石油焦制备活性炭文献总结

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、简介

石油焦是炼油过程中的一种副产品,目前国内主要用于冶金工业,高硫原油炼制过程中的石油焦不能满足冶金行业煅烧焦的要求,因此必须为高硫石油焦寻找新的用途。石油焦固定碳含量高、灰份低,是制备活性炭的优质原料,并且石油焦中的硫在制备活性炭的过程中能够起到造孔的作用。活性炭微孔发达、比表面积高、吸附能力强,是一种优良的吸附材料,广泛应用于化工、环保、食品与制药、催化剂载体和电极材料等领域。随着科学技术的飞速发展,高容量电池、高容量电容器的生产技术得到快速提高,市场对高比表面积活性炭的需求量越来越大。尤其是比表面积大于2000m2/g的高比表面积活性炭在双电层电容器的成功应用,使得对高比表面积活性炭的制备与应用的研究得到广大科学工作者的极大关注。

二、发展历史

国外20世纪70年代开始研究石油焦制备活性炭工艺,80年代中期实现工业化,均生产比表面积在2500m2/g以上的产品。我国于20世纪80年代末开始进行石油焦制活性炭的研究工作,研究水平大多较低,有部分技术已进入工业化实验阶段。美国StandardOil公司在1971至1978年申请了石油焦制备活性炭多项专利,均涉及氢氧化钾法。其工艺过程为:石油焦经破碎、筛分后,与KOH充分混合,在500℃下脱水,700℃一1000℃下活化,洗涤、干燥。产品于1976年进行了中试,比表面积均大于2500m2/g。1985年在Ahderson公司实现工业化,制得的产品为高比表面积活性炭。日本Kansai公司也有氢氧化钾法工艺,其活化条件为800℃减压下进行。1993年进行了50t/a规模中试,随后进行了工业化,产品比表面积达到3000m2/g。

三、KOH成孔机理

石油焦与其它炭原料相比,结晶度高,有序化程度高,结构紧密,并已部分石墨化。因此其活化难度大,发生剥皮反应的可能性大,必须采用腐蚀性强的催化剂。因此通常都以强碱作为活化剂制取性能优良的活性炭。强碱能渗进石油焦微晶间隙中,并与其中的碳化物、无定形碳以及活性点反应,形成微孔结构;但碱的种类不同,对石油焦的破坏能力也不一样,其中KOH 的破坏能力强于NaOH。这是因为K的活泼性强于Na ,在用量相同的条件下,KOH 能更多地渗进石油焦的基本微晶中,为形成孔隙起到骨架作用,并与石油焦发生化学反应。KOH 活化反应的成孔机理就是通过KOH 与原料中的碳反应,形成热稳定差易挥发的物质,这样就把石油焦中的部分碳刻蚀掉,经过洗涤把生成的盐及多余的KOH 洗去,在被刻蚀的位置上出现了孔,在炭化及活化过程中,这一过程主要发生以下反应:

四、生产工艺

国外20世纪70年代开始研究石油焦制备活性炭工艺,80年代中期实现工业化,均生产比表面积在2500m2/g以上的产品。我国于20世纪80年代末开始进行石油焦制活性炭的研究工作,研究水平大多较低,有部分技术已进入工业化实验阶段。美国StandardOil公司在1971至1978年申请了石油焦制备活性炭多项专利,均涉及氢氧化钾法。其工艺过程为:石油焦经破碎、筛分后,与KOH充分混合,在500℃下脱水,700℃一1000℃下活化,洗涤、干燥。产品于1976年进行了中试,比表面积均大于2500m2/g。1985年在Ahderson公司实现工业化,制得的产品为高比表面积活性炭。日本Kansai公司也有氢氧化钾法工艺,其活化条件为800℃减压下进行。1993年进行了50t/a规模中试,随后进行了工业化,产品比表面积达到3000m2/g。

美国、日本拥有利用石油焦制备比表面积超过3000m2/g的超级活性炭的专利技术,并实现了产业化。我国在石油焦制备高比表面积活性炭方面远远落后与此,虽然采用KOH活化方法制备出比表面积达3000m2/g的活性炭,但是由于KOH的高腐蚀性、高碱碳比、低收率以及KOH的高价格难以实现实现产业化。但选用腐蚀性相对较小、价格更低的氯化锌作为活化剂,用石油焦作为原料制备活性炭。

制备高比表面积活性炭一般是将一定尺寸的石油焦颗粒与碱性活化剂混合,经低温脱水和高温活化后冷却水洗。使用合适的工艺可以得到比表面积超过3000m2/g的活性炭。我国在这方面已经有不少研究文章,探索了石油焦原料性能、制备过程中活化剂种类、碱炭比、活化温度、活化时间等因素对活性炭收率、比表面积、孔结构和吸附能力的影响。一般认为,石油焦原料粒度在100μm~200μm时可以获得合适的收率和较高的比表面积,粒度尺寸过小将导致表面刻蚀严重,使得收率和比表面积均下降。制备过程中KOH效果优于其他活化剂,碱炭质量比在4左右。活化温度在700℃~800℃左右可以获得最大限度的比表面积,而活化时间则不宜过长,在700℃~800℃温度下活化时间应小于2h。石油焦与KOH的比列1.1∶1.6,该工艺相对成熟,其缺点是工艺路线长、成本高、对设备腐蚀严重,因此该工艺在我国仍然没有实现工业化。

水蒸气活化法是制备活性炭的常用手段,但是对于用水蒸气活化法制备石油焦活性炭的研究却寥寥无几,这可能是由于石油焦结构紧密,用水蒸气活化难以达到较高的比表面积所致。此外值得关注的是高硫石油焦制备活性炭的工艺。硫含量对活性炭比表面积的影响很大,只有当高硫石油焦的脱硫率达到98%时活性炭产物的比表面积才可能大幅度提高。有研究表明向硫石油焦中掺入一定量的无烟煤可以提高活性炭的比表面积。

原材料配比对产品质量的影响

在一定范围内,随KOH∶石油焦的增加,制得的活性炭比表面积也增大。根据试验数据,工业化主要考察活化时间1.0h时,KOH∶石油焦分别为4∶1、5∶1和6∶1时产品的性能指标,数据见表1。

由表l可知,随活化剂KOH用量的增加,活性炭产品的比表面积、总孔容积均增加,产品的微孔容积是先增加后减少,产品的振实密度和微孔容积所占的比例逐渐减少。活化温度800℃时平均孔径逐渐增大,而在830℃时平均孔径先增加后减少,在碱炭比为5和6时,比表面积和总孔容积增加不明显,且平均孔径变化不大。造成上述指标变化的原因是随着活化剂用量的增加,活化反应加快,活性点上的碳消耗也随之增加,产品活性炭的比表面积和孔容积增大。但当活化温度一定对,活性点上碳的数目也是一定的,这些碳原子消耗完后,继续反应则会消耗孔隙周围作为骨架的碳原子,造成孔隙塌陷,使活性炭微孔容积减少。至于振实密度的减少则是由于KOH用量的增加,生成的活性炭微孔占的比率减少,中孔比率增大造成的。在工业化中,若KOH用量大,会加大粗产品水洗后碱液的处理量。通过对数据的分析,作者认为在KOH:石油焦为5时,HSAAC性能指标比较理想,也比较经济。

活化温度对产品质量的影响

温度是影响活化效果的重要因素。一般地,随活化温度的升高,比表面积增大。根据试验数据

由表2可知,碱炭比为4时,随活化温度从800℃升高到870℃,产品的比表面积、平均孔径、总孔容积、吸附微孔容积均先升高后降低,振实密度逐步降低,活化温度850℃时,产品活性炭的比表面积达到最大值2637m2/g.碱炭比为5时,随活化温度升高,产品的比表面积和总孔容积均先升高后降低,平均孔径变化不大,振实密度和微孔容积逐渐降低,在活化温度830℃时,产品的比表面积达到最大值2902m2/g。造成上述指标变化的原因是随活化温度的提高,处于活化状态的碳原子数目增加,与KOH反应加强,同时钾蒸汽的扩散速度增加,使产品活性炭的比表面积和总孔容积增加,但随活化温度的进步提高,导致已形成的孔隙过度烧结,使活性炭比表面积和总孔容积降低。振实密度降低的原因则可能是随

相关文档
最新文档