《大学物理》习题和答案

合集下载

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。

然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。

《大学物理》复习题及答案

《大学物理》复习题及答案

《大学物理》复习题及答案《大学物理》复习题及答案一:填空题1: 水平转台可绕通过中心的竖直轴匀速转动.角速度为?,台上放一质量为m的物体,它与平台之间的摩擦系数为?,m在距轴R处不滑动,则?满足的条件是??; 2: 质量为m的物体沿x轴正方向运动,在坐标x处的速度大小为kx,则此时物体所受力的大小为F?。

3: 质点在xoy平面内运动,任意时刻的位置矢量为r?3sin?ti?4cos?tj,其中?是正常数。

速度v?,速率v?,运动轨迹方程;物体从x?x1运动到x?x2所需的时间为4: 在合外力F?3?4x(式中F以牛顿,x以米计)的作用下,质量为6kg的物体沿x 轴运动。

如果t?0时物体的状态为,速度为x0?0,v0?0,那么物体运动了3米时,其加速度为。

25:一质点沿半径为米的圆周运动,其转动方程为??2?t。

质点在第1s 末的速度为,切向加速度为6: 一质量为m?2kg的质点在力F?4ti?(2?3t)j(N)作用下以速度v0?1j(m?s?1)运动,若此力作用在质点上的时间为2s,则此力在这2s内的冲量I?在第2s末的动量P? ;质点7:一小艇原以速度v0行驶,在某时刻关闭发动机,其加速度大小与速率v成正比,但方向相反,即a??kv,k为正常数,则小艇从关闭发动机到静止这段时间内,它所经过的路程?s?,在这段时间内其速率v与时间t的关系为v? 8:两个半径分别为R1和R2的导体球,带电量都为Q,相距很远,今用一细长导线将它们相连,则两球上的带电量Q1?则球心O处的电势UO?,Q2?9:有一内外半径分别为R及2R金属球壳,在距离球心O为R处放一电量为q的点电荷,2.在离球心O为3R处的电场强度大小为E?,电势U? 2210: 空间某一区域的电势分布为U?Ax?By,其中A,B为常数,则场强分布为Ex?为,Ey? ;电势11: 两点电荷等量同号相距为a,电量为q,两电荷连线中点o处场强为;将电量为?q0的点电荷连线中点移到无穷远处电场力做功为12: 在空间有三根同样的长直导线,相互间距相等,各通以同强度同方向的电流,设除了磁相互作用外,其他影响可忽略,则三根导线将13: 一半径为R的圆中通有电流I,则圆心处的磁感应强度为第1页。

(完整版)《大学物理》练习题及参考答案

(完整版)《大学物理》练习题及参考答案

《大学物理》练习题一. 单选题:1.下列说法正确的是……………………………………() 参看课本P32-36A . 惯性系中,真空中的光速与光源的运动状态无关,与光的频率有关B . 惯性系中,真空中的光速与光源的运动状态无关,与光的频率无关C . 惯性系中,真空中的光速与光源的运动状态有关,与光的频率无关D . 惯性系中,真空中的光速与光源的运动状态有关,与光的频率有关2.下列说法正确的是………………………………… ( ) 参看课本P32-36A . 伽利略变换与洛伦兹变换是等价的B . 所有惯性系对一切物理定律都是不等价的C . 在所有惯性系中,真空的光速具有相同的量值cD . 由相对论时空观知:时钟的快慢和量尺的长短都与物体的运动无关3.下列说法正确的是………………………………… ( )参看课本P58,76,103 A . 动量守恒定律的守恒条件是系统所受的合外力矩为零 B . 角动量守恒定律的守恒条件是系统所受的合外力为零 C . 机械能守恒定律的守恒条件是系统所受的合外力不做功 D . 以上说法都不正确4. 下列关于牛顿运动定律的说法正确的是…………( ) 参看课本P44-45A . 牛顿第一运动定律是描述物体间力的相互作用的规律B . 牛顿第二运动定律是描述力处于平衡时物体的运动规律C . 牛顿第三运动定律是描述物体力和运动的定量关系的规律D . 牛顿三条运动定律是一个整体,是描述宏观物体低速运动的客观规律5.下列关于保守力的说法错误的是…………………( ) 参看课本P71-72 A . 由重力对物体所做的功的特点可知,重力是一种保守力B . 由弹性力对物体所做的功的特点可知,弹性力也是一种保守力C . 由摩擦力对物体所做的功的特点可知,摩擦力也是一种保守力D . 由万有引力对物体所做的功的特点可知,万有引力也是一种保守力6.已知某质点的运动方程的分量式是,,式中R 、ω是常cos x R t ω=sin y R t ω=数.则此质点将做………………………………………………() 参看课本P19A . 匀速圆周运动B . 匀变速直线运动C . 匀速直线运动D . 条件不够,无法确定7.如图所示,三个质量相同、线度相同而形状不同的均质物体,它们对各自的几何对称轴的转动惯量最大的是………( )A . 薄圆筒B . 圆柱体 参看课本P95C . 正方体D . 一样大8.下列关于弹性碰撞的说法正确的是………………() 中学知识在课堂已复习A . 系统只有动量守恒B . 系统只有机械能守恒C . 系统的动量和机械能都守恒D . 系统的动量和机械能都不守恒9.某人张开双臂,手握哑铃,坐在转椅上,让转椅转动起来,若此后无外力矩作用.则当此人收回双臂时,人和转椅这一系统的…………………( ) 参看课本P104A . 转速不变,角动量变大B . 转速变大,角动量保持不变C . 转速和角动量都变大D . 转速和角动量都保持不变10.下列关于卡诺循环的说法正确的是………………( ) 参看课本P144 A . 卡诺循环是由两个平衡的等温过程和两个平衡的绝热过程组成的B . 卡诺循环是由两个平衡的等温过程和两个平衡的等体过程组成的C . 卡诺循环是由两个平衡的等体过程和两个平衡的等压过程组成的D . 卡诺循环是由两个平衡的绝热过程和两个平衡的等压过程组成的11. 如图所示,在场强为E 的匀强电场中,有一个半径为R 的半球面,若场强E 的方向与半球面的对称轴平行,则通过这个半球面的电通量大小为…………………( ) 参看课本P172-173A .B .2E 22R E πC . D . 02R E 12.一点电荷,放在球形高斯面的中心处,下列情况中通过高斯面的电通量会发生变化的…………………………( ) 参看课本P173 A . 将另一点电荷放在高斯面内 B . 将高斯面半径缩小C . 将另一点电荷放在高斯面外D . 将球心处的点电荷移开,但仍在高斯面内13.如图所示,在与均匀磁场垂直的平面内有一长为l 的铜棒B MN ,设棒绕M 点以匀角速度ω转动,转轴与平行,则棒的动B 生电动势大小为……………()参看课本P257A .B . Bl ω2BlωC .D . 12Bl ω212Blω14. 、方均v 、最概然速率为,则这气体分子的三种速率的关系是…………(p v ) A .B 参看课本P125v >p vC .D p v pv =15. 下列关于导体静电平衡的说法错误………………( ) 参看课本P190-191 A . 导体是等势体,其表面是等势面 B . 导体内部场强处处为零 C . 导体表面的场强处处与表面垂直 D . 导体内部处处存在净电荷16. 下列哪种现代厨房电器是利用涡流原理工作的…( ) 参看课本P259A . 微波炉B . 电饭锅17. 下列关于电源电动势的说法正确的是……………() 参看课本P249-250A . 电源电动势等于电源把电荷从正极经内电路移到负极时所作的功B . 电源电动势的大小只取于电源本身的性质,而与外电路无关C . 电动势的指向习惯为自正极经内电路到负极的指向D . 沿着电动势的指向,电源将提高电荷的电势能18. 磁介质有三种,下列用相对磁导率正确表征它们各自特性的是………( r μ)A . 顺磁质,抗磁质,铁磁质 参看课本P39-2400r μ<0r μ<1r μ?B . 顺磁质,抗磁质,铁磁质1r μ>1r μ=1r μ?C . 顺磁质,抗磁质,铁磁质0r μ>0r μ>0r μ> D . 顺磁质,抗磁质,铁磁质1r μ>1r μ<1r μ?19. 在均匀磁场中,一带电粒子在洛伦兹力作用下做匀速率圆周运动,如果磁场的磁感应强度减小,则………………………………………………( ) 参看课本P231 A . 粒子的运动速率减小 B . 粒子的轨道半径减小 C . 粒子的运动频率不变 D . 粒子的运动周期增大20. 两根无限长的载流直导线互相平行,通有大小相等,方向相反的I 1和I 2,在两导线的正中间放一个通有电流I 的矩形线圈abcd ,如图所示. 则线圈受到的合力为…………( ) 参看课本P221-223A . 水平向左B . 水平向右C . 零D . 无法判断21. 下列说法错误的是……………………………………( ) 参看课本P263A . 通过螺线管的电流越大,螺线管的自感系数也越大B . 螺线管的半径越大,螺线管的自感系数也越大C . 螺线管中单位长度的匝数越多,螺线管的自感系数也越大D . 螺线管中充有铁磁质时的自感系数大于真空时的自感系数22. 一电偶极子放在匀强电场中,当电矩的方向与场强的方向不一致时,则它所受的合力F 和合力矩M 分别为…………………………………( ) 参看课本P168-169A . F =0 ,M =0B . F ≠0 ,M ≠0C . F =0 ,M ≠0D . F ≠0 ,M =023. 若一平面载流线圈在磁场中既不受磁力,也不受磁力矩作用,这说明……( )A . 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行 参看课本P223-224B . 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行C . 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直D . 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直24. 下列关于机械振动和机械波的说法正确的是………( ) 参看课本P306A . 质点做机械振动,一定产生机械波B .波是指波源质点在介质的传播过程C . 波的传播速度也就是波源的振动速度D . 波在介质中的传播频率与波源的振动频率相同,而与介质无关25. 在以下矢量场中,属保守力场的是…………………( ) A . 静电场 B . 涡旋电场 参看课本P180,212,258C . 稳恒磁场D . 变化磁场26. 如图所示,一根长为2a 的细金属杆AB 与载流长直导线共面,导线中通过的电流为I ,金属杆A 端距导线距离为a .金属杆AB 以速度v 向上匀速运动时,杆内产生的动生电动势为……( ) 参看课本P261 (8-8)A . ,方向由B →A B .,方向由A →B2ln 20πμεIv i =2ln 20πμεIv i =C . ,方向由B →A D . ,方向由A →B0ln 32i Iv μεπ=3ln 20πμεIv i =27.在驻波中,两个相邻波节间各质点的振动………( ) 参看课本P325A . 振幅相同,相位相同B . 振幅不同,相位相同C . 振幅相同,相位不同D . 振幅不同,相位不同28.两个质点做简谐振动,曲线如图所示,则有( )A . A 振动的相位超前B 振动π/2 参看课本P291B . A 振动的相位落后B 振动π/2C . A 振动的相位超前B 振动πD . A 振动的相位与B 振动同相29.同一点光源发出的两列光波产生相干的必要条件是…() 参看课本P336A . 两光源的频率相同,振动方向相同,相位差恒定B . 两光源的频率相同,振幅相同,相位差恒定C . 两光源发出的光波传播方向相同,振动方向相同,振幅相同D .两光源发出的光波传播方向相同,频率相同,相位差恒定30.如图所示,在一圆形电流I 所在的平面内选取一个同心圆形闭合环路L ,则由安培环路定理可知……………………………………………( ) 参看课本P235A . ,且环路上任一点B =0d 0L B l ⋅=⎰B . ,但环路上任一点B ≠0d 0L B l ⋅=⎰ C . ,且环路上任一点B ≠0d 0 L B l ⋅≠⎰D . ,且环路上任一点B =常量d 0 LB l ⋅≠⎰二. 填空题:31. 平行板电容器充电后与电源断开,然后充满相对电容率为εr 的各向均匀电介质. 则其电容C 将______,两极板间的电势差U 将________. (填减小、增大或不变) 参看课本P195,20032. 某质点沿x 轴运动,其运动方程为: x =10t –5t 2,式中x 、t 分别以m 、s 为单位. 质点任意时刻的速度v =________,加速度a =________. 参看课本P16-1733. 某人相对地面的电容为60pF ,如果他所带电荷为,则他相对地面的电C 100.68-⨯势差为__________,他具有的电势能为_____________. 参看课本P200,20234. 一人从10 m 深的井中提水,起始时,桶中装有10 kg 的水,桶的质量为1 kg ,由于水桶漏水,每升高1m 要漏去0.1 kg 的水,则水桶匀速地从井中提到井口,人所作的功为____________.参看课本P70 (2-14)35.质量为m 、半径为R 、自转运动周期为T 的月球,若月球是密度均匀分布的实球体,则其绕自转轴的转动惯量是__________,做自转运动的转动动能是__________.参看课本P100 (3-4)36. 1mol 氢气,在温度为127℃时,氢气分子的总平均动能是_____________,总转动动能是______________,内能是_____________. 〔已知摩尔气体常量R = 8.31 J/(mol ·K ) 参看课本 P120 (4-8)37. 如图所示,两个平行的无限大均匀带电平面,其面电荷密度分别为+σ和-σ. 则区域Ⅱ的场强大小E Ⅱ=___________ . 参看课本P17738. 用一定波长的单色光进行双缝干涉实验时,要使屏上的干涉条纹间距变宽,可采用的方法是: (1) _________________________;(2) ________________________. 参看课本P34439. 通过磁场中任意闭合曲面的磁通量等于_________. 感生电场是由______________产生的,它的电场线是__________曲线. (填闭合或不闭合) 参看课本P212,25840. 子弹在枪膛中前进时受到的合力与时间关系为,子弹飞出枪口5400410N F t =-⨯的速度为200m /s ,则子弹受到的冲量为_____________. 参看课本P55-5641. 将电荷量为2.0×10-8C 的点电荷,从电场中A 点移到B 点,电场力做功6.0×10-6J . 则A 、B 两点的电势差U AB =____________ . 参看课本P18142. 如图所示,图中O 点的磁感应强度大小B =______________.参看课本P229-23043. 一个螺线管的自感L =10 mH ,通过线圈的电流I =2A ,则它所储存的磁能W =_____________. 参看课本P26744. 理想气体在某热力学过程中内能增加了ΔE =250J ,而气体对外界做功A =50J ,则气体吸收的热量Q = . 参看课本P132-13345. 一平面简谐波沿x 轴的正方向传播,波速为100 m/s ,t =0时的曲线如图所示,则简谐波的波长λ =____________,频率ν =_____________. 参看课本P30946. 两个同心的球面,半径分别为R 1、R 2(R 1R 2),分别<带有总电量为Q 1、Q 2. 设电荷均匀分布在球面上,则两球面间的电势差U 12= ________________________.参看课本P186-187三. 计算题:47. 一正方形线圈由外皮绝缘的细导线绕成,共绕有100匝,每边长为10 cm ,放在B = 5.0T 的磁场中,当导线中通有I =10.0A 的电流时,求: (1) 线圈磁矩m 的大小;(2) 作用在线圈上的磁力矩M 的最大值. 参看课本P225 (7-7)48.如图所示,已知子弹质量为m ,木块质量为M ,弹簧的劲度系数为k,子弹以初速v o射入木块后,弹簧被压缩了L.设木块与平面间的滑动摩擦因数为μ,不计空气阻力.求初速v o.参看课本P80 (2-23)49. 一卡诺热机的效率为40%,其工作的低温热源温度为27℃.若要将其效率提高到50%,求高温热源的温度应提高多少?参看课本P148 (5-14)50. 质量均匀的链条总长为l,放在光滑的桌面上,一端沿桌面边缘下垂,其长度为a,如图所示.设开始时链条静止,求链条刚刚离开桌边时的速度.参看课本P70 (2-18)51.一平面简谐波在t =0时刻的波形如图所示,设波的频率ν=5 Hz,且此时图中P点的运动方向向下,求:(1) 此波的波函数;(2) P点的振动方程和位置坐标.参看课本P318 (10-11)52.如图所示,A和B两飞轮的轴杆可由摩擦啮合器使之连接,A轮的转动惯量J A=10 kg·m2.开始时,B轮静止,A轮以n A= 600 r/min的转速转动.然后使A和B连接,连接后两轮的转速n = 200 r/min.求: (1) B轮的转动惯量J B ;(2) 在啮合过程中损失的机械能ΔE.参看课本P105 (3-9及补充)53.如图所示,载流I的导线处于磁感应强度为B的均匀磁场中,导线上的一段是半径为R、垂直于磁场的半圆,求这段半圆导线所受安培力.参看课本P224-22554.如图所示的截面为矩形的环形均匀密绕的螺绕环,环的内外半径分别a和b,厚度为h,共有N匝,环中通有电流为I .求: (1) 环内外的磁感应强度B;(2) 环的自感L.参看课本P237-238 (7-23及补充)55.如图所示,一长直导线通有电流I,在与其相距d处放在有一矩形线框,线框长为l ,宽为a ,共有N 匝. 当线框以速度v 沿垂直于长导线的方向向右运动时,线框中的动生电动势是多少? 参看课本P255 (8-3)二. 填空题:31. 增大 减小32.33. 1000V 0.03 J1010m/s t -210m/s t -34. 1029 (或1050) J 35. 36. 4986J 3324J 8310 J 225mR 22245mR T π37. 38. (1) 将两缝的距离变小 (2) 将双缝到光屏的距离变大σε39. 零 变化的磁场 闭合 40.41.300V42.0.2N s ⋅0112I R μπ⎛⎫- ⎪⎝⎭43. 0.02 J44. 300 J45. 0.8 m 125 Hz46.1012114Q R R πε⎛⎫- ⎪⎝⎭三. 计算题:47. 线圈磁矩22100100.110A m m NIS ==⨯⨯=⋅线圈最大磁力矩max 10550N mM mB ==⨯=⋅48. 设子弹质量为m ,木块质量为M ,子弹与木块的共同速度v由动量守恒定律得①0()mv m M v =+由功能原理得 ②2211()()22m M gL kL m M v μ-+=-+由①、②式得 0v =49. 卡诺热机效率: 211T T η=-21300500K 110.4T T η⇒===--同理 21300600K 110.5T T η'==='--高温热源应提高的温度 11600500100KT T '-=-=n50. 设桌面为零势面,由机械能守恒定律得21222a a l mg mg mv l -=-+v ⇒=51. 解:(1) 由图中v P <0知此波沿x 轴负向传播,继而知原点此时向y 正向运动原点处0002A y v =->,023ϕπ⇒=-又x = 3m 处3300y v =>,32πϕ⇒=-由 得2x ϕπλ∆∆=2x λπϕ∆=∆30236m 223πππ-=⨯=⎛⎫--- ⎪⎝⎭此波的波函数 02cos 2x y A t ππνϕλ⎛⎫=++ ⎪⎝⎭20.10cos 10m 183t x πππ⎛⎫=+- ⎪⎝⎭(2) P 点处 P P 00y v =,<P 2πϕ⇒=P 点振动方程P P cos(2)y A t πνϕ=+0.10cos 10m 2t ππ⎛⎫=+ ⎪⎝⎭P 点位置坐标 p 363321m22x λ=+=+=52. (1) 由动量矩守恒定律得A A AB ()J J J ωω=+A A AB 2()2J n J J n ππ=+B 60020010(10)6060J ⨯=+⨯2B 20kg m J ⇒=⋅(2) 损失的机械能2222A A A B A A A B 222241111()(2)()(2)222216001200104(1020)4 1.31510J 260260E J J J J n J J n ωωππππ∆=-+=-+⎛⎫⎛⎫=⨯⨯-+⨯=⨯ ⎪ ⎪⎝⎭⎝⎭53. 依题意得 d 0x x F F =∑=d d sin d sin sin d y F F BI l BIR θθθθ===0sin d 2y F F BIR BIRπθθ===⎰54. (1)0d 2B r B r Iπμ⋅=⋅=∑⎰ 环外的磁感应强度 0B =环内的磁感应强度 02B r NIπμ⋅=02NI B rμπ=(2) 0d d d 2NIhBh r r rμΦπ==001d d ln 22b a NIh NIh br r aμμΦΦππ===⎰⎰环的自感 20ln 2N h N b L I I aμψΦπ===55. 线框的动生电动势1212()N B B lvεεε=-=-001122()NIlv NIlav d d a d d a μμππ⎛⎫=-= ⎪++⎝⎭。

《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。

(B) 匀速率圆周运动。

(C) 行星的椭圆轨道运动。

(D) 抛体运动。

(E) 圆锥摆运动。

2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。

3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。

(完整版)大学物理学上下册习题与答案

(完整版)大学物理学上下册习题与答案

习题九一、选择题9.1 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[A(本章中不涉及导体)、 D ] 9.2有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03 q . (B) 04 q (C) 03 q . (D) 06 q [D ]q题图9.19.3面积为S 的空气平行板电容器,极板上分别带电量q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02(B)S q 022 (C) 2022S q (D) 202Sq [B ]9.4 如题图9.2所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷q ,M 点有负电荷q .今将一试验电荷0q 从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 , 且为有限常量.(C) A =∞. (D) A =0. [D ,0O V ]-题图9.29.5静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)[C ]9.6已知某电场的电场线分布情况如题图9.3所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度M N E E . (B) 电势M N U U .(C) 电势能M N W W . (D) 电场力的功A >0.[C ] 二、计算题9.7 电荷为q 和2q 的两个点电荷分别置于1x m 和1x m 处.一试验电荷置于x 轴上何处,它受到的合力等于零? x2q q 0解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x 即:22221(2)0121011x x x x22212210x x x x2610(322)x x x m 。

《新编大学物理》(上、下册)教材习题答案

《新编大学物理》(上、下册)教材习题答案
题:
答案:[A]
提示: ,
题:
答案:[C]
提示:由时间的相对性, ,长度为
题 :
答案:[D]
提示: 得
题:
答案:[D]
提示: , ,故
题:
答案:[A]
提示: ; ; ;故
二、填空题
题:
答案:
提示:设痕迹之间距离为 ,由公式 ( 为静长度)。则车上观察者测得长度为
题:
答案:(1) ,(2)
提示:(1)相对论质量和相对论动量: ,
简谐振动的表达式为:x= (πt –π/3).
(2)当t=T/4时物体的位置为;x= (π/2–π/3) = π/6 = (m).
速度为;v= -πAsin(π/2–π/3) = πsinπ/6 = (m·s-1).
加速度为:a= dv/dt= -ω2Acos(ωt + φ)= -π2Acos(πt -π/3)= π2cosπ/6 = (m·s-2).
[解答]物体的总能量为:E = Ek+ Ep= (J).
(1)根据能量公式E = kA2/2,得振幅为: = (m).
(2)当动能等于势能时,即Ek= Ep,由于E = Ek+ Ep,可得:E =2Ep,
即 ,解得: = ±(m).
(3)再根据能量公式E = mvm2/2,得物体经过平衡位置的速度为:
(2)速度的最大值为:vm= ωA= π = (m·s-1); 题解答图
加速度的最大值为:am= ω2A= π2= (m·s-2).
(3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A= (N);
振动能量为:E = kA2/2 =mω2A2/2 = ×10-2(J),

大学物理习题及答案

大学物理习题及答案

P R o
第 3 页 共 59 页
动的角速度 与时间 t 的函数关系为 =kt2(k 为常量)。已知 t=2s 时,质点 P 的速度值为 32m/s。试求 t=1s 时,质点 P 的速度与加速度的大小。
23.在半径为 R 的圆周上运动的质点,其速率与时间关系为 v=ct2(c 为常数),则从 t=0 到 t 时刻质点走过的路程 S(t)=
4.5 4
t(s)
7.有一质点沿 x 轴作直线运动,t 时刻的坐标为 x 4.5t2 2t3 (SI)。试求:
(1)第 2 秒内的平均速度;(2)第 2 秒末的瞬时速度;(3)第 2 秒内的路程。
8.一质点沿直线运动,其坐标 x 与时间 t 有如下关系: x Aet cost (SI)(A、 皆为常数)。(1)任意时刻 t 质点的加速度 a=
(2)导出速度 v 与加速度 a 的矢量表示式;
(3)试证加速度指向圆心。
20 . 一 质 点 从 静 止 出 发 , 沿 半 径 R=3m 的 圆 周 运 动 , 切 向 加 速 度
at =3m/ s 2 ,当总加速度与半径成 450 角时,所经过的时间 t=
时间内经过的路程 S 为

,在上述
y
r (x,y)
12.一物体悬挂在弹簧上 作竖直运动,其加速度 a= -ky ,式中 k 为常量,y 是以平衡位置为原点所测得的坐标,假定振动的物体在坐标 y0 处的速度为 v0 , 试求速度 v 与坐标 y 的函数关系式。 13.质点作曲线运动, r 表示位置矢量,S 表示路程,at 表示 切向加速度,下列表达式中, (1) dv / dt a (2) dr / dt v (3) dS / dt v (4)| dv / dt | at

大学物理答案

大学物理答案

《大学物理》练习题 No .1 电场强度班级 ___________ 学号 ___________ 姓名 ___________ 成绩 ________ 说明:字母为黑体者表示矢量 选择题1.关于电场强度定义式E = F/q0,下列说法中哪个是正确的? [ B ] (A) 场强E 的大小与试探电荷q0的大小成反比; (B) 对场中某点,试探电荷受力F 与q0的比值不因q0而变; (C) 试探电荷受力F 的方向就是场强E 的方向;(D) 若场中某点不放试探电荷q0,则F = 0,从而E = 0.2.如图1.1所示,在坐标(a, 0)处放置一点电荷+q ,在坐标(-a,0)处放置另一点电荷-q ,P 点是x 轴上的一点,坐标为(x, 0).当x >>a 时,该点场强的大小为:[ D ](A) x q 04πε. (B)204x qπε.(C)302x qa πε (D)30x qaπε.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷 q2 的作用力为f12 ,当放入第三个电荷Q 后,以下说法正确的是[ C ] (A) f12的大小不变,但方向改变, q1所受的总电场力不变; (B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化; f12的大小、方向均发生改变, q1受的总电场力也发生了变化. 填空题1.如图1.4所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2,则场强等于零的点与直线1的距离211λλλ+d.2.如图1.5所示,带电量均为+q 的两个点电荷,分别位于x 轴上的+a 和-a 位置.则y 轴上各点场强表达式为E=23220)(21a y qy+πε ,场强最大值的位置在y=a22±.3. 两块“无限大”的带电平行电板,其电荷面密度分别为σ (0>σ)及σ2-,如图1.6所示,试写出各区域的电场强度E。

《新编大学物理》(上、下册)教材习题答案

《新编大学物理》(上、下册)教材习题答案

第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v ,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t =⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200tdvv v dt t dt =+=⎰,11/t v m s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v tg t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴=又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴(2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dva kv dt ==- 00v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+ 1()F M m ga M M+==题2.4 :答案:[D] 提示:a a A22A B AB m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45Aa g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=-由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k ga== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。

《大学物理A1》试练习题及答案

《大学物理A1》试练习题及答案

《大学物理A1》试练习题及答案力学部分一、选择题1.某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 DA.匀加速直线运动,加速度沿x 轴正方向.B.匀加速直线运动,加速度沿x 轴负方向.C.变加速直线运动,加速度沿x 轴正方向.D.变加速直线运动,加速度沿x 轴负方向.2.某一滑雪装置,其在水平面上的运动学方程为x =3t 2-5(SI),则该质点作(a=6)AA.匀加速直线运动,加速度沿x 轴正方向.B.匀加速直线运动,加速度沿x 轴负方向.C.匀速直线运动,加速度沿x 轴正方向.D.匀速直线运动,加速度沿x 轴负方向.3.一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 B A.5m . B.2m .C.0.D.-2 m . 4.一质点在平面上由静止开始运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作 BA.匀速直线运动.B. 变速直线运动.C. 抛物线运动.D.一般曲线运动.5.一质点在x 轴上运动,其坐标与时间的变化关系为x =4t-2t 2,式中x 、t 分别以m 、s 为单位,则4秒末质点的速度和加速度为 ( B )A.12m/s 、4m/s 2;B.-12 m/s 、-4 m/s 2 ;C.20 m/s 、4 m/s 2 ;D.-20 m/s 、-4 m/s 2;6.一质点在y 轴上运动,其坐标与时间的变化关系为x =4t 2-2t ,式中x 、t 分别以m 、s 为单位,则2秒末质点的速度和加速度为 ( B )A.14m/s 、-8m/s 2;B.-14 m/s 、-4 m/s 2 ;C.14 m/s 、8m/s 2 ;D.-14 m/s 、-8 m/s 2;7.下列哪一种说法是正确的 C -12A.运动物体加速度越大,速度越快B.作直线运动的物体,加速度越来越小,速度也越来越小C.切向加速度为正值时,质点运动加快D.法向加速度越大,质点运动的法向速度变化越快8.下列哪一个实例中物体和地球构成的系统的机械能不守恒? CA.物体作圆锥摆运动.B.抛出的铁饼作斜抛运动(不计空气阻力).C.物体在拉力作用下沿光滑斜面匀速上升.D.物体在光滑斜面上自由滑下. 9.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f BA.恒为零.B.不为零,但保持不变.C.随F 成正比地增大.D.开始随F 增大,达到某一最大值后,就保持不变10.谐振动过程中,动能和势能相等的位置的位移等于 A.4A ± B. 2A ± C. 23A ± D. 22A ± 11.质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为 AA.9 N·s . B .-9 N·s .C.10 N·s .D.-10 N·s .12.一质点作匀速率圆周运动时 CA.它的动量不变,对圆心的角动量也不变。

《大学物理》电磁感应练习题及答案解析

《大学物理》电磁感应练习题及答案解析

《大学物理》电磁感应练习题及答案解析一、选择题1. 圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上,当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时.( D )(A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动。

(B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动。

(C) 铜盘上没有感应电流产生,铜盘中心处电势最高。

(D) 铜盘上没有感应电流产生,铜盘边缘处电势最高。

2.在尺寸相同的铁环和铜环所包围的面积中穿过相同变化率的磁通量,则两环中( C )A.感应电动势相同,感应电流相同;B.感应电动势不同,感应电流不同;C.感应电动势相同,感应电流不同;D.感应电动势不同,感应电流相同。

3.两根无限长的平行直导线有相等的电流但电流的流向相反如右图,而电流的变化率均大于零,有一矩形线圈与两导线共面,则( B )A.线圈中无感应电流;B.线圈中感应电流为逆时针方向;C.线圈中感应电流为顺时针方向;D.线圈中感应电流不确定。

4.如图所示,在长直载流导线下方有导体细棒,棒与直导线垂直且共面。

(a)、(b)、(c)处有三个光滑细金属框。

今使以速度向右滑动。

设(a)、(b)、(c)、(d)四种情况下在细棒中的感应电动势分别为ℇa、ℇb、ℇc、ℇd,则( C )A.ℇa =ℇb =ℇc <ℇd B.ℇa =ℇb =ℇc >ℇdC.ℇa =ℇb =ℇc =ℇd D.ℇa >ℇb <ℇc <ℇd5.一矩形线圈,它的一半置于稳定均匀磁 场中,另一半位于磁场外,如右图所示, 磁感应强度B的方向与纸面垂直向里。

欲使线圈中感应电流为顺时针方向则(A ) A .线圈应沿x 轴正向平动; B .线圈应沿y 轴正向平动;C .线圈应沿x 轴负向平动D .线圈应沿y 轴负向平动6.在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示,B 的大小以速率dtdB变化,在磁场中有A 、B 两点,其间可以放置一直导线和一弯曲的导线,则有下列哪种情[ D ] (A) 电动势只在直导线中产生(B) 电动势只在弯曲的导线产生 (C) 电动势在直导线和弯曲的导线中都产生, 且两者大小相等(D)直导线中的电动势小于弯曲导线中的电动势 知识点:电动势 类型:A7、关于感生电场和静电场下列哪一种说法正确.( B )(A) 感生电场是由变化电场产生的.(B) 感生电场是由变化磁场产生的,它是非保守场. (C) 感生电场是由静电场产生的(D) 感生电场是由静电场和变化磁场共同产生的1D 2C 3B 4C 5A6D7B二、填空题1.如图所示,AB 、CD 、为两均匀金属棒,长均为0.2m ,放在磁感应强度 B=2T 的均匀磁场中,磁场的方向垂直于屏面向里,AB 和CD 可以在导轨上自由滑动,当 CD 和AB 在导轨上分别以s m v /41=、s m v /22=速率向右作匀速运动时,在CD 尚未追上AB 的时间段内ABDCA 闭合回路上动生电动势的大小______________ 方向 _____________________.1电动势的大小 0.8V 方向 顺时针方向2.一匝数的线圈,通过每匝线圈的磁通量,则任意时刻线圈感应电动势的大小 ______________ . 感应电动势的大小 t ππ10cos 1057⨯ 3.感生电场产生的原因_ 变化的磁场产生感生电场4.动生电动势的产生的原因是:___电荷在磁场中运动受到洛伦兹力___ 5 。

大学物理练习题及答案

大学物理练习题及答案

∙ -q OABCD关于点电荷以下说法正确的是 D(A) 点电荷是电量极小的电荷; (B) 点电荷是体积极小的电荷;(C) 点电荷是体积和电量都极小的电荷;(D) 带电体的线度与其它有关长度相比可忽略不计。

关于点电荷电场强度的计算公式E = q r / (4 π ε 0 r 3),以下说法正确的是 B(A) r →0时, E →∞;(B) r →0时, q 不能作为点电荷,公式不适用; (C) r →0时, q 仍是点电荷,但公式无意义;(D) r →0时, q 已成为球形电荷, 应用球对称电荷分布来计算电场. 如果对某一闭合曲面的电通量为S E d ⋅⎰S=0,以下说法正确的是 A(A) S 面内电荷的代数和为零; (B) S 面内的电荷必定为零; (C) 空间电荷的代数和为零; (D) S 面上的E 必定为零。

已知一高斯面所包围的空间内电荷代数和 ∑q =0 ,则可肯定: C(A). 高斯面上各点场强均为零. (B). 穿过高斯面上每一面元的电场强度通量均为零.(C). 穿过整个高斯面的电场强度通量为零. (D). 以上说法都不对.如图,在点电荷+q 的电场中,若取图中P 点处为 电势零点,则M 点的电势为 D(A) q /(4πε0a ) (B) −q /(4πε0a ) (C) q /(8πε0a ) (D) −q /(8πε0a )对于某一回路l ,积分l B d ⋅⎰l 等于零,则可以断定 D(A) 回路l 内一定有电流; (B) 回路l 内一定无电流;(C) 回路l 内可能有电流; (D) 回路l 内可能有电流,但代数和为零。

如图,一电量为-q 的点电荷位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 A(A) 从A 到各点,电场力做功相等; (B) 从A 到B ,电场力做功最大; (C) 从A 到D ,电场力做功最大;+q(D) 从A 到C ,电场力做功最大。

大学物理练习题及参考答案

大学物理练习题及参考答案

一、填空题 1、一质点沿y 轴作直线运动,速度j t v)43(+=,t =0时,00=y ,采用SI 单位制,则质点的运动方程为=ymt t 223+;加速度y a = 4m/s 2 。

2、一质点沿半径为R 的圆周运动,其运动方程为22t +=θ。

质点的速度大小为 2t R ,切向加速度大小为 2R 。

3、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 400N 。

4、在一带电量为Q 的导体空腔内部,有一带电量为-q 的带电导体,那么导体空腔的内表面所带电量为 +q ,导体空腔外表面所带电量为 Q -q 。

5、一质量为10kg 的物体,在t=0时,物体静止于原点,在作用力i x F)43(+=作用下,无摩擦地运动,则物体运动到3米处,在这段路程中力F所做的功为5J13mV 21W 2.=∆=。

6、带等量异号电荷的两个无限大平板之间的电场为0εσ,板外电场为 0 。

8、一长载流导线弯成如右图所示形状,则O 点处磁感应强度B的大小为RIR I 83400μπμ+,方向为⊗。

9、在均匀磁场B 中, 一个半径为R 的圆线圈,其匝数为N,通有电流I ,则其磁矩的大小为NIR m 2π=,它在磁场中受到的磁力矩的最大值为NIBR M 2π=。

10、一电子以v垂直射入磁感应强度B 的磁场中,则作用在该电子上的磁场力的大小为F = Bqv F 0=。

电子作圆周运动,回旋半径为qBmvR =。

11、判断填空题11图中,处于匀强磁场中载流导体所受的电磁力的方向;(a ) 向下 ;(b ) 向左 ;(c ) 向右 。

12、已知质点的运动学方程为j t i t r)1(2-+=。

试求:(1)当该质点速度的大小为15-⋅s m 时,位置矢量=r i 1;(2)任意时刻切向加速度的大小τa =1442+t t 。

16、有一球状导体A ,已知其带电量为Q 。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。

(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。

解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理课后习题答案

大学物理课后习题答案

大学物理课后习题答案(共15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1—1 一质点在xOy 平面上运动,运动方程为2135,342x t y t t t s x y m =+=+-式中以计,,以计。

(1)以时间t 为变量,写出质点位置矢量的表示式; (2)计算第1秒内质点的位移;(3)计算0t = s 时刻到4t = s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算4t = s 时质点的速度; (5)计算0t = s 到4t = s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算4t = s 是质点的加速度。

(位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移 j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i j i +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度 )s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i tr V ∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1—2 质点沿直线运动,速度32132()v t t m s -=++,如果当时t=2 s 时,x=4 m,求:t=3 s 时质点的位置、速度和加速度。

解:23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x tt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m xP .31 1—9 一个半径R= m 的圆盘,可依绕一个水平轴自由转动,一根轻绳子饶在盘子的边缘,其自由端拴一物体。

大学物理学课后习题参考答案

大学物理学课后习题参考答案

习题1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr (B)dtr d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A)t R t R ππ2,2 (B) tRπ2,0(C) 0,0 (D)0,2tRπ [答案:B]填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。

[答案: 23m ·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。

如人相对于岸静止,则1V 、2V 和3V的关系是 。

[答案: 0321=++V V V]一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状;(2) 物体的内部结构;(3) 所研究问题的性质。

解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。

下面几个质点运动学方程,哪个是匀变速直线运动(1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。

给出这个匀变速直线运动在t=3s时的速度和加速度,并说明该时刻运动是加速的还是减速的。

大学《大学物理(上)》各章节测试题与答案

大学《大学物理(上)》各章节测试题与答案

《大学物理(上)》的答案第1章问题:以下是近代物理学的理论基础的是()。

答案:量子力学问题:谁建立了电磁场理论,将电学、磁学、光学统一起来?()答案:麦克斯韦问题:谁在伽利略、开普勒等人工作的基础上,建立了完整的经典力学理论?()答案:牛顿问题:物理学是探讨物质结构,运动基本规律和相互作用的科学。

()答案:正确问题:20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学也适用于微观粒子和高速运动物体。

()答案:错误第2章问题:爱因斯坦因提出什么理论而获得诺贝尔物理奖?()答案:光量子假说问题:玻尔因做出什么重大贡献而获得诺贝尔物理学奖?()答案:研究原子的结构和原子的辐射问题:运动学中涉及的主要运动学量包括位移、速度和加速度。

()答案:正确第3章问题:在平面极坐标系中,任意位矢可表示为()。

答案:问题:在直角坐标系中,任意位矢的方向余弦的关系为()。

答案:问题:在直角坐标系中,任意位矢可表示为()。

答案:问题:同一个位置矢量可以在不同的坐标系中表示。

()答案:正确问题:位置矢量在直角坐标系和平面极坐标系中的表示方式是一样的。

()答案:错误第4章问题:设质点在均匀转动(角速度为)的水平转盘上从t=0时刻开始自中心出发,以恒定的速率沿一半径运动,则质点的运动方程为()。

答案:问题:设质点在均匀转动(角速度为)的水平转盘上从t=0时刻开始自中心出发,以恒定的速率沿一半径运动,则质点的轨迹方程为()。

答案:问题:质点的位置关于时间的函数称为运动方程。

()答案:正确第5章问题:一个人从O点出发,向正东走了2m,又向正北走了2m,则合位移的大小和方向为()。

答案:东北方向问题:某质点沿半径为R的圆周运动一周,它的位移和路程分别为多少()。

答案:问题:位移和路程都与坐标原点的选取有关。

()答案:错误第6章问题:有一质点沿x方向作直线运动,它的位置由方程决定,其中x的单位是米,t的单位是秒。

则它的速度公式为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《大学物理》习题和答案第9章热力学基础1,选择题2。

对于物体的热力学过程,下面的陈述是正确的,即[(A)的内能变化只取决于前两个和后两个状态。

与所经历的过程无关(b)摩尔热容量的大小与物体所经历的过程无关(C),如果单位体积所含热量越多,其温度越高(D)上述说法是不正确的8。

理想气体的状态方程在不同的过程中可以有不同的微分表达式,那么方程Vdp?pdV?MRdT代表[(M)(A)等温过程(b)等压过程(c)等压过程(d)任意过程9。

热力学第一定律表明[] (A)系统对外界所做的功不能大于系统从外界吸收的热量(B)系统内能的增量等于系统从外界吸收的热量(C)在这个过程中不可能有这样一个循环过程,外部对系统所做的功不等于从系统传递到外部的热量(d)热机的效率不等于113。

一定量的理想气体从状态(p,V)开始,到达另一个状态(p,V)。

一旦它被等温压缩到2VV,外部就开始工作;另一种是绝热压缩,即外部功w。

比较这两个功值的大小是22 [] (a) a > w (b) a = w (c) a 14。

1摩尔理想气体从初始状态(T1,p1,V1)等温压缩到体积V2,由外部对气体所做的功是[的](a)rt 1ln v2v(b)rt 1ln 1v1 v2(c)P1(v2?V1(D)p2v 2?P1V120。

两种具有相同物质含量的理想气体,一种是单原子分子气体,另一种是双原子分子气体,通过等静压从相同状态升压到两倍于原始压力。

在这个过程中,两种气体[(A)从外部吸收相同量的热量和内部能量增量,(b)从外部吸收相同量的热量和内部能量增量是不同的,(c)从外部吸收相同量的热量和内部能量增量是不同的,(d)从外部吸收相同量的热量和内部能量增量是相同的。

这两个气缸充满相同的理想气体,并具有相同的初始状态。

在等压过程之后,一个钢瓶内的气体压力增加了一倍,另一个钢瓶内的气体温度也增加了一倍。

在这个过程中,这两种气体从[以外吸收的热量相同(A)不同(b),前者吸收的热量更多(c)不同。

后一种情况吸收更多热量(d)热量吸收量无法确定25。

这两个气缸充满相同的理想气体,并具有相同的初始状态。

等温膨胀后,一个钢瓶的体积膨胀是原来的两倍,另一个钢瓶的气体压力降低到原来的一半。

在其变化过程中,两种气体所做的外部功是[] (A)相同(b)不同,前者所做的功更大(c)不同。

在后一种情况下,完成的工作量很大(d)完成的工作量无法确定27。

理想的单原子分子气体在273 K和1atm下占据22.4升的体积。

将这种气体绝热压缩到16.8升需要做多少功?[](a)330j(b)680j(c)719j(d)223j28。

一定量的理想气体分别经历等压、等压和绝热过程后,其内能从E1变为E2。

在以上三个过程中,[] (A)气体的温度变化是相同的,吸热是相同的(b)温度变化是相同的,吸热是不同的(c)温度变化是不同的,吸热是相同的(d)温度变化是不同的,吸热也是不同的30。

一定量的理想气体,从相同的状态开始,当绝热压缩和等温压缩达到相同的体积时,绝热压缩等温压缩的最终状态压力是[] (A)较高,(b)较低,(c)相等,(d)无法比较31。

从一定状态压缩后的一定质量的理想气体。

如果体积减少到原来体积的一半,这个过程可以是绝热的、等温的或等压的。

如果外部世界所做的机械功是最大化的,这个过程应该是[(A)绝热过程(b)等温过程(C)等压过程(d)绝热过程或等温过程可以是33。

下列哪种变化会增加一定质量的理想气体的内能?[(A)等温压缩(b)等压减压(c)等压压缩(d)等压膨胀35。

提高实际热机的效率。

下列假设是不可行的[] (A)使用具有大摩尔热容量的气体作为工作物质(b)提高高温热源的温度(c)使循环尽可能接近卡诺循环(D),并努力减少不可逆因素如热损失和摩擦38。

卡诺循环的特征是[] (A)卡诺循环由两个等压过程和两个绝热过程组成,(B)完成卡诺循环需要两个热源,高温和低温,(C)卡诺循环的效率只与高温和低温热源的温度有关,(D)根据热力学第二定律,[(A)功可以完全转化为热,但热不能完全转化为功,(B)热可以然而,不能从低温物体转移到高温物体的不可逆过程(c)是不能以相反方向进行的过程(d)。

所有自发过程都是不可逆过程44。

热力学第二定律表明,[] (A)不可能从单一热源吸收热量使其全部起作用(b)在可逆过程中,工作物质的净吸热等于外部做功(c)摩擦生热的过程是不可逆的(D)热量不能从低温物体转移到高温物体46。

有人设计了卡诺热机(可逆的)。

每个循环可以从400 K高温热源吸收1800 J的热量。

它向300 K的低温热源释放800焦耳的热量,同时对外做功1000焦耳。

这样的设计是[] (A)可能的,符合热力学第一定律(B)可能的,符合热力学第二定律(C)不可能的。

卡诺循环所做的功不能大于释放到低温热源的热量。

不,这个热机的效率超过了理论值48。

如图9-1-48所示,如果卡诺热机的循环曲线所包围的面积从abcda增加到ab?c?爸,那就让abcda和ab循环?c?da的功和热机效率的变化是[(A)净功增加,效率增加pa(B)净功增加,效率降低bb?(c)净功和效率保持不变dT1(D)净功增加,效率保持不变T2c51。

在图9-1-51中,ICi是理想气体绝热过程,IaII和IbIIc?p是一个任意的过程。

在这两个任意过程中气体所做的功和所吸收的热是0VII图9-1-48 b[] (A) IaII过程释放热量并做负功;IbII过程是放热的,负功°c(B)IaiI过程吸收热量并做负功;IbII过程放热并做负功aI (C) IaII过程吸热并做正功。

IbII过程吸热并做负功O (D) IaII过程放热并做正功;IbII过程吸收热量并执行正功V图9-1-51 55。

两个相同的钢瓶含有相同的气体,具有相同的初始状态。

现在它们被绝热压缩到相同的体积,其中气缸1中的压缩过程是准静态过程。

气缸2中的压缩过程是准静态过程。

比较[的温度变化] (A)气缸1和气缸2中气体的温度变化是相同的(b)气缸1中气体的温度变化比气缸2中气体的温度变化大(C)(d)比气缸2中气体的温度变化小(d)气缸1和气缸2中气体的温度没有变化(ii)。

填充问题9。

一台卡诺机器(可逆)。

低温热源的温度是27?热机效率为40%,高温热源温度为k,今天要将热机效率提高到50%,如果低温热源保持不变,高温热源温度应提高k10。

一台可逆卡诺循环热机,其效率是多少?其逆过程的制冷系数w?T2,T1?T2?与w的关系是0.11.1摩尔理想气体(设定??CP是已知的),如图9-2-11中的CV所示,其中CA是绝热过程,点a的状态参数(T1,V1)和点b的状态参数(T1,V2)是已知的。

那么c点的状态参数是tat 1 t2ov 1BCV 2vvc?图9-2-11TC?,pC?。

12。

一定量的理想气体通过如图9-2-12所示的线性过程从状态a (2p1,V1)变为状态b (p1,2V1 ),那么系统在AB过程中确实工作。

内能变化△E = _ _ _ _ _ _ _ _ _ _ .13。

质量为M、温度为T0的氦气安装在一个体积为V的绝缘密闭2 P1 P1O 1PaBV 12V 1V容器中,容器以速度V匀速直线运动,当容器突然停止时,沿方向运动的动能全部转化为分子热运动的动能。

平衡后,氦气的温度大幅上升至0.16。

一定量的理想气体从V1膨胀到2V1,并分别经历以下三个过程:(1)等压过程;(2)等温过程;(3)绝热过程。

其中,_ _ _ _ _ _ _ _工艺气体对外做功最多;_ _ _ _ _ _ _ _ _工艺气体的内能增加最多;_ _ _ _ _ _ _ _工艺气体吸收的热量最多。

19。

如图9-2-19所示,一定量的理想气体经历一个?b?c通过p,在此期间气体从外部吸收热量q,系统内部能量发生变化?那么Q|公元前199年?E >0,p2 (b) P110。

如果温度在15度左右。

c升至27?在室内气压保持不变的情况下,室内分子数减少[](a)0.5%(b)4%(c)9%(d)21%13。

为了什么?k?[](a)(b)(c)3 kt的平均平移动能?k和温度t可以理解为2?k是一个分子的平均平移动能?k是一个分子能量的长期平均值?K是温度为T的几个分子的平均平移动能(D)。

气体的温度越高,平均平移动能15越大。

当刚性封闭容器中气体的温度升高时,容器中分子的动能(A)[(B)气体的密度(C)分子的平均速率(d)气体的压力16不会改变。

在具有固定体积的容器中,理想气体温度增加到原始值的两倍。

然后[] (A)分子的平均动能和压强都增加到原来的两倍(B)分子的平均动能增加到原来的两倍,压强增加到原来的四倍(c)分子的平均动能增加到原来的四倍,压强增加到原来的两倍(d)因为体积不变,所以分子的动能和压强都是一样的17。

两种不同的气体,一种是氦,另一种是氮,具有相同的压力,相同的温度,但是体积不同。

则[] (A)每单位体积的分子数相等,(b)每单位体积的气体质量相等,(c)每单位体积的气体内能相等,(d)每单位体积的气体分子动能相等。

相关文档
最新文档