时钟电路的参数以获得最佳性能。
结论:主板时钟电路是计算机系统中一个至关重要的部分,了解其工作原理和维护方法对于保证系统性能和稳定性至关重要。
主板时钟电路工作原理

主板时钟电路工作原理一、引言主板时钟电路是计算机系统中的重要组成部分,它负责产生和分配系统中各个部件的时钟信号,确保系统的稳定运行。
本文将详细介绍主板时钟电路的工作原理,包括时钟信号的产生、分配和同步。
二、时钟信号的产生主板时钟信号的产生通常由晶体振荡器来实现。
晶体振荡器是一种基于晶体共振原理工作的振荡电路,它利用晶体的机械振动特性产生稳定的电信号。
晶体振荡器一般由晶体谐振器和放大电路组成。
晶体谐振器是通过将晶体与电容和电感等元件组合在一起,形成一个谐振回路来实现的。
当电路中的谐振频率等于晶体的固有频率时,晶体会发生机械振动,并产生稳定的电信号。
放大电路用于放大晶体振荡器产生的微弱信号,以供后续电路使用。
三、时钟信号的分配主板上的时钟信号需要被分配给各个部件,以确保它们按照正确的时间序列进行操作。
时钟信号的分配通常通过时钟分频器和时钟缓冲器来实现。
时钟分频器是一种电路,它可以将输入的时钟信号分频为较低频率的信号。
通过调整时钟分频器的分频系数,可以得到不同频率的时钟信号,以满足不同部件的需求。
时钟缓冲器用于放大和驱动时钟信号,以确保它们能够稳定地传输到各个部件。
四、时钟信号的同步在多核处理器和多个外部设备同时工作的系统中,时钟信号的同步非常重要。
时钟信号的同步通过时钟同步电路来实现。
时钟同步电路通常由锁相环(PLL)和延迟锁定环(DLL)组成。
锁相环是一种反馈控制系统,它可以将输入的时钟信号和参考信号进行比较,并通过调整输出信号的相位和频率来使两者同步。
延迟锁定环是一种用于延迟时钟信号的电路,它可以根据需要对时钟信号进行延迟,以确保各个部件在正确的时间进行操作。
五、总结主板时钟电路是计算机系统中的关键组成部分,它负责产生、分配和同步系统中各个部件的时钟信号。
时钟信号的产生依靠晶体振荡器,通过晶体的共振特性产生稳定的电信号。
时钟信号的分配通过时钟分频器和时钟缓冲器来实现,以确保各个部件按照正确的时间序列进行操作。
主板时钟电路工作原理

主板时钟电路工作原理一、引言主板时钟电路是计算机主板上的一个重要组成部份,它负责提供计算机系统的时钟信号,确保各个部件之间的协调工作。
本文将详细介绍主板时钟电路的工作原理。
二、时钟信号的重要性时钟信号是计算机系统中的一个基础信号,它用于同步各个部件的工作。
在计算机中,时钟信号决定了数据的读写速度、指令的执行速度等关键参数。
因此,时钟信号的稳定性和准确性对于计算机系统的性能和稳定性至关重要。
三、主板时钟电路的组成主板时钟电路普通由以下几个主要部份组成:1. 晶体振荡器(Crystal Oscillator):晶体振荡器是主板时钟电路的核心部件,它通过晶体的振荡产生稳定的时钟信号。
晶体振荡器的频率决定了计算机系统的工作速度,常见的频率有4MHz、8MHz、16MHz等。
2. 时钟发生器(Clock Generator):时钟发生器负责将晶体振荡器产生的时钟信号进行分频、倍频等处理,生成各个部件所需的不同频率的时钟信号。
3. 时钟分配器(Clock Distribution):时钟分配器将时钟信号分配给各个部件,确保它们按照同步的方式工作。
时钟分配器通常包括时钟缓冲器、时钟分频器等。
4. 时钟校准电路(Clock Calibration Circuit):时钟校准电路用于保证时钟信号的准确性和稳定性,通过对时钟信号进行校准和修正,使其与标准时钟信号保持同步。
四、主板时钟电路的工作原理主板时钟电路的工作原理如下:1. 晶体振荡器产生稳定的时钟信号:晶体振荡器中的晶体具有压电效应,当施加电场或者机械力时,晶体味产生机械振动,从而产生稳定的振荡信号。
这个振荡信号的频率由晶体的物理特性决定。
2. 时钟发生器进行时钟信号的处理:晶体振荡器产生的振荡信号经过时钟发生器的分频、倍频等处理,生成各个部件所需的不同频率的时钟信号。
时钟发生器根据主板的设计和需求,将时钟信号分配给不同的部件。
3. 时钟分配器将时钟信号分配给各个部件:时钟分配器负责将时钟信号分配给各个部件,确保它们按照同步的方式工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主板时钟电路工作原理
时钟电路工作原理:
DC3.5V电源经过二极管和L1(L1可以用0Ω电阻代替)进入分频器后,分频器开始工作,和晶体一起产生振荡。
在晶体的两脚均可以看到波形。
晶体的两脚之间的阻值在450-700Ω之间。
在它的两脚各有1V左右的电压,由分频器提供。
晶体两脚产生的频率总和是14.318M。
总频OSC在分频器出来后送到PCI槽的B16脚和ISA槽的B30脚(这两个脚叫OSC 测试脚)。
也有的还送到南桥,目的是使南桥的频率更加稳定。
在总频OSC的线上还有电容,总频线的对地电阻在450-700Ω之间。
总频的时钟波形幅度一定要大于2V。
如果开机数码卡上的OSC灯不亮,先查晶体两脚的电压和波形。
有电压有波形,在总频线路正常的情况下,为分频器坏。
若无电压无波形,在分频器电源正常的情况下,为分频器坏;有电压无波形,为晶体坏。
没有总频,南、北桥、CPU、CACHE、I/O、内存上就没有频率,有了总频,南、北桥、内存、CPU、CACHE、I/O上不一定有频率。
总频一旦正常,可以说明晶体和分频器基本正常,主要是晶体的振荡电路已经完全正常,反之就不正常。
当分频产生后,分频器开始分频,R2经分频器过来的频率送到南桥,在南桥处理过后送到PCI槽的B39脚(PCICLK)和ISA槽的B20脚(SYSCLK),这两脚叫系统时钟测试脚。
这个测试脚可以反映主板上所有的时钟是否正常。
系统时钟的波形幅度一定要大于1.5V。
在主板上,RST和CLK都是由南桥处理的。
若总频正常,如果RST和CLK都没有,在南桥电源正常的情况下,为南桥坏。
主板不开机,RST灯不正常,要先查总频。
如果在数码卡上有OSC灯和RST灯,没有CLK灯的话,先查R3输出的分频有没有。
若没有,在线路正常的情况下,一般是分频器坏。
如果CLK的波形幅度不够,那得先查R3输出的幅度够不够。
若不够,一般为分频器坏。
若够,查南桥的电压够不够。
若够,南桥坏;不够,查电源电路。
R1将分频器分过来的频率送给CPU的第6脚(在CPU上RST较旁边,见图纸),这
个脚为CPU时钟脚。
CPU如果没有时钟,是绝对不会工作的。
CPU的时钟有可能由北桥提供。
如果南桥上有CLK信号而CPU上没有,就可能是分频器或南桥坏。
R4为I/O提供频率。
在主板上,时钟线比AD线要粗一些,并带有弯曲。
频率发生偏移,是晶体电容所导致的。
它的现象是刚开机就死机,运行98出错,分频器本身坏了,会导致频率上不去,和晶体无关。
CPU的两边为控制处理(位置见图),控制南桥和分频器,当频率发生偏移,会自动调整。
当CACHE短路会引起不开机,开路不会导致不开机故障。
如果不读内存(C1、C6、D3、D4),多为CACHE内部或数据线坏。
如果应显示却无显示(2A、0D),一般也是CACHE 坏。
开机即死机,也是CACHE坏。
进入C盘慢或者运行windows死机,也多为CACHE 坏.若不进C盘,那一般为TAG或其电路有故障。
主板时钟电路工作原理
时钟电路工作原理:3.5电源经过二极管和电感进入分频器后,分频器开端工作,和晶体一同产生振荡,在晶体地两脚均能够看到波形。
晶体地两脚之间地阻值在450---700欧之间。
在它地两脚各有1V左右地电压,由分频器提供。
晶体两脚常生地频率总和是14.318M。
总频(OSC)在分频器出来后送到PCI槽地B16脚和ISA地B30脚。
这两脚叫OSC测试脚。
也有地还送到南桥,目地是使南桥地频率愈加稳定。
在总频OSC线上还电容。
总频线地对地阻值在450---700欧之间,总频时钟波形幅度肯定要大于2V电平。
假如开机数码卡上地OSC灯不亮,先查晶体两脚地电压和波形;有电压有波形,在总频线路正常地状况下,为分频器坏;无电压无波形,在分频器电源正常状况下,为分频器坏;有电压无波形,为晶体坏。
没有总频,南、北桥、CPU、CACHE、I/O、内存上就没有频率。
有了总频,也不肯定有频率。
总频肯定正常,能够说明晶体和分频器根本上正常,首要是晶体地振荡电路曾经完全正常,反之就不正常。
当总频产生后,分频器开端分频,R2将分频器分过来地频率送到南桥,在南桥处理过后送到PCI槽B8和ISA地B20脚,这两脚叫系统测试脚,这个测试脚能够反映主板上一切地时钟能否正常。
系统时钟地波形幅度肯定要大于1.5V,这两脚地阻值在450---700欧之间,由南桥提供。
在主板上RESET和CLK者是南桥处理地,在总频正常下,假如RESET和CLK都没有,在南桥电源正常状况下,为南桥坏。
主板不开机,RESET不正常,先查总频。
在主板上,时钟线比AD线要粗一些,并带有弯曲。
波形地作用PCB上地任狠 条走线在通过高频信号地状况下都会对该信号造成时延时,蛇形走线地首要作用是补偿“同一组相关”信号线中延时较小地部分,这些部分通常是没有或比其它信号少通过另外地逻辑处理;最典型地就是时钟线,通常它不需经过任何其它逻辑处理,因而其延时会小于其它相关信号。
高速数字PCB板地等线长是为了使各信号地延迟差保持在一个范围内,保证系统在同一个星期期内读取地数据地有效性(延迟差超过一个时钟周期时会错读下一个星期期地数据),通常要求延迟差不超过1/4时钟周期,单位长度地线延迟差也是固定地,延迟跟线宽,线长,铜厚,
板层结构相关,但线过长会增大分布电容和分布电感,使信号质量,所以时钟IC引脚通常都接RC端接,但蛇形走线并非起电感地作用,相反地,电感会使信号中地上升元中地高次谐波相移,造成信号质量恶化,所以要求蛇形线间距最少是线宽地两倍,信号地上升时间越小就越易受分布电容和分布电感地影响.因为应用场所不同具不同地作用,假如蛇形走线在电脑板中出现,其首要起到一个滤波电感地作用,提高电路地抗干扰才能,电脑主机板中地蛇形走线,首要用在一些时钟信号中,如PCIClk,AGPClk,它地作用有两点:
1、阻抗匹配
2、滤波电感。
对一些重要信号,如INTEL HUB架构中地HUBLink,一共13根,跑233MHz,要求必需严格等长,以消除时滞造成地隐患,绕线是唯一地解决方法。
通常来讲,蛇形走线地线距>=2倍地线宽。
PCI板上地蛇行线就是为了顺应PCI 33MHzClock地线长要求。
若在通常通常PCB板中,是一个分布参数地LC 滤波器,还可作为收音机天线地电感线圈,短而窄地蛇形走线可做保险丝等等.
电脑主板时钟电路工作原理
时钟电路的工作原理:DC3.5V电源经过二极管和L1(L1可以用0欧电阻代替)进入分频器后,分频器开始工作。
,和晶体一起产生振荡,在晶体的两脚均可以看到波形。
晶体的两脚之间的阻值在450-700之间。
在它的两脚各有1V左右的电压,由分频器提供。
晶体产生的频率总和是14。
318M。
总频OSC在分频器出来后送到PCI的B16脚和ISA的B30脚,这两脚叫OSC测试脚。
也有的还送到南桥,目的是使南桥的频率更加稳定。
在总频OSC的线上还有电容,总频线的对地阻值在450-700欧之间。
总频的时钟波形幅度一定要大于2V。
如果开机数码卡上的OSC灯不亮,先查晶体两的电压和波形。
有电压有波形,在总频线路正常的情况下,为分频器坏;无电压无波形,在分频器电源正常的情况下,为分频器坏;有电压无波形为晶体坏。
没有总频,南、北桥、CPU、CACHE、I/O、内存上就没有频率。
有了总频,南、北桥、内存、CPU、CACHE、I/O上不一定有频率。
总频一旦正常,分频器开始分频,R2将分频器分过来的频率送到南桥,在面桥处理过后送到PCI的B39脚(PCICLK)和ISA的B20脚(SYSCLK),这两脚叫系统时钟测试脚。
这个测试脚可以反映主板上所有的时钟是否正常。
系统时钟的波形幅度一定要大于1。
5V,这两脚的阻值在450-700欧之间,由南桥提供。
在主板上,RST和CLK都是由南桥处理的,在总频正常,如果RST和CLK都没有,在南桥电源正常的情况下,为南桥坏。
主板不开,RST不正常,是先查总频。
在数码卡上有OSC灯和RST灯,没有CLK灯的故障:先查R3输出的分频有没有,没有,在线路正常的情况下,分频器坏。
CLK的波形幅度不够:查R3输出的幅度够不够,不够,分频器坏。
够,查南桥的电压够不够,够南桥坏;不够,查电源电路。
R1将分频器分过来的频率送给CPU的第六脚,这个脚为CPU时钟脚。
CPU如果没有时钟,是绝对不会工作的,CPU的时钟有可能是由北桥提供。
如果南桥上有CLK信号而CPU上没有,就可能是分频器或南桥坏。
R4为I/O提供频率。
在主板上,时钟线比AD线要粗一些,并带有弯曲。
频率发生偏移,是晶体电容所导致的,它的现象是,刚一开机就会死机,运行98出错。
分频器本身坏了,会导致频率上不上去。
和晶体无关。
CPU的两边为控制处,控制南桥和分频器,当频率发生偏移,会自动调整。