排列(第一课时)导学案
排列 导学案
排列(导学案)学习目标:知识与技能:理解排列的意义,并能用树形图正确写出一些简单排列问题的所有排列.过程与方法:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。
情感态度与价值观:能运用所学的排列知识,正确地解决实际问题.教学重点:理解排列的意义,并能用树形图正确写出一些简单排列问题的所有排列.教学难点:掌握排列数公式及推导方法,从中体会“化归”的数学思想.学习过程一.合作探究学习探究一:1、排列的定义:几点说明:(1)元素不能重复。
n个中不能重复,m个中也不能重复。
(2)“按一定顺序”就是与位置有关,这是判断一个问题是否是排列问题的关键。
(3)两个排列相同,当且仅当这两个排列中的元素完全相同,而且元素的排列顺序也完全相同。
(4)m<n时的排列叫选排列,m=n时的排列叫全排列。
(5)为了使写出的所有排列情况既不重复也不遗漏,最好采用“树形图”。
2、小练习下列问题中哪些是排列问题?(1)10名学生中抽2名学生开会(2)10名学生中选2名做正、副组长(3)从2,3,5,7,11中任取两个数相乘(4)从2,3,5,7,11中任取两个数相除(5)20位同学互通一次电话(6)20位同学互通一封信(7)以圆上的10个点为端点作弦(8)以圆上的10个点中的某一点为起点,作过另一个点的射线(9)有10个车站,共需要多少种车票?(10)有10个车站,共需要多少种不同的票价?学习探究二:1、排列数:2、“排列”和“排列数”有什么区别?3、排列数公式(1):排列数公式(2):几点说明:二.典例示范例1、计算:(1)36A(2)66A(2)48A例2、计算从a、b、c这三个元素中,取出3个元素的排列数,写出所有的排列。
例3、某年全国足球甲级A组联赛共有12个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?变式拓展:1、(1)有3名大学毕业生,到5个招聘雇员的公司应聘,若每个公司最多招聘一个新雇员,且3名大学生全部被聘用,若不允许兼职,共有多少种招聘方案?(2)有5名大学毕业生,到3个招聘雇员的公司应聘,每个公司只招聘一个新雇员,,且不允许兼职,现假定这个公司都完成了招聘工作,问共有多少种招聘方案?2.某信号兵用红,黄,蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?三.归纳总结(学生自主小结)1.排列的定义:2.排列数及其公式:3.简单的排列应用题当堂检测1.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行试验,有种不同的种植方法。
第三单元 20以内数的排列(导学案)一年级上册数学沪教版
第三单元 20以内数的排列(导学案)
一、学习目标
1.掌握20以内数的顺序排列和倒序排列。
2.理解顺序排列和倒序排列的概念和意义。
3.能够自如地进行数的顺序排列和倒序排列。
4.能够解决相关实际问题。
二、学习内容
1. 顺序排列
1)概念
顺序排列是指按照数的大小顺序从小到大排列。
2)要点
•掌握20以内数的大小关系。
•从小到大排列,即从左到右,从上到下。
3)例题
(1)按顺序排列:3,1,5,4,2
解:1,2,3,4,5
(2)从小到大排列:10,7,13,1,16
解:1,7,10,13,16
2. 倒序排列
1)概念
倒序排列是指按照数的大小关系从大到小排列。
2)要点
•掌握20以内数的大小关系。
•从大到小排列,即从右到左,从下到上。
3)例题
(1)按倒序排列:5,2,1,3,4
解:5,4,3,2,1
(2)从大到小排列:12,8,17,5,20
解:20,17,12,8,5
三、学习方法
1.多思考多实践,边学边练。
2.利用各种场景和角色扮演进行练习,提高学习趣味性和实用性。
3.注意数的大小关系和排列的方向,灵活运用。
四、学习反思
本节课学习的内容较为基础,但是需要长时间的练习和巩固才能掌握。
在学习中,我通过实际操作、对比分析等多种方法进行了练习和思考,提高了学习的效率和实用性。
但是,在巩固过程中还需要更多的时间和练习,加强对20以内数的认识和了解,才能更好地运用到日常生活当中。
排列组合复习课导学案
-可编辑修改-一、 学习目标:1•进一步理解和应用分步计数原理和分类计数原理。
2•掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3. 学会应用数学思想和方法解决排列组合问题 二、 知识梳理:1、加法原理1. 分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有 mi 种不同的方法, 在第2类办法中有 m 2种不同的 方法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有: N g m 2 L m .种 不同的方法.2、 乘法原理 分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有mi 种不同的方法,做第2步有m 2种不同的方法,…, 做第n 步有m n 种不同的方法,那么完成这件事共有:N 口勺m 2 L m .种不同的方法.3. 分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 4、排列数的计算9、解决排列组合综合性问题的一般过程如下 (1) •认真审题弄清要做什么事排列组合复习课导学案编制:迟德龙7、常见的方法:5、组合数的计算 (3 )数字问题 (4 )涂色问题6、组合数的性质(5 )几何问题(1 )特殊元素、特殊位置优先考虑 (2) 捆绑法(3) 插孔法 (4) 间接法(5) 挡板法(6 )先选后排 (7 )平均分租(8 )定序问题用除法(9)整体分类局部分步 (10 )列举法 (11 )先分组再排列8、常见题型 (1 )站排问题 (2 )分配问题(2)•怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
(3).确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素(4).解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略三、基础训练1、7名学生站成一排,4男3女(1 )甲不站在排头(2)甲乙两人必须相邻(3)甲乙两人不能相邻(4)甲不站在排头乙不站在排尾(5)甲必须站在乙的左边(6 )甲乙丙三人的顺序一定(7 )女生相邻(8 )男生相邻(9)女生不相邻(10 )男生不相邻(11 )男生和女生相间而站(12 )恰有两名女生相邻四、例题精选:一.特殊元素和特殊位置优先策略例1.由0,123,4,5可以组成多少个没有重复数字五位奇数.练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重排问题求幕策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法练习题:1 .某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为422. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法78-可编辑修改-六.多排问题直排策略例6.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法-可编辑修改-练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的 3个座位不能坐,并且这 2人不左右相邻,那么不同排法的种数是七•排列组合混合问题先选后排策略例7.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法十一 •平均分组问题除法策略 例116本不同的书平均分成 3堆,每堆2本共有多少分法?练习题:一个班有 6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种 任务,且正副班长有且只有 1人参加,则不同的选法有 种八•小集团问题先整体后局部策略例8.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹数有多少个?练习题:1 .计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画,排成一行陈列要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为 练习题:1将13个球队分成3组,一组5个队,其它两组4个队,有多少分法?()2.10名学生分成3组,其中一组4人,另两组3人但正副班长不能分在同一组,有多少种不同的分组方法 () 3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为 _________ ()十二.合理分类与分步策略例12.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞 的节目,有多少选派方法2. 5男生和5女生站成一排照像 ,男生相邻,女生也相邻的排法有 种九.元素相同问题隔板策略例9.有10个运动员名额,分给 7个班,每班至少一个,有多少种分配方案?练习题:41 . 10个相同的球装5个盒中,每盒至少一有多少装法? C 92 . x y z w 100求这个方程组的自然数解的组数C ;03练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?十.正难则反总体淘汰策略 例10.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?练习题:某城市的街区由 12个全等的矩形区组成其中实线表示马 路,从A走到B 的最短路径有多少种?()练习题:我们班里有 43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的十四.实际操作穷举策略-可编辑修改-抽法有多少种?1, 5在两个奇数之间,这样的五位练习题:1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生, 则不同的选法共有34十三.构造模型策略例13.马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?例14.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求色方法有每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法练习题:1•同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同 的分配方式有多少种?(9)五、高考链接十五•数字排序问题查字典策略例15 .由0, 1 , 2, 3, 4 , 5六个数字可以组成多少个没有重复的比324105大的数?54321解:N 2 A s 2A 4 A 3 A A 297数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求 的个数,根据分类计数原理求出其总数。
高中数学排列讲解课教案
高中数学排列讲解课教案
课题:排列
教学目标:
1. 了解排列的概念和性质;
2. 掌握排列的计算方法;
3. 能够应用排列解决实际问题。
教学重点和难点:
重点:排列的定义和计算方法;
难点:理解排列的概念和性质。
教学准备:
1. 教师准备:课件、黑板、彩色粉笔、教材;
2. 学生准备:笔记本、铅笔、书包。
教学过程:
一、导入(5分钟)
教师引导学生回顾组合的内容,指出排列和组合的区别,引出本课主题排列。
二、概念解释(10分钟)
1. 排列的概念:将一定个数的元素按一定顺序排列起来,称为排列。
2. 排列的性质:排列的个数是阶乘的运算。
三、排列的计算方法(15分钟)
1. 已知排列个数,求排列的方法;
2. 已知排列中某些元素的位置,求排列的方法;
3. 排列中元素可以重复的情况。
四、实例分析(15分钟)
教师通过例题引导学生掌握排列的计算方法,解析排列的相关问题。
五、实践演练(15分钟)
学生进行排列的练习题,巩固计算方法。
六、课堂小结(5分钟)
教师总结本节课的重点内容,强化学生对排列的概念和计算方法的理解。
七、作业布置(5分钟)
布置相关练习题作业,巩固排列的理解和运用。
教学反思:
通过本节课的讲解,学生对排列的概念和计算方法有了更深刻的理解,但是学生在实际运用中还存在一些困难,需要加强练习提高解题能力。
排列与组合(经典导学案及练习答案详解)
§10.2排列与组合学习目标1.理解排列、组合的概念.2.能利用计数原理推导排列数公式、组合数公式.3.能利用排列组合解决简单的实际问题.知识梳理1.排列与组合的概念名称定义排列从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列组合作为一组2.排列数与组合数(1)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,用符号A m n表示.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,用符号C m n表示.3.排列数、组合数的公式及性质公式(1)A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!(n,m∈N*,且m≤n).(2)C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!(n,m∈N*,且m≤n).特别地C0n=1.性质(1)0!=1;A n n=n!.(2)C m n=C n-mn;C m n+1=C m n+C m-1n.常用结论解决排列、组合问题的十种技巧(1)特殊元素优先安排.(2)合理分类与准确分步.(3)排列、组合混合问题要先选后排.(4)相邻问题捆绑处理.(5)不相邻问题插空处理.(6)定序问题倍缩法处理.(7)分排问题直排处理.(8)“小集团”排列问题先整体后局部.(9)构造模型.(10)正难则反,等价转化.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列.(×)(2)选择两人去参加同一项活动时无先后顺序.(√)(3)若组合数公式C x n=C m n,则x=m成立.(×)(4)A m n=n(n-1)(n-2)…(n-m).(×)教材改编题1.将《步步高》《创新设计》等六本不同的教辅资料按如图所示的方式竖放在一起,则《步步高》放在最前面或最后面的不同放法共有()A.120种B.240种C.200种D.180种答案 B解析《步步高》放在最前面或最后面的不同放法共有2A55=240(种).2.有3名男生和2名女生排成一排,女生不能相邻的不同排法有()A.36种B.72种C.108种D.144种答案 B解析不同排法种数为A33A24=72(种).3.若C2n=C2n-1+C3n-1(n∈N*),则n=.答案 5解析由C m n=C m-1+C m n-1,n-1所以C2n=C3n,又因为C m n=C n-m,n所以n-2=3,即n=5.题型一排列问题例1(1)(多选)17名同学站成两排,前排7人,后排10人,则不同站法的种数为() A.A77A1010B.A717A1010C.A717+A1010D.A1717答案BD解析17名同学中选7名全部排序站在前排有A717种方法,剩下10名同学全排在后排有A1010种方法,根据乘法原理,共有A717A1010种方法.将前后排视为一排,共有A1717种方法.(2)(2022·福州模拟)将数字1,2,3,4,5,6排成一列,记第i个数为a i(i=1,2,3,4,5,6),若a1≠1,a3≠3,a5≠5,且a1<a3<a5,则不同的排列方法种数为()A.15 B.30 C.45 D.60答案 B解析由题意可知分两步:①先排a1,a3,a5,当a1=2时,a3=4,a5=6或a3=5,a5=6有2种,当a1=3时,a3=4,a5=6或a3=5,a5=6有2种,当a1=4时,a3=5,a5=6有1种,共5种;②再排a2,a4,a6,共有A33=6(种),所以不同的排列方法种数为5×6=30.教师备选现有8个人排成一排照相,其中甲、乙、丙三人不全相邻的排法种数为()A.A36·A55B.A88-A66·A33C.A35·A33D.A88-A46答案 B解析在8个人全排列的方法数中减去甲、乙、丙全相邻的方法数,就得到甲、乙、丙三人不全相邻的方法数,即A88-A66·A33.思维升华对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.跟踪训练1(1)将1,2,3,4,5,6这6个数填入如图所示的3行2列表格中,要求表格每一行数字之和均相等,则可组成不同表格的个数为()A.8 B.24 C.48 D.64答案 C解析由1+6=2+5=3+4,则可组成不同表格的个数为A22A22A22A33=48.(2)(2022·苏州调研)甲、乙、丙、丁和戊5名学生进行数学创新能力比赛,决出第一到第五名的名次(无并列名次).甲、乙两名同学去询问成绩,老师说:“你们都没有得到第一,你们也都不是最后一名,并且你们的名次相邻.”从上述回答分析,5人的名次不同的排列情况有()A.36种B.24种C.18种D.12种答案 B解析由题意甲乙两人名次为2,3或3,4,所以5人的名次不同的排列情况有2×A22A33=24(种).题型二组合问题例2(1)(2021·全国乙卷)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种答案 C解析根据题设中的要求,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,可分两步进行安排:第一步,将5名志愿者分成4组,其中1组2人,其余每组1人,共有C25种分法;第二步,将分好的4组安排到4个项目中,有A44种安排方法.故满足题意的分配方案共有C25·A44=240(种).(2)两个三口之家(父母+小孩)共6人去旅游,有红旗和大众两辆新能源汽车,每辆车至少乘坐2人,但两个小孩不能单独乘坐一辆车,则不同的乘车方式的种数为()A.48 B.50C.98 D.68答案 A解析6人乘坐的所有情况有C26C44A22+C36=15×2+20=50(种),两个小孩单独乘坐一辆车的情况有C12=2(种),由题意知两个小孩不能单独乘坐一辆车,则不同的乘车方式的种数为50-2=48.教师备选泉州洛阳桥,原名万安桥,桥长834米,宽7米,46个桥墩,47个桥孔,全都是由花岗岩筑成,素有“海内第一桥”之誉,是古代著名跨海梁式石构桥.北宋泉州太守蔡襄(今莆田市仙游县人,北宋名臣,书法家、文学家、茶学家)与卢锡共同主持历经七年建成,至今已有九百多年历史.现有一场划船比赛,选取相邻的12个桥孔作为比赛道口,有4艘参赛船只将从一字排开的12个桥孔划过,若为安全起见相邻两艘船都必须至少留有1个空桥孔间隔划过,12个桥孔头尾两侧桥孔也不过船,所有的船都必须从不同的桥孔划过,每个桥孔都只允许1艘船划过,则4艘船通过桥孔的不同方法共有种(用数字作答).答案840解析依题意相当于将8个相同的小球,放入5个盒子中,且每个盒子不空,则在8个小球中的7个空档插入4个板,分为5堆,则有C47=35(种)分法,即通过的桥孔组合有35种,再对4艘参赛船全排列有A44=24(种)排法,故共有C47A44=35×24=840(种)方法.思维升华组合问题常有以下两类题型变化(1)“含有”或“不含有”问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”问题:用直接法和间接法都可以求解,通常用直接法,分类复杂时,考虑逆向思维,用间接法处理.跟踪训练2(1)将6个相同的小球放入3个不同的盒子中,每个盒子至多可以放3个小球,且允许有空盒子,则不同的放法共有()A.10种B.16种C.22种D.28种答案 A解析如果没有空盒,则小盒的球数是1,2,3,或是2,2,2,共有A33+1=7(种)放法;若是有一个空盒,则小盒的球数是3,3,首先选盒,再放小球,共有C23×1=3(种)放法,所以不同的放法共有7+3=10(种).(2)某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为.答案86解析由题意,可分三类考虑:第1类,男生甲入选,女生乙不入选,则方法种数为C13C24+C23C14+C33=31;第2类,男生甲不入选,女生乙入选,则方法种数为C14C23+C24C13+C34=34;第3类,男生甲入选,女生乙入选,则方法种数为C23+C14C13+C24=21.所以男生甲与女生乙至少有1人入选的方法种数为31+34+21=86.题型三排列与组合的综合应用命题点1相邻、相间及特殊元素(位置)问题例3(2022·广州质检)某夜市的某排摊位上共有6个铺位,现有4家小吃类店铺,2家饮料类店铺打算入驻,若要排出一个摊位规划,要求饮料类店铺不能相邻,则可以排出的摊位规划总个数为()A.A44A22B.A22A55C.A33A55D.A44A25答案 D解析先将4个小吃类店铺进行全排,再从这4个小吃类店铺的5个空位选2个进行排列,故排出的摊位规划总个数为A44A25.延伸探究若要求饮料类店铺必须相邻,则可以排出的摊位规划总个数为(用数字作答).答案240解析先将2个饮料类店铺进行捆绑,再和其他4个小吃类店铺进行排列,故排出的摊位规划总个数为A22A55=240.思维升华相邻、相间问题的解题策略(1)要求相邻时,把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列.(2)对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.命题点2定序问题例4某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后进行,那么安排这6项工程不同的排法种数是.答案120解析六个元素进行排序,保证甲、乙、丙三个元素顺序不变,再加入三个元素进行排序,共6!3!=120(种).延伸探究若在本题中,再增加条件“工程丁必须在丙完成后立即进行”,那么安排这6项工程不同的排法种数是.答案20解析工程丁必须在丙完成后立即进行,等价于丙丁看成一个元素,共五个元素进行排序,保证甲乙(丙丁)三个元素顺序不变,再加入两个元素进行排序,共5!3!=20(种).思维升华 定序问题的处理策略对于给定元素顺序确定,再插入其他元素进行排列:顺序确定的元素为n 个,新插入的元素为m 个,则排列数为(m +n )!n !.命题点3 分组、分配问题例5 数学活动小组由12名同学组成,现将这12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题,并要求每组选出1名组长,则不同的分配方案有( )A.C 312C 39C 36A 33A 44种B .C 312C 39C 3634种C.C 312C 39C 36A 4443种D .C 312C 39C 3643种答案 B解析 方法一 首先将12名同学平均分成四组,有C 312C 39C 36A 44种分法,然后将这四组同学分配到四个不同的课题组,有A 44种分法,并在各组中选出1名组长,有34种选法,根据分步乘法计数原理,满足条件的不同分配方案有C 312C 39C 36A 44·A 44·34=C 312C 39C 3634(种). 方法二 根据题意可知,第一组分3名同学有C 312种分法,第二组分3名同学有C 39种分法,第三组分3名同学有C 36种分法,第四组分3名同学有C 33种分法.第一组选1名组长有3种选法,第二组选1名组长有3种选法,第三组选1名组长有3种选法,第四组选1名组长有3种选法.根据分步乘法计数原理可知,满足条件的不同分配方案有C 312C 39C 36C 3334种. 教师备选1.某地遭遇极端强降雨天气,一方有难,八方支援,全国各地救援团队奔赴此地.现有某救援团队5名志愿者被分配到3个不同巡查点进行防汛救灾志愿活动,要求每人只能去一个巡查点,每个巡查点至少有一人,则不同分配方案的总数为( ) A .120 B .150 C .240 D .300答案 B解析 有5名志愿者被分配到3个不同巡查点进行防汛抗洪志愿活动,要求每人只能去一个巡查点,每个巡查点至少有一人, 包括两种情况:一是按照2,2,1分配,有12C 25C 23A 33=90(种)结果,二是按照3,1,1分配,有12C 15C 14A 33=60(种)结果.不同分配方案的总数为90+60=150.2.(2022·南平模拟)福建省于2021年启动了中学生科技创新后备人才培养计划(简称中学生“英才计划”),在数学、物理、化学、生物、计算机等学科有特长的学生入选2021年福建省中学生“英才计划”,他们将在大学教授的指导下进行为期一年的培养,现有4名数学特长生可从3位数学教授中任选一位作为导师,每位数学教授至多带2名数学特长生,则不同的培养方案有 种.(结果用数字作答) 答案 54解析 分两类,C 24C 22A 22A 23+C 24C 12C 11A 22A 33=54(种).思维升华 解决分组分配问题的策略(1)对于整体均分,分组后一定要除以A n n (n 为均分的组数),避免重复计数. (2)对于部分均分,若有m 组元素个数相等,则分组时应除以m !.跟踪训练3 (1)2021年7月1日,建党百年盛典,天安门广场上共青团员、少先队员齐诵青春誓言“请党放心,强国有我!”,新的百年,听党话、感党恩、跟党走!给人们留下深刻印象.表演前,为呈现最佳效果,节目编排人员将4名领诵人员排成一排,则两名女领诵相邻的方案有( )A .10种B .12种C .20种D .24种答案 B解析 将两名女领诵捆绑,再和另外两名男领诵进行全排列,共有A 22A 33=12(种).(2)(多选)甲、乙、丙、丁、戊五人并排站成一排,下列说法正确的是( ) A .如果甲乙必须相邻且乙在甲的右边,那么不同的排法有24种 B .最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种 C .甲乙不相邻的排法种数为72种D .甲乙丙按从左到右的顺序排列的排法有30种 答案 ABC解析 如果甲乙必须相邻且乙在甲的右边,可将甲乙捆绑看成一个元素,则不同的排法有A 44=24(种),故A 正确;最左端排甲时,有A 44=24(种)不同的排法,最左端排乙时,最右端不能排甲,则有C 13A 33=18(种)不同的排法,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有24+18=42(种),故B 正确;因为甲乙不相邻,先排甲乙以外的三人,再让甲乙插空,则有A 33A 24=72(种),故C 正确;甲乙丙按从左到右的顺序排列的排法有A 55A 33=20(种),故D 不正确.课时精练1.山城农业科学研究所将5种不同型号的种子分别试种在5块并成一排的试验田里,其中A ,B 两型号的种子要求试种在相邻的两块试验田里,且均不能试种在两端的试验田里,则不同的试种方法数为( ) A .12 B .24 C .36 D .48答案 B解析 因为A ,B 两型号的种子试种方法数为2×2=4,所以一共有4A 33=24(种).2.宋代学者聂崇义编撰的《三礼图集注》中描述的周王城,“匠人营国,方九里,旁三门,国中九经九纬…”,意思是周王城为正方形,边长为九里,每边都有左中右三个门,城内纵横各有九条路…,依据此种描述,画出周王城的平面图,则图中共有 个矩形( )A .3 025B .2 025C .1 225D .2 525答案 A解析 要想组成一个矩形,需要找出两条横边、两条纵边,根据分步乘法计数原理,依题意,所有矩形的个数为C 211·C 211=3 025.3.(2022·衡水模拟)同宿舍六位同学在食堂排队取餐,其中A ,B ,C 三人两两不相邻,A 和D 是双胞胎必须相邻,这样的排队方法有( ) A .24种 B .48种 C .72种 D .96种 答案 C解析 根据题意分3步进行分析:第一步,将除A ,B ,C 之外的三人全排列, 有A 33=6(种)情况,第二步,由于AD必须相邻,则A必须安排在D相邻的两个空位中,有2种情况,第三步,将B,C安排在剩下的3个空位中,有A23=6(种)情况,则共有6×2×6=72(种)不同的安排方法.4.中国古代的五音,一般指五声音阶,依次为宫、商、角、徵、羽.如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶不在角音阶的同侧,可排成的不同音序的种数为()A.120 B.90C.60 D.40答案 D解析根据题意,将5个音阶全排列,共有5个位置,如图,从左至右依次记为1,2,3,4,5,进而可以分以下三类求解.当角音阶在2号位置,此时只需在宫、羽两音阶中选一个放置到1号位置,剩下的一个音阶和其余的两个任意安排到3,4,5号位置即可,故有A12A33=12(种);当角音阶在3号位置,此时只需在宫、羽两音阶中选一个放置到1号或2号位置,剩下的一个音阶放到4号或5号位置,最后安排剩余的商、徵两个音阶,共有C12A12A12A22=16(种);当角音阶在4号位置,此时与2号位置的安排方法相同,共有A12A33=12(种),故宫、羽两音阶不在角音阶的同侧,可排成的不同音序的种数为12+16+12=40.5.7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为()A.120 B.240C.360 D.480答案 C解析前排3人有4个空,从甲、乙、丙3人中选1人插入,有C14C13种方法,对于后排,若插入的2人不相邻,有A25种方法;若相邻,有C15A22种,故共有C14C13(A25+C15A22)=360(种).6.(2022·辽阳模拟)联考结束后,某班要安排6节课进行试卷讲评,要求课程表中要排入语文、数学、英语、物理、化学、生物共六节课,如果第一节课只能排语文或数学,最后一节不能排语文,则不同的排法共有()A.192种B.216种C.240种D.288种答案 B解析分以下两种情况讨论:①若第一节课安排语文,则后面五节课的安排无限制,此时共有A55种;②若第一节课安排数学,则语文可安排在中间四节课中的任何一节,此时共有4A44种.综上所述,不同的排法共有A55+4A44=216(种).7.(多选)现有4个编号为1,2,3,4不同的球和4个编号为1,2,3,4不同的盒子,把球全部放入盒内.则下列说法正确的是()A.恰有1个盒不放球,共有72种放法B.每个盒子内只放一个球,且球的编号和盒子的编号不同的放法有9种C.有2个盒内不放球,另外两个盒子内各放2个球的放法有36种D.恰有2个盒不放球,共有84种放法答案BCD解析对于A,恰有1个盒不放球,先选1个空盒子,再选一个盒子放两个球,则C14C24A33=144≠72,故A不正确;对于B,编号为1的球有C13种方法,把与编号为1的球所放盒子的编号相同的球放入1号盒子或者其他两个盒子,共有1+C12=3(种),即3×3=9(种),故B正确;对于C,首先选出两个空盒子,再取两个球放剩下的两个盒子中的一个,共有C24C24=36(种),故C正确;对于D,恰有2个盒不放球,首先选出两个空盒子,再将4个球分为3,1或2,2两种情况,放入盒子,共有C24(C14C12+C24)=6×14=84(种),故D正确.8.(多选)下列等式正确的有()A.A m n+m A m-1n=A m n+1B.n C m n=m C m-1n-1C.C33+C34+C35+…+C32 021=C2 0182 022D.C02 022+C12 022+C22 022+…+C2 0222 022=22 022答案ACD解析对于A,A m n+m A m-1n =n!(n-m)!+m·n!(n-m+1)!=(n-m+1)·n!(n-m+1)!+m·n!(n-m+1)!=(n+1)![(n+1)-m]!=A m n+1,选项A正确;对于B,n C m n=n·n!m!(n-m)!=n 2m ·(n -1)!(m -1)![(n -1)-(m -1)]!=n 2m·C m -1n -1≠m C m -1n -1, 选项B 错误;对于选项C ,C 33+C 34+C 35+…+C 32 021=(C 44+C 34)+C 35+…+C 32 021=(C 45+C 35)+C 36+…+C 32 021=(C 46+C 36)+…+C 32 021=…=C 42 021+C 32 021=C 42 022=C 2 0182 022,选项C 正确;对于D 选项,二项式(a +b )n (n ∈N *)的展开式的二项式系数和等于2n ,选项D 正确.9.某高铁站有10个候车位(成一排),现有4名乘客随便坐在某个座位上候车,则恰好有5个连续空座位的候车方式共有 种(用数字作答).答案 480解析 把四位乘客当做4个元素作全排列有A 44种排法,将一个空座位和余下的5个空座位作为2个元素插空有A 25种排法,∴共有A 44A 25=480(种).10.若把英语单词“good ”的字母顺序写错了,则可能出现的错误方法共有 种.(用数字作答)答案 11解析 根据题意,因为“good ”四个字母中的两个“O ”是相同的,则其不同的排列有12×A 44=12(种),其中正确的有一种,所以错误的方法共有12-1=11(种).11.为巩固防疫成果,现有7人排队接种加强针新冠疫苗,若要求甲在乙的前面,乙在丙的前面,且丙、丁相邻,则有 种不同的排队方法.(用数字作答)答案 240解析 丙、丁捆绑作为一个人,7个人7个位置变成6个位置,从中选3个安置甲、乙、丙(丁),其他3个任意排列,方法数为C 36A 22A 33=240.12.基础学科招生改革试点,也称强基计划,是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.2021年的强基计划报名时间集中在4月8日-4月30日,某校甲、乙、丙、丁、戊五名学生准备报名清华、北大和南大的强基计划,若每所学校至少有一名学生报名,每名学生只报名一所学校,且甲和乙商量好报名同一所学校,则共有 种不同的报名方式.(用数字作答)答案 36解析 根据题意,把甲乙2人视为一个人,则五个人看成四个人,从四个人中先取出两个人,然后与剩下两个人进行全排列,则有C 24A 33=36(种)不同的方法.13.福厦高速铁路,正线全长300.483千米.2017年开工建设,沿线设福州站→福州南站→福清西站→莆田站→泉港站→泉州东站→泉州南站→厦门北站→漳州站9座客站,设计速度每小时350千米,预计2022年9月开通.为了加快推动重点项目进展,即西溪特大桥、泉州湾跨海大桥、木兰溪特大桥3个控制性工程的建设.项目监管公司决定派出甲、乙等6名经理去3个项目现场考察监督,每个项目现场2名经理,每位经理只去一个项目现场,则甲、乙到不同项目现场的不同安排方案共有( )A .6种B .18种C .36种D .72种答案 D解析 根据题意把6人分成3组,共有C 26C 24C 22A 33=15(种)不同的分法,其中甲乙在同一组中有C 24C 22A 22=3(种)分法,可得甲乙不在同一组中,共有15-3=12(种)不同的分组,再分派到3个不同的项目现场,共有12×A 33=72(种)不同的方案.14.2021年是“十四五”开局之年,必将在中国历史上留下浓墨重彩的标注,作为当代中学生,需要发奋图强,争做四有新人,首先需要学好文化课.现将标有数字2,0,2,1,7,1的六张卡片排成一排,组成一个六位数,则共可组成 个不同的六位数.答案 150解析 依题意可组成不同的六位数有A 66A 22A 22-A 55A 22A 22=180-30=150(个).15.(多选)众所周知,组合数C m n =n (n -1)(n -2)…(n -m +1)m !,这里m ,n ∈N *,并且m ≤n .牛顿在研究广义二项式定理过程中把二项式系数C m n 中的下标n 推广到任意实数,规定广义组合数C m x =x (x -1)…(x -m +1)m !是组合数的一种推广,其中(m ∈N *,x ∈R ),且定义C 0x =1,比如C 52=2(2-1)(2-2)(2-3)(2-4)5!=0.下列关于广义组合数的性质说法正确的有( ) A .C 4-7=-210B .当m ,n 为正整数且m >n 时,C m n =0C .当m 为正奇数时,C m -1=-1D .当n 为正整数时,C m -n =(-1)m C m n +m -1答案 BCD解析 选项A ,由题意,C 4-7=-7(-7-1)(-7-2)(-7-3)4!=210, 故A 不正确.选项B ,由C m n =n (n -1)(n -2)…(n -m +1)m !, 当m ,n 为正整数且m >n 时,则n -m ≤-1,所以n -m +1≤0,所以n ,n -1,n -2,…,n -m +1这m 个数中,一定有某个数为0,所以C m n =n (n -1)(n -2)…(n -m +1)m !=0, 故B 正确.选项C ,当m 为正奇数时,C m -1=-1×(-2)…(-1-m +1)m ! =-1×(-2)…(-m )m !=-1, 故C 正确.选项D ,当n 为正整数时,C m -n =-n (-n -1)(-n -2)…(-n -m +1)m !=(-1)m n (n +1)(n +2)…(n +m -1)m !. C m n +m -1=(n +m -1)(n +m -2)…(n +m -1-m +1)m ! =(n +m -1)(n +m -2)…(n +1)n m !. 所以C m -n =(-1)m C m n +m -1,故选项D 正确.16.某次灯谜大会共设置6个不同的谜题,分别藏在如图所示的6只灯笼里,每只灯笼里仅放一个谜题.并规定一名参与者每次只能取其中一串最下面的一只灯笼并解答里面的谜题,直到答完全部6个谜题,则一名参与者一共有 种不同的答题顺序.答案 60解析将6只灯笼全排,即A66,因为每次只能取其中一串最下面的一只灯笼内的谜题,每次取灯的顺序确定,取谜题的方法有A66A33·A22=60(种).。
高中数学高二理科选修2-3排列组合导学案
《排列(1)》导学案【学习目标】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【重点难点】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【学法指导】(预习教材P14~ P18,找出疑惑之处)复习1:交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有2个不重复的英文字母和4个不重复的阿拉伯数字,并且2个字母必须合成一组出现,4个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?复习2:从甲,乙,丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另一名参加下午的活动,有多少种不同的选法?【教学过程】(一)导入探究任务一:排列问题1:上面复习1,复习2中的问题,用分步计数原理解决显得繁琐,能否对这一类计数问题给出一种简捷的方法呢?新知1:排列的定义一般地,从n个元素中取出m()个元素,按照一定的排成一排,叫做从个不同元素中取出个元素的一个排列.试试:写出从4个不同元素中任取2个元素的所有排列. 反思:排列问题有何特点?什么条件下是排列问题?探究任务二:排列数及其排列数公式新知2 排列数的定义从个元素中取出(nm≤)个元素的的个数,叫做从n个不同元素取出m元素的排列数,用符合表示.试试:从4个不同元素a,b, c,d中任取2个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?问题:⑴从n个不同元素中取出2个元素的排列数是多少?⑵从n个不同元素中取出3个元素的排列数是少?⑶从n个不同元素中取出m(nm≤)个元素的排列数是多少?新知3 排列数公式从n个不同元素中取出m(nm≤)个元素的排列数=mnA新知4 全排列从n个不同元素中取出的一个排列,叫做n个元素的一个全排列,用公式表示为=nnA(二)深入学习例1计算:⑴410A;⑵218A; ⑶441010AA÷.变式:计算下列各式:⑴215A; ⑵66A⑶28382AA-; ⑷6688AA.例2若17161554mn A =⨯⨯⨯⨯⨯,则n = ,m = .变式:乘积(55)(56)(68)(69)n n n n ----用排列数符号表示 .(,n N ∈)例3 求证: 11--=m n m n nA A变式 求证: 7766778878A A A A =+-小结:排列数m n A 可以用阶乘表示为mn A =※ 动手试试 n 2 3 4 5 6 7n !练2. 从2,3,5,7,11这五个数字中,任取2个数字组成分数,不同值的分数共有多少个? .【当堂检测 】1. 计算:=+243545A A ;2.. 计算:=+++44342414A A A A ;3. 某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行 场比赛;4. 5人站成一排照相,共有 种不同的站法;5. 从1,2,3,4这4个数字中,每次取出3个排成一个3位数,共可得到 个不同的三位数.1. 求证:11211--++=-n n n n n n A n A A2. 一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假设每股道只能停放1列火车)?3.一部记录片在4个单位轮映,每一单位放映1场,有多少种轮映次序?【反思 】1. 排列数的定义2. 排列数公式及其全排列公式《排列(2)》导学案【学习目标 】1熟练掌握排列数公式; 2. 能运用排列数公式解决一些简单的应用问题. 【重点难点 】 1熟练掌握排列数公式; 2. 能运用排列数公式解决一些简单的应用问题. 【学法指导 】 (预习教材P 5~ P 10,找出疑惑之处) 复习1:.什么叫排列?排列的定义包括两个方面分别是 和 ;两个排列相同的条件是 相同, 也复习2:排列数公式:mn A = (,,m n N m n *∈≤)全排列数:nn A = = . 复习3 从5个不同元素中任取2个元素的排列数是 ,全部取出的排列数是【教学过程 】 (一)导入 探究任务一:排列数公式应用的条件 问题1:⑴ 从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法?⑵ 从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法? 新知:排列数公式只能用在从n 个不同元素中取出m 个元素的的排列数,对元素可能相同的情况不能使用.探究任务二:解决排列问题的基本方法问题2:用0到9这10个数字,可以组成多少个没有重复数字的三位数?新知:解排列问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等. (二)深入学习 例1 (1)6男2女排成一排,2女相邻,有多少种不同的站法? (2)6男2女排成一排,2女不能相邻,有多少种不同的站法? (3)4男4女排成一排,同性者相邻,有多少种不同的站法? (4)4男4女排成一排,同性者不能相邻,有多少种不同的站法?变式::某小组6个人排队照相留念.(1) 若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法? (2) 若排成一排照相,其中甲必在乙的右边,有多少种不同的排法? (3) 若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法? (4) 若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法? (5) 若分成两排照相,前排2人,后排4人,有多少种不同的排法?小结:对比较复杂的排列问题,应该仔细分析,选择正确的方法.例2 用0,1,2,3,4,5六个数字,能排成多少个满足条件的四位数.(1)没有重复数字的四位偶数?(2)比1325大的没有重复数字四位数?变式:用0,1,2,3,4,5,6七个数字,⑴能组成多少个没有重复数字的四位奇数?⑵能被5整除的没有重复数字四位数共有多少个?※动手试试练1.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行实验,有多少种不同的种植方法?练2.在3000至8000之间有多少个无重复数字的奇数?【当堂检测】1. 某农场为了考察3个水稻品种和5个小麦品种的质量,要在土质相同的土地上进行试验,应该安排的试验区共有块.2. 某人要将4封不同的信投入3个信箱中,不同的投寄方法有种.3. 用1,2,3,4,5,6可组成比500000大、且没有重复数字的自然数的个数是.4. 现有4个男生和2个女生排成一排,两端不能排女生,共有种不同的方法.5. 在5天内安排3次不同的考试,若每天至多安排一次考试,则不同的排法有种.1..一个学生有20本不同的书.所有这些书能够以多少种不同的方式排在一个单层的书架上?2.学校要安排一场文艺晚会的11个节目的演出顺序.除第一个节目和最后一个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法?【反思 】1. 正确选择是分类还是分步的方法,分类要做到“不重不漏”,分步要做到“步骤完整.2..正确分清是否为排列问题满足两个条件:从不同元素中取出元素,然后排顺序.《组合(1)》导学案【学习目标 】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算;. 【重点难点 】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算; 【学法指导】(预习教材P 21~ P 23,找出疑惑之处)复习1:什么叫排列?排列的定义包括两个方面,分别是 和 . 复习2:排列数的定义:从 个不同元素中,任取 个元素的 排列的个数叫做从n 个元素中取出m 元素的排列数,用符号 表示复习3:排列数公式:mn A = (,,m n N m n *∈≤)【教学过程 】 (一)导入探究任务一:组合的概念问题:从甲,乙,丙3名同学中选出2名去参加一项活动,有多少种不同的选法?新知:一般地,从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合.试试:试写出集合{}a,b,c,d,e 的所有含有2个元素的子集.反思:组合与元素的顺序 关,两个相同的组合需要 个条件,是 ;排列与组合有何关系? 探究任务二.组合数的概念:从n 个 元素中取出m ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示. 探究任务三 组合数公式 m n C = =我们规定:=0nC (二)深入学习例1 甲、乙、丙、丁4个人,(1)从中选3个人组成一组,有多少种不同的方法?列出所有可能情况; (2)从中选3个人排成一排,有多少种不同的方法?变式: 甲、乙、丙、丁4个足球队举行单循环赛: (1)列出所有各场比赛的双方; (2)列出所有冠亚军的可能情况.小结:排列不仅与元素有关,而且与元素的排列顺序有关,组合只与元素有关,与顺序无关,要正确区分排列与组合.例2 计算:(1)47C ; (2)710C变式:求证:11+⋅-+=m n m nC mn m C※ 动手试试 练1.计算:⑴ 26C ; ⑵ 38C ;⑶ 2637C C -; ⑷ 253823C C -.练2. 已知平面内A ,B ,C ,D 这4个点中任何3个点都不在一条直线上,写出由其中每3点为顶点的所有三角形.练3. 学校开设了6门任意选修课,要求每个学生从中选学3门,共有多少种选法?【当堂检测 】1. 若8名学生每2人互通一次电话,共通 次电话.2. 设集合{}A a,b,c,d,e ,B A =⊂,已知a B ∈,且B 中含有3个元素,则集合B 有个. 3. 计算:310C = .4. 从2,3,5,7四个数字中任取两个不同的数相乘,有m 个不同的积;任取两个不同的数相除,有n 个不同的商,则m :n = .5.写出从a,b,c,d,e 中每次取3个元素且包含字母a ,不包含字母b 的所有组合 1.计算:⑴ 215C ; ⑵ 2836C C ÷;2. 圆上有10个点:⑴ 过每2个点画一条弦,一共可以画多少条弦?⑵ 过每3点画一个圆内接三角形,一共有多少个圆内接三角形? 、【反思 】1. 正确理解组合和组合数的概念2.组合数公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==或者:)!(!!m n m n C mn -=),,(n m N m n ≤∈*且《 组合(2)》导学案【学习目标 】1.2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题; 【重点难点 】1.2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题; 【学法指导 】(预习教材P 24~ P 25,找出疑惑之处)复习1:从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合;从 个 元素中取出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示.复习2: 组合数公式: m n C = =【教学过程 】 (一)导入探究任务一:组合数的性质问题1:高二(6)班有42个同学⑴ 从中选出1名同学参加学校篮球队有多少种选法? ⑵ 从中选出41名同学不参加学校篮球队有多少种选法? ⑶ 上面两个问题有何关系?新知1:组合数的性质1:mn n m n C C -=.一般地,从n 个不同元素中取出m 个元素后,剩下n m -个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:mn n m n C C -=试试:计算:1820C反思:⑴若y x =,一定有yn x n C C =?⑵若yn x n C C =,一定有y x =吗?问题2 从121,,,+n a a a 这n +1个不同元素中取出m 个元素的组合数是 ,这些组合可以分为两类:一类含有元素1a ,一类是不含有1a .含有1a 的组合是从132,,,+n a a a 这 个元素中取出 个元素与1a 组成的,共有 个;不含有1a 的组合是从132,,,+n a a a 这 个元素中取出 个元素组成的,共有 个.从中你能得到什么结论?新知2 组合数性质2 m n C 1+=m n C +1-m n C(二)深入学习例1(1)计算:69584737C C C C +++;变式1:计算2222345100C C C C ++++例2 求证:n m C 2+=n m C +12-n m C +2-n m C变式2:证明:111m m m n n n C C C ++++=小结:组合数的两个性质对化简和计算组合数中用用处广泛,但在使用时要看清公式的形式.例3解不等式()321010n n-C n -<∈+C N .练3 :解不等式:46n nC C <※ 动手试试练1.若542216444x x C -C C C -=+,求x 的值练2. 解方程: (1)3213113-+=x x C C(2)333222101+-+-+=+x x x x x A C C【当堂检测 】1. 908910099C -C =2. 若231212n n-C C =,则n =3.有3张参观券,要在5人中确定3人去参观,不同方法的种数是 ;4. 若7781n n n C C C +=+,则n = ;5. 化简:9981m m m C -C C ++= .1. 计算:⑴ 197200C ; ⑵ 21-+•n n n n C C2. 壹圆,贰圆,伍圆,拾圆的人民币各1张,一共可以组成多少种币值?3. 若128n n C C =,求21n C 的值【反思 】1. 组合数的性质1:mn n m n C C -=2. 组合数性质2:m n C 1+=m n C +1-m n C《组合(3)》导学案 【学习目标 】 1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【重点难点 】1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【学法指导 】(预习教材P 27~ P 28,找出疑惑之处)复习1:⑴ 从 个 元素中取出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数...,用符号 表示;从 个 元素中取出 (n m ≤)个元素的 的个数,叫做从n 个不同元素取出m 元素的排列数,用符合 表示. ⑵ mn A =mn C = =m n A 与mn C 关系公式是 复习2:组合数的性质1: .组合数的性质2: .【教学过程 】 (一)导入探究任务一:排列组合的应用问题:一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问: ⑴ 这位教练从17位学员中可以形成多少种学员上场方案?⑵ 如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事?新知:排列组合在实际运用中,可以同时使用,但要分清他们的使用条件:排列与元素的顺序有关,而组合只要选出元素即可,不要考虑元素的顺序.试试:⑴平面内有10个点,以其中每2个点为端点的线段共有多少条? ⑵平面内有10个点,以其中每2个点为端点的有向线段多少条? 反思:排列组合在一个问题中能同时使用吗? (二)深入学习 例1 在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件.⑴ 有多少种不同的抽法?⑵ 抽出的3件中恰好有1件是次品的抽法有多少种?⑶ 抽出的3件中至少有1件是次品的抽法有多少种?变式:在200件产品中有2件次品,从中任取5件: ⑴ 其中恰有2件次品的抽法有多少种?⑵ 其中恰有1件次品的抽法有多少种?⑶ 其中没有次品的抽法有多少种? ⑷ 其中至少有1件次品的抽法有多少种?小结:对综合应用两个计数原理以及组合知识问题,思路是:先分类,后分步.例2 现有6本不同书,分别求下列分法种数:⑴分成三堆,一堆3本,一堆2本,一堆1本;⑵分给3个人,一人3本,一人2本,一人1本;⑶平均分成三堆.变式:6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?例 3 现有五种不同颜色要对如图中的四个部分进行着色,要求有公共边的两块不能用一种颜色,问共有几种不同的着色方法?变式:某同学邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?※动手试试练1. 甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?练2. 高二(1)班共有35名同学,其中男生20名,女生15名,今从中取出3名同学参加活动, (1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内, 不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?【当堂检测】1. 凸五边形对角线有条;2. 以正方体的顶点为顶点作三棱锥,可得不同的三棱锥有个;3.要从5件不同的礼物中选出3件送给3个同学,不同方法的种数是;4.有5名工人要在3天中各自选择1天休息,不同方法的种数是;5. 从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,一共可以组成没有重复数字的五位数?1. 在一次考试的选做题部分,要求在第1题的4个小题中选做3个小题,在第2题的3个小题中选做2个小题,在第3题的2个小题中选做1个小题.有多少种不同的选法?路漫漫其修远兮,吾将上下而求索 - 百度文库2. 从5名男生和4名女生中选出4人去参加辩论比赛.⑴如果4人中男生和女生各选2名,有多少种选法?⑵如果男生中的甲和女生中的乙必须在内,有多少种选法?⑶如果男生中的甲和女生中的乙至少有1人在内,有多少种选法?⑷如果4人中必须既有男生又有女生,有多少种选法?【反思】1. 正确区分排列组合问题2. 对综合问题,要“先分类,后分步”,对特别元素,应优先考虑.1111。
高中数学 第一章 计数原理 1.2 排列与组合 1.2.1.1 排列的概念及简单排列问题导学案 新
湖北省松滋市高中数学第一章计数原理1.2 排列与组合1.2.1.1 排列的概念及简单排列问题导学案新人教A版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖北省松滋市高中数学第一章计数原理1.2 排列与组合1.2.1.1 排列的概念及简单排列问题导学案新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖北省松滋市高中数学第一章计数原理1.2 排列与组合1.2.1.1 排列的概念及简单排列问题导学案新人教A版选修2-3的全部内容。
1.2.1.1排列的概念及简单排列问题【学习目标】1. 理解排列、排列数的概念;2. 了解排列数公式的推导;3. 能运用所学的排列知识,正确地解决一些简单的实际问题重点:排列、排列数的概念难点:排列数公式的推导【使用说明与学法指导】1。
课前用20分钟预习课本P14—P18内容.并完成书本上练、习题及导学案上的问题导学。
2.独立思考,认真限时完成,规范书写。
课上小组合作探究,答疑解惑.【问题导学】1。
分类加法计数原理: .2. 分步乘法计数原理:3. 从甲,乙,丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另一名参加下午的活动,有多少种不同的方法?解析:4.上面的问题3中,用分步计数原理解决显得繁琐,能否对这一类计数问题给出一种简捷的方法呢?5.排列的概念元素:问题中被取出的对象 .排列:一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一排,叫做从n 个不同元素中取出 m 个元素的一个排列.6。
相同排列的条件元素 相同,顺序 相同。
7. 排列数的概念从 n 个 不同 元素中取出 m (n m ≤)个元素的 所有不同排列 的个数,叫做从n 个不同元素中取出m 元素的排列数,用符号 m n A 表示.8。
新人教版小学数学二年级上册第八单元简单的排列导学案教学案
新人教版小学数学二年级上册第八单元《简单的排列》导学案教学案第1课时简单的排列导学案设计课题简单的排列课型新授课设计说明本节课的教学任务是结合学生日常生活中的最简单的事例,向学生渗透有关排列的数学思想方法,引导学生运用操作、实验、猜测等直观手段解决一些简单的排列问题,初步培养学生全面、有序地思考问题的意识。
鉴于本节课的教学任务及学情实际,本节课在教学设计上突出了以下两点:1.以故事创设情境,激活思维。
小学生特别喜欢听故事,教学中,精心创设儿童化、趣味化的故事情境,激发学生强烈的求知欲,让学生在生动、有趣的故事的引导下,不知不觉地走进数学世界,引发学生思考,使学生切实体验到身边有数学,用数学可以解决生活中的实际问题,从而对数学产生亲切感,增强学生应用数学知识解决实际问题的意识。
2.以说理助思考,感受有序。
数学学科本身具有抽象性,而小学生通常以具体形象思维为主。
所以教学中不但要组织学生动眼看、动手做、动脑想,还要注意引导学生动口说。
通过引导学生交流摆卡片的体会,交流有序排列的理由,使学生在说理中进一步体会到全面、有序地思考问题的好处,同时在说理中探索性得到开拓,创新性得到发展。
课前准备教师准备:PPT课件数字卡片学生准备:人物卡片数字卡片彩笔教学过程教学环节教师指导学生活动效果检测一、故事导入。
(3分钟)1.借助故事激发学生的学习兴趣。
(故事内容见教学片段一)2.提问,引发思考。
用1、2和3组成两位数,每个两位数的十位数和个位数不能一样,能组成几个两位数?(板书课题及问题)1.认真听故事,初步感知排列问题。
2.认真思考用1、2和3这三个数字到底能组成几个两位数。
1.摆一摆,说一说。
用2和3两张数字卡片摆一摆,看能摆出几个两位数,并说一说摆法。
二、操作探究。
(18分钟)1.引导学生猜一猜能组成几个两位数。
2.引导学生想一想用什么方法可以使组成的两位数既不遗漏,也不重复。
3.组织学生动手摆一摆数字卡片。
高中数学排列微课教案
高中数学排列微课教案
一、教学目标
1. 知道排列的定义和常见符号;
2. 掌握计算排列的方法;
3. 理解排列的性质和应用。
二、教学重点和难点
1. 排列的定义和性质;
2. 排列的计算方法。
三、教学准备
1. 教材:高中数学教材;
2. 课件:包含排列的定义、性质和计算方法的课件;
3. 教具:黑板、彩色粉笔。
四、教学过程
1. 引入(5分钟)
介绍排列的概念和作用,引发学生对排列的兴趣。
2. 讲解(15分钟)
(1)排列的定义:从n个不同元素中取出m个元素按一定顺序排成一列,称为排列,记作P(n, m)。
(2)排列的计算方法:公式计算和实际例题演练。
3. 练习(15分钟)
让学生做几道排列的练习题,检验他们对排列的理解和掌握程度。
4. 拓展(10分钟)
讲解排列的性质和应用,如排列的计算公式、排列与组合的关系等。
5. 总结(5分钟)
对本节课所讲的内容进行总结,并提醒学生课后复习。
五、课堂反馈
1. 学生提出问题进行解答;
2. 老师布置作业,让学生继续巩固所学内容。
六、板书设计
排列的定义:P(n, m) = n!/(n-m)!
基本性质:P(n, m) = n!/(n-m)!, P(n, m) = n!/(n-m)!
七、教学反思
本微课主要针对排列的基本概念和性质进行讲解和练习,通过实际例题帮助学生理解和掌
握排列的计算方法。
在教学过程中,要注重引导学生思考和提出问题,加深对排列的理解,并在课后加强练习,巩固所学内容。
排列与排列数公式教学设计
排列与排列数公式(第1课时)教学设计全国青年数学教师优质课大赛一.教学内容解析本节课是人教版A版《数学选修2-3》第一章第2节的第一节课,排列是一类特殊而重要的计数问题,教科书从简化运算的角度提出了排列的学习任务,通过具体实例概括而得出排列的概念,应用分步计数原理得出排列数公式,对于排列,有两个想法贯穿始终,一是根据一类问题的特点和规律寻找简便的计数方法,就像乘法作为加法的简便运算一样;二是注意应用两个计数原理思考和解决问题。
本节课具有承上启下的地位,理解排列的概念是应用分步计数原理推导排列数公式的前提,对具体的排列问题的分析又为排列数公式提供了基础。
排列数公式的推导过程是分布计数原理的一个重要应用,同时,排列数公式又是推导组合数公式的主要依据。
基于学生的认知规律,本节课只是对排列和排列数公式的初步认识,在后面知识的学习过程中,逐步加深理解和灵活运用。
本节课的教学重点是排列的概念、排列数公式,教学难点是排列的概念,排列的概念有一定的抽象性,本节课结合教科书的编排,采取了由特殊到一般的归纳思想来建构概念的理解过程,通过引导学生分析三个典型事例,从中归纳出共同特征,再进一步概括出本质特征,得出排列的定义,再跟进10个具体事例多角度加深对概念的理解,并多次强调一个排列的特点,n个不同的元素,取出m个元素,元素的顺序,奠定学生对排列定义的理解基础,为后面组合概念的提出埋下伏笔。
同时通过有规律的展示分步计数原理得到的一长串排列数,为后面水到渠成得到排列数公式作好铺垫,排列数公式的简单应用体现了排列简化步骤的优点,让学生直观感受学习排列的必要。
二.教学目标设置1.通过几个具体实例归纳概括出排列的概念,并能运用排列的判断具体的的计数问题是否为排列问题;能利用分步计数原理推导排列数公式,能简化分步计数原理解决问题的步骤。
在排列数符号及其公式的产生过程中体现简化的思想。
学生学习后能够对排列或非排列问题作出准确的判断,能够分析原因,能够简单应用排列数公式。
排列导学案
主备人: 审核: 包科领导: 年级组长: 使用时间:3. m n A ;【合作探究】1.某劳模要到5个单位去各作1场报告,不同的安排顺序种数为( )A. 15A B 55A C 44A D 15A 22A2. 有3名儿童,5个座位,让儿童都坐下,不同的安排方法种数是( )A .33AB 55AC 35AD 其它数3.用0,1,2,3,4五个数字可组成( )个没有重复数字的三位数。
A .48B 60C 36D 244. 从6本不同的书中选3本送给3名同学每人1本,有 种不同送法.5. 7个人按下列要求站成一排,分别有多少种不同的站法?(1)甲站左端(2)甲不站左端(3)甲不站两端(4)甲乙都不站两端(5)甲不站左端,乙不站右端(6)甲乙相邻(7)甲乙相邻,且甲在左(8)甲乙不相邻(9)甲乙之间恰有二人【巩固提高】1. 下列各式中与排列数m n A 相等的是( ). (A))(n m n - (B)n(n -1)(n -2)…(n -m) (C)m n A m n n 11-+- (D)111--m n n A A 2. 3名男同学3名女同学站成一排,男女间隔的排法种数是( )A36 B72 C144 D2883.7个人排成一排照合影,其中甲乙要求在一起,丙丁要求分开,则不同的排法有( )A 480种B 720 种 C960种 D 1200种4.若n ∈N 且n <20,则(27-n)(28-n)…(34-n)等于( ).(A)827n A - (B)n n A --2734 (C)734n A - (D)834n A - ★5. 7人站成前后两排,前排3人,后排4人,有多少种不同的排法?★6. 7个相同的小球,任意放入4个不同的盒子中,每个盒子都不空的放法共有多少种?。
高中数学排列课例设计教案
高中数学排列课例设计教案
目标:学生能够理解排列和组合的概念,能够运用排列和组合的知识解决实际问题。
教学重点:排列、重复排列、循环排列、组合、应用题解答。
教学难点:排列与组合的区分,解决应用题的能力。
教学准备:计算器、白板、彩色粉笔、教学PPT、练习题。
教学过程:
一、导入(5分钟)
1. 导入排列与组合的概念,通过举例子引起学生的兴趣。
二、讲解排列(15分钟)
1. 解释排列的概念,并讲解排列的计算公式。
2. 通过实例演示计算排列的方法。
三、讲解组合(15分钟)
1. 解释组合的概念,并讲解组合的计算公式。
2. 通过实例演示计算组合的方法。
四、练习与应用(20分钟)
1. 给学生一些练习题让他们运用排列和组合的知识做题。
2. 组织学生进行小组讨论,解决实际问题。
五、总结与反馈(5分钟)
1. 总结今天所学的内容,强调排列与组合的应用。
2. 请学生回答几个问题,检查学生的掌握情况。
教学设计思路:通过讲解排列和组合的概念,以及实例演示和练习题的形式,让学生掌握排列与组合的基本概念和计算方法,培养学生的逻辑思维和解题能力。
扩展活动:让学生自主设计一些排列和组合的问题,并交换解答,提高学生的创造性和交流能力。
教学反思:排列与组合是高中数学中的基础知识,对于学生的逻辑思维和解题能力很有帮助。
在教学中要注重理论和实践相结合,通过实例演示和练习题的形式巩固学生的学习效
果。
同时,也要关注学生的学习兴趣和实际运用能力,引导学生积极参与课堂活动,提高教学效果。
新人教版小学数学三年级下册精品导学案第1课时 初步感受简单事物的排列数
第八单元数学广角——搭配(二)第一课时课题:初步感受简单事物的排列数教学目标:1、使学生通过动手操作找出简单事物的排列数,体会数学思想和方法。
2、培养学生初步的观察、分析、推理能力,以及有顺序地、全面地思考问题的意识。
3、培养学生对数学的兴趣记忆与人合作的良好习惯。
教学重难点:使学生找到简单事物的排列数,体会书写思想和方法。
教学过程:一、学前准备1、十位上是“2“的两位数共有多少个?2、个位上是“0“的两位数共有多少个?3、拿出准备好的数字卡片7、3、9.二、探究新知1、用0、1、3、5能组成多少个没有重复数字的两位数?以小组为单位,合作完成,同时思考下面的问题。
(1)怎样摆能保证不重不漏?(2)你们一共摆出了几个两位数?是怎样摆的?(3)用什么方法记录既清楚明了又不重不漏?2、学生以小组为单位探究,教师巡视、指导。
3、汇报:(1)按照一定的顺序来摆就能保证不重不漏。
(2)按数位摆:十位如果是1,可以摆出10、13、15;十位如果是3,可以摆出30、31、35;十位如果是5,可以摆出50、51、53。
(3)按照一定的顺序记录,就能保证不重不漏,清楚明了。
三、课堂作业新设计1、教材练习二十二第1题。
(1)小组活动:找四个人扮演四位师徒,一个人记录。
(2)怎样交换位置更清楚明了?(3)可以有多少种不同的排法?2、教材练习二十二第2题。
独立排一排,并记录。
注意排的顺序,体会方法。
3、教材练习二十二第3题。
四、思维训练从写有1、2、3、4的四张卡片中任意选出2张,做一位数的乘法计算。
共能组成多少个不同的乘法算式?共有多少个不同的积?写出这些算式。
反思:。
高中数学排列逐字稿教案
高中数学排列逐字稿教案
课题:排列
教学内容:排列的概念及性质
教学目标:
1. 了解排列的概念和基本性质;
2. 掌握排列的计算方法;
3. 能够运用排列的知识解决问题。
教学重点:排列的定义和计算方法
教学难点:排列的应用问题
教学过程:
一、导入(5分钟)
通过引入一个实际生活中的排列问题,引起学生兴趣,如:“小明有5种不同的颜色的球,他想把这5个球按照一定的顺序摆放在架子上,一共有多少种不同的摆放方式?”
二、概念讲解(15分钟)
1. 讲解排列的定义:排列是指从事物中取出一部分,按照一定的顺序排列排列的一种方式。
2. 讲解排列的基本性质:n个不同的元素按顺序排列,就得到了n个元素的排列数,记为
A(n, n)=n!。
三、计算方法(20分钟)
1. 讲解排列的计算方法:当n个元素中取m(m≤n)个元素进行排列时,排列数为A(n,
m)=n!/(n-m)!。
2. 给出几个计算排列数的例题,并让学生进行计算练习。
四、应用问题(15分钟)
1. 给出一些排列的应用问题,让学生进行分组讨论和解答。
2. 拓展应用问题:如排列组合问题、求不同排列的种类等。
五、总结(5分钟)
让学生总结本节课的重点内容,强化对排列的概念和计算方法的理解。
六、作业布置(5分钟)
布置巩固练习题,鼓励学生进行思考和探究。
教学反思:
通过引入生活实例,激发学生的兴趣,同时在教学中注重引导学生进行思考和讨论,提高他们对排列概念的理解和应用能力。
同时,鼓励学生多做练习,加深对排列知识的掌握。
1-7排列组合
两个基本计数原理(1)一、课前自主学习:引入:(1)从甲地到乙地有3条公路、2条铁路,某人要从甲地到乙地,共有多少种不同的方法? (2)从甲地到乙地有3条道路,从乙地到丙地有2条道路,那么从甲地经乙地到丙地共有多少种不同的方法?1、分类计数原理:完成一件事有n 类方式,在第1类方式中有1m 种不同的方式,在第2类方式中有2m 种不同的方法…在第n 类方式中有n m 种不同的方法,那么完成这件事共有V = 种不同的方法2、分步计数原理:完成一件事需要分成n 个步骤:做第1步有1m 种不同的方法,做第2步有2m 种不同的方法…做第n 步有n m 种不同的方法,那么完成这件事共有V = 种不同的方法3、分类加法计数原理与分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,其区别在于:分类加法计数原理针对的是 问题,其中任何的一种方法都可以做完这件事。
分步乘法计数原理针对的是 问题,只有各个步骤都完成之后,才算做完这件事。
二、课堂合作探究例1、某班共有男生28名、女生20名,从该班选出学生代表参加校学代会(1)若学校分配给该班1名代表,有多少种不同的选法?(2)若学校分配给该班2名代表,且男、女生代表各1名,有多少种不同的选法?例2、为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码。
在某网站设置的信箱中,(1) 密码为4位,每位均为0~~9这10个数字中的1个数字,这样的密码共有多少个?(2) 密码为4位,每位是0~~9这10个数字中的1个数字,或是从A 到Z 这26个英文字母中的1个,这样的密码共有多少个?(3) 密码为4~~6位,每位均为0~~9这10个数字中的1个,这样的密码共有多少个?例3、用4种不同颜色给如图所示的地图上色,要求相邻两块涂不同的颜色,共有多少种不同的涂法?三、课堂讲练互动1、某人有4枚明朝不同年代的古币和6枚清朝不同年代的古币(1)若从中任意取出1枚,则有多少种不同的取法?(2)若从中任意取出明、清古币各1枚,则有多少种不同的取法?2、一个口袋里有5封信,另一个口袋里有4封信,每封信的内容不同(1)若从2个口袋里任意取出1封信,则有多少种不同的取法?(2)若从2个口袋里各自任意取出1封信,则有多少种不同的取法?3、若4名同学分配到3个课外活动小组中活动,则共有多少种不同的分配方案?4、若4名同学争夺3项竞赛冠军,则冠军获得者共有多少种不同情况?两个基本计数原理(1)1、 书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第3层放有6本不同的体育书,从书架上任取1本书,则有______________种不同的取法;若从第1,2,3层分别各取1本书,则有_______________种不同的取法.2、 若4名学生报名参加数学、计算机、化学兴趣小组,每人选报1项,则不同的报名方式有__________________种.3、 为了准备晚饭,小张找出了3种冷冻蔬菜、5种罐装蔬菜和4种不同的新鲜蔬菜,如果晚饭时小张只上一种蔬菜,那么共有___________________种不同的选.4、 某文艺团体有10人,每人至少会唱歌或跳舞中的一种,其中7人会唱歌,5人会跳舞,从中选出会唱歌与会跳舞的各1人,有__________________种不同的选法。
高中数学选择性必修三 6 2 1- 6 2 2排列与排列数导学案
6.2.1- 6.2.2 排列与排列数1.理解并掌握排列、排列数的概念,能用列举法、树状图法列出简单的排列.2.掌握排列数公式及其变式,并能运用排列数公式熟练地进行相关计算.3.掌握有限制条件的排列应用题的一些常用方法,并能运用排列的相关知识解一些简单的排列应用题.重点:理解排列的定义及排列数的计算难点:运用排列解决计算问题两个原理的联系与区别1.联系:分类加法计数原理和分步乘法计数原理都是解决计数问题最基本、最重要的方法.2.区别一、排列的相关概念1.排列:一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.相同排列:两个排列的元素完全相同,且元素的排列顺序也相同.名师点析理解排列应注意的问题(1)排列的定义中包括两个基本内容,一是“取出元素”,二是“按一定顺序排列”.(2)定义中的“一定顺序”说明了排列的本质:有序.二、排列数与排列数公式1.排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A n m表示.,这里m,n∈N*,并且m≤n.2.排列数公式:A n m=n(n-1)(n-2)…(n-m+1)=n!(n-m)!3.全排列和阶乘:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列.这时,排列数公式中m=n,即有A n n=n(n-1)(n-2)×…×3×2×1.也就是说,将n个不同的元素全部取出的排列数,等于正整数1到n的连乘积.正整数1到n的连乘积,叫做n的阶乘,用n!表示.于是,n个元素的全排列数公式可以写成A n n=n!.另外,我们规定,0!=1.1.下列问题中:①10本不同的书分给10名同学,每人一本;②10位同学互通一次电话;③10位同学互通一封信;④10个没有任何三点共线的点构成的线段.属于排列的有()A.1个B.2个C.3个D.4个一、问题探究问题1. 从甲、乙、丙三名同学中选出2人参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动.如果把上面问题中被取出的对象叫做元素,则问题可叙述为:从3个不同的元素中任意取出2个,并按一定的顺序排成一列,共有多少种不同的排列方法?问题2. 从1,2,3,4这4个数字中选出3个能构成多少个无重复数字的三位数?同样,问题2可以归结为:从4个不同的元素a,b,c,d 中任意取出3个,并按一定的顺序排成一列,共有多少种不同的排列方法?问题3. 你认为“排列”和“排列数”是同一个概念吗?它们有什么区别?二、典例解析例1. 某省中学足球队赛预选赛每组有6支队,每支队都要与同组的其他各队在主、客场 分别比赛1场,那么每组共进行多少场比赛?例2. (1)一张餐桌上有5盘不同的菜,甲、乙、丙3名同学每人从中各取1盘菜,共有多少种不同的取法?(2)学校食堂的一个窗口共卖5种菜,甲、乙、丙3名同学每人从中选一种,共有多少种不同的选法? 例3.计算:(1)A 73;(2)A 74;(3)A 77A 44;(4)A 64×A 22.例4.用0~9这10个数字,可以组成多少个没有重复数字的三位数?1.此类题目从不同的视角可以选择不同的方法,我们用各种方法解决这个题的目的是:希望通过对本题的感悟,能掌握更多的解决这类问题的方法.2.元素分析法最基本,位置分析法对重要元素区别对待,间接法对对立面比较容易求解的题目特别实用.跟踪训练 有语文、数学、英语、物理、化学、生物6门课程,从中选4门安排在上午的4节课中,其中化学不排在第四节,共有多少种不同的安排方法?1.从5本不同的书中选两本送给2名同学,每人一本,则不同的送书方法的种数为()A.5B.10C.20D.606=()2.设m∈N*,且m<15,则A20-mA.(20-m)(21-m)(22-m)(23-m)(24-m)(25-m)B.(20-m)(19-m)(18-m)(17-m)(16-m)C.(20-m)(19-m)(18-m)(17-m)(16-m)(15-m)D.(19-m)(18-m)(17-m)(16-m)(15-m)3.某次演出共有6位演员参加,规定甲只能排在第一个或最后一个出场,乙和丙必须排在相邻的顺序出场,不同的演出顺序共有()A.24种B.144种C.48种D.96种4.有8种不同的菜种,任选4种种在不同土质的4块地里,有种不同的种法.5.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?参考答案:知识梳理1.解析:由排列的定义可知①③是排列,②④不是排列.答案:B学习过程一、问题探究问题1. 分析:要完成的一件事是“选出2名同学参加活动,1名参加上午的活动,另1名参加下午的活动”,可以分两个步骤:第1步,确定上午的同学,从3人中任选1人,有3种选法;第2步,确定下午的同学,只能从剩下的2人中去选,有2种选法.根据分步乘法计数原理,不同的选法种数为3×2=6.问题2.分析:从4个数中每次取出三个按“百位、十位、个位” 的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数,可以分三个步骤解决:第1步,确定百位上的数字,从1、2、3、4这4个数中任取一个,有4种方法;第2步,确定十位上的数字,只能从余下的3个数字中取,有3种方法;第3步,确定个位上的数字,只能从余下的2个数字中取,有2种方法;根据分步乘法计数原理,从1、2、3、4这4个不同的数字中,每次取出3个数字,按百位、十位、个位的顺序排成一列,不同的排列方法为4×3×2=24因而共可得到24个不同的三位数,如图所示同样,问题2可以归结为:从4个不同的元素a,b,c,d中任意取出3个,并按一定的顺序排成一列,共有多少种不同的排列方法?abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cbd,dab,dac,dba,dbc,dca,dcb,不同的排列方法为4×3×2=24上述问题1,2的共同特点是什么?你能将它们推广到一般情形吗?问题3. “排列”与“排列数”是两个不同的概念,一个排列是指“从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列”,它不是一个数,而是具体的一件事.“排列数”是指“从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数”,它是一个数. 二、典例解析例1. 分析:每组任意2支队之间进行的1场比赛,可以看作是从该组6支队中选取2支,按“主队、客队”的顺序排成的一个排列.解:可以先从这6支队中选1支为主队,然后从剩下的5支队中选1支为客队. 按分步乘法计数原理,每组进行的比赛场数为 6×5=30.例2. 分析:3名同学每人从5盘不同的菜中取1盘菜,可看作是从这5盘菜中任取3盘,放在3个位置(给3名同学)的一个排列;而3名同学每人从食堂窗口的5种菜中选1种,每人都有5种选法,不能看成一个排列.解: (1)可以先从这5盘菜中取1盘给同学甲,然后从剩下的4盘菜中取1盘给同学乙,最后从剩下的3盘菜中取1盘给同学丙.按分步乘法计数原理,不同的取法种数为 5×4×3=60.(2)可以先让同学甲从5种菜中选1种,有5种选法;再让同学乙从5种菜中选1种,也有5种选法;最后让同学丙从5种菜中选1种,同样有5种选法. 按分步乘法计数原理,不同的取法种数为 5×5×5=125.问题3. “排列”与“排列数”是两个不同的概念,一个排列是指“从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列”,它不是一个数,而是具体的一件事.“排列数”是指“从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数”,它是一个数. 例3. 解:根据排列数公式,可得 (1)A 73 =7×6×5=210; (2)A 74 =7×6×5×4=840; (3)A 77A 44 =7!4!=7×6×5=210;(4)A 64×A 22=6×5×4×3×2×1=720.由例3可以看出,A 77A 44 =7!4!;A 64×A 22=6!=A 66,即A 64=A 66A 22 =6!2!;观察这两个结果,从中你发现它们的共性了吗?事实上,A n m =n (n −1)(n −2)…(n −m +1)=n (n −1)(n −2)…(n −m +1)(n −m )…×2×1(n −m )×…×2×1=A nm A n−m n−m =n!(n−m )!即A n m =n!(n−m )!例4.分析:在0~9这10个数字中,因为0不能在百位上,而其他9个数字可以在任意数位上,因此0是一个特殊的元素。
七年级数学上册 3.3.3 升幂排列与降幂排列导学案(新版)华东师大版
[五]达标训练
1、把多项式3x2y-4x2y+x3-5y3重新排列:
(1)按x的升幂排列;
(2)按x的降幂排列;
(3)按y的升幂排列;
(4)按y的降幂排列:
2、将下列多项式中的(1),(2)按字母x的降幂排列,(3),(4)按字母y的升幂排列:
(1)2xy+y2+x2;
(2)3x2y-5xy2+y3-2x3;
(3)2xy2-x2y+x3y3-7;
(4)xy3-5x2y2+4x4-3x3y-y4
3、在多项式-1+1
3
ab2-
4
3
ab3+6b中,字母b的指数最高的项
是,它的系数为,把这个多项式按字母b作降幂排列:,按字母b作升幂排列: .
4、把多项式ab3-a4+7a2b2+12b4-8a3b重新排列:7、将下列多项式按x的降幂排列,并补入各多项式的缺项:
-12-2x2-x4;
8、多项式x y x x y x y
34223
3
1
5
7
-+-+按字母x的升幂排列是
;
9、多项式的升幂排列是,按字母的降幂排列是;
10、将下列多项式按x的降幂排列,并补入各多项式的缺项:
-x-x5-3
11、将多项式重新排列:
(1)按a的降幂排列:
(2)按b的降幂排列:
12、把下列多项式先按x的降幂排列,再按x的升幂排列:
(1)13x-4x2-2y3-6;
(2)x2-y2-2xy;
(3)3x2y-3xy2+y3-x3;
(4)(4)ax4-cx+bx2:
[生活与探究]:
将多项式3(x-y)3-7(x-y) 4+8(x-y)-2(x-y) 2-1按“字母”(x-y)作降幂排列:。
6-2-1排列(教学课件)——高中数学人教A版(2019) 选择性必修第三册
场比赛中还将各出场1次.
(1) 从5名运动员中选3名参加比赛,前3场比赛有几种出场情况?
(2) 甲、乙、丙3名运动员参加比赛,写出所有可能的出场情况.
解:(1) 5×4×3=60 (种).
(2) 可分为三类:
① 打3场比赛:甲乙丙 甲丙乙 乙甲丙 乙丙甲 丙甲乙 丙乙甲;
哪里?
体现“排
列”问题
的互异性
例2 (1) 一张餐桌上有5盘不同的菜,甲、乙、丙3名同
学每人从中各取1盘菜,共有多少种不同的取法?
解:(1) 第一步:从这5盘菜中取1盘给同学甲,
第二步:从剩下的4盘菜中取1盘给同学乙,
第三步:从剩下的3盘菜中取1盘给同学丙.
按分步乘法计数原理,不同的取法种数为:5×4×3=60.
② 打4场比赛:甲乙丙甲 甲乙丙乙 甲丙乙甲 甲丙乙丙
乙甲丙乙 乙甲丙甲 乙丙甲乙 乙丙甲丙
丙甲乙丙 丙甲乙甲 丙乙甲丙 丙乙甲乙;
课本P17
3. 学校乒乓团体比赛采用5场3胜制 (5 场单打),每支球队派3名运动员参
赛,前3场比赛每名运动员各出场1次,其中第1,2位出场的运动员在后2
场比赛中还将各出场1次.
2
3
3 41 41 3 2 41 41 2 2 31 31 2
探究 上述问题1,问题2的共同特点是什么?你能将它们推广到一般
情形吗?
问题1:从甲、乙、丙3名同学中选 问题2:从1,2,3,4这4个数字
出2名参加一项活动,其中1名同学 中,每次取出3个排成一个三位数,
参加上午的活动,另1名同学参加 共可得到多少个不同的三位数?
问题1 从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加
3.1.2排列与排列数(第1课时) 导学案-【新教材】人教B版(2019)高中数学选择性必修二
3.1.2 排列与排列数(第1课时)导学案班级:姓名:小组:小组评价:教师评价:【预习目标】自主研读教材,理解并掌握排列的概念;理解并掌握排列数公式,能应用排列知识解决简单的实际应用问题.【使用说明】1. 按照导学案的提示自主研读教材,用红笔进行勾画,同时独立完成导学案;2. 独立完成导学案,找出自己的疑惑和需要讨论的问题准备课上讨论质疑。
【学习目标】1.理解并掌握排列的概念;2.理解并掌握排列数公式,能应用排列知识解决简单的实际应用问题。
【尝试与发现】试解答下列三个计数问题:(1)小张要在3所大学中选择2所,分别作为自己的第一志愿和第二志愿,小张共有多少种不同的选择方式?(2)在3名学生中选出2名,分别在某话剧表演中扮演A和B两个角色,共有多少种不同的选择方式?(3)学校要在3名教师中指派2人,分别去上海和浙江交流教学经验,共有多少种不同的指派方案?它们的答案是否一致?如果用A,B,C分别表示上述问题(1)中的三所大学,用(A,B)表示第一志愿是A,第二志愿是B,你能列出小张所有的选择方式吗?上述问题(2)(3)的结果是否也能用类似的方法表示?【抽象概括,形成概念】1.排列的概念(1)一般地,从n个不同对象中,任取m(m≤n)个对象,按照排成一列,称为从n个不同对象中取出m个对象的一个排列.(2)特别地,时的排列(即的排列)称为全排列.■名师点拨所谓排列,是指与顺序有关.2.排列数的定义及公式(1)排列数的定义从n个不同对象中取出m个对象的,称为从n个不同对象中取出m个对象的排列数,用符号A m n表示.例1 求从A,B,C这3个对象中取出3个对象的所有排列的个数,并写出所有的排列.(2)排列数公式①A m n=(n,m∈N,m≤n)=.②在A m n中,当m=n时,排列数公式为A n n==(读作“n的阶乘”).另外,我们规定0!=.A0n=.③性质:A m n+m A m-1=.n■名师点拨(1)符号A m n中,m,n∈N且m≤n.(2)A m n=n(n-1)(n-2)…(n-m+1)称为乘积式,常用于计算;A m n=n!称为阶乘式,常用于化简或证明.(n-m)!例2 求证:A m n +m A m -1n =A mn +1.【巩固练习】1. 写出所有由1,2,3,4这四个数字排成的没有重复数字的四位数.2. 计算:(1);34A (2);36A (3);115A(4);220A (5).A 21003.计算1~8的阶乘,并填入下表中: n 1 2 3 4 56 7 8 n!【体系构建】画出本课题的思维导图【学习评价】内容 评价标准星数 总数3.1.2 排列与排列数 (第1课时) 训练案1.下列是排列问题的是( )A .由1,2,3三个数字组成无重复数字的三位数B .从40人中选5人组成篮球队C .从100人中选2人抽样调查D .从1,2,3,4,5中选2个数组成集合2.A 39等于( )A .9×3B .93C .9×8×7D .9×8×7×6×5×4×33.a ∈N *,且a <27,则(27-a )(28-a )…(34-a )等于( )A .A 827-aB .A 27-a 34-aC .A 734-aD .A 834-a4.若x =n !3!,n ≥3,n ∈N *,则x 的值为( )A .A 3nB .A n -3nC .A n3D .A 3n -35.计算:(1);2858A 2-A (2);44342414A A A A +++ (3).A A 555106.写出下列问题的所有排列.(1)甲、乙、丙、丁四名同学站成一排;(2)从编号为1,2,3,4,5的五名同学中选出两名任正、副班长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2.1排列(第一课时)
掌握排列、排列数的概念,排列数的公式并能用这些知识解决一些简单的排列应用题。
重点:排列、排列数的概念,排列数的公式;
难点:排列的概念
使用说明: (1)预习教材P 14~ P 20,用红色笔画出疑惑之处,并尝试完成下列问题,总结规律方法;
(2)用严谨认真的态度完成导学案中要求的内容;
(3)不做标记的为C 级,标记★为B 级,标记★★为A 级。
预习案(20分钟)
一.新知链接
分类加法计数原理:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,
在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法.
那么完成这件事共有 种不同的方法.(也称加法原理)
分步乘法计数原理:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,
做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共
有 种不同的方法.(也称乘法原理)
二.新知导学
1.排列和排列数的概念是什么?
2.m
n A 的意思是什么?如何计算?如何推导? 探究案(30分钟)
三.新知探究
问题1.排列的定义(★)
一般地,从n 个 元素中取出m ( )个元素,按照一定的 排成一排,叫做从 个不同元素中取出 个元素的一个排列。
思考1:根据排列的定义,请写出从4个不同元素中任取2个元素的所有排列?
思考2:如何理解定义中的顺序?什么条件下是排列问题?
组长评价: 教师评价:
问题2.排列数及排列数公式
从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m
元素的排列数,用符号 表示。
其计算方法为:m n A =
(,,m n N m n *
∈≤)
思考1:排列和排列数是不是同一个概念?
思考2:请用排列数表示从4个不同元素中任取2个元素的所有排列结果?
思考3:排列数公式是如何推导的?利用的是哪个原理?
思考4:当n m =时即n 个不同元素全部取出的一个排列,称为 其排列数用公式表示为=n n A
四.新知应用
【知识点一】排列数的计算
例1:根据排列数公式,计算下列各式的值
⑴410A ; ⑵ 218A ; ⑶ 28382A A -.
(4) 66A
(5) 6688A A .
变式1:若17161554m n A =⨯⨯⨯⨯⨯,则n = ,m = .
变式2:求证: (1))!
(!m n n A m n -= (2)11--=m n m n nA A
【知识点二】排列模型的确定及解法
例2:有5本不同的书,分给3个同学,每人一本,有种不同的分法。
变式1:5人站成一排照相,共有种不同的站法。
★变式2:某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?
【知识点三】带限制条件的排列问题
★例3:(1)用1到9这9个数字,可以组成多少个没有重复数字的三位数?
(2)用0到9这10个数字,可以组成多少个没有重复数字的三位数?
(3)用0到9这10个数字,可以组成多少个没有重复数字而且能被5整除的三位数?
(通过解决本节导学案的内容和疑惑点,归纳一下自己本节的收获,和大家交流一下,写下自己的所得) ________________________________________________________________________________________________________________________________________________________
随堂评价
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好
B. 较好
C. 一般
D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 计算:4
4342414A A A A +++
2.乘积(55)(56)
(68)(69)n n n n ----用排列数符号表示 .
(,n N ∈)
3.有5列火车停在某车站并排的五条轨道上,若快车A 不能停在第三条轨道上,货车B 不能停在第一条轨道上,则五列火车的停车方法有( )种.
A .78
B .72
C .120
D .96
3.1排列 课后巩固(30分钟)
1、四支足球队争夺冠、亚军,不同的结果有( )
A 、8种
B 、10种
C 、12种
D 、16种
2、信号兵用3种不同颜色的旗子各一面,每次打出3面,最多能打出不同的信号有( )
A 、3种
B 、6种
C 、1种
D 、27种
3、5人站一排照相,甲不站排头的排法有( )
A 、24种
B 、72种
C 、96种
D 、120种
4、*N k ∈,且40≤k ,则)79()52)(51)(50(k k k k -••--- =( )
A 、k k A --5079
B 、2979k A -
C 、3079k A -
D 、3050k A -
5、若!3!n x =
,则=x ( ) A 、3n A B 、33-n A C 、n A 3 D 、33-n A
6、若352m m A A =,则m 的值为( )
A 、5
B 、3
C 、6
D 、7
7、由0,3,5,7这五个数组成无重复数字的三位数,其中是5的倍数的共有多少个( )
A 、9
B 、21
C 、24
D 、42
8、有10个车站,共需准备多少种票( )
A 、10
B 、20
C 、90
D 、45
9、从4种蔬菜品种中选出3种,分别种在不同土质的3块土地上,共有多少种不同的种法( )
A 、4
B 、12
C 、24
D 、42
10、6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是( )
A 、36种
B 、120种
C 、720种
D 、1440种
11、将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )
A 、6种
B 、9种
C 、11种
D 、23种
12、从-9,-5,0,1,2,3,7七个数中,每次选不同不重复的三个数作为直线方程
0=++c by ax 的系数,则倾斜角为钝角的直线方程有( )条
A 、14
B 、30
C 、70
D 、60
13、已知562=n A ,那么=n
14、由数字1,2,3,4可以组成 个无重复数字,且比13000大的整数
15、计算:610
6
9
59!932A A A -+
)!
()!1(11n m A m n m -⋅---
. .。