51单片机并行口驱动LED数码管显示电路及程序
51单片机数码管0到99循环程序代码
51单片机数码管0到99循环程序代码1. 概述在嵌入式系统的开发中,数码管是一种常见的输出设备,可以用于显示数字、字符等信息。
而51单片机是一种广泛应用的微控制器,其结合了强大的功能和灵活的应用,能够很好地驱动数码管。
本文将介绍如何使用51单片机编写一个循环显示0到99的程序,通过数码管输出这些数字。
2. 电路连接我们需要连接51单片机和数码管。
通常我们使用的是共阴数码管,其连接方式如下:- VCC连接到5V电源- GND连接到GND- DIO(数据输入/输出)连接到51单片机的IO口3. 程序设计下面是一个简单的C语言程序设计,用于控制数码管显示0到99的数字。
```c#include <reg51.h>sbit DIO = P2^0; // 数码管数据输入/输出sbit CL = P2^1; // 数码管片选信号unsigned char code numCode[10] = { 0xc0, // 00xf9, // 10xa4, // 20xb0, // 30x99, // 40x92, // 50x82, // 60xf8, // 70x80, // 80x90 // 9};//延时函数void delay(unsigned int i) {unsigned int j,k;for (j=i;j>0;j--)for(k=110;k>0;k--);}void display(unsigned char num) { CL = 1; //关闭片选DIO = numCode[num / 10]; //十位 delay(2);CL = 0;DIO = 0xff; //消隐delay(2);CL = 1; //关闭片选DIO = numCode[num 10]; //个位 delay(2);CL = 0;DIO = 0xff; //消隐delay(2);}void m本人n() {unsigned char i,j;while(1) {for(i=0;i<10;i++) {for(j=0;j<10;j++) {display(i * 10 + j);}}}}```4. 程序说明- 首先定义了数码管的连接引脚,以及0~9的显示编码。
实验二P1口控制LED发光二极管
实验二 P1口控制LED发光二极管一、实验目的1、进一步熟练Proteus及Keil软件的基本操作2、掌握8051单片机P1口的使用方法3、掌握LED发光二极管的原理及使用方法4、学习汇编程序的调试及仿真方法二、实验电路三、实验内容及步骤:要求:8个LED发光二极管循环左移显示(发光的移位),间隔时间为一秒。
1、使用Proteus画出电路原理图2、在Keil uVision中完成程序编辑、调试及编译,生成.HEX文件3、进行Protues与Keil uVision联动的相关设置:4、在Proteus中仿真运行。
四、思考1、将本实验的实验现象改为“不发光二极管循环移位”。
2、将本实验的实验现象改为“每隔0.5秒发光二极管循环移位”。
参考程序:ORG 0LJMP MAINORG 30H MAIN: MOV A,#0FEH LOOP: MOV P1,ALCALL DELAYRL ASJMP LOOP DELAY: MOV R7,#20H DELAY1:MOV R6,#200 DELAY2:MOV R5,#123DJNZ R5,$DJNZ R6,DELAY2DJNZ R7,DELAY1RETEND实验三数码管静态显示实验一、实验目的1、进一步熟悉51系列单片机2、了解8051单片机P0口的使用方法3、掌握共阴极数码管的原理及使用方法4、学习8051的编程、调试、编译、仿真。
二、实验电路图3 数码管静态显示电路原理图注:数码管要从元件库选择Optoelectronics类中的7SEG-COM-CAT-GRN。
三、要求及步骤:要求:在七段数码管上以递增方式循环显示数字0—9,间隔时间为一秒。
1、使用Proteus画出电路原理图2、在Keil uVision中完成程序编辑、调试及编译,生成.HEX文件3、进行Protues与Keil uVision联动的相关设置:4、在Proteus中仿真运行。
四、思考1、为什么要将P0口各引脚通过电阻R3-R9接到电源?2、如何在共阴数码管上循环显示十六进制数字0—F(不区分字母的大小写)?3、怎样修改程序使数字以递减方式循环显示?4、若用共阳极数码管应如何修改电路和程序,才能完成本实验的功能?参考程序:ORG 00HLJMP STARTORG 30HSTART: MOV DPTR,#TABLES1: MOV R4,#00HS2: MOV A,R4MOVC A,@A+DPTRMOV P0,ALCALL DELAYINC R4CJNE R4,#0AH,S2SJMP S1DELAY: MOV R5,#20 ;延时子程序D2: MOV R6,#200D1: MOV R7,#123DJNZ R7,$DJNZ R6,D1DJNZ R5,D2RETTABLE: DB 3FH,06H,5BH,4FH,66H ;段码表DB 6DH,7DH,07H,7FH,6FHEND实验四基本输入/输出实验一、实验目的1、进一步熟悉8051单片机并行I/O口的使用方法3、掌握并行I/O口输入/输出操作的方法4、学习8051的编程、调试、编译、仿真。
基于51单片机的LED点阵显示屏系统的设计
基于51单片机的LED点阵显示屏系统的设计摘要:本篇论文主要介绍基于51单片机的LED点阵显示屏系统的设计方案。
该系统通过51单片机进行数据处理,并将数据在LED点阵显示屏上进行展示,具有显示效果好、成本低等优点。
论文主要介绍了硬件电路设计、程序设计、PCB设计以及实验结果等内容,对基于51单片机的LED点阵显示屏系统的实用性进行了探讨。
关键词:51单片机、LED点阵显示屏、硬件电路设计、程序设计、PCB设计、实验结果一、引言LED点阵显示屏是一种广泛应用于各种场合,如宣传广告、商店展示、显示器等领域的显示设备。
与传统的显示屏相比,LED点阵显示屏具有显示效果好、成本低等优点。
近年来,随着51单片机技术的不断发展,基于51单片机的LED点阵显示屏系统在各个领域得到了广泛的应用。
本文主要介绍基于51单片机的LED点阵显示屏系统的设计方案。
该系统通过51单片机进行数据处理,并将数据在LED点阵显示屏上进行展示,具有良好的实用性和经济效益。
论文主要包括硬件电路设计、程序设计、PCB设计以及实验结果等部分。
二、硬件电路设计1. 系统框图基于51单片机的LED点阵显示屏系统的硬件。
2. 数码管显示电路基于51单片机的LED点阵显示屏系统的中,采用BCD数码管进行数据输入。
BCD数码管共四位,每一位数字独立控制。
数码管显示电路主要包括74HC595移位寄存器、串联$k$向$n$型译码器以及BCD数码管组成。
采用74HC595移位寄存器可以将多个BCD数码通过串联方式连接在一起,从而减少了输出引脚的数量。
通过寄存器的移位方式,可以实现控制数据的输入和输出。
3. LED点阵显示电路在本系统中,采用了8*8共阴极的LED点阵显示屏,并通过双向移位寄存器74HC595将数据的控制信号传输到LED点阵显示屏。
在具体的控制方案中,将LED点阵显示屏划分为8*8个小块,每个小块对应一个控制信号,通过移位寄存器将每一个小块的控制信号输出到LED 点阵上。
51单片机数码管显示0到99实验原理
51单片机数码管显示0到99实验原理51单片机是一种常用的单片机微控制器,它可以用来完成各种控制任务,包括数码管显示。
数码管是一种显示器件,可以用来显示数字、字母或符号等。
在本实验中,我们将使用51单片机控制数码管显示从0到99的数字。
实验原理如下:1. 51单片机介绍:51单片机是一种基于Intel 8051架构的微控制器。
它是一种具有48KB的程序存储器和52个输入/输出引脚的芯片。
单片机通过内部时钟和逻辑电路来执行各种任务。
2.数码管介绍:数码管是一种由LED组成的显示器件。
一般用于显示数字,通过控制LED的亮灭来显示不同的数字。
常见的数码管有共阳极和共阴极两种类型。
3.共阳极数码管原理:共阳极数码管的原理是通过控制不同的引脚来点亮相应的LED。
在显示数字0到9时,需要同时点亮特定的LED。
通过控制引脚为高电平来点亮对应的LED,其他引脚保持低电平。
4.共阴极数码管原理:共阴极数码管的原理与共阳极相反,需要使引脚为低电平来点亮相应的LED。
其他引脚保持高电平。
5. 51单片机控制数码管原理:通过设置51单片机的输出引脚和电平,可以控制数码管的显示。
首先需要将数码管的引脚连接到51单片机的输出引脚上,并设置相应的输出模式和电平。
然后通过程序来控制输出引脚的电平,从而控制数码管的亮灭。
实验步骤如下:1.连接电路:首先将51单片机与数码管进行连接。
根据具体的实验条件,选择合适的数码管和电路图。
2.编写程序:使用51单片机的编程软件(如Keil C等),编写控制数码管的程序。
程序应该包括初始化引脚、设置输出模式和控制引脚电平等内容。
3.烧录程序:将编写好的程序烧录到51单片机的程序存储器中。
通过编程软件将程序下载到单片机中。
4.检查电路:验证电路连接是否正确。
可以通过使用示波器或万用表等工具来检查引脚的电平和波形。
5.运行实验:将电路通电,观察数码管的显示效果。
通过控制程序中的循环和延时等参数,可以实现数字的滚动显示、闪烁显示等效果。
基于51单片机实现LED数码管静态与动态显示的设计浅析
33第2卷 第22期产业科技创新 2020,2(22):33~34Industrial Technology Innovation 基于51单片机实现LED数码管静态与动态显示的设计浅析龙 志(广州大学松田学院,广州 增城 511370)摘要:随着社会的发展,在我们日常的生活中,数码管的应用随处可见,尤其是在电子应用设计显示等方面常常发挥着非常重要的作用,因此研究数码管的显示有非常重要的现实意义。
数码管我们可以分为静态显示和动态显示,这两种显示有着本质的区别,静态显示的特点是占用CPU 时间少,显示便于监测和控制,显示字形稳定,而动态数码管的显示,效果相对静态显示亮度差少许,但成本较低。
本设计主要是基于51单片机,先通过结合集成芯片74HC573对LED 数码管静态显示的硬件电路设计与分析,进一步拓展到采用芯片74HC138与LED 数码管动态显示的硬件电路设计与分析,最终实现两种不同的电路设计显示的方法。
关键词:LED 数码管;静态显示;动态显示;51单片机中图分类号:TP368.12 文献标识码:A 文章编号:2096-6164(2020)22-0033-02随着电子应用技术的不断发展,显示电路在电子设计应用方面更加广泛,尤其是LED 数码管显示在各行各业中的应用更加重要,如红绿交通灯显示,电子时钟显示,家电产品功能显示等方面都需要用到LED 数码管作为显示。
因此,对LED 数码管的显示控制有着非常重要的现实意义。
因此我们要实现LED 数码管的熟练显示控制,我们必须要根据数码管的特点来进行分析和设计,数码管有静态显示和动态显示的两种方法,接下对这两种电路作详细的分析与设计,最终实现对LED 数码管静态与动态的两种不同显示设计方法。
1 数码管静态显示电路设计数码管静态显示设计是利用MCS-51单片机结合两片集成芯片74HC573,实现对4个LED 数码管的显示控制。
具体设计如图1所示:图1 数码管静态显示设计电路图本电路设计主要是利用单片机的P0口来实现对数码管的位选控制与段选的控制,P0口之所以能够正确的对数码管进行位选与段选的控制,关键是在于设计中使用了芯片74HC573。
基于单片机的按键控制LED数码管共阴极动态显示电路设计报告毕业论文
基于单片机的按键控制LED数码管共阴极动态显示电路设计报告毕业论文本篇报告将详细介绍基于单片机的按键控制LED数码管共阴极动态显示电路的设计。
一、引言LED数码管是一种常用的数字显示器件,广泛应用于各种计数器、时钟和计时器等电子设备中。
本设计旨在利用单片机实现对LED数码管的动态显示,并通过按键控制显示的数字。
二、设计方案1.系统结构本系统采用基于单片机的数字显示方案,其中包括一个单片机、数码管显示模块和按键模块。
单片机负责接收按键输入信号,并根据输入信号控制数码管显示相应的数字。
2.系统设计(1)数码管显示模块:该模块由共阴极LED数码管组成,共阴极接地,通过接通不同的端口线来控制数码管显示不同的数字。
(2)按键模块:该模块由多个按键组成,用于用户输入指定的数字。
每个按键接一个IO脚,通过按下不同的按键,触发不同的端口输入。
(3)单片机:本设计选用51单片机作为控制核心,通过IO口与数码管显示模块和按键模块连接。
单片机根据按键输入信号的变化,对数码管进行动态显示。
3.设计过程(1)针对单片机的接线设计:将单片机的IO口分别与数码管显示模块和按键模块连接。
将数码管的共阳极接电源正极,数码管的各段(即a、b、c、d、e、f、g)接单片机的IO脚。
(2)针对单片机软件设计:设计单片机程序实现按键输入的检测和数码管动态显示的控制。
首先初始化IO口,设置按键引脚为输入端口,设置数码管引脚为输出端口。
然后循环检测按键的状态。
当检测到按键被按下时,根据按键的不同选择分别显示不同的数字。
4.功能要求(1)按下不同的按键,数码管能够显示相应的数字,实现动态显示。
(2)按键输入具有去抖功能,避免误触发。
(3)程序运行稳定,能够正确响应按键输入,显示正确的数字。
三、实验结果经过实验验证,本设计实现了按键控制LED数码管共阴极动态显示的功能要求。
按下不同的按键,数码管能够正确显示相应的数字,程序运行稳定,无误触发现象。
51单片机20个实验,代码详细
第一章单片机系统板说明一、概述单片机实验开发系统是一种多功能、高配置、高品质的MCS-51单片机教学与开发设备。
适用于大学本科单片机教学、课程设计和毕业设计以及电子设计比赛。
该系统采用模块化设计思想,减小了系统面积,同时增加了可靠性,使得单片机实验开发系统能满足从简单的数字电路实验到复杂的数字系统设计实验,并能一直延伸到综合电子设计等创新性实验项目。
该系统采用集成稳压电源供电,使电源系统的稳定性大大提高,同时又具备完备的保护措施。
为适应市场上多种单片机器件的应用,该系统采用“单片机板+外围扩展板”结构,通过更换不同外围扩展板,可实验不同的单片机功能,适应了各院校不同的教学需求。
二、单片机板简介本实验系统因为自带了MCS-51单片机系统,因此没有配置其他单片机板,但可以根据教学需要随时配置。
以单片机板为母板,并且有I/O接口引出,可以很方便的完成所有实验。
因此构成单片机实验系统。
1、主要技术参数(1)MSC-51单片机板板上配有ATMEL公司的STC89C51芯片。
STC89C51资源:32个I/O口;封装DIP40。
STC89C51开发软件:KEIL C51。
2、MSC-51单片机结构(1)单片机板中央放置一块可插拔的DIP封装的STC89C51芯片。
(2)单片机板左上侧有一个串口,用于下载程序。
(3)单片机板的四周是所有I/O引脚的插孔,旁边标有I/0引脚的脚引。
(4)单片机板与各个模块配合使用时,可形成—个完整的实验系统。
三、母板简介主要技术参数(1)实验系统电源实验系统内置了集成稳压电源,使整个电源具有短路保护、过流保护功能,提高了实验的稳定性。
主板的右上角为电源总开关,当把220V交流电源线插入主板后,打开电源开关,主板得电工作。
为适用多种需要,配置了+5V,+12V,—5V电压供主板和外设需要,通过右上角的插针排和插孔输出到外设。
此外,还设有螺旋保险插孔保护实验箱。
(2)RS232接口RS232接口通过MAX232芯片实现与计算机的串行通讯,通过接口引出信号。
51单片机-数码管显示
} void delay(int x) {
int i,j; for(i=0;i<x;i++)
for(j=1;j<120;j++); }
LED字型显示代码表
段符号
十六进制代码
显示 dp
g
f
e
d
c
b
a 共阴极 共阳极
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
A0
b
0
C0
d
0
E0
F
0
H0
P0
0
1
1
1
1
1
1
3FH
C0H
0
0
0
0
1
1
0
06H
F9H
1
0
1
1
0
1
1
5BH
A4H
1
0
0
1
1
1
1
4FH
B0H
1
1
0
0
1
Hale Waihona Puke 1066H
99H
1
1
0
1
1
0
1
6DH 92H
1
1
1
1
1
0
1
7DH
1. 静态显示的特点
静态显示就是单片机将所要显示的数据送出去后,数码管始终显示 该数据(不变),到下一次显示时,再传送一次新的显示数据。
单片机原理及接口技术(C51编程)单片机的开关检测、键盘输入 与显示的接口设计
5.2.1 开关检测案例1
图5-3 开关、LED发光二极管与P1口的连接
5.2.1 开关检测案例1
参考程序如下: #include <reg51.h> #define uchar unsigned char void delay( ) {
uchar i,j; for(i=0; i<255; i++) for(j=0; j<255; j++); }
5.1.2 I/O端口的编程举例
03 用循环左、右移位函数实现
OPTION
使用C51提供的库函数,即循环左移n位函数和循环右
移n位函数,控制发光二极管点亮。参考程序:
#include <reg51.h> #include <intrins.h> 函数的头文件 #define uchar unsigned char void delay( ) {
5.1.2 I/O端口的编程举例
#include <reg51.h> #define uchar unsigned char uchar tab[ ]={ 0xfe , 0xfd , 0xfb , 0xf7 , 0xef , 0xdf , 0xbf , 0x7f , 0x7f , 0xbf , 0xdf , 0xef , 0xf7 , 0xfb , 0xfd , 0xfe }; /*前8个数据为左移点亮 数据,后8个为右移点亮数据*/ void delay( ) {
// P1口为输入 // 读入P1口的状态,送入state // 屏蔽P1口的高6位
5.2.2 开关检测案例2
switch (state) {
// 判P1口低2位开关状态
单片机实验报告——LED数码管显示实验
单片机实验报告——LED数码管显示实验引言单片机是一种基础的电子元件,作为电子专业的学生,学习单片机编程是必不可少的。
在单片机编程实验中,学习如何使用IO口驱动LED数码管显示是重要的一部分。
在此次实验中,我们用到的是STM32F103C8T6单片机,与之相配套的是LED数码管、杜邦线等元件,并利用Keil uVision5软件进行编程操作。
本文的目的是通过实验与实验数据的分析说明单片机控制LED数码管的方法,希望对单片机初学者有所帮助。
实验原理1.LED数码管简介LED数码管是利用发光二极管实现数字和字母的显示,其外观形式有共阳和共阴两种。
共阳型数码管的共阳端是接在公共的端子上,数字和字母的每一个元素(即1、2、3、4、5、6、7、8、9、A、B、C、D、E、F)的生命延伸出去,称为”高”电平;共阴型数码管的共阴端是接在公共的端子上,数字和字母的每一个元素的生命也是分别延伸出去,但称为”低”电平。
2.STM32F103C8T6单片机STM32F103C8T6单片机是一款功能完备的32位MCU产品,它具有高性能,低功耗的特点,可广泛应用于许多硬件系统。
此次实验所需的LED数码管的显示量是5个(共阳型),因此我们只需要5个IO口即可将STM32F103C8T6单片机与LED数码管连接起来。
实验材料STM32F103C8T6单片机、LED数码管、杜邦线、电容、电阻、面包板等。
实验步骤1.硬件连接:将LED数码管的针脚连接到单片机的IO口,如下图所示:其中P0-P4分别代表数字0-4,PE2口作为LED点亮控制口,分别接入面包板中。
2.软件设置:使用Keil uVision5进行程序编写,将代码下载到单片机控制器内,开启电路,即可观察到LED数码管上的数字进行了变化。
代码如下所示:实验结果将程序下载到开发板后,启动单片机,即可看到红色LED数码管逐个显示从0-9的数字。
达到9后又从0开始循环。
实验过程及结论本次实验中彻底了解到了用单片机控制LED数码管的方法,单片机控制LED数码管变化是通过选中不同的IO口来完成的,利用Keil uVision5软件可以完成程序编写。
51单片机数码管显示时钟程序
#include〈reg52.h〉//#include#include<intrins。
h〉#define uchar unsigned char#define uint unsigned intsbit dula=P2^6;sbit wela=P2^7;sbit key1=P3^4;sbit key2=P3^5;sbit key3=P3^6;sbit beep=P2^3;unsigned code table[]={0x3f ,0x06 ,0x5b , 0x4f ,0x66 ,0x6d ,0x7d ,0x07 ,0x7f ,0x6f ,0x77 ,0x7c,0x39 , 0x5e , 0x79 ,0x71};uchar num1,num2,s,s1,m,m1,f,f1,num,numf,nums,dingshi;uchar ns,ns1,nf,nf1,numns,numnf;void delay(uint z);void keyscan ();void keyscan1 ();void alram();void display(uchar m,uchar m1,uchar f,ucharf1,uchars,uchars1); void display0(uchar nf,uchar nf1,uchar ns,uchar ns1);void main(){TMOD=0x01;//设定定时器0工作方式1TH0=(65536—46080)/256 ;TL0=(65536—46080)%256 ;EA=1;//开总中断ET0=1;//开定时器0中断TR0=1;//启动定时器0中断numns=12;numnf=0;while(1){if(dingshi==0){keyscan ();display(m,m1,f,f1,s,s1);alram();}else{keyscan1 ();display0(nf,nf1,ns,ns1);}}}void keyscan (){if(key1==0){delay(10);if(key1==0)nums++;if (nums==24)nums=0;while(!key1);display(m,m1,f,f1,s,s1);}if(key2==0){delay(10);if(key2==0)numf++;if (numf==60)numf=0;while(!key2);display(m,m1,f,f1,s,s1);}if(key3==0){delay(10);if(key3==0){dingshi=~dingshi;while(!key3)display(m,m1,f,f1,s,s1);}}/*if(key4==0){delay(10);if(key4==0){flag=1;while(!key4);display(m,m1,f,f1,s,s1);}}*/}void keyscan1(){if(key1==0){delay(10);if(key1==0)numns++;if (numns==24)numns=0;while(!key1);// display(nf,nf1,ns,ns1);}if(key2==0){delay(10);if(key2==0)numnf++;if (numnf==60)numnf=0;while(!key2);// display(nf,nf1,ns,ns1);}if(key3==0){delay(10);if(key3==0){dingshi=0;while(!key3);// display(m,m1,f,f1,s,s1);}}}void alram(){if((numnf==numf)&&(numns==nums))beep=0;if(((numnf+1==numf)&&(numns==nums))&&(dingshi==0))//一分钟报时提示beep=1;}void display0(uchar nf,uchar nf1,uchar ns,uchar ns1)//闹钟显示函数{nf=numnf%10;nf1=numnf/10;ns=numns%10;ns1=numns/10;/*wela=1;P0=0xc0;//送位选数据wela=0;P0=0xff;*/dula=1;P0=table[ns1];dula=0;P0=0xff;wela=1;P0=0xfe;wela=0;delay(1);dula=1;P0=table[ns]|0x80;dula=0;wela=1;P0=0xfd;wela=0;delay(1);dula=1;P0=table[nf1];dula=0;P0=0xff;wela=1;P0=0xfb;wela=0;delay(1);dula=1;P0=table[nf];dula=0;P0=0xff;wela=1;P0=0xf7;wela=0;delay(1);}void display(uchar m,uchar m1,uchar f,ucharf1,uchars,uchars1) //时间显示{dula=1;P0=table[m1];//秒位第1位dula=0;P0=0xff;wela=1;P0=0xef;wela=0;delay(1);dula=1;P0=table[m];// 秒位第2位dula=0;P0=0xff;wela=1;wela=0;delay(1);dula=1;P0=table[s1]; //时位第一位dula=0;P0=0xff;wela=1;P0=0xfe;wela=0;delay(1);dula=1;P0=table[s]|0x80;dula=0;P0=0xff;wela=1;P0=0xfd;wela=0;delay(1);dula=1;P0=table[f1];//分位第一位dula=0;P0=0xff;wela=1;P0=0xfb;wela=0;delay(1);dula=1;P0=table[f]|0x80;dula=0;P0=0xff;wela=1;P0=0xf7;wela=0;delay(1);}void T0_timer() interrupt 1{TH0=(65536—46080)/256 ;TL0=(65536—46080)%256 ;num2++;if(num2==20){num++;num2=0;m=num%10;m1=num/10;f=numf%10;f1=numf/10;s=nums%10;s1=nums/10;if(num==59){num=0;numf++;if(numf==59){numf=0;nums++;}if (nums==24)nums=0;}}}void delay(uint z){uint x,y;for(x=110;x〉0;x—-)for(y=z;y>0;y—-);}。
第4讲 单片机并行IO口的应用
(4)电机转动程序流程图
程序如下:
TUN: MOV R2,#0
;循环计数器
MOTO_L:
MOV DPTR,TABA2 ;正转数据表
SJMP TUN
MOTO_R:
MOV DPTR,TABA3 ;反转数据表
TUN1: MOV A,R2
MOVC A,@A+DPTR ;取输出参数
; 置P1口为输入 ;查是否有按键? ;延时20mS ;按键仍有效吗? ;是,等待按键释放 ;累计按键次数
;延时与显示
2.矩阵式键盘电路Βιβλιοθήκη 理与编程1. 矩阵式键盘的结构
矩阵式键盘结构如图所示, 它由行线和列线组成, 按键位于行线和列线的交叉点上。
2.按键的识别
当键盘上没有键闭合时,所有的
行线和列线断开,行线X0~X3呈高 电平。当某个键闭合时,该键对应 的行列线短路,行线的状态由列线 状态决定。如右表所示:
1.电路设计
2.应用程序 若要实现以下功能:
开始时,P1.0亮,延时1S后左移至P1.1亮,如此移到P1.7 亮后,8个灯全亮,延时2S后,P1.7灭,然后由P1.7至P1.0 逐位熄灭。程序如下
ORG START: MOV
MOV
1000H ;程序从1000H单元开始存放
A,#1 R0,#8 ;循环8次
JNB ACC.1,KS2 ;P1.1=0,转KS2
P1.7
JNB ACC.2,KS3 ;P1.2=0,转KS2
89C51
:
:
开关应用接口电路
JNB ACC.7,KS8 ;P1.7=0,转KS8
PASS:
四.独立式按键的程序处理
单片机驱动LED数码管电路及编程
单片机驱动LED数码管电路及编程单片机I/O的应用最典型的是通过I/O口与7段LED数码管构成显示电路,我们从常用的LED显示原理开始,详尽讲解利用单片机驱动LED数码管的电路及编程原理,目的在于通过这一编程范例,让初学者了解I/O口的编程原理,意在起举一反三,抛砖引玉的作用。
左图为实验电路图,我们使用80C51单片机,电容C1、C2和CRY1组成时钟振荡电路,这部分基本无需调试,只要元件可靠即会正常起振。
C3和R1为单片机的复位电路,80C51的并行口P1.0-P1.7直接与LED数码管的a-f引脚相连,中间接上限流电阻R3-R10。
值得一提的是,80C51并行口的输出驱动电流并非很大,为使LED有足够的亮度,LED数码管应选用高亮度的器件。
此外,图中的80C51还可选用C51系列的其它单片机,只要它们的指令系统兼容C51即可正常运行,程序可直接移植,例如选用低价Flash型的AT89C1051或2051(详细技术手册)等,它们的ROM可反复擦写,非常适合作实验用途。
程序清单:01 START: ORG 0100H ;程序起始地址02 MAIN: MOV R0,#00H ;从“0”开始显示03 MOV DPTR,#TABLE ;表格地址送数据指针04 DISP: MOV A,R0 ;送显示05 MOVC A,@A+ADPTR ;指向表格地址06 MOV P1,A ;数据送LED07 ACALL DELAY ;延时08 INC R0 ;指向下一个字符09 CJNE R0,#0AH,DISP ;未显示完,继续10 AJMP MAIN ;下一个循环11 DELAY: MOV R1,#0FFH ;延时子程序,延时时间赋值12 LOOP0: MOV R2,#0FFH13 LOOP1: DJNZ R2,LOOP114 DJNZ R1,LOOP015 RET ;子程序返回16 TABLE: DB 0C0H ;字型码表17 DB 0F9H18 DB 0A4H19 DB 0B0H20 DB 99H21 DB 92H22 DB 82H23 DB 0F8H24 DB 80H25 DB 90H26 END ;程序结束。
51单片机驱动数码管
单片机课程设计(51单片机AT89C51串并转换驱动数码管)班级:XXXXX姓名:XXXXX学号:XXXXX一、数码管因成本较低、驱动电路简单、既可以显示数字,又可以组合显示简单的图形,因此在工业控制、计数器、定时器等需要显示的场合得到广泛的应用。
单片机驱动数码管一般有静态驱动和动态驱动二种方式,静态驱动亮度高,驱动简单但是需要增加额外的驱动电 路,因此成本较高。
动态扫描亮度稍低,但是驱动电路比较简单,成本较低,因此应用比较广泛。
本章通过实例详细介绍数码管的二种驱动方法。
数码管一般由多个LED 发光二极管组成,常见的7段数码管内部由8个LED 组合而成,其中一个小数点。
可显示0到9 的数字、字符型A 到F 或一些特殊的字符。
1.给数码管段加上相应的数据.(显示0,送0XF9).2.给数码管位加上相应的电压.(第一位点亮,P10 = 0)3.指向下一位数码管.4.循环执行.一、四位一体数码管是有四个单只的数码管封装而成的,每个数码管的A 、B 、C 、D 、E 、F 、G 、DP 的八根引线并联在一起,一般成为段口;四个公共端单独引出,称为位选。
------------------------------------------------------------------------------- 数码管在电路结构上分为两类:一种共阳极,一种共阴极。
两种数码管的驱动方式是不同的,在实际应用中不能简单互换。
数码管在正常工作的时候,段口和位选都必须送入正确的电平信号。
如需数码管显示“1”只需给控制p01和p02低电平,另外六个p0口都为高电平。
A 、B 、C 、D 、E 、F 、G 、DP 各段口位分别对应p01~p07引脚,对应的段码为十六进制数。
二、AT89C51的管脚分布如下:VCC :供电电压。
GND :接地。
P0口:P0口为一个8位漏级开路双向I/O 口,每脚可吸收8TTL 门电流。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O 口,P1口缓冲器能接收输出4TTL 门电流。
LED数码管驱动电路ICM7218B及与MCS51单片机的接口
Jl 2 0 u. 4 0
文章编号 10 一 2920)0 04 一 4 0( 56 (04 S 一 04 0 】
L D数码管驱动电路 I M71B及 E C 28 与 MC 5 单片机的接口 S1
邹德 良
( 贵州大学 职业技术学院 教科处, 贵阳 500) 贵州 504
M V T , 10 8 工作地址 ; 1B O D R # 0H 7 P O 2 M V @ T , ; O X D RA P 输出控制字 CR . ; M D L P0 l 置 O E为动电路 IM 28 及与 M 5 单片机的接口 C 71B CS1
() M 28 5 由于I 71B本身没有工作地址, C 其选通是由M D O E和 WR共同完成的, 所以只需用 M V C O Xa ) DT , PRA指令就可以向IM 28 C 71B中写命令或数据, DT 而与 PR的值无关。但为了安全起见,PR中应 DT 指定某一地址单元, 以免与其它工作单元冲突而改写这些单元的数据
IM 28 的控制信号线只有两根, C 71B 数据线有8 IO I7其中高四位是复用的, 根 D 一D , 当写W I 信号 RT E 为低电平有效时, 此时若M D O E为高电平时, 数据线IO I7 由 D 一D 写人命令字, 其中只有I 一D 有意义, N I7 低四 位可不予理会, 可取任意值; 若此时M D O E为低电平时, 由数据线 IO I7 D 一D 写人显示数据; 在写人显 示数据时, M 28 是采用数据串 I 71B C 操作方式, 即在写人命令字后, 紧接着写人的是第一位要显示的数据 (O E M D 为低电 , 平)其次是第2 位数据, 接着是第 3 位数据, ……直到8 位数据都写完, M 28 I 71B C 才驱动 LD E 数码显示, 在没写够8 位数据时,E LD数码管全灭。当写人的数据超过 8 各时, M 28 I 71B对第九个 C 数据及以后的任何数据都不予理会。 . ) 注意:1在写人命令时, M 28 对低4 IO I3 ( I 71B C 位 D 一D 不予理会, 即可取任意值。 () C 28 71B 2 当IM 设定在译码方式时( 写人命令字时I5 "" , 71B D = O ) 28 对高4 I 一D 不予 IM C 位 N I7 理会, 即可取任意值。 () W I 是电 3写信号 RT E 平有效信号, 而不是边沿有效信号。 () 4若写人命令字时, 5= 0 则 IM 28 I " ” C 71B工作在非译码状态, D 根据写人命令字时 I6的状态不 D
51单片机 电机控制 输入速度 七段数码管显示 汇编程序
51单片机电机控制输入速度七段数码管
显示汇编程序
简介
本文档介绍了使用51单片机控制电机的方法,以及如何通过输入设置速度,并使用七段数码管显示相关信息的汇编程序。
电机控制
在使用51单片机控制电机之前,需要连接合适的电机驱动模块,并将其与单片机进行连接。
通过控制电机驱动模块的引脚,可以实现电机的正转、反转、停止等功能。
输入速度
可以通过外部的输入设备(如按键、旋钮等)来设置电机的速度。
通过读取输入设备的状态,可以在程序中动态地调整电机的速度。
七段数码管显示
可以通过七段数码管来显示相关信息,如电机的速度、转速等。
通过控制七段数码管的引脚,可以实现在数码管上显示相应的数字
或字符。
汇编程序
使用51汇编语言编写程序,通过设置相应的控制寄存器和引
脚状态,可以实现电机的控制和数码管的显示。
汇编程序需要包括
以下几个方面的功能:
- 初始化相关引脚和寄存器
- 读取输入设备的状态
- 根据输入设备的状态设置电机的速度
- 控制电机的正转、反转、停止等操作
- 更新七段数码管显示的内容
总结
本文档介绍了51单片机控制电机的方法,以及通过输入设备
设置速度和使用七段数码管显示信息的汇编程序。
通过合理地编写
汇编程序,可以实现电机的精确控制和相关信息的显示。
以上是本文档的大致内容,希望对您有所帮助。
51单片机控制流水灯和数码管【精选】
流水灯的操作
2013.03.22
• 点亮第一个灯; • 让第一个灯闪烁; • 从第一个灯依次点亮至最后一个灯;Fra bibliotek动态显示
动态显示的特点是将所有位数码管的段选线并 联在一起,由位选线控制是哪一位数码管有效。选 亮数码管采用动态扫描显示。所谓动态扫描显示即 轮流向各位数码管送出字形码和相应的位选,利用 发光管的余辉和人眼视觉暂留作用,使人的感觉好 像各位数码管同时都在显示。动态显示的亮度比静 态显示要差一些,所以在选择限流电阻时应略小于 静态显示电路中的。
C语言中的<<和>>
• 每执行一次<<操作,被操作数高位数丢失, 低位补零;
C语言中的<<和>>
• 每执行一次<<操作,被操作数低位数丢失, 高位补零;
任务
• 第一次一个管亮流动一次,第二次两个管 亮流动,依次到8个管亮,然后重复整个过 程。
• 先奇数亮再偶数亮,循环三次;一个灯上 下循环三次;两个分别从两边往中间流动 三次;再从中间往两边流动三次;8个全部 闪烁3次;关闭发光管,程序停止。
• 用8个发光管演示出8位二进制数累加过程。
呼吸灯的操作
• 灯光在微电脑控制之下完成由亮到暗的逐 渐变化,感觉像是在呼吸。
• 实现灯不同亮度的两种方法: 1 调节灯的保护电阻, 2 使用PWM。
数码管的操作
• 数码管的介绍 • 数码管的操作
g f GNDa b a
a
b
单片机驱动数码管电路
单片机驱动数码管电路数码管是一种常见的电子显示器件,它可以显示数字、字母和其他特殊字符。
而单片机作为一种集成电路,能够通过编程来控制外部设备的工作,因此可以很方便地用来驱动数码管。
本文将介绍单片机驱动数码管电路的原理和实现方法。
一、数码管的工作原理数码管由若干个发光二极管(LED)组成,每个发光二极管都有两个引脚:一个是正极,用于接收电流;另一个是负极,用于接收控制信号。
数码管通常分为共阳极和共阴极两种类型。
共阳极数码管的正极连接在Vcc(正电源)上,负极通过控制信号接地。
当控制信号接地时,相应的发光二极管会亮起;当控制信号断开连接时,相应的发光二极管会熄灭。
通过控制不同的发光二极管,可以显示不同的数字或字符。
共阴极数码管与共阳极数码管相反,正极通过控制信号接地,负极连接在Vcc上。
二、单片机驱动数码管的原理单片机可以通过IO口输出高低电平来控制数码管的工作。
以共阳极数码管为例,当IO口输出高电平时,相应的数码管发光二极管亮起;当IO口输出低电平时,相应的数码管发光二极管熄灭。
为了实现多位数码管的显示,通常需要使用译码器。
译码器可以将单片机输出的数字信号转换为对应的控制信号,从而实现对数码管的驱动。
常用的译码器有BCD译码器和数码管驱动IC等。
三、单片机驱动数码管的实现方法1. 硬件连接将单片机的IO口与数码管的控制引脚连接。
通过接线将单片机的IO口与译码器的输入引脚相连,然后将译码器的输出引脚与数码管的控制引脚相连。
同时,将数码管的电源引脚与电源连接,确保正极连接在Vcc上,负极连接在GND上。
2. 编程控制在编程时,首先需要定义数码管显示的内容。
可以使用数组或变量来存储需要显示的数字或字符。
然后,将需要显示的内容转换为对应的译码器输入信号,通过单片机的IO口输出给译码器。
最后,通过循环控制,不断更新数码管的显示内容,实现动态显示效果。
四、总结通过单片机驱动数码管电路,可以实现对数码管的灵活控制。
数码管显示实验报告
一、实验目的1. 理解数码管的工作原理及驱动方式。
2. 掌握51单片机控制数码管显示的基本方法。
3. 学会使用动态扫描显示技术实现多位数码管的显示。
4. 提高编程能力和实践操作能力。
二、实验原理数码管是一种常用的显示器件,它由多个发光二极管(LED)组成,可以显示数字、字母或其他符号。
根据LED的连接方式,数码管可分为共阴极和共阳极两种类型。
本实验使用的是共阳极数码管。
51单片机控制数码管显示的基本原理是:通过单片机的I/O口输出高低电平信号,控制数码管的各个段(a-g)的亮灭,从而显示相应的数字或符号。
动态扫描显示技术是将多个数码管连接到单片机的I/O口,通过快速切换各个数码管的显示状态,实现多位数码管的显示。
三、实验器材1. 51单片机实验板2. 共阳极数码管3. 电阻、电容等元件4. 仿真软件(如Proteus)5. 编译器(如Keil)四、实验步骤1. 搭建电路:按照实验原理图连接51单片机、数码管和电阻等元件。
2. 编写程序:使用Keil软件编写控制数码管显示的程序。
程序主要包括以下部分:a. 初始化:设置单片机的工作状态,配置I/O口等。
b. 显示函数:根据需要显示的数字或符号,控制数码管的各个段亮灭。
c. 动态扫描函数:实现多位数码管的动态显示。
3. 编译程序:将编写好的程序编译成机器码。
4. 仿真测试:使用Proteus软件对程序进行仿真测试,观察数码管的显示效果。
5. 实验验证:将程序烧录到51单片机实验板上,进行实际测试。
五、实验结果与分析1. 实验结果:通过仿真测试和实际测试,数码管能够正确显示0-9的数字。
2. 结果分析:实验结果表明,51单片机可以成功地控制数码管显示数字。
动态扫描显示技术能够有效地实现多位数码管的显示,提高了显示效率。
六、实验总结1. 通过本次实验,我们掌握了51单片机控制数码管显示的基本方法,提高了编程能力和实践操作能力。
2. 动态扫描显示技术能够有效地实现多位数码管的显示,提高了显示效率。
用单片机AT89C51设计一个2位的LED数码显示作为“秒表”—单片机课程设计
目录一、设计题目和要求: (2)二、设计目的: (2)三、设计内容: (3)四、课程设计心得体会 (25)五、参考文献 (26)六、课程设计指导教师评审标准及成绩评定 (27)附件1:秒表原理图(实际接线图) (28)附件2:仿真图1 (30)附件3:仿真图2 (31)一、设计题目和要求:题目三:秒表应用AT89C51的定时器设计一个2位的LED数码显示作为“秒表”:显示时间为00~99s,每秒自动加1,设计一个“开始”键,按下“开始”键秒表开始计时。
设计一个“复位”键,按下“复位”键后,秒表从0开始计时。
任务安排:李座负责绘制电路原理图;梁宗林负责收集资料及电子版整理;付忠林负责程序和仿真。
二、设计目的:1.进一步掌握AT89C51单片机的结构和工作原理;2.掌握单片机的接口技术及外围芯片的工作原理及控制方法;3.进一步掌握单片机程序编写及程序调试过程,掌握模块化程序设计方法;4.掌握PROTEUS仿真软件的使用方法;5.掌握LED数码管原理及使用方法。
6.掌握定时器、外部中断的设置和编程原理。
7.通过此次课程设计能够将单片机软硬件结合起来,对程序进行编辑,校验。
8.该课程设计通过单片机的定时器/计数器定时和计数原理,设计简单的计时器系统,拥有正确的计时、暂停、清零、复位功能,并同时可以用数码管显示。
三、设计内容:了解8051芯片的的工作原理和工作方式,使用该芯片对LED数码管进行显示控制,实现用单片机的端口控制数码管,显示分、秒,并能用按钮实现秒表起动、停止、清零功能,精确到1秒。
AT89C51单片机的主要工作特性:·内含4KB的FLASH存储器,擦写次数1000次;·内含28字节的RAM;·具有32根可编程I/O线;·具有2个16位可编程定时器;·具有6个中断源、5个中断矢量、2级优先权的中断结构;·具有1个全双工的可编程串行通信接口;·具有一个数据指针DPTR;·两种低功耗工作模式,即空闲模式和掉电模式;·具有可编程的3级程序锁定定位;AT89C51的工作电源电压为5(1±0.2)V且典型值为5V,最高工作频率为24MHz.AT89C51各部分的组成及功能:振荡器和时钟电路数据存储器128字节程序存储器14KBCPU 两个16位定时器计数器中断控制总线扩展控制器并行可编程I/O口可编程串行口内部总线外部中断扩展控制P0 P1 P2 P3 RXD TXD1.单片机的中央处理器(CPU )是单片机的核心,完成运算和操作控制,主要包括运算器和控制器两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
51单片机并行口驱动LED数码管显示电路及程序
介绍利用51单片机的一个并行口实现多个LED数码管显示的方法,给出了利用此方法设计的多路LED显示系统的硬件电路结构原理图和软件程序流程,同时给出了采用51汇编语言编写程序。
1 硬件电路
多位LED显示时,常将所有位的段选线并联在一起,由一个8位I/O口控制,而共阴极点或共阳极点分别由另一个8位I/O口控制;也可采用并行扩展口构成显示电路,通常,需要扩展器件管脚的较多,价格较高。
本文将介绍一种利用单片机的一个并行I/O口实现多个LED显示的简单方法,图1所示是该电路的硬件原理图。
其中,74LS138是3线-8线译码器,74LS164是8位并行输出门控串行输入移位寄存器,LED采用L05F型共阴极数码管。
显示时,其显示数据以串行方式从89C52的P12口输出送往移位寄存器74LS164的A、B 端,然后将变成的并行数据从输出端Q0~Q7输出,以控制开关管WT1~WT8的集电极,然后再将输出的LED段选码同时送往数码管LED1~LED8。
位选码由89C52的P14~P16口输出并经译码器74LS138送往开关管Y1~Y8的基极,以对数码管LED1~LED8进行位选控制,这样,8个数码管便以100ms的时间间隔轮流显示。
由于人眼的残留效应,这8个数码管看上去几乎是同时显示。
<51单片机并行口驱动LED数码管显示电路>
2 软件编程
该系统的软件编程采用MCS-51系列单片机汇编语言完成,并把显示程序作为一个子程序,从而使主程序对其进行方便的调用。
图2所示是其流程图。
具体的程序代码如下:
<51单片机并行口驱动LED数码管显示程序>。