热学习题分析和解答

合集下载

复习[热学部分习题解答]报告

复习[热学部分习题解答]报告


(1) n p / kT 2.44 10 m M 3 (2) nm n 1.30kgm NA 21 (3) k 3kT / 2 6.2110 J (4) d 1 / n 3.45 10 m
3 9
25
3
ห้องสมุดไป่ตู้
例8 设有一恒温容器,其内储有某种理想气体,若
p ( C)
绝热 绝热
o
p (B)
等温 绝热
V
o p
( D)
等温 绝热
V
绝热
o
V
o
V
例19 图中两卡诺循环
1 2
p
吗?
p
W1
W1 W2
T1
T1
W1 W2
W2
T2
W2
T3 W1
T2
o
V
o
V
1 2
1 2
例20 设高温热源的热力学温度是低温 热源热力学温度的n倍,则理想气体在一次 卡诺循环中,传给低温热源的热量是从高 温热源吸收热量的 ( A) n 倍 解:Q放 T低 1 (B) 1/n倍 Q吸 T高 n (C) n-1倍 (D)(n+1)/n倍
C p,m 20.79J mol K
1
1
1)画 P—V 图
p A B
2)在这过程中氦气吸热
C
o
20
40
V (l )
Q吸 QAB 2C p ,( ) m T2 T1 T1 (273 27)K V1 V2 T1 T2
T2 600K
QAB 1.25 10 J
i kT . 2
刚性分子,分子自由度数为 i,则当温度为 T 时, (1)一个分子的平均动能为

10 热力学基础 习题分析与解答 第二版

10 热力学基础 习题分析与解答 第二版

第10章 热力学基础 习题解答(一). 选择题1. 1摩尔氧气和1摩尔水蒸气(均视为刚性分子理想气体),在体积不变的情况下吸收相等的热量,则它们的:(A )温度升高相同,压强增加相同。

(B )温度升高不同,压强增加不同。

(C )温度升高相同,压强增加不同。

(D )温度升高不同,压强增加相同 。

[ ] 【分析与解答】因为2V m iQ R T M =∆,p nkT=氧气和水蒸气的自由度不同,吸收热量相等,则温度升高不同,压强增加亦不同。

正确答案是B 。

2. 一定量理想气体,从状态A 开始,分别经历等压、等温、绝热三种过程(AB 、AC 、AD ),其容积由V1都膨胀到2V1,其中 。

(A) 气体内能增加的是等压过程,气体内能减少的的是等温过程。

(B) 气体内能增加的是绝热过程,气体内能减少的的是等压过程。

(C) 气体内能增加的是等压过程,气体内能减少的的是绝热过程。

(D) 气体内能增加的是绝热过程,气体内能减少的的是等温过程。

[ ] 【分析与解答】正确答案是C 。

3. 如图所示,一定量的理想气体,沿着图10-18中直线从状态a( 压强p1 = 4 atm ,体积V1=2 L )变到状态b ( 压强p2 =2 atm ,体积V2 =4 L ).则在此过程中: (A ) 气体对外做正功,向外界放出热量. (B ) 气体对外做正功,从外界吸热. (C ) 气体对外做负功,向外界放出热量. (D ) 气体对外做正功,内能减少. [ ]p (atm)P 图10-18 【分析与解答】 因为a ab b p V p V =,a b T T =,内能变化为零,吸热等于做功,而此过程为单向体积膨胀过程,系统对外做正功,从外界吸热。

正确答案是B 。

4. 若在某个过程中,一定量的理想气体的内能E 随压强p 的变化关系为一直线(其延长线过E -p 图10-19的原点),则该过程为:(A ) 等温过程 (B ) 等压过程 (C ) 等体过程 (D ) 绝热过程 [ ]图10-19【分析与解答】因为22m i iE RT pV M ==,p 与V 成线性关系,故为等体过程。

热学(李椿+章立源+钱尚武)习题解答_第1章 温度

热学(李椿+章立源+钱尚武)习题解答_第1章 温度

第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。

解:根据已知冰点。

1-4用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。

当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。

试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。

解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。

设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。

解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

热学习题分析和解答

热学习题分析和解答

习题分析和解答[第一章△1. 3. 6一抽气机转速1m in 400-⋅=r ω,抽气机每分钟能抽出气体20 l (升)。

设容器的容积 V 0 = 2.0 1,问经过多长时间后才能使容器的压强由0.101 Mpa 降为 133 Pa 。

设抽气过程中温度始终不变。

〖分析〗: 抽气机每打开一次活门, 容器气体的容积在等温条件下扩大了 V , 因而压强有所降低。

活门关上以后容器气体的容积仍然为 V 0 。

下一次又如此变化,从而建立递推关系。

〖解〗: 抽气机抽气体时,由玻意耳定律得:活塞运动第一次:)(0100V V p V p +=0001p V V V p +=活塞运动第二次: )(0201V V p V p +=02001002p V V V p V V V p ⎪⎪⎭⎫ ⎝⎛+=+= 活塞运动第n 次: )(001V V p V p n n +=-n n V V V p p ⎪⎪⎭⎫ ⎝⎛+= 000 V V V n p p n n +=000ln(1) 抽气机每次抽出气体体积 l 05.0l )400/20(==V l 0.20=V Pa 1001.150⨯=p Pa 133=n p将上述数据代入(1)式,可解得 276=n 。

则 s 40s 60)400/276(=⨯=t1. 3. 8 两个贮着空气的容器 A 和 B ,以备有活塞之细管相连接。

容器A 浸入温度为 C 10001=t 的水槽中,容器B 浸入温度为 C 2002-=t 的冷却剂中。

开始时,两容器被细管中之活塞分隔开,这时容器 A 及 B 中空气的压强分别为 MPa 3053.01=p ,MPa 0020.02=p 。

它们的体积分别为 ,l 25.01=V l,40.02=V 试问把活塞打开后气体的压强是多少?〖分析〗: 把活塞打开后两容器中气体混合而达到新的力学平衡以后,A 和 B 中气体压强应该相等。

但是应注意到, 由于 A 和 B 的温度不相等,所以整个系统仍然处于非平衡态。

大学物理热学练习题及答案

大学物理热学练习题及答案

大学物理热学练习题及答案第一题:一个物体的质量是1 kg,温度从20°C升高到30°C,如果物体的比热容是4200 J/(kg·°C),求物体吸收的热量。

解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。

代入数据得:Q = 1 kg × 4200 J/(kg·°C) × (30°C - 20°C)= 1 kg × 4200 J/(kg·°C) × 10°C= 42,000 J所以物体吸收的热量为42,000 J。

第二题:一块金属材料的质量是0.5 kg,它的比热容是400 J/(kg·°C),经过加热后,材料的温度升高了60°C。

求该金属材料所吸收的热量。

解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。

代入数据得:Q = 0.5 kg × 400 J/(kg·°C) × 60°C= 12,000 J所以金属材料吸收的热量为12,000 J。

第三题:一个热容为300 J/(kg·°C)的物体,吸收了500 J的热量后,温度升高了多少摄氏度?解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。

将已知数据代入公式:500 J = m × 300 J/(kg·°C) × Δθ解方程得:Δθ = 500 J / (m × 300 J/(kg·°C))= 500 J / (m/(kg·°C)) × (kg·°C/300 J)= (500/300) °C≈ 1.67°C所以温度升高了约1.67°C。

第5、6章(热学部分)习题解答

第5、6章(热学部分)习题解答

第五章气体分子动理论5-6 在容积为332.010m -⨯的容器中,有内能为26.7510⨯ J 的刚性双原子分子理想气体。

求:(1)气体的压强;(2)若容器中分子总数为225.410⨯个,则分子的平均平动动能及气体的温度为多少?分析:(1)由一定量理想气体的内能公式和理想气体物态方程可求出气体的压强,刚性双原子分子的自由度5i =。

(2)由分子数密度定义和p nkT =求出T ,最后由气体分子的平均平动动能公式求出分子的平均平动动能。

解:(1)由2M i E RT μ=和MpV RT μ=得气体压强:(2)分子数密度Nn V=,则该气体的温度: 53222231.35102.0103.6210()5.410 1.3810p pV T K nk Nk --⨯⨯⨯====⨯⨯⨯⨯ 气体分子的平均平动动能为:2322133 1.3810 3.62107.4910()22k kT J ε--⨯⨯⨯⨯===⨯5-7 自行车轮直径为71.12cm ,内胎截面直径为3cm 。

在03C -的空气里向空胎里打气。

打气筒长30cm ,截面半径为1.5cm 。

打了20下,气打足了,问此时胎内压强是多少?设车胎内最后气体温度为07C 。

分析:可根据理想气体物态方程求解此题。

解: 设向自行车内胎所打的空气的摩尔数为γ由理想气体物态方程pV RT γ=得 :111p V RT γ=其中,22231111,203010(1.510),3273270p atm V m T K π--==⨯⨯⨯⨯⨯=-+= 气打足后,胎内空气的体积 22232371.1210(10)2V m ππ--=⨯⨯⨯⨯⨯温度2(7273)280T K K =+=,压强为 2p , 222RT p V γ=1125222111222222211.01310203010(1.510)280371.1210(10)2702pV RT RT pVT p V V T πππ----⋅⨯⨯⨯⨯⨯⨯⨯⨯∴===⨯⨯⨯⨯⨯⨯ 52.8410() 2.8()a p atm -=⨯=25322 6.7510 1.3510()5 2.010E p Pa iV -⨯⨯===⨯⨯⨯5-8 某柴油机的气缸充满空气,压缩前其中空气的温度为047C ,压强为48.6110Pa ⨯。

热学(李椿章立源钱尚武~)习题解答第四章气体内的输运过程

热学(李椿章立源钱尚武~)习题解答第四章气体内的输运过程

第四章气体内的输运过程4-1.氢气在,时的平均自由程为×m,求氢分子的有效直径。

解:由=得:=代入数据得:(m)4-2.氮分子的有效直径为,求其在标准状态下的平均自由程和连续两次碰撞间的平均时间。

解:=代入数据得:-(m)=代入数据得:=(s)4-3.痒分子的有效直径为3.6×m,求其碰撞频率,已知:(1)氧气的温度为300K,压强为1.0atm;(2)氧气的温度为300K,压强为1.0×atm解:由=得==代入数据得:=6.3×()()4-4.某种气体分子在时的平均自由程为。

(1)已知分子的有效直径为,求气体的压强。

(2)求分子在的路程上与其它分子的碰撞次数。

解:(1)由得:代入数据得:(2)分子走路程碰撞次数(次)4-5.若在下,痒分子的平均自由程为,在什么压强下,其平均自由程为?设温度保持不变。

解:由得4-6.电子管的真空度约为HG,设气体分子的有效直径为,求时单位体积内的分子数,平均自由程和碰撞频率。

解:(2)(3)若电子管中是空气,则4-7.今测得温度为压强为时,氩分子和氖分子的平均自由程分别为和,问:(1)氩分子和氖分子的有效直径之比是多少?(2)时,为多大?(3)时,为多大?解:(1)由得:(2)假设氩分子在两个状态下有效直径相等,由得:(3)设氖气分子在两个状态下有效直径相等,与(2)同理得:4-8.在气体放电管中,电子不断与气体分子相碰撞,因电子的速率远远大于气体分子的平均速率,所以后者可以认为是静止不动的。

设电子的“有效直径”比起气体分子的有效直径来可以忽略不计。

(1)电子与气体分子的碰撞截面为多大?(2)证明:电子与气体分子碰撞的平均自由程为:,n为气体分子的数密度。

解:(1)因为电子的有效直径与气体分子的有效直径相比,可以忽略不计,因而可把电子看成质点。

又因为气体分子可看作相对静止,所以凡中心离电子的距离等于或小于的分子都能与电子相碰,且碰撞截面为:(2)电子与气体分子碰撞频率为:(为电子平均速率)4-9.设气体分子的平均自由程为试证明:一个分子在连续两次碰撞之间所走路程至少为x的几率是解:根据(4.6)式知在个分子中自由程大于x的分子占总分子数的比率为=由几率概念知:对于一个分子,自由程大于x的几率为,故一个分子连续两次碰撞之间所走路程至少为x的几率是。

大学物理习题及解答(热学)

大学物理习题及解答(热学)

1.如图所示,开始在状态A ,其压强为Pa100.25⨯,体积为33m 100.2-⨯,沿直线AB 变化到状态B 后,压强变为5100.1⨯Pa ,体积变为33m 100.3-⨯,求此过程中气体所作的功。

(150J )2.一定量的空气,吸收了1.71⨯103J 的热量,并保持在 1.0⨯105Pa 下膨胀,体积从1.0⨯10-2 m 3 增加到1.5⨯10-2 m 3,问空气对外作了多少功?它的内能改变了多少?(5.0×102J, 1.21×103J )3.一压强为1.0⨯105 Pa ,体积为1.0⨯10-3m 3的氧气自0 ℃加热到100 ℃。

问:(1)当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2)在等压或等体过程中各作了多少功?解:根据题给初态条件得氧气的物质的量为mol1041.42111-⨯===RT V p M mn已知氧气的定压摩尔热容R C Pm 27=,定体摩尔热容R C Vm 25=(1)求Q p 、Q V等压过程氧气(系统)吸热()J8.129d 12m p,p =-=∆+=⎰T T nC E V p Q等体过程氧气(系统)吸热()J1.9312m V,V =-=∆=T T nC E Q(2)按分析中的两种方法求作功值①利用公式⎰=VV p W d )(求解。

在等压过程中,T R M mV p W d d d ==,则得⎰⎰===21J 6.36d d p T T T R M mW W而在等体过程中,因气体的体积不变,故作功为d )(p ==⎰V V p W②利用热力学第一定律WE Q +∆=求解。

氧气的内能变化为 ()J 1.9312m V,=-=∆T T C M mE由于在(1)中已求出Q p 与Q V ,则由热力学第一定律可得在等压、等体过程中所作的功分别为J7.36p p =∆-=E Q WV V =∆-=E Q W4.如图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326 J 的热量传递给系统,同时系统对外作功126 J 。

热学(李椿+章立源+钱尚武)习题解答_第九章 相变

热学(李椿+章立源+钱尚武)习题解答_第九章   相变

第九章 相变9-1在大气压P 0=1.013×105P a下,4. 0×10-3Kg 酒精沸腾化为蒸汽,已知酒精蒸汽比容为0.607 m 8/Kg ,酒精的汽化热为L=8.63×10-5J/Kg ,酒精的比容υ1与酒精蒸汽的比容υ2相比可以忽不计,求酒精内能的变化解:酒精等温度等压下化为蒸汽,每千克吸热为 L=(u 2-u 1)+P 0(u 2-u 1)由于u 2>>u 1,则M 千克酒精内能的变化为 U 2-U 2 =M ( L - P 0u 2) =3.21 ×103J9-2 说明蒸发和沸腾的异同,和发生沸腾的条件。

答:蒸发和沸腾是液体汽化的两种不同形式。

蒸发是液体表面的汽化,任何温度下都能进行。

沸腾是在整个液体内部发生的汽化,只在沸点进行。

但从相变机构看,两者并无根本区别,沸腾时,相变仍在气、液分界面上以蒸发的方式进行,只是液体内部涌现大量气泡,大大增加了气液分界面,因而汽化剧烈。

9-3 氢的三相点温度T 3=14K ,在三相点时,固态氢密度ρ=81.0kg ·m -3,液态氢密度ρ=71.0kg ·m -3,液态氢的蒸汽压方程T Tp ln 3.012233.18ln --= 熔解温度和压强的关系Tm=14+2.991×10-7p ,式中压强的单位均为帕斯卡,试计算: (1) 在三相点的气化热,熔解热及升华热(误差在5%以内); (2) 升华曲线在三相点处的斜率。

解:求三相点处蒸汽压强p 3,824.814ln 3.01412233.18ln 3=--=p kPa p 795.63=氢气的比容)(561.810795.61021431.8133333--⋅=⨯⨯⨯*==kg m p RT v g μ已知固态氢比容210235.11-⨯==gg v ρ液态氢比容210408.11-⨯==ll v ρ(1) 由蒸汽压方程微分得到:)3.0122()(333-=T T p dT dpg 应与克氏方程等价,因为g v >>l v ,故有)3.0122(33-=T T p Tv ll 气化热为:)(10895.415-⋅⨯=kg J l 熔解热:4210097.8⨯=l 氢的升华热=)(10705.515-⋅⨯kg J (2)升华曲线在三相点处的斜率:1332110767.4)(-⋅⨯--+=K Pa v v T l l dT dp l g9-4饱和蒸汽压和液面的形状有什么关系?为什么?答:凹液面时,饱和蒸汽压比平液面时小,因为在凹液面情形下,分子逸出液面所需的功比平液面时大(要多克服一部分液体分子的引力),使单位时间内逸出凹液面的分子数比平液面时少,因而饱和蒸汽压较小。

热学课程习题与解答

热学课程习题与解答


1 1
1
)
A’ 绝对值等于p-V图上绝热曲线下的面积
说明:本题也可以利用绝热条件( Q = 0)及热力学第 一定律,用A’=△E=vCv,m(T2-T1) 求解,请自行练习 解(2):若氧气经历如图示的另一过程 1→ 2'→2 氧气在全过程中外界对气体做功为 P
P1
1
A' A ( A等温 A等容)=-A等温
P2
2
V1 V2
V
A' A pdV
V1
V2
dV C V 1V
V2
V 2 C p1V 1 (V 1 1 (V 1 V 2 ) 1 1
1 p1V 1 V1 1 2 V 1 RT 1 式中 p 1 ,代入上式,则得外界对气体功 V1 1 RT 1 V1 3 A' 1 9.36 10 J 1V V 2
注:压缩后空气的温度为 941K ,此温度远远超过柴油 的燃点(即开始发生燃烧的温度),因此柴油在气缸内 将立即燃烧,形成高压气体,推动活塞做功。
3、一容器内盛有氧气 0.100kg ,其压强为 1.013×10-6 Pa , 温度为320 K,因容器开关缓慢漏气, 稍后测得压强减为原来的5/8,温度降低到300 K。求(1) 容器的体积;(2)在两次观测之间漏掉多少氧气。(氧 气摩尔质量为u=3.2×10-2 Kg/mol)
P 解:对于定容气体温度计 T p 273.16 Ptr PtrT 1 (1)T 1 300K , P1 54.9mmHg 273.16 P (2) P2 68.0mmHg, T 2 273.16 371K Ptr

第 二 章 热力学第一定律练习题及解答

第 二 章  热力学第一定律练习题及解答

第 二 章 热力学第一定律一、思考题1. 判断下列说法是否正确,并简述判断的依据(1)状态给定后,状态函数就有定值,状态函数固定后,状态也就固定了。

答:是对的。

因为状态函数是状态的单值函数。

(2)状态改变后,状态函数一定都改变.答:是错的。

因为只要有一个状态函数变了,状态也就变了,但并不是所有的状态函数都得变.(3)因为ΔU=Q V ,ΔH=Q p ,所以Q V ,Q p 是特定条件下的状态函数? 这种说法对吗?答:是错的.∆U ,∆H 本身不是状态函数,仅是状态函数的变量,只有在特定条件下与Q V ,Q p 的数值相等,所以Q V ,Q p 不是状态函数。

(4)根据热力学第一定律,因为能量不会无中生有,所以一个系统如要对外做功,必须从外界吸收热量.答:是错的。

根据热力学第一定律U Q W ∆=+,它不仅说明热力学能(ΔU )、热(Q )和功(W )之间可以转化,有表述了它们转化是的定量关系,即能量守恒定律。

所以功的转化形式不仅有热,也可转化为热力学能系.(5)在等压下,用机械搅拌某绝热容器中的液体,是液体的温度上升,这时ΔH=Q p =0答:是错的。

这虽然是一个等压过程,而此过程存在机械功,即W f ≠0,所以ΔH≠Q p 。

(6)某一化学反应在烧杯中进行,热效应为Q 1,焓变为ΔH 1.如将化学反应安排成反应相同的可逆电池,使化学反应和电池反应的始态和终态形同,这时热效应为Q 2,焓变为ΔH 2,则ΔH 1=ΔH 2。

答:是对的。

Q 是非状态函数,由于经过的途径不同,则Q 值不同,焓(H )是状态函数,只要始终态相同,不考虑所经过的过程,则两焓变值∆H 1和∆H 2相等。

2 . 回答下列问题,并说明原因(1)可逆热机的效率最高,在其它条件相同的前提下,用可逆热机去牵引货车,能否使火车的速度加快?答?不能.热机效率hQ W -=η是指从高温热源所吸收的热最大的转换成对环境所做的功。

但可逆热机循环一周是一个缓慢的过程,所需时间是无限长.又由v F tW P ⨯==可推出v 无限小。

《 热学》各章思考题+参考解答

《 热学》各章思考题+参考解答

热学思考题和参考解答第一章 热学基础知识和温度1.1 若热力学系统处于非平衡态,温度概念能否适用?【答】 对于处于非平衡态的系统,只要局域平衡条件能满足,则对于处于局域平衡的每个子系统来说,温度概念仍能适用。

1.2 系统A 和B 原来各自处在平衡态,现使它们互相接触,试问在下列情况下,两系统接触部分是绝热的还是透热的,或两者都可能?(1)当A V 保持不变,A p 增大时,B V 和B p 都不发生变化;(2)当A V 保持不变,A p 增大时,B p 不变而B V 增大;(3)当A V 减少,A p 增大时,B V 和B p 均不变.【答】设容器都是密闭的.(1)是绝热的.因为A p A V 增大,所以A 的温度 增加.但它并不使B 状态发生变化,说明既没有热量传递也没有做功.(2)是透热的.因为A p A V 增大,所以A 的温度增加.从B 来说,B V 增加了,说明B 膨胀对外做了功,其能量只能来源于从A 吸热.(3)因为B V 和B p 均不变,说明B 的温度不变.但是A V 减少,同时A p 增大,这两者的乘积可变可不变,所以A 的温度也可变可不变.若A 的温度改变则是绝热的;若A 的温度不变,则A ,B 相互 接触的部分仍然绝热,因为B 的状态始终不变.1.3 在建立温标时是否必须规定热的物体具有较高的温度,冷的物体具有较低的温度?是否可作相反的规定?在建立温标时,是否须规定测温属性一定随温度作线性变化?【答】 在建立温标时必须规定热的物体具有较高的温度,冷的物体具有较低的温度,因为热量是从高温物体传递到低温物体的.很有意思的是,对于处于负温度的子系则是例外.因为负温度比正温度还要高,热量是从负温度物体流向正温度物体的.建立温标时并不一定规定测温属性随温度作线性变化,这完全由分度公式来规定.1.4 冰的正常溶点是多少?纯水的三相点温度是多少?【答】 冰的正常溶点是273.15K,纯水的三相点温度是273.16K 。

大学物理 热学习题课

大学物理 热学习题课

1
Va 1 Tb ( ) Ta 424 K Vb
VcTb Tc 848 K Vb
1
c
bc为等压过程,据等压过程方程 Tb / Vb = Tc / Vc 得
O
d a Vb Vc Va V
cd为绝热过程,据绝热过程方程
TcVc
TdVd , (Vd Va )
1
第10章
理想气体模型
气体分子运动论
统计假设
k
PV vRT
P P 2 n 3 kT k k 2 3 T E
M i E RT 2
dN f ( v ) dv N
麦克丝韦 分布率
v2
3RT

vp
2 RT

8RT
v
z 2d 2 v n

v 1 z 2d 2 n
Nf ( v )dv
v0
v0
f ( v )dv

v d N vNf (v) d v
v0—— ∞间的分子数 v0—— ∞间的分子的速率和


v0
dN Nf ( v )dv
v0


v0
vdN vNf ( v )dv
v0

(3) 多次观察一分子的速率,发现其速率大于v0 的 几率= ———。 dN N v v 所求为v0—— ∞间的分子 f (v)dv 数占总分子数的百分比 N N v
M i RT 2 M i RT 2
吸收热量Q
M i RT 2
摩尔热容C
CV i R 2
等容 等压 等温
p/T=C V/T=C pV=C
pVγ=C1 Vγ-1T=C2 pγ-1T-γ=C3

热学习题解答

热学习题解答

第二篇 热 学 第一章 温度一、选择题1.在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态,A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体分子数密度为3n 1,则混合气体的压强p 为 (A )3p 1 (B )4p 1 (C )5p 1 (D )6p 12.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常数,R 为摩尔气体常数,则该理想气体的分子数为:(A )m pV (B )kT pV (C )RT pV (D )mT pV二、填空题1.定体气体温度计的测温气泡放入水的三相点管的槽内时,气体的压强为Pa 31065.6⨯ 。

用此温度计测量373.15K 的温度时,气体的压强是 ,当气体压强是Pa 3102.2⨯时,待测温度是 k, 0C 。

三、计算题1.一氢气球在200C 充气后,压强为1.2atm ,半径为1.5m 。

到夜晚时,温度降为100C ,气球半径缩为1.4m ,其中氢气压强减为1.1 atm 。

求已经漏掉了多少氢气?第二章 气体分子动理论一、选择题1. 两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等。

现将6 J 热量传给氦气,使之升高到一定温度。

若使氦气也升高同样的温度,则应向氦气传递热量:(A) 6 J (B) 10 J (C) 12 (D) 5 J 2. 在标准状态下, 若氧气(视为刚性双原子分子的理想气体)和氦气的体积比2121=V V ,则其内能之比21/E E 为:(A) 1/2 (B) 5/3 (C) 5/6 (D) 3/10 3. 在容积V = 4×103-m 3的容器中,装有压强p = 5×102P a 的理想气体,则容器中气分子的平均平动动能总和为:(A) 2 J (B) 3 J (C) 5 J (D) 9 J4. 若在某个过程中,一定量的理想气体的内能E 随压强 p 的变化关系为一直线(其延长线过E ~ p 图的原点),则该过程为(A) 等温过程 (B) 等压过程(C) 等容过程 (D) 绝热过程5. 若)(v f 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则)(21221v Nf mv v v ⎰d v 的物理意义是:(A) 速率为v 2的各分子的总平均动能与速率为v 1的各分子的总平均动能之差。

高中物理热学练习题(含解析)

高中物理热学练习题(含解析)

高中物理热学练习题学校:___________姓名:___________班级:___________一、单选题1.关于两类永动机和热力学的两个定律,下列说法正确的是( )A .第二类永动机不可能制成是因为违反了热力学第一定律B .第一类永动机不可能制成是因为违反了热力学第二定律C .由热力学第一定律可知做功不一定改变内能,热传递也不一定改变内能,但同时做功和热传递一定会改变内能D .由热力学第二定律可知从单一热源吸收热量,完全变成功是可能的2.下列关于系统是否处于平衡态的说法,正确的是( )A .将一根铁丝的一端插入100℃的水中,另一端插入0℃的冰水混合物中,经过足够长的时间,铁丝处于平衡态B .两个温度不同的物体相互接触时,这两个物体组成的系统处于非平衡态C .0℃的冰水混合物放入1℃的环境中,冰水混合物处于平衡态D .压缩密闭容器中的空气,空气处于平衡态3.分子直径和分子的质量都很小,它们的数量级分别为( )A .102610m,10kg d m --==B .102910cm,10kg d m --==C .102910m,10kg d m --==D .82610m,10kg d m --==4.下列现象中,通过传热的方法来改变物体内能的是( )A .打开电灯开关,灯丝的温度升高,内能增加B .太阳能热水器在阳光照射下,水的温度逐渐升高C .用磨刀石磨刀时,刀片的温度升高,内能增加D .打击铁钉,铁钉的温度升高,内能增加5.图甲是一种导热材料做成的“强力吸盘挂钩”,图乙是它的工作原理图。

使用时,按住锁扣把吸盘紧压在墙上(图乙1),吸盘中的空气(可视为理想气体)被挤出一部分。

然后把锁扣缓慢扳下(图乙2),让锁扣以盘盖为依托把吸盘向外拉出。

在拉起吸盘的同时,锁扣对盘盖施加压力,致使盘盖以很大的压力压住吸盘,保持锁扣内气体密闭,环境温度保持不变。

下列说法正确的是( )A .锁扣扳下后,吸盘与墙壁间的摩擦力增大B .锁扣扳下后,吸盘内气体分子平均动能增大C .锁扣扳下过程中,锁扣对吸盘中的气体做正功,气体内能增加D .锁扣扳下后吸盘内气体分子数密度减小,气体压强减小6.以下说法正确的是( )A .气体对外做功,其内能一定减小B .分子势能一定随分子间距离的增加而增加C .烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明蜂蜡是晶体D .在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体7.在汽缸右侧封闭一定质量的理想气体,压强与大气压强相同。

热学(李椿 章立源 钱尚武)习题解答_第 三 章 气体分子热运动速率和能量的统计分布律分析

热学(李椿 章立源 钱尚武)习题解答_第 三 章  气体分子热运动速率和能量的统计分布律分析

第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。

解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-3 计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和10000K 。

解:μRTV P 2=代入数据则分别为:T=100K 时 s m V P /1028.22⨯= T=1000K 时 s m V P /1021.72⨯= T=10000K 时 s m V P /1028.23⨯=3-4 某种气体分子在温度T 1时的方均根速率等于温度T 2时的平均速率,求T 2/T 1。

解:因μRTV32=πμ28RT V =由题意得:μRT3πμ28RT =∴T 2/T 1=83π3-5 求0℃时1.0cm 3氮气中速率在500m/s 到501m/s 之间的分子数(在计算中可将dv 近似地取为△v=1m/s )解:设1.0cm 3氮气中分子数为N ,速率在500~501m/s 之间内的分子数为△N ,由麦氏速率分布律:△ N=V V e KTm N V KTm∆⋅⋅⋅-22232)2(4ππ∵ V p2= 2KTm ,代入上式△N=VV V ppe V V VN∆--⋅⋅222214ρπ因500到501相差很小,故在该速率区间取分子速率V =500m/s , 又s m V P /402102827331.823≅⨯⨯⨯=- △V=1m/s (vv p =1.24)代入计算得:△N=1.86×10-3N 个3-6 设氮气的温度为300℃,求速率在3000m/s 到3010m/s 之间的分子数△N 1与速率在1500m/s 到1510m/s 之间的分子数△N 2之比。

李椿热学答案及部分习题讲解部分习题的参考答案

李椿热学答案及部分习题讲解部分习题的参考答案

李椿热学答案及部分习题讲解部分习题的参考答案“热学”课程第一章作业习题说明:“热学”课程作业习题全部采用教科书(李椿,章立源,钱尚武编《热学》)里各章内的习题。

第一章习题:1,2,3[1],4,5,6,8,10,11,20,24[2],25[2],26[2],27,28,29,30,31,32,33. 注:[1] 与在水的三相点时[2] 设为等温过程第一章部分习题的参考答案1.(1) –40;(2) 574.5875;(3) 不可能.2.(1) 54.9 mmHg;(2) 371 K.3. 0.99996.4. 400.574.5. 272.9.6. a = [100/(X s–X i)]?(?C/[X]), b = –[100 X i/(X s–X i)]?C, 其中的[X]代表测温性质X的单位.8. (1) –205?C;(2) 1.049 atm.10. 0.8731 cm, 3.7165 cm.11. (1) [略];(2) 273.16?, 273.47?;(3) 不存在0度.20. 13.0 kg?m-3.24. 由教科书137页公式可得p = 3.87?10-3 mmHg.25. 846 kg?m-3.26. 40.3 s (若抽气机每旋转1次可抽气1次) 或40.0 s (若抽气机每旋转1次可抽气2次, 可参阅教科书132页).27. 28.9, 1.29 kg?m-3.28. 氮气的分压强为2.5 atm, 氧气的分压强为1.0 atm, 混合气体的压强为3.5 atm.29. 146.6 cm-3.30. 7.159?10-3 atm, 71.59 atm, 7159 atm; 4.871?10-4 atm, 4.871 atm, 487.1 atm.31. 341.9 K.32. 397.8 K.33. 用范德瓦耳斯方程计算得25.39 atm, 用理想气体物态方程计算得29.35 atm.“热学”课程第二章作业习题第二章习题:1,3,4,5,6,7,8,9[3],10,11,12,13[4],16,17,18,19,20.注:[3] 设为绝热容器[4] 地球和月球表面的逃逸速度分别等于11.2 km?s-1和2.38 km?s-1第二章部分习题的参考答案1. 3.22?103 cm-3.3. 1.89?1018.4. 2.33?10-2 Pa.5. (1) 2.45?1025 m-3;(2) 1.30 kg?m-3;(3) 5.32?10-26 kg;(4) 3.44?10-9 m;(5) 6.21?10-21 J.6. 3.88?10-2 eV,7.73?106 K.7. 301 K.8. 5.44?10-21 J.9. 6.42 K, 6.87?104Pa (若用范德瓦耳斯方程计算) 或6.67?104 Pa (若用理想气体物态方程计算).10. (1) 10.0 m?s-1;(2) 7.91 m?s-1;(3) 7.07 m?s-111. (1) 1.92?103 m?s-1;(2) 483 m?s-1;(3) 193 m?s-1.12. (1) 485 m?s-1;(2) 28.9, 可能是含有水蒸气的潮湿空气.13. 1.02?104 K, 1.61?105 K; 459 K, 7.27?103 K.16. (1) 1.97?1025 m-3 或2.00?1025 m-3;(2) 由教科书81页公式可得3.26?1027m-2或3.31?1027 m-2;(3) 3.26?1027 m-2或3.31?1027 m-2;(4) 7.72?10-21 J, 6.73?10-20 J.17. 由教科书81页公式可得9.26?10-6 g?cm-2?s-1.18. 2.933?10-10 m.19. 3.913?10-2 L, 4.020?10-10 m, 907.8 atm.20. (1) (V1/3 -d)3;(2) (V1/3 -d)3 - (4π/3)d3;(3) (V1/3 -d)3 - (N A - 1) ?(4π/3)d3;(4)因V1/3>>d,且N A>>1, 故b = V - (N A/2)?{(V1/3 -d)3 +[(V1/3 -d)3 - (N A - 1)?(4π/3)d3]}?(1/N A) ≈ 4N A(4π/3)(d/2)3.“热学”课程第三章作业习题第三章习题:1,2,4,5[5],6,7,9,10,11,12,13,15,16,17,18,19,20[6],22[7],23,24,25[8],26,27,28,29,30.注:[5] 设p0 = 1.00 atm[6] 分子射线中分子的平均速率等于[9πRT/(8μ)]1/2[7] 设相对分子质量等于29.0[8] f(ε)dε = 2π-1/2(kT)-3/2ε1/2e-ε/kT dε第三章部分习题的参考答案1. (1) 3.18 m?s-1;(2) 3.37 m?s-1;(3) 4.00 m?s-1.2. 395 m?s-1, 445 m?s-1, 483 m?s-1.4. 3π/8.5. 4.97?1016个.6. 0.9534.7. (1) 0.830 %;(2) 0.208 %;(3) 8.94?10-7 %.9. [2m/(πkT)]1/2.10. (1) 198 m?s-1;(2) 1.36?10-2 g?h-1.11. [略].12. (1) [略];(2) 1/v0;(3) v0/2.13. (1) 2N/(3v0);(2) N/3;(3) 11v0/9.15. [略].16. [略].17. 0.24 %.18. (1) 0.5724N;(2) 0.0460N.19. n[kT/(2πm)]1/2?[1 + (mv2/2kT)]?exp[ –(mv2/2kT)]或[nv p /(2π1/2)] ?[1 + (v2/v p2)]?exp[ –(v2/v p2)].20. 0.922 cm, 1.30 cm.22. 2.30 km.23. 1955 m.24. kT/2.25. f(ε)dε = 2(π)-1/2(kT)-3/2ε1/2exp[ -ε/(kT)]dε, kT/2.26. 3.74?103 J?mol-1, 2.49?103 J?mol-1.27. 6.23?103 J?mol-1, 6.23?103 J?mol-1; 3.09?103 J?g-1, 223 J?g-1.28. 5.83 J?g-1?K-1.29. 6.61?10-26 kg和39.8.30. (1) 3, 3, 6;(2) 74.8 J?mol-1?K-1.“热学”课程第四章作业习题第四章习题:1,2,4,6[7],7,8,10,11,13[2],14,15,17,18[9],19,21.注:[2] 设为等温过程[7] 设相对分子质量等于29.0[9] CO2分子的有效直径等于4.63×10-10 m第四章部分习题的参考答案1. 2.74?10-10 m.2. 5.80?10-8 m, 1.28?10-10 s.4. (1)5.21?104 Pa; (2) 3.80?106 m-1.6. (1) 3.22?1017 m-3;(2) 7.77 m (此数据无实际意义);(3) 60.2 s-1 (此数据无实际意义).7. (1) 1.40;(2) 若分子有效直径与温度无关, 则得3.45?10-7 m;(3) 1.08?10-7 m.8. (1) πd2/4;(2) [略].10. (1) 3679段;(2) 67段;(3) 2387段;(4) 37段;(5) 不能这样问.11. 3.11?10-5 s.13. (1) 10.1 cm;(2) 60.8 μA.14. 3.09?10-10 m.15. 2.23?10-10 m.17. (1) 2.83;(2) 0.112;(3) 0.112.18. (1) –1.03 kg?m-4;(2) 1.19?1023 s-1;(3) 1.19?1023 s-1;(4) 4.74?10-10 kg?s-1.19. [略].21. 提示:稳定态下通过两筒间任一同轴柱面的热流量相同.“热学”课程第五章作业习题第五章习题:1,2,3,5,7,8,10,12,13,15,16,17,18,19,21,22[10],23,24[11],25,26,27,28,29,31,33[12],34,35.注:[10] 使压强略高于大气压(设当容器中气体的温度与室温相同时其压强为p1)[11] γp0A2L2/(2V)[12] 设为实现了理想回热的循环第五章部分习题的参考答案1.(1) 623 J, 623 J, 0;(2) 623 J, 1.04?103 J, –416 J;(3) 623 J, 0, 623 J.2.(1) 0, –786 J, 786 J;(2) 906 J, 0, 906 J;(3) –1.42?103 J, –1.99?103 J, 567 J.3.(1) 1.50?10-2 m3;(2) 1.13?105 Pa;(3) 239 J.4.(1) 1.20;(2) –63.3 J;(3) 63.3 J;(4) 127 J.7. (1) 265 K;(2) 0.905 atm;(3) 12.0 L.8. (1) –938 J;(2) –1.44?103 J.10. (1) 702 J;(2) 507 J.12. [略].13. [略].15. 2.47?107 J?mol-1.16. (1) h = CT + v0p + bp2;(2) C p = C, C V= C + (a2T/b)–ap.17. –46190 J?mol-1.18. 82.97 %.19. [略].21. 6.70 K, 33.3 cal, 6.70 K, 46.7 cal; 11.5 K, 80.0 cal, 0, 0.22. γ = ln(p1/p0)/ln(p1/p2).23. (1) [略];(2) [略];24. (1) [略];(2) [略].25. (1) p0V0;(2) 1.50 T0;(3) 5.25 T0;(4) 9.5 p0V0.26. (1) [略];(2) [略];(3) [略].27. 13.4 %.28. (1) A→B为吸热过程, B→C为放热过程;(2) T C = T(V1/V2)γ– 1, V C = V2;(3) 不是;(4) 1 – {[1 – (V1/V2)γ– 1]/[(γ– 1)ln(V2/V1)]}.29. [略].31. 15.4 %.33. [略].34. [略].35. [略].“热学”课程第六章作业习题第六章习题:2,3,5,9,10,11,12[13],13,15,16,19. 注:[13] 设为一摩尔第六章部分习题的参考答案2. 1.49?104 kcal.3. (1) 473 K;(2) 42.3 %.5. 93.3 K.9. (1) [略];(2) [略];10. [略].11. [略].12. [略].13. [略].15. ?T = a (v2-1–v1-1)/C V = –3.24 K.16. [略].19. –a(n A–n B)2/[2C V V(n A+ n B)].“热学”课程第七章作业习题第七章习题:8.第七章部分习题的参考答案8. 提示:在小位移的情况下, exp[ -(cx2-gx3-fx4)/(kT)]≈ exp[ -cx2/(kT)]?{1 + [gx3/(kT)]}?{1 + [fx4/(kT)]}≈ exp[ -cx2/(kT)]?{1 + [gx3/(kT)] + [fx4/(kT)]}.“热学”课程第八章作业习题第八章习题:1,2,3,4,6,7[14],8,10.注:[14] 设θ= 0第八章部分习题的参考答案1. 2.19?108 J.2. 7.24?10-2 N?m-1.3. 1.29?105 Pa.4. 1.27?104 Pa.6. f = S[α(R1-1 + R2-1) –(ρgh/2)]= {Sα?[2cos(π–θ)]/[2(S/π)1/2 ?cos(π–θ) + h–h sin(π–θ)]} + {Sα?[2cos(π–θ)]/h} –(Sρgh/2)≈Sα?[2cos(π–θ)/h]= 25.5 N.7. 0.223 m.8. 2.98?10-2 m.10. (1) 0.712 m; (2) 9.60?104 Pa; (3) 2.04?10-2 m.“热学”课程第九章作业习题第九章习题:1,2,4[15],6[5],7,8,9[16],11,12,13[17].注:[5] 设p0 = 1.00 atm[15] 水蒸气比体积为1.671 m3/kg[16] 100℃时水的饱和蒸气压为1.013×105Pa,而汽化热为2.38×106 J?kg -1,由题8中的[17] 23.03 - 3754/T第九章部分习题的参考答案1. 3.21?103 J.2. (1) 6.75?10-3 m3;(2) 1.50?10-5 m3;(3) 液体体积为1.28?10-5 m3, 气体体积为9.87?10-4 m3.4. 373.52 K.6. 1.36?107 Pa.7. [略].8. [略].9. 1.71?103 Pa.11. 4.40?104 J?mol-1.12. (1) 52.0 atm;(2) 157 K.13. (1) 44.6 mmHg, 195 K;(2) 3.121?104 J?mol-1, 2.547?104 J?mol-1, 5.75?103 J?mol-1.。

热学教程习题参考解(第二章)

热学教程习题参考解(第二章)

《热学教程》习题参考答案第二章 习题2-1.假若把1g 水的分子均匀地覆盖在地球表面上,问:每平方米面积能分配到多少水分子?(答:27m 1055.6-⨯)解:1g 水含有的分子数等于它的摩尔数()mol 0556.010181033=⨯--乘以阿伏伽德罗常数1-25m ol 10022.6⨯,得2210348.3⨯个分子.若取地球的半径为m 1038.66⨯=R ,则其表面积为 2142m 10115.54⨯=R π.因此,可以得到,每平方米面积能分配到71055.6⨯个分子.2-2.设有乳浊液,由水(3101.0-⨯=ηkg/m ﹒s ,293.15=T K)和半径为a 的布朗粒子所组成.实验中,每隔30 s 作一次测量,测得一个布朗粒子前20步沿x 方向所作的位移(单位是10-6 m )分别为: +2.4,+1.2,-1.6, -0.9,-4.0,-1.5,+1.7, +1.0,+0.3,+1.3,-2.9, -3.1,-0.5,+1.5,+0.7,+1.9,-0.2,+0.1,-2.7.试求布朗粒子的半径a .(答:3.83×106-m)解:先把本题给出的每个位移值平方后相加,再除以20,可得2122m 103633-⨯=.Δx ;再应用爱因斯坦扩散方程,可知布朗粒子的半径 ()23Δx πηT τk a B =,式中的B k K /J 1038123-⨯=.是玻耳兹曼常数.代入已知的数据:K 15293.T =,30=τs 和s m /kg 10013⋅⨯=-.η,可得 m 108336-⨯=.a .2-3.设有悬浮在水中的﹑半径为r 的布朗粒子,在等时间间隔30秒内,实验观测到沿x 方向的方均位移 2122m 100.3-⨯=∆x ,若已知水温为273 K,水的粘滞系数3101.0-⨯=ηkg/m ﹒s ,试问此布朗粒子的半径为多少?(答:m 1029.46-⨯)解: 应用爱因斯坦扩散方程,可知布朗粒子的半径为:()()m 1029.41031033015.2931038.1x 3k 6123222----⨯=⨯⨯⨯⨯⨯⨯=∆=ππητT r B 2-4.皮兰在实验中测得半径为0.212m μ的藤黄树脂微粒沿x 轴方向的平均平方位移2x 的数值如下:若已知温度C 13,液体介质的粘滞系数3101.2-⨯=η Pa ﹒s ,试计算阿伏加德罗常数.解: 应用爱因斯坦扩散方程,可知阿伏加德罗常数等于:()()()(),mol 1092.9102.11012.2315.28631.831-2112372B A x x x a RT k R N ∆⨯==∆⨯⨯⨯⨯⨯=∆==--τπτηπτ故应用上式结果和本题附表中所列的数据,可以分别求得阿伏加德罗常数为:2310613.6⨯、2310881.6⨯、2310377.6⨯、2310105.6⨯.取此四个结果的平均值,得123mol 10494.6-⨯=A N .2-5.一个连续的弹丸流,每个弹丸的质量为5.0×10-4 kg ,以1.0 m/s 的速度射击天平的一个盘,速度的方向与法线成30度角,射击频率是每秒40次.设弹丸与天平盘发生完全弹性碰撞,碰撞一次就离开天平盘,不再跳回.为了平衡,在天平的另一盘上应放多少质量的砝码? (答:3.54×103-kgf)解: 按题意可知,连续不断的弹丸流作用于天平盘的冲力为 N θmv cos 2,其中的4100.5-⨯=m kg ,0.1=v m/s , 30=θ,1s 40-=N ,故依据动量定理可知,为平衡冲力,应加砝码重量等于()()kgf 1054.3N 0346.040130cos 1052cos 234--⨯==⨯⨯⨯⨯⨯=∆= t mvN G θ 2-6.已知温度为27℃的气体作用于器壁上的压强为105 Pa,试求此气体单位体积里的分子数.(答:2.411910⨯3-cm )解 应用理想气体压强公式可得:25235B 1041.215.3001038.110⨯=⨯⨯==-T k p n m -3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题分析和解答[第一章△1. 3. 6一抽气机转速1m in 400-⋅=r ω,抽气机每分钟能抽出气体20 l (升)。

设容器的容积 V 0 = 2.0 1,问经过多长时间后才能使容器内的压强由0.101 Mpa 降为 133 Pa 。

设抽气过程中温度始终不变。

〖分析〗: 抽气机每打开一次活门, 容器内气体的容积在等温条件下扩大了 V , 因而压强有所降低。

活门关上以后容器内气体的容积仍然为 V 0 。

下一次又如此变化,从而建立递推关系。

〖解〗: 抽气机抽气体时,由玻意耳定律得:活塞运动第一次:)(0100V V p V p +=0001p V V V p +=活塞运动第二次: )(0201V V p V p +=02001002p V V V p V V V p ⎪⎪⎭⎫ ⎝⎛+=+= 活塞运动第n 次: )(001V V p V p n n +=-n n V V V p p ⎪⎪⎭⎫ ⎝⎛+= 000 V V V n p p n n +=000ln(1) 抽气机每次抽出气体体积 l 05.0l )400/20(==V l 0.20=V Pa 1001.150⨯=p Pa 133=n p将上述数据代入(1)式,可解得 276=n 。

则 s 40s 60)400/276(=⨯=t1. 3. 8 两个贮着空气的容器 A 和 B ,以备有活塞之细管相连接。

容器A 浸入温度为 C 10001=t 的水槽中,容器B 浸入温度为 C 2002-=t 的冷却剂中。

开始时,两容器被细管中之活塞分隔开,这时容器 A 及 B 中空气的压强分别为 MPa 3053.01=p ,MPa 0020.02=p 。

它们的体积分别为 ,l 25.01=V l,40.02=V 试问把活塞打开后气体的压强是多少?〖分析〗: 把活塞打开后两容器中气体混合而达到新的力学平衡以后,A 和 B 中气体压强应该相等。

但是应注意到, 由于 A 和 B 的温度不相等,所以整个系统仍然处于非平衡态。

我们不能把 A 和B 气体的整体作为研究对象, 而先把从 A 流入 B 的那部分气体作为研究对象,求出它的物质的量( 即 mol 数 ),然后按照混合前后 A 和 B 总的物质的量不变这一点列出方程。

〖解〗:设原容器 A 中有 V ∆ 体积的气体进入容器 B ,且打开活塞后气体压强为 p 。

对原容器 A 中 剩下的)(1V V ∆- 体积的气体进行研究,它们将等温膨胀到体积 1V ,因而有111)(pV V V p =∆-(1)按照理想气体方程, 有 T pV R ν/= 关系,原容器 A 中 V ∆ 体积的气体和原容器 B 中 2V 体积的气体进行研究,它们合并前后物质的量应该不变,所以2222211T pV T V p T V p =+∆ (2)由(1)式、(2)两式化简可得21221111)(T p p p V T V p pV V -=∆=- 2121122211V T T V T V p T V p p ++=代入上述数据,可以得到活塞打开后气体的压强 Pa 1098.24⨯=p 。

△1. 3. 10 一端开口,横截面积处处相等的长管中充有压强 p 的空气。

先对管子加热,使从开口端温度 1 000 K 均匀变为闭端 200 K 的温度分布,然后把管子开口端密封,再使整体温度降为 100 K ,试问管中最后的压强是多大?〖分析〗: 开始时长管中气体有温度分布,所以它不处于平衡态。

但是整体温度降为 100 K 以后, 长管中气体处于平衡态了。

关键是求出开始时长管中气体的总的分子数,而它是和整体温度降为 100 K 以后的分子数相等的。

在计算分子数时要先求出长管中的温度分布,然后利用 p= n kT 公式。

〖解〗:因为管子是一端开口的,所以 0p p =。

显然,管子中气体的温度分布应该是x L x T 2001000200)(-+=(1)由于各处温度不同,因而各处气体分子数密度不同。

考虑 x ~ x + dx 一 段气体, 它的分子数密度为 n ( x ) , 设管子的横截面积为 S, 考虑到 p = n kT , 则这一小段中的气体分子数为 x x kT Sp x x Sn N d )(d )(d ==管子中气体总分子数为 )(d 0x T x k Sp N L ⎰⋅=利用(1)式可得 x L x k Sp N L d )800200(10-+⋅=⎰管中气体最后的压强是p 1(01p p =), 温度是 T , .则kT SLp N /1= 由上面两式相等 , 最后可以计算出020.05ln )8/1(p p p ≈⋅⋅=即:管中气体最后的压强为020.0p 。

1. 4. 1 在什么温度下,下列一对温标给出相同的读数(如果有的话):(1) 华氏温标和摄氏温标; (2)华氏温标和热力学温标; (3)摄氏温标和热力学温标?〖提示〗:利用 F 32C 5900F ⎥⎦⎤⎢⎣⎡+⋅=t t ,C K]15.273[0-=T t 。

〖答〗:(1)-40 ℃;(2)575 K ;(3)没有。

1. 4. 2 定体气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为Pa 107.63⨯。

(1)用温度计测量 300 K 的温度时,气体的压强是多少? (2) 当气体的压强为Pa 101.93⨯ 时,待测温度是多少?〖提示〗:Pa 107.63tr ⨯=p 。

利用如下公式进行计算: K 16.273)(⋅=tr p p p T ( 体积不变 ) 〖答〗:(1)Pa 104.73⨯;(2)371 K 。

1. 4. 3 用定体气体温度计测得冰点的理想气体温度为 273.15 K ,试求温度计内的气体在冰点时的压强与该气体在水的三相点时压强之比的极限值。

〖解〗: 利用公式.K 16.273lim K 15.273tr 0tr ⨯==→p p T p所以96999.016.27315.273limtr 0tr ==→p p p 1. 5. 2 试估计水的分子互作用势能的数量级,可近似认为此数量级与每个分子所平均分配到的汽化热数量级相同。

再估计两个邻近水分子间的万有引力势能的数量级,判断分子力是否可来自万有引力。

〖分析〗: 水中的分子热运动而不分散开, 是因为分子之间有作用力。

水的汽化是某些水分子有足够大的热运动能量,足以克服分子之间作用力而跑到外面成为自由的气体分子。

我们知道分子之间作用力势能是负的, 气体分子的势能为零。

所以汽化热是用来增加分子之间作用力势能的。

另外也要考虑到, 液体转变为气体时体积扩大作等压膨胀要对外做功,它所需要的能量也由汽化热提供。

但是一般说来这两者的数量级差不多相等,而且后者小于前者。

所以可以利用前者来估计分子互作用势能的数量级。

〖解〗: 水的汽化热为 -16kg J 1025.2⋅⨯,它的摩尔汽化热为1416m V,mol J 1005.4mol J 018.01025.2--⋅⨯=⋅⨯⨯=L每摩尔有 N A 个分子,每个分子平均分摊到的汽化热为J 107.6/20A m V,p -⨯==N L ε 可以认为 p ε 就是水的分子互作用势能的数量级。

至于水中两邻近分子的万有引力势能的数量级,可以利用万有引力势能公式来估计。

假定水中两最邻近分子质量中心之间的距离为 m 108.310-⨯( 利用上题的结果 ),则每个分子所平均分摊到的万有引力势能的数量级为J 106.152p -⨯=ε。

〖讨论〗:我们发现万有引力势能的数量级要比分子互作用势能小 3210-。

由于分子互作用势能来自电磁相互作用,这说明万有引力相互作用要比电磁相互作用弱得多。

1. 6. 3 一容积为 l2.11 的真空系统已被抽到 1.33×10-3 Pa 的真空。

为了提高其真空度,将它放在温度为C 3000 的烘箱内烘烤,使器壁释放出所吸附的气体。

若烘烤后压强增为 1.33 Pa ,问器壁原来吸附了多少个气体分子?〖分析〗: 烘烤时温度上升, 器壁所吸附的气体分子有足够大的能量克服器壁对它的吸引力而释放出来。

真空系统的压强相应增加。

利用 nkT p = 公式可以计算出吸附气体分子数。

〖答〗: 181088.1⨯。

1. 6. 4 一容器内贮有氧气,其压强为 MPa 101.0=p ,温度为C 270=t ,试求:(1)单位体积内的分子数;(2) 氧气的密度;(3) 分子间的平均距离: (4) 分子的平均平动动能。

〖分析〗: 利用 nkT p = 公式可以得到单位体积内的分子数。

利用A m mN M = 和 nm ρ= 公式可以得到氧气的密度和分子质量。

利用3/1L n = 和 2/3t kT ε=可以分别求得分子间的平均距离 L 和分子的平均平动动能。

〖答〗:(1)-325m 1044.2⨯;(2)-3m kg 30.1⋅;(3)m 104.39-⨯;(4)J 102.621-⨯。

第二章2.2.2 量x 的概率分布函数具有形式 22π4)ex p()(x ax A x f ⋅⋅-=,式中 A 和 a 是常数,试写出x 的值出现在 7.999 9到8.000 1 范围内的概率 P 的近似表示式。

〖解〗: 归一化,1d )(=⎰+∞∞-x x f 在上述积分中考虑到 f ( x ) 是偶函数,所以有14/ππ8d )(2d )(2/30=⋅⋅==-+∞+∞∞-⎰⎰a A x x f x x f 2/π)/(3/2a A =可以知道处于7.999 9 ~ 8.000 1 范围内概率为x e A P a ∆⋅⋅⋅⋅=-64π4642000.0)64ex p(64π4π)/(5.03/2⋅-⋅⋅⋅⋅=a a2. 3. 1 求MPa 0.101C,00下 3cm 0.1的 氮气中速率在-1s m 500⋅ 到 -1s m 501⋅之间的分子数。

〖分析〗: 这是一个在麦克斯韦速率分布中求某一速率区间内分子数的问题, 应该用相对于最概然速率的麦克斯韦速率分布, 即使用误差函数来求解。

但是注意到, -1s m 500⋅ 到 -1s m 501⋅ 之间仅仅差 -1s m 1⋅,它要比 -1s m 500⋅ 小得多。

可以认为在 -1s m 500⋅ 到 -1s m 501⋅ 范围内麦克斯韦速率分布是不变的。

它的概率等于在横坐标为 -1s m 500⋅ 到 -1s m 501⋅ 之间的麦克斯韦速率分布曲线线段下面的面积( 这个梯形可以看作矩形 )。

〖解〗: 设 MPa 0.101C,00下,3cm 0.1中的理想气体分子数为N , 利用洛施密特常量3250m 107.2-⨯=n 可以得到19256107.2107.2100.1⨯=⨯⨯⨯=-N利用麦克斯韦速率分布可以得到速率在 v v v d ~+ 之间的分子数为v v kT mv kT m N v v Nf d )2/ex p()π2/(π4d )(222/3⋅-⋅⋅⋅= (1)现在其中的 -1-1s m 1d ,s m 500⋅=⋅=v v , 氮气温度 K 273=T ,而氮分子质量kg 1067.12827-⨯⨯=m 。

相关文档
最新文档