高中数学第四章定积分4.1定积分的概念定积分的概念教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲边梯形的面积
一、教学目标:理解求曲边图形面积的过程:分割、以直代曲、逼近,感受在其过程中渗透的思想方法。
二、教学重难点:
重点:掌握过程步骤:分割、以直代曲、求和、逼近(取极限) 难点:对过程中所包含的基本的微积分 “以直代曲”的思想的理解
三、教学方法:探析归纳,讲练结合 四、教学过程 1、创设情景
我们学过如何求正方形、长方形、三角形等的面积,这些图形都是由直线段围成的。那么,如何求曲线围成的平面图形的面积呢?这就是定积分要解决的问题。定积分在科学研究和实际生活中都有非常广泛的应用。本节我们将学习定积分的基本概念以及定积分的简单应用,初步体会定积分的思想及其应用价值。
一个概念:如果函数()y f x =在某一区间I 上的图像是一条连续不断的曲线,那么就把函数()y f x =称为区间I 上的连续函数.(不加说明,下面研究的都是连续函数) 2、新课探析
问题:如图,阴影部分类似于一个梯形,但有一边是曲线
()y f x =的一段,我们把由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的图形称为曲边梯形.如何计算这个曲边梯形的面
积?
例题:求图中阴影部分是由抛物线2
y x =,直线1=x 以及x 轴所围成的平面图形的面积S 。
思考:(1)曲边梯形与“直边图形”的区别?(2)能否将求这个曲边梯形面积S 的问题转化
为求“直边图形”面积的问题?
分析:曲边梯形与“直边图形”的主要区别:曲边梯形有一边是曲线段,“直边图形”的所有边都是直线段.“以直代曲”的思想的应用.
0.1
把区间[]0,1分成许多个小区间,进而把区边梯形拆为一些小曲边梯形,对每个小曲边梯形“以直代取”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值.分割越细,面积的近似值就越精确。当分割无限变细时,这个近似值就无限逼近所求曲边梯形的面积S .也即:用划归为计算矩形面积和逼近的思想方法求出曲边梯形的面积. 解: (1).分割
在区间[]0,1上等间隔地插入1n -个点,将区间[]0,1等分成n
间:10,n ⎡⎤⎢⎥⎣⎦,12,n n ⎡⎤⎢⎥⎣⎦,…,1,1n n -⎡⎤
⎢
⎥⎣⎦
记第i 个区间为1,(1,2,,)i i i n n n -⎡⎤
=⎢
⎥⎣
⎦L ,其长度为11
i i x n n n
-∆=-=
分别过上述1n -个分点作x 轴的垂线,从而得到n 个小曲边梯形,他们的面积分别记作:
1S ∆,2S ∆,…,n S ∆显然,1
n
i
i S S ==∆∑
(2)近似代替
记()2
f x x =,如图所示,当n 很大,即x ∆很小时,在区间1,i i n n -⎡⎤
⎢
⎥⎣
⎦上,可以认为函数()2f x x =的值变化很小,近似的等于一个常数,不妨认为它近似的等于左端点
1
i n
-处的函数值1i f n -⎛⎫
⎪⎝⎭
,从图形上看,就是用平行于x 轴的直线段近似的代替小曲边梯形的曲边(如图).这样,在区间1,i i n n -⎡⎤
⎢⎥⎣⎦
上,用小矩形的面积i S '∆近似的代替i S ∆,即在局部范围内“以直代取”,则有
211i i i i S S f x x n n --⎛⎫⎛⎫'∆≈∆=∆=∆ ⎪ ⎪⎝⎭⎝⎭g g 2
11
(1,2,,)i i n n n
-⎛⎫== ⎪⎝⎭g L ①
(3)求和:由①,上图中阴影部分的面积n S 为
2
111111
n
n
n
n i i i i i i S S f x n n n ===--⎛⎫⎛⎫'∆=∆=∆= ⎪ ⎪⎝⎭⎝
⎭∑∑∑g g
=22
111110n n n n n n
-⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭g g L g =()22231121n n ⎡⎤+++-⎣⎦L =()()312116n n n n --=1111132n n ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭,从而得到S 的近似值 1111132n S S n n ⎛⎫⎛⎫
≈=-- ⎪⎪⎝⎭⎝⎭
(4)取极限:分别将区间[]0,1等分8,16,20,…等份(如图),可以看到,当n 趋向于无穷大时,即x ∆趋向于0时,1111132n S n n ⎛⎫⎛⎫
=
-- ⎪⎪⎝⎭⎝⎭
趋向于S ,从而有 1
11
1111lim lim lim 11323n
n n n n i i S S f n n n n →∞→∞→∞=-⎛⎫⎛⎫⎛⎫===--= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑g 从数值上的变化趋势:
3.求曲边梯形面积的四个步骤:第一步:分割.在区间[],a b 中任意插入1n -各分点,将它们等分成n 个小区间[]1,i i x x -()1,2,,i n =L ,区间[]1,i i x x -的长度1i i i x x x -∆=-,第二步:近似代替,“以直代取”。用矩形的面积近似代替小曲边梯形的面积,求出每个小曲边梯形面积的近似值.第三步:求和.第四步:取极限。
说明:1.归纳以上步骤,其流程图表示为:分割→以直代曲→求和→逼近
2.最后所得曲边形的面积不是近似值,而是真实值 练习:课本P76练习题:设S 表示由曲线x y =
,x =1,以及x 轴所围成平面图形的面积。
四、课堂小结:求曲边梯形的思想和步骤:分割→以直代曲→求和→逼近 (“以直代曲”的思想) 五、教学后记