锐角三角函数单元测试及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第28章 锐角三角函数 单元测试

一、选择题(每题3分,共30分)

1.在Rt △ABC 中,∠C=90°,下列式子不一定成立的是( )

A .sinA=sin

B B .cosA=sinB

C .sinA=cosB

D .∠A+∠B=90° 2.在直角三角形中,各边的长度都扩大3倍,则锐角A 的三角函数值( ) A 扩大3倍 B 缩小3倍 C 都不变 D 有的扩大,有的缩小

3.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( )

A .c =

sin a A B .c =cos a A

C .c =a ·tanA

D .c =a ·cotA 4、若tan(α +10°)=3,则锐角α的度数是 ( )

A 、20°

B 、30°

C 、35°

D 、50° 5.已知△ABC 中,∠C=90°,设sinA=m ,当∠A 是最小的内角时,m 的取值范围是( ) A .0<m <12 B .0<m <22 C .0<m <33 D .0<m <32

6.小明沿着坡角为30°的坡面向下走了2米,那么他下降( ) A .1米 B . 3 米 C .2 3 米 D .23

3

7.已知Rt △ABC 中,∠C=90°,tanA=4

3

,BC=8,则AC 等于( )

A .6

B . 32

3

C .10

D .12

8.sin 2θ+sin 2

(90°-θ) (0°<θ<90°)等于( ) A 0 B 1 C 2 D 2sin 2

θ 9.如图,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC

于D ,连结BD ,若cos ∠BDC= 35

,则BC 的长是( )

A 、4 cm

B 、6 cm

C 、8 cm

D 、10 cm 10.以直角坐标系的原点O 为圆心,以1为半径作圆。若点P 是该圆上第一象限内的一

点,且OP 与x 轴正方向组成的角为α,则点P 的坐标为( ) A (cos α ,1) B (1 , sin α) C (sin α , cos α) D (cos α , sin α) (附加)小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30º角,且此时测得1米杆的影长为2米,则电线杆的高度为( ) A .9米 B .28米 C .(7+3)米 D .(14+23)米 二、填空题:(每题3分,共30分) 1.已知∠A 是锐角,且sinA=

3

2

,那么∠A = . 2.已知α为锐角,且sin α =cos500

,则α = . 3.已知3tan A -3=0,则∠A = .

(第9题)

(附加题)

4.在△ABC 中,∠C =90°,a =2,b =3,则cosA = ,sinB = ,tanB = . 5.直角三角形ABC 的面积为24cm 2

,直角边AB 为6cm ,∠A 是锐角,则sinA = . 6.已知tan α=5

12

,α是锐角,则sin α= .

7.如图,在坡度为1:2 的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米。 8.cos 2(50°+α)+cos 2(40°-α)-tan(30°-α)tan(60°+α)= . 9.等腰三角形底边长10cm ,周长为36cm ,则一底角的正切值为 . 10.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3.

则sin ∠BAC= ;sin ∠ADC= .

(附加)如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时,梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面墙上N ,此时梯子顶端距地面的垂直距离NB 为b 米,梯子的倾斜角45°,则这间房子的宽AB 是 米。 三、解答题(共60分)

1、计算(每题5分,共10分):

(1) 4sin30°-2cos45°+3tan60° (2) tan30°sin60°+cos 2

30°-sin 2

45°tan45°

2、(8分) 在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,已知

c =83,∠A =60°,解这个直角三角形.

A

B

C

D

O (第10题)

N

M

A

45°

75°

(附加题)

3.(8分)如图,一个等腰梯形的燕尾槽,外口AD 宽10cm ,燕尾槽深10cm ,AB 的坡度i=1:1,求里口宽BC 及燕尾槽的截面积.

4.(8分)如图,矩形ABCD 中AB =10,BC =8,E 为AD 边上一点,沿CE 将△CDE 对折,点D 正好落在AB 边上的F 处,求 tan ∠AFE ?

5.(8分)如图①,一栋旧楼房由于防火设施较差,需要在侧面墙外修建简易外部楼梯,由地面到二楼,再由二楼到三楼,共两段(图②中AB 、BC 两段),其中BB ′=3.2 m ,BC ′=4.3m .结合图中所给的信息,求两段楼梯A B 与BC 的长度之和(结果保留到0.1 m ). (参考数据sin30°≈0.50,cos30°≈0.87,sin35°≈0.57,cos35°≈0.82)

A B D C

E

F

E

相关文档
最新文档