全等三角形辅助线专题
专题全等三角形常见辅助线做法及典型例题
全等三角形辅助线做法总结 图中有角平分线;可向两边作垂线.. 也可将图对折看;对称以后关系现..角平分线平行线;等腰三角形来添.. 角平分线加垂线;三线合一试试看..线段垂直平分线;常向两端把线连.. 要证线段倍与半;延长缩短可试验..三角形中两中点;连接则成中位线.. 三角形中有中线;延长中线等中线..一、截长补短法和;差;倍;分截长法:在长线段上截取与两条线段中的一条相等的一段;证明剩余的线段与另一段相 等截取----全等----等量代换补短法:延长其中一短线段使之与长线段相等;再证明延长段与另一短线段相等延长 ----全等----等量代换例如:1;已知;如图;在△ABC 中;∠C =2∠B;∠1=∠2..求证:AB=AC+CD..2;已知:如图;AC ∥BD;AE 和BE 分别平分∠CAB 和∠DBA;CD 过点E .求证:1AE ⊥BE ; 2AB=AC+BD .二、图中含有已知线段的两个图形显然不全等或图形不完整时;添加公共边或一其中 一个图形为基础;添加线段构建图形..公共边;公共角;对顶角;延长;平行例如:已知:如图;AC 、BD 相交于O 点;且AB =DC;AC =BD;求证:∠A =∠D..三、延长已知边构造三角形例如:如图6:已知AC =BD;AD ⊥AC 于A ;BC ⊥BD 于B;求证:AD =BC四、遇到角平分线;可自角平分线上的某个点向角的两边作垂线“对折”全等例如:已知;如图;AC 平分∠BAD;CD=CB;AB>AD..求证:∠B+∠ADC=180..五、遇到中线;延长中线;使延长段与原中线等长“旋转”全等 例如:1如图;AD 为 △ABC 的中线;求证:AB +AC >2AD..三角形一边上的中线小于其他两边之和的一半2;已知:AB=4;AC=2;D 是BC 中点;AD 是整数;求AD..3;如图;已知:AD 是△ABC 的中线;且CD=AB;AE 是△ABD 的中线;求证:AC=2AE.六、遇到垂直平分线;常作垂直平分线上一点到线段两端的连线可逆 :遇到两组线段相等;可试着连接垂直平分线上的点 例如:在△ABC 中;∠ACB=90;AC=BC;D 为△ABC 外一点;且AD=BD;DE ⊥AC 交AC 的延长 线于E;求证:DE=AE+BC..七、遇到等腰三角形;可作底边上的高;或延长加倍法“三线合一”“对折”例如: 如图;ΔABC 是等腰直角三角形;∠BAC=90°;BD 平分∠ABC 交AC 于点D;CE 垂 直于BD;交BD 的延长线于点E..求证:BD=2CE..八、遇到中点为端点的线段时;延长加倍次线段例如:如图2:AD 为△ABC 的中线;且∠1=∠2;∠3=∠4;求证:BE +CF >EF九、过图形上某点;作特定的平行线“平移”“翻转折叠” 例如:如图;ΔABC 中;AB=AC;E 是AB 上一点;F 是AC 延长线上一点;连EF 交BC 于D; 若EB=CF..求证:DE=DF.. AD BCD CB A 110 图OC A EB D。
全等三角形常见五种辅助线添法专训(学生版)
全等三角形常见五种辅助线添法专训【目录】辅助线添法一 倍长中线法辅助线添法二 截长补短法辅助线添法三 旋转法辅助线添法四 作平行线法辅助线添法五 作垂线法【经典例题一倍长中线法】【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.【常见模型】1(2023春·吉林·八年级校考阶段练习)【阅读理解】数学兴趣小组活动时,老师提出如下问题:如图1,在△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明提出了如下解决方法,延长线段AD至点E,使DE=AD,连接BE.请根据小明的方法回答下列问题.(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.HL(2)探究得出AD的取值范围.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【问题解决】(3)如图2,在△ABC中,CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.【变式训练】1(2022秋·甘肃庆阳·八年级校考期末)小明遇到这样一个问题,如图1,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≅△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED≅△CAD用到的判定定理是:(用字母表示);(2)AD的取值范围是;(3)小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在△ABC中,AD为BC边上的中线,且AD平分∠BAC,求证:AB= AC.2(2023·江苏·八年级假期作业)(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接CE.①证明△ABD≌△ECD;②若AB=5,AC=3,设AD=x,可得x的取值范围是;(2)如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.3(2023·江苏·八年级假期作业)【观察发现】如图①,△ABC 中,AB =7,AC =5,点D 为BC 的中点,求AD 的取值范围.小明的解法如下:延长AD 到点E ,使DE =AD ,连接CE .在△ABD 与△ECD 中BD =DC∠ADB =∠EDCAD =DE∴△ABD ≅△ECD (SAS )∴AB =.又∵在△AEC 中EC -AC <AE <EC +AC ,而AB =EC =7,AC =5,∴<AE <.又∵AE =2AD .∴<AD <.【探索应用】如图②,AB ∥CD ,AB =25,CD =8,点E 为BC 的中点,∠DFE =∠BAE ,求DF 的长为.(直接写答案)【应用拓展】如图③,∠BAC =60°,∠CDE =120°,AB =AC ,DC =DE ,连接BE ,P 为BE 的中点,求证:AP ⊥DP .【经典例题二截长补短法】【模型分析】截长补短的方法适用于求证线段的和差倍分关系.截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段.该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等).【模型图示】(1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段.例:如图,求证BE+DC=AD方法:①在AD上取一点F,使得AF=BE,证DF=DC;②在AD上取一点F,使DF=DC,证AF=BE (2)补短:将短线段延长,证与长线段相等例:如图,求证BE+DC=AD方法:①延长DC至点M处,使CM=BE,证DM=AD;②延长DC至点M处,使DM=AD,证CM=BE1(2023·江苏·八年级假期作业)把两个全等的直角三角形的斜边重合,组成一个四边形ACBD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,∠MDN两边分别交AC、BC于点M、N,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的条件下,若将M、N改在CA、BC的延长线上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)【变式训练】1(2023·江苏·八年级假期作业)已知:如图,在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.若AE、CD为△ABC的角平分线.(1)求∠AFC的度数;(2)若AD=6,CE=4,求AC的长.2(2023·江苏·八年级假期作业)在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为△ABC的角平分线时,线段AB,AC,CD之间又有怎样的数量关系?不需要说明理由,请直接写出你的猜想.(2)如图③,当∠ACB≠90°,AD为△ABC的外角平分线时,线段AB,AC,CD之间又有怎样的数量关系?请写出你的猜想,并对你的猜想进行说明.3(2023·江苏·八年级假期作业)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠EAF=12∠BAD.(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.【经典例题三旋转法】【模型分析】旋转:将包含一条短边的图形旋转,使两短边构成一条边,证与长边相等.注:旋转需要特定条件(两个图形的短边共线),该方法常在半角模型中使用.【模型图示】例:如图,已知AB=AC,∠ABM=∠CAN=90°,求证BM+CN=MN方法:旋转△ABM至△ACF处,证NE=MN1(2022秋·湖北孝感·八年级统考期中)已知:△ABC≌△DEC,∠ACB=90°,∠B=32°.(1)如图1当点D在AB上,∠ACD.(2)如图2猜想△BDC与△ACE的面积有何关系?请说明理由.(温馨提示:两三角形可以看成是等底的)【变式训练】1(2023春·全国·八年级专题练习)(1)如图①,在正方形ABCD中,E、F分别是BC、DC上的点,且∠EAF=45°,连接EF,探究BE、DF、EF之间的数量关系,并说明理由;(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、DC上的点,且∠EAF= 1∠BAD,此时(1)中的结论是否仍然成立?请说明理由.22(2021秋·天津和平·八年级校考期中)在△BAC中,∠BAC=90°,AB=AC,AE是过A的一条直线,BD⊥AE于点D,CE⊥AE于E,(1)如图(1)所示,若B,C在AE的异侧,易得BD与DE,CE的关系是DE=;(2)若直线AE绕点A旋转到图(2)位置时,(BD<CE),其余条件不变,问BD与DE,CE的关系如何?请予以证明;(3)若直AE绕点A旋转到图(3)的位置,(BD>CE),问BD与DE,CE的关系如何?请直接写出结果,不需证明.3(2021秋·河南周口·八年级统考期末)在Rt△ABC中,∠ACB=90°,CA=CB,点D是直线AB上的一点,连接CD,将线段CD绕点C逆时针旋转90°,得到线段CE,连接EB.(1)操作发现如图1,当点D在线段AB上时,请你直接写出AB与BE的位置关系为;线段BD、AB、EB的数量关系为;(2)猜想论证当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;(3)拓展延伸若AB=5,BD=7,请你直接写出△ADE的面积.【经典例题四作平行线法】2(2022秋·江苏·八年级专题练习)如图所示:△ABC是等边三角形,D、E分别是AB及AC延长线上的一点,且BD=CE,连接DE交BC于点M.求让:MD=ME【变式训练】4(2022秋·江苏·八年级专题练习)P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA =CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.5(2022秋·八年级课时练习)读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DB上,且∠BAE=∠CDE,求证:AB=CD分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证明AB =CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.图(1):延长DE到F使得EF=DE图(2):作CG⊥DE于G,BF⊥DE于F交DE的延长线于F图(3):过C点作CF∥AB交DE的延长线于F.6(2023春·全国·七年级专题练习)已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M.请探究:(1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论.(2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;(3)如图(3),当点E在CA的延长线上,点D在线段AB上(点D不与A,B重合),DE所在直线与直线BC交于点M,若CE=2BD,请直接写出线段MD与线段ME的数量关系.【经典例题五作垂直法】1(2022秋·湖北武汉·八年级统考期中)我们定义:三角形一个内角的平分线所在的直线与另一个内角相邻的外角的平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角.①直接写出∠E与∠A的数量关系;②连接AE,猜想∠BAE与∠CAE的数量关系,并说明理由.(2)如图2,四边形ABCD中,∠ABC=∠ADC=90°,点E在BD的延长线上,连CE,若已知DE=DC =AD,求证:∠BEC是△ABC中∠BAC的遥望角.【变式训练】1(2022秋·八年级课时练习)如图1,已知四边形ABCD,连接AC,其中AD⊥AC,BC⊥AC,AC =BC,延长CA到点E,使得AE=AD,点F为AB上一点,连接FE、FD,FD交AC于点G.(1)求证:△EAF≌△DAF;(2)如图2,连接CF,若EF=FC,求∠DCF的度数.已知:如图,点E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE到点F,使EF=DE,连接BF;②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G.(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形请用二种不同的方法证明.【重难点训练】4(2023·江苏·八年级假期作业)如图,AD为△ABC中BC边上的中线(AB>AC).(1)求证:AB-AC<2AD<AB+AC;(2)若AB=8cm,AC=5cm,求AD的取值范围.5(2023·江苏·八年级假期作业)如图1,在△ABC中,若AB=10,BC=8,求AC边上的中线BD的取值范围.(1)小聪同学是这样思考的:延长BD至E,使DE=BD,连接CE,可证得△CED≌△ABD.①请证明△CED≌△ABD;②中线BD的取值范围是.(2)问题拓展:如图2,在△ABC中,点D是AC的中点,分别以AB,BC为直角边向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中,AB=BM,BC=BN,∠ABM=∠NBC=∠90°,连接MN.请写出BD与MN的数量关系,并说明理由.6(2023春·全国·七年级专题练习)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.7(2023·江苏·八年级假期作业)(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.8(2023·江苏·八年级假期作业)课堂上,老师提出了这样一个问题:如图1,在△ABC中,AD平分∠BAC交BC于点D,且AB+BD=AC,求证:∠ABC=2∠ACB,小明的方法是:如图2,在AC上截取AE,使AE=AB,连接DE,构造全等三角形来证明.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段AB构造全等三角形进行证明.辅助线的画法是:延长AB至F,使BF=,连接DF请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在△ABC的内部,AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,且AB+BD=AC.求证:∠ABC=2∠ACB.请你解答小芸提出的这个问题(书写证明过程);(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在△ABC中,∠ABC=2∠ACB,点D在边BC上,AB+BD=AC,那么AD平分∠BAC小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.9(2023春·江苏·八年级专题练习)如图,在锐角ΔABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.10(2023·江苏·八年级假期作业)问题背景:如图1:在四边形ABCD中,AB=AD.∠BAD=120°.∠B=∠ADC=90°.E,F分别是BC.CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠ADF=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,(1)中结论是否仍然成立,并说明理由;(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请直接写出它们之间的数量关系.11(2023·全国·九年级专题练习)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,线段EF、BE、FD之间的关系是;(不需要证明)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.12(2023春·全国·七年级期末)(1)问题引入:如图1,点F是正方形ABCD边CD上一点,连接AF,将△ADF绕点A顺时针旋转90°与△ABG重合(D与B重合,F与G重合,此时点G,B,C在一条直线上),∠GAF的平分线交BC于点E,连接EF,判断线段EF与GE之间有怎样的数量关系,并说明理由.(2)知识迁移:如图2,在四边形ABCD中,∠ADC+∠B=180°,AB=AD,E,F分别是边BC,CD延长线上的点,连接AE,AF,且∠BAD=2∠EAF,试写出线段BE,EF,DF之间的数量关系,并说明理由.(3)实践创新:如图3,在四边形ABCD中,∠ABC=90°,AC平分∠DAB,点E在AB上,连接DE,CE,且∠DAB=∠DCE=60°,若DE=a,AD=b,AE=c,求BE的长.(用含a,b,c的式子表示)13(2022秋·八年级课时练习)如图,点P为等边△ABC的边AB上一点,Q为BC延长线上一点,AP=CQ,PQ交AC于D,(1)求证:DP=DQ;(2)过P作PE⊥AC于E,若BC=4,求DE的长.14(2022秋·全国·八年级专题练习)如图,在△ABC中,AC=BC,AD平分∠CAB.(1)如图1,若ACB=90°,求证:AB=AC+CD;(2)如图2,若AB=AC+BD,求∠ACB的度数;(3)如图3,若∠ACB=100°,求证:AB=AD+CD.15(2023·全国·九年级专题练习)通过类比联想、引申拓展典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.【解决问题】如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF =45°,连接EF ,则EF =BE +DF ,试说明理由.证明:延长CD 到G ,使DG =BE ,在△ABE 与△ADG 中,AB =AD∠B =∠ADG =90°BE =DG∴△ABE ≌△ADG 理由:(SAS )进而证出:△AFE ≌___________,理由:(__________)进而得EF =BE +DF .【变式探究】如图,四边形ABCD 中,AB =AD ,∠BAD =90°点E 、F 分别在边BC 、CD 上,∠EAF =45°.若∠B 、∠D 都不是直角,则当∠B 与∠D 满足等量关系________________时,仍有EF =BE +DF .请证明你的猜想.【拓展延伸】如图,若AB =AD ,∠BAD ≠90°,∠EAF ≠45°,但∠EAF =12∠BAD ,∠B =∠D =90°,连接EF ,请直接写出EF 、BE 、DF 之间的数量关系.。
全等三角形辅助线专题
1、如图,在△ABC中,AD是∠BAC的角平分线,AC=AB+BD,求证:∠B=2∠C证明:在AC上截取AE=AB,连结DE∵AD是∠BAC的角平分线∴∠BAD=∠EAD在△BAD与△EAD中,有:AB=AE (已知)∠BAD=∠EAD (已证)AD=AD (公共边)∴△BAD≌△EAD (SAS)∴∠B=∠AED (全等三角形对应角相等)∵∠AED=∠EDC+∠C (三角形的外角等于不相邻的内角和)∴∠B=∠EDC+∠C (等量代换)∵△BAD≌△EAD (已证)∴BD=ED (全等三角形对应边相等)∵AC=AB+BD (已知)AB=AE (已知)BD=ED (已证)∴ED=CE (等量代换)∴∠C=∠EDC (等边对等角)∵∠B=∠EDC+∠C (已证)∴∠B=2∠C2、如图,在△ABC中,AD是∠BAC的角平分线,AB>AC,试判断AB-AC与BD-CD的大小并说明理由。
证明:在AB上截取AE=AC,连结DE∵AD是∠CAB的角平分线∴∠CAD=∠EAD在△CAD与△EAD中,有:AC=AE (已知)∠CAD=∠EAD (已证)AD=AD (公共边)∴△CAD≌△EAD (SAS)∴CD=ED (全等三角形对应边相等)∵AC=AE (已知)∴AB-AC=AB-AE=BE (等量代换)∵BD-CD=BD-DE<BE (三角形两边之差少于第三边)∴BD-CD=AB-AC3、如图,O为∠BAC内一点,且AB=AC,OB=OC,反向延长OB交AC于D,反向延长OC交AB于E,求证:AD=AE证明方法一:连结BC∵AB=AC,OB=OC∴∠ABC=∠ACB,∠OBC=∠OCB (等边对等角)∴∠ABC-∠OBC=∠ACB-∠OBC∴∠ABD=∠ACE在△ABD与△ACE中,有:∠ABD=∠ACE (已证)AB=AC (已知)∠A=∠A (公共角)∴△ABD≌△ACE (ASA)∴AD=AE (全等三角形对应边相等)证明方法二:连结AO在△AOB与△AOC中,有:OB=OC (已知)AB=AC (已知)AO=AO (公共边)∴△AOB≌△AOC (SSS)∴∠ABD=∠ACE (全等三角形对应角相等)在△ABD与△ACE中,有:∠ABD=∠ACE (已证)AB=AC (已知)∠BAC=∠CAB (公共角)∴△ABD≌△ACE (ASA)∴AD=AE (全等三角形对应边相等)4、在△ABC中,AB=6,AC=8,D是BC的中点。
全等三角形(辅助线)
全等三角形类型一、巧引辅助线构造全等三角形(1).倍长中线法:1、已知,如图,△ABC 中,D 是BC 中点,DE ⊥DF,试判断BE +CF 与EF 的大小关系,并证明你的结论. FED C B A(答案与解析)BE +CF >EF ;证明:延长FD 到G ,使DG =DF,连结BG 、EG∵D 是BC 中点∴BD =CD又∵DE ⊥DF在△EDG 和△EDF 中ED ED EDG EDF DG DF =⎧⎪∠=∠⎨⎪=⎩∴△EDG ≌△EDF (SAS )∴EG =EF在△FDC 与△GDB 中⎪⎩⎪⎨⎧=∠=∠=DG DF BD CD 21∴△FDC ≌△GDB(SAS)∴CF =BG∵BG +BE >EG ∴BE +CF >EF(点评)因为D 是BC 的中点,按倍长中线法,倍长过中点的线段DF ,使DG =DF,证明△EDG ≌△EDF ,△FDC≌△GDB,这样就把BE、CF与EF线段转化到了△BEG中,利用两边之和大于第三边可证.有中点的时候作辅助线可考虑倍长中线法(或倍长过中点的线段).举一反三:(变式)已知:如图所示,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.(答案)证明:延长CE至F使EF=CE,连接BF.∵EC为中线,∴AE=BE.在△AEC与△BEF中,,,,AE BEAEC BEFCE EF=⎧⎪∠=∠⎨⎪=⎩∴△AEC≌△BEF(SAS).∴AC=BF,∠A=∠FBE.(全等三角形对应边、角相等)又∵∠ACB=∠ABC,∠DBC=∠ACB+∠A,∠FBC=∠ABC+∠A.∴AC=AB,∠DBC=∠FBC.∴AB=BF.又∵BC为△ADC的中线,∴AB=BD.即BF=BD.在△FCB与△DCB中,,,,BF BDFBC DBCBC BC=⎧⎪∠=∠⎨⎪=⎩∴△FCB≌△DCB(SAS).∴CF=CD.即CD=2CE.(2).作以角平分线为对称轴的翻折变换构造全等三角形2、已知:如图所示,在△ABC中,∠C=2∠B,∠1=∠2.求证:AB=AC+CD.(答案与解析)证明:在AB上截取AE=AC.在△AED 与△ACD 中,()12()()AE AC AD AD =⎧⎪∠=∠⎨⎪=⎩已作,已知,公用边,∴ △AED ≌△ACD (SAS ).∴ ∠AED =∠C(全等三角形对应边、角相等).又∵ ∠C =2∠B ∴∠AED =2∠B .由图可知:∠AED =∠B +∠EDB ,∴ 2∠B =∠B +∠EDB .∴ ∠B =∠EDB .∴ BE =ED .即BE =CD .∴ AB =AE +BE =AC +CD(等量代换).(点评)本题图形简单,结论复杂,看似无从下手,结合图形发现AB >AC .故用截长补短法.在AB 上截取AE =AC .这样AB 就变成了AE +BE ,而AE =AC .只需证BE =CD 即可.从而把AB =AC +CD 转化为证两线段相等的问题.举一反三:(变式)如图,AD 是ABC ∆的角平分线,H ,G 分别在AC ,AB 上,且HD =BD.(1)求证:∠B 与∠AHD 互补;(2)若∠B +2∠DGA =180°,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并加以证明.(答案)证明:(1)在AB 上取一点M, 使得AM =AH, 连接DM.∵ ∠CAD =∠BAD, AD =AD, ∴ △AHD ≌△AMD. ∴ HD =MD, ∠AHD =∠AMD.∵ HD =DB, ∴ DB = MD. ∴ ∠DMB =∠B. ∵ ∠AMD +∠DMB =180︒,∴ ∠AHD +∠B =180︒. 即 ∠B 与∠AHD 互补.(2)由(1)∠AHD =∠AMD, HD =MD, ∠AHD +∠B =180︒.∵ ∠B +2∠DGA =180︒,∴ ∠AHD =2∠DGA.∴ ∠AMD =2∠DGM.∵ ∠AMD =∠DGM +∠GDM. ∴ 2∠DGM =∠DGM +∠GDM.∴ ∠DGM =∠GDM. ∴ MD =MG.∴ HD = MG.∵ AG = AM +MG, ∴ AG = AH +HD.(3).利用截长(或补短)法作构造全等三角形:M G H D CB A3、如图所示,已知△ABC 中AB >AC ,AD 是∠BAC 的平分线,M 是AD 上任意一点,求证:MB -MC <AB -AC .(答案与解析)证明:因为AB >AC ,则在AB 上截取AE =AC ,连接ME .在△MBE 中,MB -ME <BE (三角形两边之差小于第三边).在△AMC 和△AME 中,()()()AC AE CAM EAM AM AM =⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边,∴ △AMC ≌△AME (SAS ).∴ MC =ME (全等三角形的对应边相等).又∵ BE =AB -AE ,∴ BE =AB -AC ,∴ MB -MC <AB -AC .(点评)因为AB >AC ,所以可在AB 上截取线段AE =AC ,这时BE =AB -AC ,如果连接EM ,在△BME中,显然有MB -ME <BE .这表明只要证明ME =MC ,则结论成立.充分利用角平分线的对称性,截长补短是关键.举一反三:(变式)如图,AD 是△ABC 的角平分线,AB >AC,求证:AB -AC >BD -DC(答案)证明:在AB 上截取AE =AC,连结DE∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD⎪⎩⎪⎨⎧=∠=∠=AD AD CAD BAD AC AE 在△AED 与△ACD 中∴△AED ≌△ADC (SAS )∴DE =DC 在△BED 中,BE >BD -DC即AB -AE >BD -DC ∴AB -AC >BD -DCE DC B A(4).在角的平分线上取一点向角的两边作垂线段.4、如图所示,已知E 为正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE .求证:AF =AD +CF .(答案与解析)证明: 作ME ⊥AF 于M ,连接EF .∵ 四边形ABCD 为正方形,∴ ∠C =∠D =∠EMA =90°.又∵ ∠DAE =∠FAE ,∴ AE 为∠FAD 的平分线,∴ ME =DE .在Rt △AME 与Rt △ADE 中,()()AE AE DE ME =⎧⎨=⎩公用边,已证, ∴ Rt △AME ≌Rt △ADE(HL).∴ AD =AM(全等三角形对应边相等).又∵ E 为CD 中点,∴ DE =EC .∴ ME =EC .在Rt △EMF 与Rt △ECF 中,()(ME CE EF EF =⎧⎨=⎩已证,公用边), ∴ Rt △EMF ≌Rt △ECF(HL).∴ MF =FC(全等三角形对应边相等).由图可知:AF =AM +MF ,∴ AF =AD +FC(等量代换).(点评)与角平分线有关的辅助线: 在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段. 四边形ABCD 为正方形,则∠D =90°.而∠DAE =∠FAE 说明AE 为∠FAD 的平分线,按常规过角平分线上的点作出到角两边的距离,而E 到AD 的距离已有,只需作E 到AF 的距离EM 即可,由角平分线性质可知ME =DE .AE =AE .Rt △AME 与Rt △ADE全等有AD =AM .而题中要证AF =AD +CF .根据图知AF =AM +MF .故只需证MF =FC 即可.从而把证AF =AD +CF 转化为证两条线段相等的问题.5、如图所示,在△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,且AE 垂直BD 的延长线于E ,12AE BD ,求证:BD 是∠ABC 的平分线. (答案与解析)证明:延长AE 和BC ,交于点F ,∵AC ⊥BC ,BE ⊥AE ,∠ADE=∠BDC (对顶角相等),∴∠EAD+∠ADE=∠CBD+∠BDC .即∠EAD=∠CBD . 在Rt △ACF 和Rt △BCD 中.所以Rt △ACF ≌Rt △BCD (ASA ).则AF=BD (全等三角形对应边相等).∵AE=BD ,∴AE=AF ,即AE=EF . 在Rt △BEA 和Rt △BEF 中,则Rt △BEA ≌Rt △BEF (SAS ).所以∠ABE=∠FBE (全等三角形对应角相等),即BD 是∠ABC 的平分线.(点评)如果由题目已知无法直接得到三角形全等,不妨试着添加辅助线构造出三角形全等的条件,使问题得以解决.平时练习中多积累一些辅助线的添加方法.类型二、全等三角形动态型问题6、在△ABC 中,∠ACB =90°,AC =BC ,直线l 经过顶点C ,过A ,B 两点分别作l 的垂线AE ,BF ,垂足分别为E ,F 。
全等三角形证明之辅助线,附练习题含答案
全等三角形证明之辅助线讲义➢ 知识与方法梳理1. 为了解决几何问题,在原图的基础上另外添加的直线或线段称为辅助线.辅助线通常画成虚线.辅助线的原则:添加辅助线,构造新图形,形成新关系,建立已知和未知之间的桥梁,把问题转化成自己已经会解的情况. 辅助线的作用:①把分散的条件转为集中; ②把复杂的图形转化为基本图形.添加辅助线的注意事项:明确目的,多次尝试.2. 要证明边相等(或角相等),可以考虑证明它们所在的三角形全等;要证全等,需要找3组条件. ➢ 例题示范例:已知:如图,在△ABC 中,∠C =90°,D 是AB 边上一点,AD =AC ,过点D 作DE ⊥AB ,交BC 于点E . 求证:CE =DE . 【思路分析】 ① 读题标注:② 梳理思路:要证CE =DE ,考虑把这两条线段放在两个三角形中证全等,利用全等三角形对应边相等来证明.观察图形,发现不存在全等的三角形.结合条件,AC =AD ,∠C =∠ADE =90°,考虑连接AE ,证明△ACE ≌△ADE . 【过程书写】 证明:如图,连接AE ∵DE ⊥AB ∴∠ADE =90° ∵∠C =90° ∴∠C =∠ADE在Rt △ACE 和Rt △ADE 中AE AE AC AD=⎧⎨=⎩(公共边)(已知)∴Rt △ACE ≌Rt △ADE (HL ) ∴CE =DE (全等三角形对应边相等)EDC AEDBAEDBCA➢练习题BFEAC D7. 已知:如图,BD ,CE 是△ABC 的高,点P 在BD 的延长线上,BP =AC ,点Q 在CE 上,CQ =AB .判断线段AP 和AQ 的数量和位置关系,并加以证明.8. 已知:如图,∠B =∠D ,AB =CD ,AD ∥BC ,E ,F 分别是AD ,BC 的中点.求证:AF =CE .9. 已知:如图,B ,C ,F ,E 在同一条直线上,AB ,DE 相交于点G ,且BC =EF ,GB =GE ,∠A =∠D .求证:DC =AF .10. 已知:如图,∠C =∠F ,AB =DE ,DC =AF ,BC =EF .求证:AB ∥DE .11. 已知:如图,AB ∥CD ,AD ∥BC ,E ,F 分别是AD ,BC 的中点.求证:BE =DF .QPEDCBACAEF B DDGC AB EFFEBAD CF E B A DC12. 已知:如图,在正方形ABCD 中,AD =AB ,∠DAB =∠B =90°,点E ,F 分别在AB ,BC 上,且AE =BF ,AF 交DE 于点G . 求证:DE ⊥AF .连接BM ,交CN 于点F .有下列结论:①∠AMB =∠ANB ;②△ACE ≌△MCF ;③CE =CF ;④EN =FB .其中正确结论的序号是_________________.【参考答案】1. 证明:如图,连接AD在△ABD 和△DCA 中AB DCBD CAAD DA =⎧⎪=⎨⎪=⎩(已知)(已知)(公共边) ∴△ABD ≌△DCA (SSS )∴∠ABO=∠DCO (全等三角形对应角相等) 2. 证明:如图,连接AC∵AB ∥CDGFEDCBANM EB AFC∴∠CAB =∠ACD ∵AD ∥BC ∴∠DAC =∠BCA 在△ABC 和△CDA 中CAB ACDAC CABCA DAC ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(公共边)(已证) ∴△ABC ≌△CDA (ASA )∴AB =CD ,BC =DA (全等三角形对应边相等) 3. 证明:如图,连接AC ,AD在△ABC 和△AED 中,AB AE B EBC ED =⎧⎪∠=∠⎨⎪=⎩(已知)(已知)(已知) ∴△ABC ≌△AED (SAS )∴AC =AD (全等三角形对应边相等) ∵F 是CD 的中点 ∴CF =DF在△ACF 和△ADF 中,AC AD AF AFCF DF =⎧⎪=⎨⎪=⎩(已证)(公共边)(已证) ∴△ACF ≌△ADF (SSS )∴∠CFA =∠DFA (全等三角形对应角相等) ∵∠CFA +∠DFA =180° ∴∠CFA =90° ∴AF ⊥CD4. 证明:如图,过点A 作AD ⊥BC 于点D∵AD ⊥BC∴∠ADB =∠ADC=90° 在△ADB 和△ADC 中,B CADB ADCAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(公共边) ∴△ADB ≌△ADC (AAS )∴AB =AC (全等三角形对应边相等) 5. 证明:如图,过点B 作BF ⊥AC 于点FA DBCFCBEDAAD B C6. ∵BC ⊥AD∴∠ACE =∠BCD =90° 在Rt △ACE 和Rt △BCD 中AE BD CE CD =⎧⎨=⎩(已知)(已知)∴Rt △ACE ≌Rt △BCD (HL )∴∠CAE =∠CBD (全等三角形对应角相等) ∵∠ACE =90° ∴∠CAE +∠AEC =90° ∵∠AEC =∠BEF ∴∠CBD +∠BEF =90° ∴∠BFE =90° ∴AF ⊥BD7. 解:AP =AQ 且AP ⊥AQ ,理由如下:如图,∵BD ⊥AC ,CE ⊥AB ∴∠BEQ =∠BDC =∠ADP =90° ∴∠1+∠3=90° ∠2+∠4=90° ∵∠3=∠4 ∴∠1=∠2在△ABP 和△QCA 中54321QCB PE DA1 2 AB QC BP CA =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已知) ∴△ABP ≌△QCA (SAS )∴AP =AQ (全等三角形对应边相等) ∠P =∠5(全等三角形对应角相等) ∵∠ADP =90° ∴∠P +∠PAD =90° ∴∠5+∠PAD =90° 即∠QAP =90° ∴AP =AQ 且AP ⊥AQ 8. 证明:如图,连接AC∵AD ∥BC ∴∠DAC =∠BCA 在△ABC 和△CDA 中,∴△ABC ≌△CDA (AAS )∴BC =DA (全等三角形对应边相等) ∵E ,F 分别是AD ,BC 的中点 ∴1122BF BC DE AD ==, ∴BF =DE在△ABF 和△CDE 中,∴△ABF ≌△CDE (SAS )∴AF =CE (全等三角形对应边相等)9. 证明:如图,过点G 作GH ⊥BE 于点H∵GH ⊥BE∴∠GHB =∠GHE =90° 在Rt △GHB 和Rt △GHE 中,BCA DAC B DAB CD (已证)(已知)(公共边)∠=∠⎧⎪∠=∠⎨⎪=⎩AB CD B DBF DE (已知)(已知)(公共边)=⎧⎪∠=∠⎨⎪=⎩H FBA C GDGB GEGH GH=⎧⎨=⎩(已知)(公共边) ∴Rt △GHB ≌Rt △GHE (HL )∴∠B =∠E (全等三角形对应角相等) ∵BC =EF ∴BC +CF =EF +CF 即BF =EC在△ABF 和△DEC 中,A DB EBF EC ∠=∠⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已证) ∴△ABF ≌△DEC (AAS ) ∴DC =AF10. 证明:如图,连接BE在△AEF 和△DBC 中,AF DCF CEF BC =⎧⎪∠=∠⎨⎪=⎩(已知)(已知)(已知) ∴△AEF ≌△DBC (SAS )∴AE =DB (全等三角形对应边相等) 在△ABE 和△DEB 中,AE DB AB DEEB BE =⎧⎪=⎨⎪=⎩(已证)(已知)(公共边) ∴△ABE ≌△DEB (SSS )∴∠ABE =∠DEB (全等三角形对应角相等) ∴AB ∥DE11. 证明:如图,连接BDCD ABE F∵AB ∥CD ,AD ∥BC∴∠ABD =∠CDB ,∠ADB =∠CBD 在△ABD 和△CDB 中,ABD CDBBD DBADB CBD ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(公共边)(已证) ∴△ABD ≌△CDB (ASA )∴AD =CB (全等三角形对应边相等) ∵E ,F 分别是AD ,BC 的中点 ∴DE =BF在△BED 和△DFB 中,DE BF ADB CBDBD DB =⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(公共边) ∴△BED ≌△DFB (SAS )∴BE =DF (全等三角形对应边相等) 12. 证明:如图,在△DAE 和△ABF 中AD BA DAE B AE BF =⎧⎪=⎨⎪=⎩(已知)∠∠(已知)(已知) ∴△DAE ≌△ABF (SAS )∴∠1=∠2(全等三角形对应角相等) ∵∠DAB =90° ∴∠2+∠3=90° ∴∠1+∠3=90° ∴∠AGD =90° ∴DE ⊥AF 13. B 14. ②③④CDA B E F ABCDEF G第7题图312。
全等三角形六种辅助线方法及例题
全等三角形六种辅助线方法及例题全等三角形是初中数学中一个非常重要的概念,掌握全等三角形的判定方法和辅助线方法对于解题至关重要。
本文将介绍全等三角形的六种辅助线方法,并结合例题进行详细讲解。
一、辅助线法1.等角分线法:将三角形内角的平分线相互交点构成的点与三角形的另外一个顶点相连,得到一条辅助线。
这条辅助线将三角形分成两个等角的小三角形,从而得到相似或全等三角形。
2.中线法:将三角形任意两边的中点相连,得到三角形的中线。
相等的中线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
3.高线法:将三角形内任意一条边的垂线向另外两边引出,得到三角形的高线。
相等的高线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
4.角平分线法:将三角形内角的平分线相互交点构成的点相连,得到三角形的角平分线。
相等的角平分线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
5.角平分线中垂线法:将三角形内角的平分线的中垂线相互交点构成的点相连,得到三角形的角平分线中垂线。
相等的角平分线中垂线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
6.外心连线法:将三角形外接圆心与三角形三个顶点分别相连,得到三条辅助线。
这三条辅助线相等,将三角形分成三个面积相等的小三角形,从而得到相似或全等三角形。
二、例题解析1.已知△ABC,点D,E分别为BC,AB边上的中点,连接AD,BE相交于点F,求证:△DEF≌△ABC。
解析:由题意可知,△ABC是由两个等腰三角形组成的,因此可使用中线法证明两个三角形的全等。
由于D,E分别是BC,AB边上的中点,因此DE是AC中线,即DE=1/2AC;同理,AE是BC中线,AF=1/2BC。
因此,△ADB和△AEC是等腰三角形,且AD=EC,AB=AB,∠BAC=∠BAC,因此△ADB≌△AEC。
又因为DE是AC中线,BF是AE中线,因此DE=1/2AC,BF=1/2AE。
(完整版)全等三角形常用辅助线做法
五种辅助线助你证全等姚全刚在证明三角形全等时有时需增加辅助线,对学习几何证明不久的学生而言常常是难点.下面介绍证明全等常常有的五种辅助线,供同学们学习时参照.一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同素来线上时,平时能够考虑用截长补短的方法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例 1.如图 1,在△ ABC 中,∠ ABC=60 °, AD 、CE 分别均分∠ BAC 、∠ ACB .求证:AC=AE+CD .解析:要证AC=AE+CD ,AE 、CD 不在同素来线上.故在AC 上截取 AF=AE ,则只要证明 CF=CD .证明:在 AC 上截取 AF=AE ,连接 OF.∵ AD 、 CE 分别均分∠ BAC 、∠ ACB ,∠ ABC=60 °∴∠ 1+∠ 2=60 °,∴∠ 4=∠ 6=∠ 1+∠ 2=60 °.显然,△ AEO ≌△ AFO ,∴∠ 5=∠4=60°,∴∠ 7=180°-(∠ 4+ ∠ 5) =60 °在△ DOC 与△ FOC 中,∠ 6=∠ 7=60°,∠ 2=∠ 3, OC=OC∴△ DOC ≌△ FOC, CF=CD∴ AC=AF+CF=AE+CD.截长法与补短法,详尽作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
例2:如图甲, AD∥BC,点 E 在线段 AB上,∠ ADE=∠CDE,∠ DCE=∠ECB。
求证: CD=AD+BC。
思路解析:1)题意解析:此题观察全等三角形常有辅助线的知识:截长法或补短法。
2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在 CD上截取 CF=CB,只要再证 DF=DA即可,这就转变成证明两线段相等的问题,进而达到简化问题的目的。
全等三角形辅助线训练专题
全等三角形辅助线训练专题【倍长中线】特点:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以构造全等三角形,从而进行边的等量代换。
典例分析例1 已知AD 是△ABC 的中线,AB =4,AC =3,求AD 的取值范围.例2 如图,AD 是△ABC 的中线,点E 、F 分别是AB 、AC 上,且DE ⊥DF ,求证:BE +CF >EF .C【截长补短】截长:1.过某一点作长边的垂线;2.在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
补短:1.延长短边;2.通过延长等方式使两短边拼合到一起。
典例分析例3 如图,四边形ABDC 中,∠D =∠ABD =90°,点O 为BD 中,且OA 平分∠BAC .求证:AB +CD =AC .例4 如图,AB <BC ,已知∠1=∠2,P 为BN 上的一点,PF ⊥BC 于F ,P A =PC ,求证:AB +BC =2BF .N21F P C BA例5 如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD.【构造一线三直角】利用垂直相等作垂线构造全等三角形,实现坐标与线段的转化典例分析例6 如图,在平面直角坐标系中,点A的坐标为(-2,0),点B的坐标为(0,n)以点B为直角顶点,点C在第二象限内,作等腰直角△ABC,则点C的坐标是____________.(用n表示)例7 如图,△ACB为等腰直角三角形,A(-1,0),C(1,3),AC⊥BC,求B的坐标.例8 如图,∠BAC=90°,AB=AC,且B(-3,4),C(4,0),求A点坐标.例9 如图,△ACB为等腰直角三角形,AC=BC,AC⊥BC,A(0,3),C(1,0).求B的坐标.例10 如图,AB=AC,且AB⊥AC,若C(0,-1),B(-4,0),求点A点坐标.例11 如图1,OA=2,OB=4,以A为顶点,AB为腰在第三象限作等腰Rt△ABC,(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,P A为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP-DE的值;(3)如图3,已知点F坐标为(-2,-2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y轴的负半轴上沿负方向运动时,则m+n的定值,求出其值.。
辅助线——全等三角形专题训练
辅助线——全等三角形专题训练点G连接B,交MN于点H,连接DH,因为∠ABC为外角,所以∠ABH=∠ABC/2。
又∠HMD=90度,所以∠XXX=90度-∠ABH,即∠DMH=∠ABC/2。
因为∠XXX∠ABH,所以∠DGM=∠ABC/2,又因为∠DGM=∠MBN。
所以∠XXX∠ABC/2,所以∠NMB=90度-∠ABC/2,所以∠XXX∠NMB-∠DMH=90度-∠ABC/2-∠ABC/2=90度-∠ABC。
又因为∠MDN=90度,所以∠XXX=90度-∠MDN=∠ABC。
所以∠XXX∠XXX-∠XXX∠ABC-(90度-∠ABC)=2∠ABC-90度。
因为∠DGH=∠ABH=∠ABC/2,所以∠XXX∠DGM,所以DM=MN。
在等腰三角形ABC中,顶角A的度数为20度。
在边AB 上取点D,使得AD=BC。
求角BDC的度数。
解析:以AC为边向外作正三角形ACE,连接DE。
在三角形ABC和三角形EAD中,AD=BC,AB=EA,∠EAD=∠BAC+∠CAE=20+60=80=∠ABC。
因此,三角形ABC≌三角形EAD。
由此可得ED=EA=EC,因此三角形EDC 是等腰三角形。
由于∠AED=∠BAC=20度,因此∠CED=∠AEC-∠AED=60-20=40度。
从而∠DCE=70度,∠DCA=∠DCE-∠ACE=70-60=10度,因此∠XXX∠DAC+∠DCA=20+10=30度。
另解1:以AD为边在三角形ABC外部作等边三角形ADE,连接EC。
在三角形ACB和三角形CAE中,∠CAE=60度+20度=∠ACB,AE=AD=CB,AC=CA,因此三角形ACB≌三角形CAE,从而∠CAB=∠ACE,CE=AB=AC。
在三角形CAD和三角形CED中,AD=ED,CE=CA,CD=CD,因此三角形CAD≌三角形CED,从而∠ACD=∠ECD,∠XXX∠ACE=2∠ACD,因此∠ACD=10度,因此∠BDC=30度。
专题 构造全等三角形常用的辅助线作法(原卷版)
(苏科版)八年级上册数学《第一章 全等三角形》专题 构造全等三角形常用的辅助线作法【例题1】 (2022秋•澧县期中)如图,AB =DC ,AC =DB ,AC 和DB 相交于点E .求证:∠A =∠D.【变式1-1】如图,若AB =AC ,BD =CD ,∠B =20°,∠BDC =120°,求∠A 的度数.【变式1-2】如图,在筝形四边形ABDC 中,AB =AC ,BD =CD ,已知∠BAC =80°,∠BDC =60°,试求∠B的大小.解题技巧提炼题目条件或结论所指向的三角形不存在,如果只需连接某些线便可得到全等三角形,那么就有效解决问题.若四边形中有两对邻边相等(如下图),常连接这两对邻边的交点构造全等三角形解题.【变式1-3】如图,在四边形ABCD中,AB∥CD,AD∥BC求证:AB=CD,AD=BC.【变式1-4】如图,在四边形ABCD中,AB∥CD,AD⊥DC,AB=BC,点E为BC上一点,且CD=CE.求证:AE⊥BC;【变式1-5】已知:如图所示,AB=AD,BC=DC,E、F分别是DC、BC的中点,求证:AE=AF.【例题2】如图,在四边形ABCD中,AB∥CD,∠ABC、∠BCD的平分线交AD于点E.求证:AB+CD=BC.【变式2-1】如图,在△ABC中,AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C.解题技巧提炼在处理线段的和差问题时,常采取“截长补短”的方法;截长法是在较长的线段上截取一段等于某一短线段,再证剩下的部分等于另一短线段;补短法是将某短线段延长,使延长的部分等于另一短线段,或是使短线段延长至等于长线段.【变式2-2】如图,在△ABC中,AD平分∠BAC交BC于点D,且∠B=2∠C.求证:AB+BD=AC.【截长法】【补短法】【变式2-3】在“教、学、练、评一体化”学习活动手册中,全等三角形专题复习课,学习过七种作辅助线的方法,其中有“截长补短”作辅助线的方法.截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.请用这两种方法分别解决下列问题:已知,如图,在△ABC中,AB>AC,∠1=∠2,P为AD上任一点,求证:AB﹣AC>PB﹣PC.【变式2-4】截长补短法”证明线段的和差问题:先阅读背景材料,猜想结论并填空,然后做问题探究.背景材料:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.探究的方法是,延长FD到点G.使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出的结论是 .探索问题:(2)如图2,若四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立?成立的话,请写出推理过程.【变式2-5】如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,(1)求∠AOC的度数;(2)求证:AE+CD=AC;(3)求证:OE=OD.【变式2-6】阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=5cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=5,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD =S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=5cm,∠G=∠N=90°,求五边形FGHMN的面积.【变式2-7】(2023春•渠县期末)(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD.请直接写出线段EF,BE,FD之间的数量关系: ;(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?请写出证明过程;(3)在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD所在直线上的点,且∠EAF=12∠BAD.请直接写出线段EF,BE,FD之间的数量关系: .【例题3】如图,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF求证:BE+CF>EF.【变式3-1】(2022秋•句容市月考)(1)如图1,AD 是△ABC 的中线,延长AD 至点E ,使ED =AD ,连接CE .①证明△ABD ≌△ECD ;②若AB =5,AC =3,设AD =x ,可得x 的取值范围是 ;(2)如图2,在△ABC 中,D 是BC 边上的中点,DE ⊥DF ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE +CF >EF .【变式3-2】如图,在△ABC 和△A 'B 'C '中,AM ,A 'M '分别是边BC ,B 'C '上的中线,AB =A 'B ',AC =A 'C ',AM =A 'M ',试说明:△ABC ≌△A 'B 'C '.解题技巧提炼当题目中已知某线段的中点时,通过倍长中点处的线段构造全等三角形,从而将题目中的已知和未知的条件集中到同一对全等三角形中.【变式3-3】已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.【变式3-4】如图,AD是△ABC的边BC上的中线,CD=AB,AE是△ABD的边BD上的中线.求证:AC=2AE.【变式3-5】如图,在△ABC中,AD为BC边上的中线,若∠BAC<90°,作EA⊥AC,FA⊥BA,且AE =AC,AF=AB.连接EF,写出AD与EF的数量关系,并证明.【变式3-6】(2023春•碑林区校级期中)为了进一步探究三角形中线的作用,数学兴趣小组合作交流时,小丽在组内做了如下尝试:如图1,在△ABC中,AD是BC边上的中线,延长AD到M,使DM=AD,连接BM.【探究发现】:(1)图1中AC与BM的数量关系是 ,位置关系是 ;【初步应用】:(2)如图2,在△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.(提示:不等式的两边都乘或除以同一个正数,不等号的方向不变.例如:若3x<6,则x<2.)【探究提升】:(3)如图3,AD是△ABC的中线,过点A分别向外作AE⊥AB、AF⊥AC,使得AE=AB,AF=AC,延长DA交EF于点P,判断线段EF与AD的数量关系和位置关系,请说明理由.【变式3-7】阅读下列材料,完成相应任务.数学活动课上,老师提出了如下问题:如图1,已知△ABC中,AD是BC边上的中线.求证:AB+AC>2AD.智慧小组的证法如下:证明:如图2,延长AD至E,使DE=AD,∵AD是BC边上的中线∴BD=CD在△BDE和△CDA中BD=CD∠BDE=∠CDADE=DA∴△BDE≌△CDA(依据一)∴BE=CA在△ABE中,AB+BE>AE(依据二)∴AB+AC>2AD.任务一:上述证明过程中的“依据1”和“依据2”分别是指:依据1: ;依据2: .归纳总结:上述方法是通过延长中线AD,使DE=AD,构造了一对全等三角形,将AB,AC,AD转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.任务二:如图3,AD是BC边上的中线,AB=3,AC=4,则AD的取值范围是 ;任务三:如图4,在图3的基础上,分别以AB和AC为边作等腰直角三角形,在Rt△ABE中,∠BAE=90°,AB=AE;Rt△ACF中,∠CAF=90°,AC=AF.连接EF.试探究EF与AD的数量关系,并说明理由.【例题4】如图.∠C =90°,BE ⊥AB 且BE =AB ,BD ⊥BC 且BD =BC ,CB 的延长线交DE 于F(1)求证:点F 是ED 的中点;(2)求证:S △ABC =2S △BEF .【变式4-1】(2023•凤台县校级二模)感知:数学课上,老师给出了一个模型:如图1,点A 在直线DE 上,且∠BDA =∠BAC =∠AEC =90°,像这种一条直线上的三个顶点含有三个相等的角的模型我们把它称解题技巧提炼“一线三等角”指的是有三个等角的顶点在同一条直线上构成的全等图形,这个角可以是直角也可以是锐角或钝角,有些时候我们也称之为“M 型”“三垂直”等.“一线三等角”----三垂直全等模型辅助线如何构造: 图形中存在“一线二等角”,补上“一等角”构造模型解题;为“一线三等角“模型.应用:(1)如图2,Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.(2)如图3,在△ABC中,D是BC上一点,∠CAD=90°,AC=AD,∠DBA=∠DAB,AB=点C到AB边的距离.【变式4-2】(2023春•海门市期末)通过对数学模型“K字”模型或“一线三等角”模型的研究学习,解决下列问题:[模型呈现]如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.求证:BC=AE.[模型应用]如图2,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积为 .[深入探究]如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE 与直线AF交于点G.若BC=21,AF=12,则△ADG的面积为 .【变式4-3】(2022秋•东台市月考)【一线三等角模型】如图1:点A、B、C在一条直线上,∠A=∠DBE =∠C,当BD=BE时,有△ABD≌△CEB.理由:∵∠A=∠DBE,∴∠D+∠DBA=180°﹣∠A,∠DBA+∠CBE=180°﹣∠DBE,∴∠D=∠CBE﹣﹣﹣﹣﹣﹣﹣﹣请将全等证明过程补充完整.【模型运用】如图2:∠ABC=∠CAD=90°,AB=4,AC=AD,求△BAD的面积;【能力提升】如图3:在等边△DEF中,A,C分别为DE、DF边上的动点,AE=2CD,连接AC,以AC 为边在△DEF内作等边△ABC,连接BF,当点A从点E向点D运动(不与点D重合)时,∠CFB的度数变化吗?如不变请求出它的度数,如变化,请说明它是怎样变化的?【变式4-4】(2022秋•朝阳区校级月考)通过对如图数学模型的研究学习,解决下列问题:(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC= ,BC=AE.我们把这个数学模型称为“K字”模型或“一线三等角”模型;(2)如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;(深入探究)(3)如图,已知四边形ABCD和DEGF为正方形,△AFD的面积为S1,△DCE的面积为S2,S1+S2=10,直接写出S1的值.。
全等三角形中辅助线的添法(三大模型)(压轴题专项)(解析版)
全等三角形中辅助线的添法(三大模型)【模型一:倍长中线模型】1.(23-24八年级上·江苏·期末)如图,在△ABC 中.AD 是BC 边上的中线,交BC 于点D.(1)如下图,延长AD 到点E ,使DE =AD ,连接BE .求证:△ACD ≌△EBD.(2)如下图,若∠BAC =90°,试探究AD 与BC 有何数量关系,并说明理由.(3)如下图,若CE 是边AB 上的中线,且CE 交AD 于点O .请你猜想线段AO 与OD 之间的数量关系,并说明理由.【思路点拨】(1)利用SAS 可得△ACD ≌△EBD ;(2)延长AD 到点E ,使DE =AD ,连接BE ,先根据△ACD ≌△EBD 证得∠C =∠CBE ,AC =BE ,进而得到AC ∥EB ,AD =12AE ;再证得△ABC ≌△BAE SAS 利用全等三角形全等的性质即可;(3)延长OE 到点M ,使EM =OE ,连接AM .延长OD 到点N ,使DN =OD ,连接BM ,BN ,BO ,证得△MOB ≌△NBO ASA 可得MB =NO ,进而得到AO =2OD ,本题考查了全等三角形的判定与性质,三角形的中线,熟练掌握全等三角形的判定方法是解题的关键.【解题过程】(1)证明:在△ACD 和△EBD 中,DA =DE∠ADC =∠EDBDC =DB∴△ACD ≌△EBD SAS ;(2)解:AD =12BC ,理由如下:延长AD 到点E ,使DE =AD ,连接BE ,如图由(1)得△ACD ≌△EBD ,∴∠C =∠CBE ,AC =BE∴AC ∥EB ,AD =12AE ∴∠BAC +∠ABE =180°,∵∠BAC =90°,∴∠ABE =90°,∴∠BAC =∠ABE在△ABC 和△BAE 中AC =BE∠BAC =∠ABEAB =AB∴△ABC ≌△BAE SAS ∴BC =AE ,∴AD =12BC ;(3)AO =2OD ,理由如下:延长OE 到点M ,使EM =OE ,连接AM .延长OD 到点N ,使DN =OD ,连接BM ,BN ,BO ,如图,由(1)得△AOE ≌△BME ,△ODC ≌△NDB ,∴∠AOE =∠BME ,∠OCD =∠NBD ,AO =BM ,∴AO ∥BM ,OC ∥NB ,∴∠MBO =∠BON ,∠MOB =∠NBO在△MOB 和△NBO 中,∠MBO =∠BONOB =OB ∠MOB =∠NBO,∴△MOB ≌△NBO ASA ∴MB =NO ,∴AO =2OD .2.(23-24八年级上·广西北海·期末)八年级数学课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC 中,若AB =9,AC =5,求BC 边上的中线AD 的取值范围.小红在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE =AD ,请根据小红的方法思考作答:(1)由已知和作图能得到△ADC ≌△EDB 的理由是;A.SSS B.SAS C.AASD.HL(2)求得AD的取值范围是;A.5<AD<9B.5≤AD≤9C.2<AD<7D.2≤AD≤7(3)归纳总结:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.完成上题之后,小红善于探究,她又提出了如下的问题,请你解答.如图2,在△ABC中,点E在BC上,且DE=DC,过E作EF∥AB,且EF=AC.求证:AD平分∠BAC.【思路点拨】本题是三角形综合题,考查了倍长中线法解题,全等三角形的判定和性质,等腰三角形的判定和性质,熟练掌握倍长中线法,灵活进行三角形全等的证明,是解题的关键.(1)根据三角形全等的判定定理去选择即可;(2)根据三角形全等的性质和三角形三边关系定理计算即可;(3)由“SAS”可证△EFD≌△CMD,可得EF=DM,∠EFD=∠M,由平行线的性质和等腰三角形的性质可证∠M=∠BAD=∠CAM,可得AD平分∠BAC.【解题过程】(1)解:延长AD到点E,使DE=AD,∵BD=CD,在△ADC和△EDB中,CD=BD∠ADC=∠BDEAD=DE,∴△ADC≌△EDB(SAS),故选:B.(2)解:∵△ADC≌△EDB,∴AC=EB,∵AB=9,AC=5,AB-BE<AE<AB+BE,∴4<2AD<14,∴2<AD<7,故选:C;(3)证明:如图,延长AD至M,使DM=DF,连接CM,∵DE=DC,∠EDF=∠CDM,DF=DM,∴△EFD≌△CMD(SAS),∴EF=DM,∠EFD=∠M,∴EF∥CM,∵EF∥AB,∴CM∥AB,∴∠BAD=∠M,∵EF=AC,∴EF=DM=AC,∴∠CAM=∠M,∴∠BAD=∠CAM,∴AD平分∠BAC.3.(23-24八年级上·安徽安庆·期末)(1)如图①,在△ABC中,若AB=6,AC=4,AD为BC边上的中线,求AD的取值范围;(2)如图②,在△ABC中,点D是BC的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,判断BE+CF与EF的大小关系并证明;(3)如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.【思路点拨】(1)由已知得出AB-BE<AE<AB+BE,即6-4<AE<6+4,AD为AE的一半,即可得出答案;(2)延长FD至点M,使DM=DF,连接BM,EM,可得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AE,DF交于点G,根据平行和角平分线可证AF=FG,也可证得△ABE≌△GCE,从而可得AB= CG,即可得到结论.【解题过程】解:(1)如图①,延长AD到点E,使DE=AD,连接BE,∵D是BC的中点,∴BD=CD,∵∠ADC=∠BDE,∴△ACD≌△EBD SAS,∴BE=AC=4,在△ABE中,AB-BE<AE<AB+BE,∴6-4<AE<6+4,,∴2<AE<10,∴1<AD<5,故答案为:1<AD<5;(2)BE+CF>EF,理由如下:延长FD至点M,使DM=DF,连接BM、EM,如图②所示.同(1)得:△BMD≌△CFD SAS,∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)AF +CF =AB ,理由如下:如图③,延长AE ,DF 交于点G ,∵AB ∥CD ,∴∠BAG =∠G ,在△ABE 和△GCE 中,CE =BE ,∠BAG =∠G ,∠AEB =∠GEC,∴△ABE ≌△GEC AAS ,∴CG =AB ,∵AE 是∠BAF 的平分线,∴∠BAG =∠GAF ,∴∠FAG =∠G ,∴AF =GF ,∵FG +CF =CG ,∴AF +CF =AB .4.(23-24八年级上·江苏南通·期中)课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC 中,若AB =6,AC =4,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图1所示,延长AD 到点E ,使DE =AD ,连接BE.请根据小明的思路继续思考:(1)由已知和作图能证得△ADC ≌△EDB ,得到BE =AC ,在△ABE 中求得2AD 的取值范围,从而求得AD 的取值范围是.方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系;(2)如图2,AD 是△ABC 的中线,AB =AE ,AC =AF ,∠BAE +∠CAF =180°,试判断线段AD 与EF 的数量关系,并加以证明;(3)如图3,在△ABC 中,D ,E 是BC 的三等分点.求证:AB +AC >AD +AE .【思路点拨】本题考查了三角形三边关系,三角形全等的性质与判定,利用倍长中线辅助线方法是解题的关键.(1)延长AD 到点E ,使DE =AD ,连接BE ,根据题意证明△MDB ≌△ADC ,可知BM =AC ,在△ABM 中,根据AB -BM <AM <AB +BM ,即可;(2)延长AD 到M ,使得DM =AD ,连接BM ,由(1)的结论以及已知条件证明△ABM ≌△EAF ,进而可得AM =2AD ,由AM =EF ,即可求得AD 与EF 的数量关系;(3),取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,通过“倍长中线”思想全等证明,进而得到AB =CQ ,AD =EQ ,然后结合三角形的三边关系建立不等式证明即可得出结论.【解题过程】(1)解:如图1所示,延长AD到点E,使DE=AD,连接BE.∵AD是△ABC的中线,∴BD=CD,在△MDB和△ADC中,BD=CD∠BDM=∠CDA DM=AD,∴△MDB≌△ADC(SAS),∴BM=AC=4,在△ABM中,AB-BM<AM<AB+BM,∴6-4<AM<6+4,即2<AM<10,∴1<AD<5,故答案为:1<AD<5.(2)EF=2AD,理由:如图2,延长AD到M,使得DM=AD,连接BM,由(1)知,△BDM≌△CDA(SAS),∴BM=AC,∠M=∠MAC∵AC=AF,∴BM=AF,∵∠MBA+∠M+∠BAM=180°,即∠MBA+∠BAC=180°,又∵∠BAE+∠CAF=180°,∴∠EAF+∠BAC=180°,∴∠EAF=∠MBA,又∵AB=EA,∴△ABM≌△EAF(SAS),∴AM=EF,∵AD=DM,∴AM=2AD,∵AM=EF,∴EF=2AD.(3)证明:如图所示,取DE中点H,连接AH并延长至Q点,使得AH=QH,连接QE和QC,∵H为DE中点,D、E为BC三等分点,∴DH=EH,BD=DE=CE,∴DH=CH,在△ABH和△QCH中,BH=CH∠BHA=∠CHQ AH=OH,∴△ABH≌△QCH(SAS),同理可得:△ADH≌△QEH,∴AB=CQ,AD=EQ,此时,延长AE交CQ于K点,∵AC+CQ=AC+CK+QK,AC+CK>AK,∴AC+CQ>AK+QK,∵AK+QK=AE+EK+QK>QE,EK+QK>QE,∴AK+QK>AE+QE,∴AC +CQ >AK +QK >AE +QE ,∵AB =CQ ,AD =EQ ,∴AB +AC >AD +AE .5.(23-24七年级下·广东佛山·期中)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图,△ABC 中,AB =8,AC =6,求BC 边上的中线AD 的取值范围,经过组内合作交流.小明得到了如下的解决方法:延长AD 到点E ,使DE =AD请根据小明的方法思考:(1)求得AD 的取值范围是;【问题解决】请利用上述方法(倍长中线)解决下列三个问题如图,已知∠BAC +∠CDE =180°,AB =AC ,DC =DE ,P 为BE 的中点.(2)如图1,若A ,C ,D 共线,求证:AP 平分∠BAC ;(3)如图2,若A ,C ,D 不共线,求证:AP ⊥DP ;(4)如图3,若点C 在BE 上,记锐角∠BAC =x ,且AB =AC =CD =DE ,则∠PDC 的度数是(用含x 的代数式表示).【思路点拨】(1)根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边,即可进行解答;(2)延长DP 交AB 延长线于点F ,证△APF ≌△APD 即可;(3)延长DP 至点F ,使得PF =PD ,连接BF 、AF 、AD ,证△APF ≌△APD 即可;(4)过点C 作CM ⊥BC 交AP 于点M ,由(3)可得∠APD =90°,证△ACM ≌△DCP ,用含x 的代数式表示出∠PDC 即可.【解题过程】(1)∵AD 为BC 边上的中线,∴BD =CD ,在△ADC 和△EDB 中,BD =CD∠ADC =∠EDBAD =ED∴△ADC ≌△EDB SAS ,∴BE =AC =6,∵AB =8,∴8-6<AE <8+6,即2<AE <14,∵DE =AD ,∴AD =12AE ,∴1<AD <7,故答案为:1<AD <7(2)如下图,DP 交AB 延长线于点F∠BAC +∠CDE =180°,∴AF ∥DE (同旁内角互补,两直线平行),∴∠PFB =∠PDE ,∠PBF =∠PED ,∵P 为BE 的中点∴BP =PE ,∴△BPF ≌△EPD AAS ,∴BF =DE =DC ,PD =PF ,又∵AB =AC ,∴AB +BF =AC +DC ,即AF =AD ,在△APF 和△APD 中PF =PDAP =APAF =AD∴△APF ≌△APD (SSS ),∴∠P AF =∠P AD (全等三角形的对应角相等),即AP 平分∠BAC(3)延长DP 至点F ,使得PF =PD ,连接BF 、AF 、AD由(1)同理易知△DPE ≌△FBP (SAS ),∴BF =DE =CD ,∠E =∠FBP ,∵∠BAC +∠CDE =180°,且∠BAC +∠CAD +∠ADC +∠CDE +∠E =360°,∠CAD +∠C +∠ADC =180°,∴∠ABF =∠ACD ,AB =AC ,∴△ABF ≌△ACD (SAS ),∴AF =AD ,∴△APF ≌△APD (SSS ),∴∠APD =∠APF =180°÷2=90°,∴AP ⊥DP(4)过点C 作CM ⊥BC 交AP 于点M ,由(3)可得∠APD =90°,∠BAC =x ,∠BAC+∠CDE =180°,AB =AC =CD =DE ,∴∠ACB =180°-x 2=90°-x 2,∴∠DCE =90°-∠CDE 2=90°-180°-x 2=x 2,∴∠ACB和∠DCE 互余,∠ACD =∠MCP =∠APD =90°,∴∠ACM =∠DCP =x 2,∠CAM =∠CDP ∴△ACM ≌△DCP (ASA ),∴MC =PC ,∴∠BP A =45°,又∵∠ACB =90°-x 2,∴∠PDC =∠P AC =∠ACB -∠APB =45°-x 2,故答案为:45°-x 2【模型二:旋转模型(截长补短)】6.(23-24八年级上·湖北武汉·期末)如图,在五边形ABCDE 中,∠B =∠E =90°,∠CAD =12∠BAE ,AB =AE ,且CD =3,AE =4,则五边形ABCDE 的面积为()A.6 B.8 C.10 D.12【思路点拨】本题考查了旋转的性质、全等三角形的判定与性质、三点共线,解题的关键是利用全等的性质将面积进行转化.将△ABC 绕点A 逆时针旋转至△AEF ,首先证明点D ,E ,F 三点共线,证明△ACD ≌△AFD (SAS ),得到CD =DF =3,S △ACD =S △AFD ,再将所求面积转化为2S △AFD 进行计算即可.【解题过程】解:如图,将△ABC 绕点A 逆时针旋转至△AEF ,∵AB =AE ,∠B =∠E =90°,则AF =AC ,∠B =∠AED =∠AEF =90°,∴∠DEF =180°,即点D ,E ,F 三点共线,∵∠CAD =12∠BAE ,∠BAC +∠DAE =∠DAE +∠EAF =∠CAD ,即∠FAD =∠CAD ,在△ACD 和△AFD 中,AC =AF∠CAD =∠FAD AD =AD,∴△ACD ≌△AFD (SAS )∴CD =DF ,S △ACD =S △AFD∵CD =3,∴DF =3,五边形ABCDE 的面积为:S 四边形ACDE +S △ABC =S 四边形ACDE +S △AEF=S △ACD +S △AFD =2S △AFD ,=2×12×DF ×AE ,=2×12×3×4=12.故选:D .7.(23-24八年级上·上海·期中)如图所示,已知AC 平分∠BAD ,∠B +∠D =180°,CE ⊥AB 于点E ,判断AB 、AD 与BE 之间有怎样的等量关系,并证明.【思路点拨】在AB 上截取EF ,使EF =BE ,联结CF .证明△BCE ≌△ECF (SAS ),得到∠B =∠BFC ,又证明△AFC ≌△ADC ,得到AF =AD ,最后结论可证了.【解题过程】证明:在AB 上截取EF ,使EF =BE ,联结CF .∵CE ⊥AB∴∠BEC =∠FEC =90°在△BCE 和△ECF{BE =EF∠BEC =∠FECCE =CE∴△BCE ≌△ECF (SAS )∴∠B =∠BFC∵∠B +∠D =180°又∵∠BFC +∠AFC =180°∴∠D =∠AFC∵AC 平分∠BAD∴∠FAC =∠DAC在△AFC 和△ADC 中{∠AFC =∠D∠FAC =∠DACAC =AC∴△AFC≌△ADC(AAS)∴AF=AD∵AB=AF+BE+EF∴AB=AD+2BE8.(23-24八年级上·山东临沂·期中)【基本模型】(1)如图1,ABCD是正方形,∠EAF=45°,当E在BC边上,F在CD边上时,请你探究BE、DF与EF之间的数量关系,并证明你的结论.【模型运用】(2)如图2,ABCD是正方形,∠EAF=45°,当E在BC的延长线上,F在CD的延长线上时,请你探究BE、DF与EF之间的数量关系,并证明你的结论.【思路点拨】本题主要考查全等三角形的判定和性质.本题蕴含半角模型,遇到半角经常要通过旋转构造全等三角形.(1)结论:EF=BE+DF.将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF ,然后求出∠EAF =∠EAF=45°,利用“边角边”证明△AEF和△AEF 全等,根据全等三角形对应边相等可得EF=EF ,从而得解;(2)结论:EF=BE-DF,证明方法同法(1).【解题过程】解:(1)结论:EF=BE+DF.理由:如图1,将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF ,则:∠F AB=∠DAF,∠ABF =∠D=90°,AF=AF ,BF =DF,∴∠ABF +∠ABC=180°,即:F ,B,E三点共线,∵∠EAF=45°,∴∠DAF+∠BAE=90°-∠EAF=45°,∴∠BAF +∠BAE=45°,∴∠EAF =∠EAF=45°,在△AEF 和△AEF 中,AF =AF∠EAF =∠EAF AE =AE,∴△AEF ≌△EAF (SAS ),∴EF =EF ,又EF =BE +BF ,∴EF =BE +DF .(2)结论:EF =BE -DF .理由:如图2,将△ADF 绕点A 顺时针旋转,使AD 与AB 重合,得到△ABF ,则:BF =DF ,AF =AF ,同法(1)可得:△AEF ≌△AEF (SAS ),∴EF =EF ,又EF =BE -BF =BE -DF ,∴EF =BE -DF .9.(23-24八年级上·湖北武汉·周测)(1)如图,在四边形ABCD 中,AB =AD,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD .求证:EF =BE +FD ;(2)如图,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =12∠BAD .(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【思路点拨】(1)延长CB 至M ,使BM =DF ,连接AM .先证明△ABM ≌△ADF ,得到AF =AM ,∠2=∠3,再证明△AME ≌△AFE ,得到EF =ME ,进行线段代换,问题得证;(2)在BE 上截取BG ,使BG =DF ,连接AG .先证明△ABG ≌△ADF ,得到AG =AF ,再证明△AEG ≌△AEF ,得到EG =EF ,进行线段代换即可证明EF =BE -FD .【解题过程】解:(1)证明:如图,延长CB 至M ,使BM =DF ,连接AM .∵∠ABC +∠D =180°,∠1+∠ABC =180°,∴∠1=∠D ,在△ABM 与△ADF 中,AB =AD∠1=∠D BM =DF,∴△ABM ≌△ADF (SAS ).∴AF =AM ,∠2=∠3.∵∠EAF =12∠BAD ,∴∠2+∠4=12∠BAD =∠EAF .∴∠3+∠4=∠EAF ,即∠MAE =∠EAF .在△AME 与△AFE 中,AM =AF∠MAE =∠EAF AE =AE,∴△AME ≌△AFE (SAS ).∴EF =ME ,即EF =BE +BM ,∴EF =BE +DF ;(2)结论EF =BE +FD 不成立,应当是EF =BE -FD .证明:如图,在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .∵在△ABG 与△ADF 中,AB =AD∠ABG =∠ADF BG =DF,∴△ABG ≌△ADF (SAS ),∴∠BAG =∠DAF ,AG =AF ,∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =12∠BAD ,∴∠GAE =∠EAF .在△AGE 与△AFE 中,AG =AF∠GAE =∠EAF AE =AE,∴△AEG ≌△AEF ,∴EG =EF ,∵EG =BE -BG ,∴EF =BE -FD .10.(23-24八年级上·贵州黔东南·期末)【初步探索】(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠ADC =90°,∠BAD =120°,E 、F 分别是BC 、CD 上的点,且∠EAF =60°,探究图中BE 、EF、FD 之间的数量关系.小芮同学探究此问题的方法是:延长FD 到点G ,使DG =BE ,连接AG ,先证明:△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=∠180°,∠BAD=120°,E、F分别是BC、CD上的点,且∠EAF=60°,(1)中的结论是否仍然成立,说明理由.【拓展延伸】(3)如图3,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,满足EF=BE+FD,请判断∠EAF与∠DAB的数量关系.并证明你的结论.【思路点拨】本题属于四边形综合题,主要考查了全等三角形的判定以及全等三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等.(1)根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SAS判定△AEF≌△AGF,可得出EF=GF=DG+DF=BE+DF,据此得出结论;(2)延长FD到点G,使DG=BE,连接AG,先根据SAS判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SAS判定△AEF≌△AGF,可得出EF=GF=DG+DF=BE+DF;(3)在DC延长线上取一点G,使得DG=BE,连接AG,先根据SAS判定△ADG≌△ABE,再根据SAS判定△AEF≌△AGF,得出∠FAE=∠FAG,最后根据∠FAE+∠FAG+∠GAE=360°,推导得到2∠FAE+∠DAB=360°,即可得出结论.【解题过程】解:(1)BE+FD=EF.理由如下:如图1,延长FD到点G,使DG=BE,连接AG,∵∠ADC=90°,∴∠ADG=180°-∠ADC=90°,又∵∠B=90°,∴∠B=∠ADG,在△ABE与△ADG中,AB=AD∠B=∠ADG BE=DG,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵∠BAD=120°,∠EAF=60°,∴∠BAE+∠DAF=∠BAD-∠EAF=60°,∴∠DAG+∠DAF=60°,即∠GAF=60°,∴∠GAF=∠EAF;在△AEF与△AGF中,AE=AG∠EAF=∠GAF AF=AF,∴△AEF≌△AGF(SAS),∴EF=GF,∵GF=DG+DF,∴EF=BE+DF,故答案为:BE+FD=EF;(2)(1)中的结论仍成立,理由如下:如图2,延长FD到点G,使DG=BE,连接AG,∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵∠BAD=120°120°,∠EAF=60°,∴∠BAE+∠DAF=60°,∴∠DAG+∠DAF=60°,∴∠GAF=∠EAF=60°,又∵AF=AF,∴△AEF≌△AGF(SAS),∴EF=FG=DG+DF=BE+DF;(3)∠EAF=180°-12∠DAB.证明:如图3,延长DC到点G,使DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,在△ABE与△ADG中,AB=AD∠B=∠ADG BE=DG,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD,∴EF=DG+FD,∴EF=GF,在△AEF与△AGF中,AE=AG EF=GF AF=AF,∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=180°-12∠DAB.【模型三:“K子”型(一线三垂直)】11.(23-24八年级上·广东江门·阶段练习)已知,△ABC中,∠BAC=90°,AB=AC,直线m过点A,且BD⊥m于D,CE⊥m于E,当直线m绕点A旋转至图1位置时,我们可以发现DE=BD+CE.(1)当直线m绕点A旋转至图2位置时,问:BD与DE、CE的关系如何?请予证明;(2)直线m在绕点A旋转一周的过程中,BD、DE、CE存在哪几种不同的数量关系?(直接写出,不必证明)【思路点拨】(1)利用条件证明△ABD≌△CAE,再结合线段的和差可得出结论;(2)根据图,可得BD、DE、CE存在3种不同的数量关系;【解题过程】(1)证明:如图2,∵BD⊥m,CE⊥m,∴∠BDA=∠CEA=90°,∴∠ABD+∠DAB=90°.∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠ABD=∠CAE.在△ABD和△CAE中,∠BDA=∠CBA ∠ABD=∠CAB AB=CA,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE∵DE=AE-AD,(2)直线m 在绕点A 旋转一周的过程中,BD 、DE 、CE 存在3种不同的数量关系:DE =BD +CE ,DE =BD -CE ,DE =CE -BD.如图1时,DE =BD +CE ,如图2时,DE =BD -CE ,如图3时,DE =CE -BD ,(证明同理)12.(23-24八年级上·贵州铜仁·阶段练习)(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E .求证:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D ,A ,E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC .请写出DE ,BD ,CE 三条线段的数量关系,并说明理由.【思路点拨】(1)利用已知得出∠CAE =∠ABD ,进而利用AAS 得出则△ABD ≌△CAE ,即可得出DE =BD +CE ;(2)根据∠BDA =∠AEC =∠BAC ,得出∠CAE =∠ABD ,在△ADB 和△CEA 中,根据AAS 证出△ADB ≌△CEA ,从而得出AE =BD ,AD =CE ,即可证出DE =BD +CE ;【解题过程】(1)DE =BD +CE .理由如下:∵BD ⊥m ,CE ⊥m ,∴∠BDA =∠AEC =90°又∵∠BAC =90°,∴∠BAD +∠CAE =90°,∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中,∠ABD =∠CAE∠ADB =∠CEA =90°AB =AC,∴△ABD ≌△CAE (AAS )∴BD =AE ,AD =CE ,∵DE =AD +AE ,(2)DE =BD +CE ,理由如下:∵∠BDA =∠AEC =∠BAC ,∴∠DBA +∠BAD =∠BAD +∠CAE ,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,∠ABD =∠CAE∠ADB =∠CEA AB =AC,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴BD +CE =AE +AD =DE .13.(23-24八年级上·山西大同·阶段练习)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.(1)如图1.已知:在△ABC 中,∠BAC =90°,AB =AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D 、E .证明:DE =BD +CE .(2)组员小明对图2进行了探究,若∠BAC =90°,AB =AC ,直线l 经过点A .BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D 、E .他发现线段DE 、BD 、CE 之间也存在着一定的数量关系,请你直接写出段DE 、BD 、CE 之间的数量关系,(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC 的边AB 、AC 向外作正方形ABDE 和正方形ACFG (正方形的4条边都相等,4个角都是直角),AH 是BC 边上的高,延长HA 交EG 于点I ,若BH =3,CH =7,求AI 的长.【思路点拨】(1)根据BD ⊥直线l ,CE ⊥直线l ,∠BAC =90°,可得∠CAE =∠ABD ,利用AAS 可证明△ADB ≌△CEA ,根据DE =AE +AD 即可得到DE =BD +CE ;(2)同(1)利用AAS 可证明△ADB ≌△CEA ,根据DE =AE -AD 即可得到DE =BD -CE ;(3)过E 作EM ⊥HI 于M ,GN ⊥HI 的延长线于N ,可构造两组一线三直角全等模型,即:△ABH ≌△EAM ,△AHC ≌△GNA ,从而可以得到EM =GN ,MN =4,再根据△EMI ≌△CNI 可得MI =NI =2,即可确定AI 的长度;【解题过程】(1)证明:∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,在△ADB和△CEA中,∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA AAS∴BD=AE,AD=CE,∴DE=AE+AD=BD+CE;(2)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA AAS∴BD=AE,AD=CE,∴DE=AE-AD=BD-CE;(3)如图,过E作EM⊥HI于M,GN⊥HI的延长线于N,∴∠EMI=∠GNI=90°∵∠BAH+∠EAM=90°,∠BAH+∠ABH=90°,∴∠EAM=∠ABH在△ABH和△EAM中,∠AHB=∠EMA ∠ABH=∠EAM AB=AE,∴△ABH≌△EAM(AAS)∴BH=AM=3,AH=EM,同理可得:△AHC≌△GNA∴CH=AN=7,AH=GN,即:EM=GN,MN=AN-AM=7-3=4,在△EMI和△CNI中,∠EMI=∠CNI∠EIM=∠CINEM=CN,∴△EMI≌△CNI(AAS),∴MI=NI=12MN=2,∴AI=AM+MI=3+2=5.14.(23-24八年级上·河北石家庄·阶段练习)通过对如图数学模型的研究学习,解决下列问题:(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=,BC=AE.我们把这个数学模型称为“K字”模型或“一线三等角”模型;(2)如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;(3)如图3,已知四边形ABCD和DEGF为正方形,△AFD的面积为S1,△DCE的面积为S2,S1+S2= 10.求出S1的值.【思路点拨】(1)由△ABC≌△DAE即可求解;(2)作DM⊥AF,EN⊥AF,利用“K字模型”的结论可得△ABF≌△DAM,△ACF≌△EAN,故可推出DM =EN,再证△DMG≌△ENG即可;(3)作PQ⊥CE,AM⊥PQ,FN⊥PQ,利用“K字模型”的结论可得△ADM≌△DCP,△DFN≌△EDP,进一步可证△AMQ≌△FNQ,即可求解.【解题过程】(1)解:∵△ABC≌△DAE∴AC=DE故答案为:DE;(2)证明:作DM⊥AF,EN⊥AF由“K字模型”可得:△ABF≌△DAM,△ACF≌△EAN∴AF=DM,AF=EN∴DM=EN∵∠DMG=∠ENG=90°,∠DGM=∠BGN∴△DMG≌△ENG∴GM=GN即:点G是DE的中点(3)解:作PQ⊥CE,AM⊥PQ,FN⊥PQ,如图:21∵四边形ABCD 和四边形DEGF 均为正方形∴∠ADC =∠EDF =90°,AD =CD ,DE =DF由“K 字模型”可得:△ADM ≌△DCP ,△DFN ≌△EDP∴S △ADM =S △DCP ,S △DFN =S △EDPAM =DP ,FN =DP∵∠AMQ =∠FNQ =90°,∠AQM =∠FQN∴△AMQ ≌△FNQ∴S △AMQ =S △FNQ∴S △ADQ +S △FNQ +S △DFN =S △ADQ +S △AMQ +S △DFN =S △ADM +S △DFN =S △DCP +S △EDP即:S 1=S 2∵S 1+S 2=10∴S 1=515.(23-24七年级下·广东深圳·期末)【材料阅读】小明在学习完全等三角形后,为了进一步探究,他尝试用三种不同方式摆放一副三角板(在△ABC 中,∠ABC =90°,AB =CB ;△DEF 中,∠DEF =90°,∠EDF =30°),并提出了相应的问题.【发现】(1)如图1,将两个三角板互不重叠地摆放在一起,当顶点B 摆放在线段DF 上时,过点A 作AM ⊥DF ,垂足为点M ,过点C 作CN ⊥DF ,垂足为点N ,①请在图1找出一对全等三角形,在横线上填出推理所得结论;∵∠ABC =90°,∴∠ABM +∠CBN =90°,∵AM ⊥DF ,CN ⊥DF ,∴∠AMB =90°,∠CNB =90°,∴∠ABM +∠BAM =90°,∴∠BAM =∠CBN ,∵∠BAM=∠CBN∠AMB=∠CNB=90°AB=BC,;②AM=2,CN=7,则MN=;【类比】(2)如图2,将两个三角板叠放在一起,当顶点B在线段DE上且顶点A在线段EF上时,过点C作CP⊥DE,垂足为点P,猜想AE,PE,CP的数量关系,并说明理由;【拓展】(3)如图3,将两个三角板叠放在一起,当顶点A在线段DE上且顶点B在线段EF上时,若AE= 5,BE=1,连接CE,则△ACE的面积为.【思路点拨】本题综合考查了全等三角形的判定与性质,熟记相关定理内容进行几何推理是解题关键.(1)①根据两个三角形全等的判定定理,结合已知求证即可得到答案;②由①中△ABM≌△BCN(AAS),利用两个三角形全等的性质,得到AM=BN=2,BM=CN=7,即可得到MN=MB+BN=CN+AM=9;(2)根据两个三角形全等的判定定理,得到△ABE≌△BCP,利用两个三角形全等的性质,得到AE=BP,BE=CP,由图中BE=BP+PE,即可得到三者的数量关系;(3)延长FE,过点C作CP⊥FE于P,如图所示,由两个三角形全等的判定定理得到△ABE≌△BCP,从而PC=BE=1,PB=AE=5,则可求得PE,延长AE,过点C作CF⊥AE于F,如图所示,由平行线间的平行线段相等可得CF=PE=4,代入面积公式得S△ACE,即可得到答案.【解题过程】解:(1)①∵∠ABC=90°,∴∠ABM+∠CBN=90°,∵AM⊥DF,CN⊥DF,∴∠AMB=90°,∠CNB=90°,∴∠ABM+∠BAM=90°,∴∠BAM=∠CBN,∵∠BAM=∠CBN,∠AMB=∠CNB=90°,AB=BC,∴△ABM≌△BCN(AAS);故答案为:△ABM≌△BCN(AAS)②由①知△ABM≌△BCN(AAS),∴AM=BN,BM=CN,∵AM=2,CN=7,∴MN=MB+BN=CN+AM=9;故答案为:9;(2)结论:PE=PC-AE.理由如下:∵∠ABC=90°,∴∠ABE+∠CBE=90°,∵CP⊥BE,∴∠CPB=90°,∴∠BCP+∠CBP=90°∴∠ABE=∠BCP,2223∵∠AEB =90°,∴∠AEB =∠CPB =90°,∵AB =BC ,∴△ABE ≌△BCP ,∴AE =BP ,BE =CP∵BE =BP +PE ,∴PE =BE -BP =PC -AE ;(3)延长FE ,过点C 作CP ⊥FE 于P ,如图所示:∵∠ABE +∠EBC =90°,∠ABE +∠BAE =90°,∴∠EBC =∠BAE ,∵∠AEB =∠CPB =90°,AB =BC ,∴△ABE ≌△BCP ,∴PC =BE =1,PB =AE =5,∴PE =PB -BE =5-1=4,延长AE ,过点C 作CF ⊥AE 于F ,如图所示:∵AF ⊥PE ,CP ⊥PE ,∴AF ∥CP ,∵AF ⊥PE ,CF ⊥AF ,∴PE ∥CF ,由平行线间的平行线段相等可得CF =PE =4,S △ACE =12×AE ×CF =12×5×4=10.故答案为:10.。
人教版数学八年级上册 综合专题1——全等三角形的辅助线和动态问题
C
2
A
ED B
∴∠F =∠3,EF = EB.
∵∠3 =∠4,∴∠F =∠4.
∵ AC∥BD,∴∠FCE =∠D. 在△EFC 和△EBD 中,
∠FCE =∠D ∠F =∠4 EF = EB ∴△EFC≌△EBD(AAS). ∴ FC = BD. ∵ AF = AC + FC, ∴ AB = AC + BD.
∴AB-AC>BD-DC.
3. 如图,已知 AC∥BD,AE、BE 分别平分∠CAB 和∠DBA,CD 过点 E,求证:AB = AC + BD.
解:如图,延长 AC 至点 F,使 AF = AB,连接 EF.
∵ AE,BE 分别平分∠CAB 和∠DBA, ∴∠1 =∠2,∠3 =∠4.
F
在△AEF 和△AEB 中,
∴∠BAC =∠DCE.
在△ABC 和△CDE 中,
B
CD
∴△ABC≌△CDE(AAS).
练一练
4. (福建阶段练习)如图,在△ABC 中,∠ACB = 90°,
AC = BC,点 C 的坐标为(-2,0),点 A 的坐标为
(-6,3),求点 B 的坐标 ( D )
A. (3,4)
B. (2,3)
A
F
E
∴△FDE≌△FDG(SAS). ∴ FE=FG .
B
D
C
G
∵ D 是 BC 中点,∴ BD=CD. 在△EDB 与△GDC 中
∴△EDB≌△GDC(SAS). ∴ BE=CG. ∵ CG+FC>FG, ∴ BE+CF>EF.
A
F E
八年级全等三角形辅助线专题(经典)
D
A
C
B
E
如图,若 DA = DB ,则 D 在线段 AB 的垂直平分线上.
第五部分:等腰三角形
一、等腰三角形
1、等腰三角形的定义: 有两条边相等的三角形叫做等腰三角形
6
2、等腰三角形的性质: ⑴ 两腰相等. ⑵ 两底角相等. ⑶ “三线合一”,即顶角平分线、底边上的中线、底边上的高重合.
⑷ 是轴对称图形,底边的垂直平分线是它的对称轴.
是∠BAC、∠BCA 的平分线,AD、CE 相交于点 F,请你判断 FD 与 FE 的数量关系 (2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中条件不 变,则(1)中结论是否成立
25
18 如图,点 C 为线段 AB 上一点, ACM 、 CBN 都是等边三角形,AN 、 BM 交于点 O ,连结 OC , 求证: (1) AN = BM (2) AOB = 120 (3) OC 平分 AOB (4)连结 EF 后,则 CEF 是等边三角形 (5) EF / / AB 思考:当 AC、BC 不共线时,上述结论是否仍成立?
3、化繁为简原则:对一类几何命题,其题设条件与结论之间
在已知条件所给的图形中,其逻辑关系不明朗,通过添置适当辅助线,
4
把复杂图形分解成简单图形,从而达到化繁为简、化难为易的目的.
4、发挥特殊点、线的作用:在题设条件所给的图形中,对
尚未直接显现出来的各元素,通过添置适当辅助线,将那些特殊点、 特殊线、特殊图形性质恰当揭示出来,并充分发挥这些特殊点、线的 作用,达到化难为易、导出结论的目的.
A
E
C
D
O
F
B
如图,若射线 OC 是 AOB 的角平分线,则 DE = DF .
八年级数学人教版(上册)小专题(六)构造全等三角形的常用辅助线
【拓展 2】 四边形 PMON 的面积是否发生变化?请说明理由. 解:四边形 PMON 的面积不变. 理由:∵△PEM≌△PFN, ∴S△PEM=S△PFN.∴S 四边形 PMON=S 四边形 PEOF=定值.
1.如图,点 P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补.若∠MPN 在绕点 P 旋转的过程中,其两边分别与 OA, OB 相交于 M,N 两点,求证:PM=PN.
证明:过点 P 作 PE⊥OA 于点 E,PF⊥OB 于点 F, ∴∠PEO=∠PFO=90°. ∴∠EPF+∠AOB=180°. ∵∠MPN+∠AOB=180°, ∴∠EPF=∠MPN.
∴EF=FG.
∴EF=FG=DG+FD=BE+FD.
方法 3 利用“倍长中线法”构造全等三角形 将中线延长一倍,然后利用“SAS”判定三角形全等.
4.如图,已知 CD=AB,∠BAD=∠BDA,AE 是△ABD 的中线.
求证:AC=2AE. 证明:延长 AE 至点 F,使 AE=EF,连接 BF.
∵AE 是△ABD 的中线,∴BE=DE. 在△ADE 和△FBE 中, AE=FE, ∠AED=∠FEB, DE=BE, ∴△ADE≌△FBE(SAS).
∴BF=DA,∠FBE=∠ADE. ∵∠ABF=∠ABD+∠FBE, ∴∠ABF=∠ABD+∠ADB=∠ABD+∠BAD=∠ADC.
AB=CD, 在△ABF 和△CDA 中,∠ABF=∠CDA,
在△FCE 和△DCE 中,
∠CFE=∠D, ∠FCE=∠DCE, CE=CE, ∴△FCE≌△DCE(AAS).
专题:三角形全等常用辅助线及模型(答案)
专题:三角形全等常用辅助线及模型※题型讲练考点一三角形全等常见辅助线一:倍长中线法1.如图,在△ABC中,D为BC的中点.(1)求证:AB+AC>2AD;(2)若AB=5,AC=3,求AD的取值范围.解:(1)延长AD至点E,使DE=AD,连接BE.∵D为BC的中点,∴CD=BD.又∵AD=ED,∠ADC=∠EDB,∴△ADC≌△EDB.∴AC=EB.∵AB+BE>AE,∴AB+AC>2AD.(2)∵AB-BE<AE<AB+BE,∴AB-AC<2AD<AB+AC.∵AB=5,AC=3,∴2<2AD<8.∴1<AD<4.2.如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC,M为BC的中点,求证:(1)DE=2AM;(2) AM⊥DE.证明:(1)延长AM至点N,使MN=AM,连接BN.∵M为BC的中点,∴BM=CM.又∵AM=MN,∠AMC=∠NMB,∴△AMC≌△NMB(SAS),∴AC=BN,∠C=∠NBM,∴∠ABN=∠ABC+∠NBM=∠ABC+∠C=180°-∠BAC=∠EAD.∵AD=AC,AC=BN,∴AD=BN.又∵AB=AE,∴△ABN≌△EAD(SAS),∴DE=NA.又∵AM=MN,∴DE=2AM.(2)互余证法,证明略;3.如图,△ABC中,BD=AC,∠ADC=∠CAD,E是DC的中点,求证:AD平分∠BAE.解:延长AE到M,使EM=AE,连结DM易证△DEM≌△CEA∴∠C=∠MDE, DM=AC又BD=AC∴DM=BD,又∠ADB=∠C +∠CAD,∠ADM=∠MDE+∠ADC,∠ADC=∠CAD∴∠ADM=∠ADB∴△ADM≌△ADB∴∠BAD=∠MAD即AD平分∠BAE考点二三角形全等常见辅助线二:截长补短法1.如图,已知AP∥BC,∠PAB的平分线与∠CBA的平分线相交于点E,CE的延长线交AP于点D.求证:AD+BC=AB.证明:在AB上截取AF=AD,∵AE平分∠PAB,∴∠DAE=∠FAE,在△DAE和△FAE中,∴△DAE≌△FAE(SAS),∴∠AFE=∠ADE.∵AD∥BC,∴∠ADE+∠C=180°,∵∠AFE+∠EFB=180°,∴∠EFB=∠C.∵BE平分∠ABC,∴∠EBF=∠EBC,在△BEF和△BEC中,∴△BEF≌△BEC(AAS),∴BC=BF,∴AD+BC=AF+BF=AB.2.如图,在四边形ABCD中,AB=AD,∠BAD=120°,∠B =∠ADC=90°.E、F分别是BC、CD上的点,且∠EAF=60°.求证:EF=FD+BE.证明:如图,延长FD到点G,使DG=BE,连结AG.∵∠B=∠ADC=90°,∴∠B=∠ADG=90°.∵AB=AD,∴△ABE≌△ADG.∴AE=AG,∠BAE=∠DAG.又∵∠BAD=120°,∠EAF=60°,∴∠BAE+∠FAD=60°,∠DAG+∠FAD=60°.即∠GAF=60°,∴∠EAF=∠GAF=60°.∴△EAF≌△GAF.∴EF=GF=FD+DG,∴EF=FD+BE.考点三三角形全等常见模型一:一线三等角1.如图,在△ABC中,AB=AC,P、M分别在BC、AC边上,且∠APM=∠B,若AP=MP,求证:PB=MC.证明:∵∠B+∠BAP=∠APM+∠CPM,∠B=∠APM,∴∠BAP=∠CPM.∵AB=AC,∴△ABC为等腰三角形.∴∠B=∠C,又∵AP=PM,∴△APB≌△PMC.∴PB=MC 2.如图,一次函数y=-23x+4的图象分别与x轴、y轴交于点A,B,以AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.则过B,C两点的直线表达式为y=15x+4.3.(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E,则线段BD、CE、DE之间的关系是:DE=BD+CE ;(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问(1)中结论是否成立?若成立,请你给出证明;若不成立,请说明理由.图①图②解:(1)DE=BD+CE.(2)当α为任意钝角时,结论DE=BD+CE仍成立,理由:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,⎩⎨⎧∠ABD=∠CAE,∠BDA=∠AEC,AB=CA,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.考点四三角形全等常见模型二:手拉手1.如图,△ABC,△CDE是等边三角形,B,C,E三点在同一直线上,连接AE、BD交于点O.(1)求证:AE=BD;(2)求∠BOE的度数;(3)若BD和AC交于点M,AE和CD交于点N,求证:CM=CN.解:(1)∵△ABC和△DCE均为等边三角形,∴AC=BC,CE=CD,∠ACB=∠DCE=60°.∴∠BCD=∠ACE=120°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD.(2) ∠BOE的度数为120°;(3)∵△ACE≌△BCD,∴∠CBD=∠CAE.∵∠ACN=180°-∠ACB-∠DCE=60°,∴∠BCM=∠ACN.在△BCM和△ACN 中,∴△BCM≌△ACN(ASA),∴CM=CN.2.如图,∠BAD =∠CAE=90°,AB=AD,AE=AC,AF⊥CF,垂足为F.(1)求证:BC=DE.(2)求∠EAF的度数;(3)若AC=10,求四边形ABCD的面积.解:(1)易证△ABC≌△ADE(SAS),∴BC=DE.(2) ∠EAF的度数为135°;(3) 四边形ABCD的面积=三角形ACE的面积=50.※课后练习1.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是D,E.AD=3,BE=1,则DE的长是 2 .2.如图,C为线段AE上的一个动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.则下列结论:①AD=BE;②∠AOB=60°;③AP=BQ;④DE=DP.其中正确的是①②③.(填序号)3.如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE.证明:∵AB⊥AC,AD⊥AE,∴∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,∠BAD=∠CAE,AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE,∴AD=AE.4.正方形ABCD中,E为BC上的一点,F为CD上的一点,∠EAF=45°,求证:BE+DF=EF.证明:延长EB使得BG=DF,连接AG,在△ABG和△ADF中,由AB=AD,∠ABG=∠ADF=90°,BG=DF,可得△ABG≌△ADF(SAS),∴∠DAF=∠BAG,AF=AG,又∵∠EAF=45°∴∠GAE=∠EAF=45°在△AEG和△AEF中,AE=AE,∠GAE=∠EAF,AG=AF∴△AEG≌△AEF(SAS),∴EF=GE= BG+BE即BE+DF=EF.5.如图,D是△ABC的边BC上的点,且CD=AB,∠ADB= ∠BAD,AE是△ABD的中线.求证:AC=2AE.解:延长AE到M ,使EM=AE,连结DM易证△DEM≌△BEA∴∠B=∠MDE, DM=AB又CD=AB∴DM=CD,又∠ADC=∠B+∠BAD,∠ADM=∠MDE+∠ADB,∠ADB=∠BAD∴∠ADM=∠ADC∴△ADM≌△ADC∴AC=AM=2AE6.如图,在△ABC中,∠ABC=60°,AD,CE分别平分∠BAC,∠ACB,AD,CE交于O.(1)求∠AOC的度数;(2)求证:AC=AE+CD.解:(1)∵∠1+∠2+∠3+∠4=180°-∠B=120°,∠1=∠2,∠3=∠4,∴∠2+∠3=60°,∴∠AOC=180°-60°=120°;(2)在AC上截取AF=AE,连接OF,∵AE=AF,∠1=∠2,AO=AO,∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF,∵∠AOC=120°,∴∠AOE=∠DOC=60°,∴∠AOF=∠COF=60°,在△OFC和△ODC中,⎩⎨⎧∠FOC=∠DOC=60°,OC=OC,∠3=∠4,∴△OFC≌△ODC(ASA),∴FC=DC,∵AF+FC=AC,∴AC=AE+CD.7.Rt△ABC中,BC=AC,∠ACB=90°,D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上分别在点C 的两侧截取与线段CD相等的线段CE和CF,连接AE,BF.(1)当点D在线段AB上时(点D不与点A,B重合),如图1,线段BF,AD所在直线的位置关系为垂直,线段BF,AD的数量关系为相等.(2)当点D在线段AB的延长线上时,如图2,则(1)中的结论是否仍然成立?如果成立请证明;如果不成立,请说明理由.解:(2)成立.理由如下:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.8.如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D 是中点,求证:BE+CF>EF.证明:延长FD至G,使得GD=DF,连接BG,EG∵在△DFC和△DGB中,DF=DG∠CDF=∠BDGDC=DB,∴△DFC≌△DGB(SAS),∴BG=CF,∵在△EDF和△EDG中DF=DG∠FDE=∠GDE=90°DE=DE∴△EDF≌△EDG(SAS),∴EF=EG在△BEG中,两边之和大于第三边,∴BG+BE>EG又∵EF=EG,BG=CF,∴BE+CF>EF.9.如图,过线段AB的两个端点作射线AM、BN,使AM∥BN,按下列要求画图并回答:画∠MAB、∠NBA的平分线交于E(1)求∠AEB的度数;(2)过点E作一直线交AM于D,交BN于C,求证:DE=CE;(3)无论DC的两端点在AM、BN如何移动,只要DC经过点E,①AD+BC=AB;②AD+BC=CD谁成立?并说明理由.解:(1)∵AM∥BN,∴∠MAB+∠ABN=180°,又AE,BE分别为∠MAB、∠NBA的平分线,∴∠1+∠3=(∠MAB+∠ABN)=90°,∴∠AEB=180°-∠1-∠3=90°,即∠AEB为直角;(2)过E点作辅助线EF使其平行于AM,∵AM∥BN,EF∥BC,∴EF∥AD∥BC,∴∠AEF=∠4,∠BEF=∠2,∵∠3=∠4,∠1=∠2,∴∠AEF=∠3,∠BEF=∠1,∴AF=FE=FB,∴F为AB的中点,又EF∥AD∥BC,根据平行线等分线段定理得到E为DC中点,∴ED=EC;(3)由(2)中结论可知,无论DC的两端点在AM、BN如何移动,只要DC经过点E,总满足EF为梯形ABCD中位线的条件,所以总有AD+BC=2EF=AB.所以①成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图,在△ABC中,AD是∠BAC的角平分线,AC=AB+BD,求证:∠B=2∠C
证明:在AC上截取AE=AB,连结DE
∵AD是∠BAC的角平分线
∴∠BAD=∠EAD
在△BAD与△EAD中,有:
AB=AE (已知)
∠BAD=∠EAD (已证)
AD=AD (公共边)
∴△BAD≌△EAD (SAS)
∴∠B=∠AED (全等三角形对应角相等)
∵∠AED=∠EDC+∠C (三角形的外角等于不相邻的内角和)
∴∠B=∠EDC+∠C (等量代换)
∵△BAD≌△EAD (已证)
∴BD=ED (全等三角形对应边相等)
∵AC=AB+BD (已知)
AB=AE (已知)
BD=ED (已证)
∴ED=CE (等量代换)
∴∠C=∠EDC (等边对等角)
∵∠B=∠EDC+∠C (已证)
∴∠B=2∠C
2、如图,在△ABC中,AD是∠BAC的角平分线,AB>AC,试判断AB-AC与BD-CD
的大小并说明理由。
证明:在AB上截取AE=AC,连结DE
∵AD是∠CAB的角平分线
∴∠CAD=∠EAD
在△CAD与△EAD中,有:
AC=AE (已知)
∠CAD=∠EAD (已证)
AD=AD (公共边)
∴△CAD≌△EAD (SAS)
∴CD=ED (全等三角形对应边相等)
∵AC=AE (已知)
∴AB-AC=AB-AE=BE (等量代换)
∵BD-CD=BD-DE<BE (三角形两边之差少于第三边)
∴BD-CD=AB-AC
3、如图,O为∠BAC内一点,且AB=AC,OB=OC,反向延长OB
交AC于D,反向延长OC交AB于E,求证:AD=AE
证明方法一:连结BC
∵AB=AC,OB=OC
∴∠ABC=∠ACB,∠OBC=∠OCB (等边对等角)
∴∠ABC-∠OBC=∠ACB-∠OBC
∴∠ABD=∠ACE
在△ABD与△ACE中,有:
∠ABD=∠ACE (已证)
AB=AC (已知)
∠A=∠A (公共角)
∴△ABD≌△ACE (ASA)
∴AD=AE (全等三角形对应边相等)
证明方法二:连结AO
在△AOB与△AOC中,有:
OB=OC (已知)
AB=AC (已知)
AO=AO (公共边)
∴△AOB≌△AOC (SSS)
∴∠ABD=∠ACE (全等三角形对应角相等)
在△ABD与△ACE中,有:
∠ABD=∠ACE (已证)
AB=AC (已知)
∠BAC=∠CAB (公共角)
∴△ABD≌△ACE (ASA)
∴AD=AE (全等三角形对应边相等)
4、在△ABC中,AB=6,AC=8,D是BC的中点。
请判断中线AD的取值范围。
解:延长AD到E,使AD=ED
在△ABD与△ECD中,有:
BD=CD (D是BC的中点)
∠ADB=∠EDC (对顶角相等)
AD=ED (已知)
∴△ABD≌△ECD (SAS)
∴CE=AB=6 (全等三角形对应边相等)
在△AEC中,
∵AD=ED
∴AE=2AD
∵AC+CE>AE>AC-AE
∴8+6>2AD>8-6
∴7>AD>1
5、如图,△ABC中,AB=2AC,AD是∠BAC的角平分线,且AD=BD,求证:CD⊥AD 证明:在AB上截取AE=AC
∵AB=2AC,∵AE=AC
∴E为AB的中点
即DE是等腰△ADB底边上的中线
∴DE⊥AB (等腰三角形三线合一)
∴∠AED=90o
在△AED与△ACD中,有:
AE=AC (已知)
∠EAD=∠CAD (AD是∠BAC角平分线)
AD=AD (公共边)
∴△AED≌△ACD (SAS)
∴∠AED=∠ACD=90o(全等三角形对应边相等)
即CD⊥AC
6、如图,△ABC中,AB>AC,AD是∠BAC的角平分线,P是线段AD上任一点除A、
D外的任意一点。
求证:AB-AC>PB-PC
证明:在AB是截取AE=AC
在△ACP与△AEP中,有:
AC=AE (已知)
∠EAP=∠CAP (已知AD是∠BAC角平分线)
AP=AP (公共边)
∴△ACP≌△AEP (SAS)
∴PC=PE (全等三角形对应边相等)
∵BE>PB-PE (三角形两边差小于第三边)
∴BE>PB-PC (等量代换)
∵BE=AB-AE
AC=AE
BE>PB-PC
∴AB-AC>PB-PC
7、如图,四边形ABCD中,AD=CD,BC>AB,BD平分∠ABC,求证:∠A+∠C=180o 证明:在BC是截取BE=BA
在△ABD与△EBD中,有:
AB=BE (已知)
∠ABD=∠EBD (已知BD平分∠ABC)
BD=BD (公共边)
∴△ABD≌△EBD (SAS)
∴AD=ED,∠A=∠BED (全等三角形对应边相等、对应角相等)
∵AD=CD (已知)
∴ED=CD (等量代换)
∴∠DEC=∠C (等边对等角)
∵∠BED+∠DEC=∠BEC=180o言之(B、E、C三点共线)
∠C=∠DEC (已证)
∠A=∠BED (已证)
∴∠A+∠C=180o (等量代换)。