全国高考数学复习微专题:函数的切线问题
【高考数学】《函数切线问题》微专题
【高中数学】《函数的切线问题》微专题第一讲 函数切线及其应用1.导数的几何意义:函数)(x f 在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率.注:(()tan k f x α'==)2.在点00(,)A x y 处的切线方程:()000()()y f x f x x x '-=-抓住关键:000()()y f x k f x =⎧⎨'=⎩;3.过点11(,)A x y 的切线方程:设切点为00(,)P x y ,则斜率0()k f x '=,过切点的切线方程为:∵过点11(,)A x y ,∴10010()()y y f x x x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线,三次函数多解)考点1 切线及斜率问题【例1.1】已知函数()f x 是偶函数,定义域为()()00-∞⋃+∞,,,且0x >时, ()1x x f x e-=,则曲线()y f x =在点()()11f --,处的切线方程为 . 析】()()()21','1,10,xx f x f f e e-=∴==∴曲线y , 是偶函数, ∴曲线()y f x =在点((1,f --相切,则切点的横坐标为( )A .1B .-1C .2D .e -1[解析] 设切点为(x 0,e 2x 0-1),∵f ′(x )=2e 2x -1,∴2e 2x 0-1=e 2x 0-1+ex 0,化简得2x 0-1=e2-2x 0.令y =2x -1-e 2-2x ,则y ′=2+2e 2-2x >0.∵x =1时,y =0,∴x 0=1.故选A.[答案] A【例1.3】设点P 是曲线335y x =+上的任意一点,点P 处切线的倾斜角为α,则角α的范围是( )A .203π⎡⎤⎢⎥⎣⎦,B .2023πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭,, C .223ππ⎛⎤⎥⎝⎦,D .233ππ⎡⎤⎢⎥⎣⎦,233x -,为第一象限角).设函数f =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x解析:选D 法一:∵f (x )=x 3+(a -1)x 2+ax , ∴f ′(x )=3x 2+2(a -1)x +a .又∵f (x )为奇函数,∴f (-x )=-f (x )恒成立, 即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x .法二:易知f (x )=x 3+(a -1)x 2+ax =x [x 2+(a -1)x +a ],因为f (x )为奇函数,所以函数g (x )=x 2+(a -1)x +a 为偶函数,所以a -1=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.【练习2】若P 是函数()()()1ln 1f x x x =++图象上的动点,点()1,1A --,则直线AP 斜率的取值范围为( ) A .[)1,+∞ B .[]0,1C .(1,e e -⎤⎦D .(1,e -⎤-∞⎦【解析】由题意可得: ()()'ln 11f x x =++ ,结合函数的定义域可知,函数在区间11,1e ⎛⎫--+ ⎪⎝⎭上单调递减,在区间11,e⎛⎫-++∞ ⎪⎝⎭上单调递增,且1111f e e⎛⎫-+=->- ⎪⎝⎭,绘制函数图象如图所示,当直线与函数图象相切时直线的斜率取得最小值,设切点坐标为()()()000,1ln 1x x x ++ ,该点的斜率为()0ln 11k x =++ ,切线方程为: ()()()()00001ln 1ln 11y x x x x x ⎡⎤-++=++-⎣⎦,切线过点()1,1-- ,则: ()()()()000011ln 1ln 111x x x x ⎡⎤--++=++--⎣⎦ ,解得:00x = ,切线的斜率()0ln 111k x =++= ,综上可得:则直线AP 斜率的取值范围为[)1,+∞.00点P (x 0,f (x 0))的坐标为________.[解析] ∵f (x )=x ln x ,∴f ′(x )=ln x +1,由题意得f ′(x 0)·(-1)=-1,即f ′(x 0)=1,∴ln x 0+1=1,ln x 0=0,∴x 0=1,∴f (x 0)=0,即P (1,0).[答案] (1,0) 【练习4】设P 是函数()1y x x =+图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为θ,则θ的取值范围是 .【解析】由题意知313131tan 23222222y x x x xx x θ=+∴=+≥⋅=' [)30,,2ππθπθ⎡⎫∈∴∈⎪⎢⎣⎭. 考点2 切线条数问题【例2】过点(),A m m 与曲线()ln f x x x =相切的直线有且只有两条,则m 的取值范围是( )A .()e -∞,B .()+e ∞,C .10e ⎛⎫⎪⎝⎭,D .()1+∞,【练习】设函数233)(x x x f -=,若过点),2(n 可作三条直线与曲线)(x f y =相切,则实数n 的取值范围是( )A .)4,5(--B .)0,5(-C .)0,4(-D .]3,5(--【解析】法一:()323f x x x =-,则()236f x x x '=-,设切点为()32000,3x x x -,则()200036f x x x '=-.∴过切点处的切线方程为()()32200000336y x x x x x x -+=--,把点()2n ,代入得: ()()322000003362n x x x x x -+=--.整理得:3200029120x x x n -++=.若过点()2n ,可作三条直线与曲线()y f x =相切,则方程3200029120x x x n -++=有三个不同根(左图)令()322912g x x x x =-+,则()()()261812612g x x x x x '=-+=--,∴当()()12+x ∈-∞⋃∞,,时,()0g x '>;当()12x ∈,时,()0g x '<, ∴()g x 的单调增区间为()1-∞,和()2+∞,;单调减区间为()12,. ∴当1x =时,()g x 有极大值为()15g =;当2x =时,()g x 有极小值为()24g =.由45n <-<,得54n -<<-. ∴实数n 的取值范围是()54--,.故选A .法二:()323f x x x =-关于点()1,2-中心对称,()()23613f x x x f ''=-⇒=-,在对称中心的切线方程为31,25y x x y =-+==-时,,()24f =-,故当点()2,n 位于区域Ⅰ,有三条切线时,54n -<<-.(如右图)考点3 零点、交点、极值点问题【例3.1】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是( )A .()0∞-,B .10,2⎛⎫⎪⎝⎭C .()0,1D .(0,)+∞【解析】函数()()ln f x x x ax =-,则()1'ln ln 21f x x ax x a x ax x⎛⎫=-+-=-+ ⎪⎝⎭,令()'ln 210f x x ax =-+=得ln 21x ax =-,函数()()ln f x x x ax =-有两个极值点,等价于()'ln 21f x x ax =-+有两个零点,等价于函数ln y x =与21y ax =-的图象有两个交点,在同一坐标系中作出它们的图象(如图),当12a =时,直线21y ax =-与ln y x = 的图象相切,由图可知,当102a <<时, ln y x =与21y ax =-的图象有两个交点,则实数a 的取值范围是10,2⎛⎫⎪⎝⎭,故选B .例3.1图 例3.2图【例3.2】设()ln f x x =,若函数()()g x f x ax =-在区间()20,e 上有三个零点,则实数a 的取值范围( )A .10,e ⎛⎫⎪⎝⎭B .211,e e ⎛⎫⎪⎝⎭ C .222,e e ⎛⎫⎪⎝⎭ D .221,e e ⎛⎫⎪⎝⎭ 【解析】令()()0g x f x ax =-=,可得()f x ax =.在坐标系内画出函数()ln f x x =的图象(如图1所示).当1x >时, ()ln f x x =.由ln y x =得1y x'=.设过原点的直线y ax =与函数y xln =的图象切于点()00,ln A x x ,则有0001lnx ax a x =⎧⎪⎨=⎪⎩,解得0 1x ea e =⎧⎪⎨⎪⎩=.所以当直线y ax =与函数ln y x =的图象切时1a e =.又当直线y ax =经过点()2B ,2e 时,有22a e =⋅,解得22a e =.结合图象可得当直线y ax =与函数()ln f x x =的图象有3个交点时,实数a 的取值范围是221,e e ⎛⎫⎪⎝⎭.即函数()()g x f x ax =-在区间()20,e 上有三个零点时,实数a 的取值范围是221,e e ⎛⎫⎪⎝⎭.故选D . 0x >()lg 0f x a x x=--≤a A .()(lg lg lg e e ⎤-∞-⎦, B .(]1-∞,C .()1lg lg lg e e ⎡⎤-⎣⎦,D .()lg lg lg e e ⎡⎤-+∞⎣⎦,【解析】原问题即lg x x a ≥-+在区间()0,+∞上恒成立,考查临界情况, 即函数()lg g x x =与()h x x a =-+相切时的情形,如图, 很明显切点横坐标位于区间()0,1内,此时,()()1lg ,'ln10g x x g x x =-=,由()'1g x =-可得:1lg ln10x e =-=-,则切点坐标为:()()lg ,lg lg e e --,切线方程为: ()lg lg lg y e x e +=+,令0x =可得纵截距为: ()lg lg lg e e -, 结合如图所示的函数图象可得则a 的取值范围是()(lg lg lg e e ⎤-∞-⎦,.故选A .考点4 参数范围问题【例4】已知函数()ln f x x x x =+,若k Z ∈,且()()2k x f x -<对任意的2x >恒成立,则k 的最大值为( )(参考数据:ln20.6931,ln3 1.0986==) A .3B .4C .5D .6【练习】已知,a b 为正实数,直线yx a =-与曲线()ln y x b =+相切,则2a b+的取值范围为 .考点5 距离问题和平行切线问题【例5.1】设点P 在曲线12x y e =上,点Q 在曲线()ln 2y x =上,则PQ 最小值为( )A .1ln2- B)1ln 2- C .1ln2+D )1ln 2+【例5.2】直线y m =分别与曲线()21y x =+,与ln y x x =+交于点,A B ,则AB的最小值为( ) A B .2 C .3D .32【练习1】已知函数()()02x f x f e x '=-+,点P 为曲线()y f x =在点()()00f ,处的切线l 上的一点,点Q 在曲线x y e =上,则PQ 的最小值为 .【解析】由()()02x f x f e ''=-+,令0x =可得()01f '=,所以()2x f x e x =-+,所以切线的斜率()01k f '==,又()01f =-,故切线方程为10x y --=.由题意可知与直线10x y --=平行【练习2】函数()21x f x e x x =+++与()g x 的图象关于直线230x y --=对称,P Q 、分别是函数()()f x g x 、图象上的动点,则PQ 的最小值为( )ABC D .【解析】由题意得当P 点处切线平行直线230x y --=,Q 为P 关于直线230x y --=对称取最小值.()f x e '=12+=⇒考点6 两点间距离平方问题【例6】已知实数a b 、满足225ln 0a a b c R --=∈,,则()()22a c b c -++的最小值为( )A .12BC .2D .92225ln 0x x y --=,即()225ln 0y x x x =->,以x 代换c,可得点()x x -,,满足0y x +=.因此【练习】已知()()()22ln S x a x a a R =-+-∈,则S 的最小值为( ) AB .12C D .2【解析】设()()ln A x x B a a ,,,,则问题化为求平面上两动点()()ln A x x B a a ,,,之间距离的第二讲函数公切线问题与是否有公切线,决定它们公切线条数的是由函数凹凸性和共单调区间交点。
高三数学高考导数专题1:切线问题
第 1 页 共 12 页专题1:切线问题1.若函数()ln f x x =与函数2()2(0)g x x x a x =++<有公切线,则实数a 的取值范围是( ) A .1(ln ,)2e+∞ B .(1,)-+∞ C .(1,)+∞ D .(ln 2,)-+∞1.A【解析】设公切线与函数()ln f x x =切于点111(ln )(0)A x x x >,,则切线方程为1111ln ()-=-y x x x x ;设公切线与函数2()2g x x x a =++切于点22222(2)(0)B x x x a x ,++<,则切线方程为22222(2)2(1)()y x x a x x x -++=+-,所以有2121212(1){ln 1x x x x a =+-=-+,.∵210x x <<,∴1102x <<.又2211111111ln 11ln 2124a x x x x ⎛⎫⎛⎫=+--=-+-- ⎪ ⎪⎝⎭⎝⎭,令11t x =,∴2102ln 4t a t t t ,<<=--.设21()ln (02)4h t t t t t =--<<,则211(1)3()1022t h t t t t--=--'=<,∴()h t 在(0,2)上为减函数,则1()(2)ln 21ln2h t h e >=--=,∴1ln 2a e ⎛⎫∈+∞ ⎪⎝⎭,,故选A . 2.已知直线2y x =与曲线()()ln f x ax b =+相切,则ab 的最大值为( ) A .4e B .2eC .eD .2e2.C【解析】设切点()()00,ln x ax b +,则由()002a f x ax b '==+得()0102ax b a a +=>,又由()00ln 2ax b x +=,得()0011ln ln 222a x ax b =+=,则0ln 2222a a a ab ax =-=-, 有()2211ln 0222a ab a a a =->,令()2211ln 222a g a a a =-,则()1ln 22a g a a ⎛⎫'=- ⎪⎝⎭,故当0a <<()0g a '>;当a >()0g a '<,故当a =()g a 取得极大值也即最大值(g e =. 故选:C.3.已知P 是曲线1C :x y e =上任意一点,点Q 是曲线2C :ln xy x=上任意一点,则PQ 的最小值是( ) A .ln 212- B .ln 212+C .2 D3.D【解析】(1)曲线1C :e x y =,求导得e x y '=,易知1C 在点()0,1A 处切线方程为1y x =+.下面证明e 1x x ≥+恒成立:构造函数()e 1x f x x =--,求导得()e 1x f x '=-,则(),0x ∈-∞时,0f x,()f x 单调递减;()0,x ∈+∞时,0fx,()f x 单调递增.故函数()()00f x f ≥=,即e 1x x ≥+恒成立,有1C 为下凸曲线 (2)曲线2C :ln x y x =,求导得21ln xy x-'=,当1x =时,1y '=,且2C 过点()1,0B故2C 在点()1,0处的切线方程为1y x =-. 下面证明ln 1xx x-≥在0,上恒成立:令()2ln F x x x x =--,则()()()221112121x x x x F x x x x x+---'=--==,第 3 页 共 12 页当01x <<时,()0F x '<,()F x 单调递减;当1x >时,()0F x '>,()F x 单调递增,所以()()min 10F x F ==,即()()10F x F ≥=, 则2ln 0--≥x x x ,即ln 1xx x-≥在0,上恒成立,有2C 为上凸曲线(3)由1C 在()0,1A 处切线1y x =+与2C 在B ()1,0处的切线1y x =-,知:它们相互平行又直线AB 的斜率k = -1,即可知:直线AB 与两条切线同时垂直 ∴综上,知:PQ 最小时,A 即为P 点,B 即为Q 点,故min ||||PQ AB = ∴min ||PQ =AB ==故选:D4.若曲线y =ax +2cos x 上存在两条切线相互垂直,则实数a 的取值范围是( )A .[] B .[﹣1,1] C .(﹣∞,1] D .[1]4.A【解析】2sin y a x '=-,要使曲线2cos y ax x =+上存在两条切线相互垂直,只需切线斜率最小时,其负倒数仍在导函数值域内取值,即1max miny y -'',显然0mn y '<, 故只需()()1min maxy y '⨯'-,因为2sin y a x '=-最小值为20a -<,最大值为20a +>, 所以(2)(2)1a a -+-,即23a ,解得33a.故选:A .5.已知关于x 不等式x ae x b ≥+对任意x ∈R 和正数b 恒成立,则a b的最小值为( ) A .12B .1CD .25.B【解析】设()xf x ae =,()g x x b =+,若x ae x b ≥+,对任意x ∈R 和正数b 恒成立, 则()()f x g x ≥,对任意x ∈R 和正数b 恒成立, 如图,0a ≤时,x ae x b ≥+,对任意x ∈R 和正数b 不恒成立;如图,0a >时,()x f x ae =,则()x f x ae '=,设()001x f x ae '==,解得0ln x a =-,且()0ln 01x af x ae ae -===,∴当()x f x ae =的切线斜率为1时,切点坐标为()ln ,1a -,第 5 页 共 12 页由直线的点斜式方程可得切线方程为1ln y x a -=+, 即ln 1y x a =++,若()()f x g x x b ≥=+,对任意x ∈R 和正数b 恒成立,则ln 1a b +≥ ∴ln ln 1ln a b b b -≥--∴1ln b b a e b--≥, 设()1ln h b b b =--,0b >()111b h b b b-'=-=,∴()1,0b h b '==,()1,0b h b '>>,()1,0b h b '<<, ∴()()10h b h ≥=,∴()1ln 01h bb b a e e e b--≥≥≥=故选:B.6.若存在实数,a b ,使不等式212ln 2e x ax b x e ≤+≤+对一切正数x 都成立(其中e 为自然对数的底数),则实数a 的最大值是( ) AB .2e C.D .26.C【解析】存在实数,a b ,使不等式212ln 2e x ax b x e ≤+≤+对一切正数x 都成立,要求a 的最大值,临界条件即为直线y ax b =+恰为函数21()=2ln ,()2f x e xg x x e =+的公切线. 设()=2ln f x e x 的切点为111(,)(0)x y x >,122()=,e e f x a x x '∴=. 设21()2g x x e =+的切点为222(,)(0)x y x >,2()g x x a x '=∴=,,所以21212=,2ea x x x e x =∴=. 由题得21221212112ln 22,2ln 30e x x ee a x x x x x --==∴+-=-.设111212()2ln 3(0)eh x x x x =+->, 所以211331112424()x ee h x x x x -'=-=, 所以函数11212()2ln 3eh x x x =+-在(0,上单调递减,在)+∞单调递增.又22ln 3=1+23=0eh e=+--, 当1x →+∞时,11212()2ln 30eh x x x =+->,所以方程另外一个零点一定大于,所以max a ==故选:C7.若对函数()2sin f x x x =-的图象上任意一点处的切线1l ,函数()()2x g x me m x =+-的图象上总存在一点处的切线2l ,使得12l l ⊥,则m的取值范围是( ) A .,02e ⎛⎫- ⎪⎝⎭B .0,2e ⎛⎫⎪⎝⎭C .()1,0-D .()0,17.D第 7 页 共 12 页【解析】由()2sin f x x x =-,得()[]2cos 1,3f x x '=-∈,所以111,=2cos 3A x ⎡⎤-∈--⎢⎥-⎣⎦,由()()2x g x me m x =+-,得()2xg x me m '=+-.(1)当0m >时,导函数单调递增,()()2,g x m '∈-+∞, 由题意得()()1212211,,()1()x x f x g x g x A B f x '''∀∃=-∴=-∴⊆' 故21m -<-,解得01m <<;(2)当0m <时,导函数单调递减,()(),2g x m '∈-∞-,同理可得123m ->-,与0m <矛盾,舍去; (3)当0m =时,不符合题意. 综上所述:m 的取值范围为()0,1. 故选:D .8.若过点()1,P m 可以作三条直线与曲线:x C y xe =相切,则m 的取值范围是( )A .25,0e ⎛⎫- ⎪⎝⎭B .25,e e ⎛⎫- ⎪⎝⎭C .()0,∞+D .231,ee ⎛⎫-- ⎪⎝⎭8.A【解析】设切点为()00,M x y ,∵e x y x =,∴()1e xy x '=+,∴M 处的切线斜率()001e x k x =+,则过点P 的切线方程为()()000001e e x x y x x x x =+-+,代入点P 的坐标,化简得()02001e x m x x =-++,∵过点()1,P m 可以作三条直线与曲线:e x C y x =相切,∴方程()0201e x m x x =-++有三个不等实根.令()()21e x f x x x =-++,求导得到()()22e xf x x x '=--+,可知()f x 在(),2-∞-上单调递减,在()2,1-上单调递增,在1,上单调递减,如图所示,故()20f m -<<,即250e m -<<.故选:A.9.已知y kx b =+是函数()ln f x x x =+的切线,则2k b +的最小值为______. 9.2ln2+【解析】根据题意,直线y =kx +b 与函数f (x )=lnx +x 相切,设切点为(m ,lnm +m ),函数f (x )=lnx +x ,其导数f ′(x )1x =+1,则f ′(m )1m =+1,则切线的方程为:y ﹣(lnm +m )=(1m+1)(x ﹣m ),变形可得y =(1m+1)x +lnm ﹣1, 又由切线的方程为y =kx +b ,则k 1m=+1,b =lnm ﹣1, 则2k +b 2m =+2+lnm ﹣1=lnm 2m++1, 设g (m )=lnm 2m++1,其导数g ′(m )22122m m m m -=-=,在区间(0,2)上,g ′(m )<0,则g (m )=lnm 2m++1为减函数,第 9 页 共 12 页在(2,+∞)上,g ′(m )>0,则g (m )=lnm 2m++1为增函数, 则g (m )min =g (2)=ln 2+2,即2k +b 的最小值为ln 2+2; 故答案为ln 2+2.10.存在0, 0k b >>使2ln kx k b x -+≥对任意的0x >恒成立,则bk的最小值为________. 10.1【解析】存在0, 0k b >>使2ln kx k b x -+≥对任意的0x >恒成立, 则等价于等价于存在0k >,0b >,()2y k x b =-+在ln y x =的上方. 直线()2y k x b =-+过定点()2,b ,即定点在直线2x =上, 设直线()2y k x b =-+与ln y x =相切于点()00,x y ,()''1ln y x x==,所以01k x =, 由0000ln 22y b x b k x x --==--得1ln12b kk k -=-,化简得21ln b k k =--,故1ln 2b kk k k=--. 构造函数()()1ln 20kg k k k k =-->, 则()'22211ln ln k k g k k k k-=-=, 所以当01k <<时,()'0g k <,函数()g k 递减, 当1k >时,()'0g k >,函数()g k 递增,所以()()min1211g k g ==-=.所以bk的最小值为1. 故答案为:111.若直线y kx b =+是曲线e x y =的切线,也是曲线ln(2)y x =+的切线,则k =_____.11.1或1e【解析】设y kx b =+与e x y =和()ln 2y x =+,分别切于点()11,x x e ,()()22,ln 2x x+,由导数的几何意义可得:1212xk e x ==+,即1212x x e+=,① 则切线方程为111()x x y e e x x -=-,即1111x x xy e x e x e =-+,或2221ln(2)()2y x x x x -+=-+,即2221ln(2)()2y x x x x -+=-+,② 将①代入②得11121x xy e x e x =+--,又直线y kx b =+是曲线e x y =的切线,也是曲线ln(2)y x =+的切线,则111x x e x e -+=1121xe x --,即11(1)(1)0xe x -+=,则11x =-或10x =, 即01k e ==或11k e e-==, 故答案为:1或1e.12.已知直线y kx b =+与函数x y e =的图像相切于点()11,P x y ,与函数ln y x =的图像相切于点()22,Q x y ,若21>x ,且()2,1x n n ∈+,n Z ∈,则n =__________. 12.4【解析】依题意,可得112112221ln x xe k x y e kx b y x kx b⎧==⎪⎪⎪==+⎨⎪==+⎪⎪⎩,整理得2222ln ln 10x x x x ---=令()ln ln 1(1)f x x x x x x =--->,则1()ln f x x x'=-在()1,+∞单调递增第 11 页 共 12 页且(1)(2)0f f ''⋅<,∴存在唯一实数()1,2m ∈,使()0f m '= min ()()(1)0f x f m f =<<,(2)ln 230f =-<,(3)2ln340f =-<, (4)3ln 450f =-<,(5)4ln560f =->,∴2(4,5)x ∈,故4n =. 13.若直线y kx b =+既是曲线ln y x =的切线,又是曲线2x y e -=的切线,则b =______.13.0或1-【解析】令()ln f x x =,()2x g x e -=,则()1'f x x=,()2'x g x e -=. 设切点分别()11,P x y ,()22,Q x y , 则切线方程为()1111ln y x x x x -=-,即111ln 1y x x x =⋅+-; ()22222x x y e e x x ---=-,即()222221x x y e x x e --=⋅+-, ∴()22212121ln 11x x e x x x e --⎧=⎪⎨⎪-=-⎩,即()212212ln 2ln 11x x x x x e -=-⎧⎨-=-⎩, ∴()()222110x x e --⋅-=,∴21x =或22x =. 当21x =时,切线方程为1y x e =,∴0b =;当22x =时,切线方程为1y x =-,∴1b =-.综上所述,0b =或1b =-.故答案为: 0b =或1b =-14.已知实数 a b c d ,,,,满足ln 211a cb d ==- ,那么()()22ac bd -+-的最小值为_________.14.2(2+ln 2)5 【解析】由ln 1a b =可知,点(),A a b 在函数()ln f x x =上,由211c d =-知,点(),B c d 在直线21y x =+上,则()()222=||a c b d AB -+-,所以当点A 处的切线与直线21y x =+平行时,点A 到直线21y x =+的距离的平方就是()()22a c b d -+-的最小值.由()f x '12x ==得,12x =,所以1,ln22A ⎛⎫- ⎪⎝⎭,所以()()()22222+ln25a c b d -+-≥=,所以()22ln 2min 5+=, 故答案为()22ln 25+. 15.若直线y kx b =+与曲线ln 2y x =+相切于点P ,与曲线()ln 1y x =+相切于点Q ,则k =_________.15.2【解析】设直线与ln 2y x =+相切与点(),ln 2m m +,此时斜率为1m ,由点斜式得切线方程为()()1ln 2y m x m m -+=-,即1ln 1y x m m=++.对于曲线()ln 1y x =+,其导数'11y x =+,令111m x =+,得1x m =-,故切点坐标为()1,ln m m -,代入切线方程得1ln 1ln m m m m -++=,解得12m =,故12k m==.。
函数的切线问题微专题
x0
抓住关键:
y0 k
f (x0 ) f (x0 )
;
3.过点 A(x1, y1) 的切线方程:设切点为 P(x0 , y0 ) ,则斜率 k f (x0 ) ,过切点的切线方程为: ∵过点 A(x1, y1) ,∴ y1 y0 f (x0 )(x1 x0 ) 然后解出 x0 的值.( x0 有几个值,就有几条切线,三次函数多解)
函数的切线问题微专题
第一讲 函数切线及其应用
1.导数的几何意义:
函数 f (x) 在点 x0 处的导数的几何意义就是曲线 y f (x) 在点 (x0 , f (x)) 处的切线的斜率.注:( k f x tan )
2.在点
A(x0 ,
y0 ) 处的切线方程:
y
f
(x0 )
f
(x0 ) x
A. (5 , 4)
B. (5 , 0)
C. (4 , 0)
D. (5 , 3]
【解析】法一: f x x3 3x2 ,则 f x 3x2 6x ,设切点为 x0 , x03 3x02 ,则 f x0 3x02 6x0 .
∴过切点处的切线方程为 y x03 3x02 3x02 6x0 x x0 ,把点 2 ,n 代入得:
e2-2x,则 y′=2+2e2-2x>0.∵x=1 时,y=0,∴x0=1.故选 A.
[答案] A
【例 1.3】设点 P 是曲线 y x3 3x 3 上的任意一点,点 P 处切线的倾斜角为 ,则角 的范围是( ) 5
A.
0
,2 3
B.
0
,
2
2 3
,
C.
2
,2 3
D.
3
,2 3
高考专项:导数重要专项切线问题汇总各种类型切线问题(教师版详细总结解析)
专项10 切线问题思路汇总第一点:基础准备导函数的几何意义就是指在平面图形中,所表示的涵义,即:00()()y f x x x x ==在处有定义且可导处的导数表示该处的切线斜率。
斜率的表达方式,高中数学讲了以下几种212211210(1)tan ;[0,)(2),(,)(,)n (3)(,),k=(4)()k y y k x y x y x x a m n mk f x θθπ=-=-='= 为直线的倾斜角,范围是和为直线上的两点,这两点的横坐标不相同若某直线的方向向量则这是在告诉考生第二点:切线问题结构图0000000000()(),()()(,)(3)y b f a x a y f x a b y '-=-'-=--=(1)题中说“在”点A(a,b):该点必为唯一的切点,设切线方程为:即只需要求导数值就可以了;(2)题中说“过”点A(a,b)且该点不在f(x)上:思路是设切点(x ,y ),切线方程为:y x x ,将带入求出(x ,y );切线问题题中说“过”点A(a,b)且该点在f(x)上:思路是设切点(x ,y ),切线方程为:y 00000()()(,),a f x a b a ⎧⎪⎪⎪⎪⎪⎪⎨⎪'-⎪⎪⎪⎪⎪⎩x x ,将带入求出(x ,y );注:这种情况,解得的x 必有一个为也可能只有一个a,也可以除了 之外还有其他值,也就是说切线方程可能不唯一综上:上述三种情况的关键在于:设切点,并求出切点坐标第三点:有两句话,在有关于切线问题的时候经常用到,没有思路的时候就要默念这两句话: 函数在该点处的导数值为切线方程的斜率;切点既在切线上同时也在曲线上,可以将其带入到这两个方程;习题巩固:11. 2.(1)(1)______2x f f '++=已知函数y=f(x)的图像在点M(1,f(1))处的切线方程为y=则3142.33(1)(2,4)(2)(2,4)y x P P =+已知曲线求曲线在点处的切线方程求过点的切线方程43.____1x P y P e αα=+已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是4. 若直线l 与曲线C 满足下列两个条件:)(i 直线l 在点()00,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线0:=y l 在点()0,0P 处“切过”曲线C :2x y =②直线1:-=x l 在点()0,1-P 处“切过”曲线C :2)1(+=x y③直线x y l =:在点()0,0P 处“切过”曲线C :x y sin =④直线x y l =:在点()0,0P 处“切过”曲线C :x y tan =⑤直线1:-=x y l 在点()0,1P 处“切过”曲线C :x y ln =5. 设函数1()ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+.求,a b ;6.=210,x y e P x y P -++=若曲线上点处的切线平行于直线则点的坐标为______专项10 切线问题汇总1.答案:3解析:2.3.。
2023届全国高考数学复习:专题(曲线的切线方程)重点讲解与练习(附答案)
2023届全国高考数学复习:专题(曲线的切线方程)重点讲解与练习考点一 求切线的方程【方法总结】求曲线切线方程的步骤(1)求曲线在点P (x 0,y 0)处的切线方程的步骤第一步,求出函数y =f (x )在点x =x 0处的导数值f ′(x 0),即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率; 第二步,由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)ꞏ(x -x 0).(2)求曲线过点P (x 0,y 0)的切线方程的步骤第一步,设出切点坐标P ′(x 1,f (x 1));第二步,写出过P ′(x 1,f (x 1))的切线方程为y -f (x 1)=f ′(x 1)(x -x 1);第三步,将点P 的坐标(x 0,y 0)代入切线方程,求出x 1;第四步,将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程.注意:在求曲线的切线方程时,注意两个“说法”:求曲线在点P 处的切线方程和求曲线过点P 的切线方程,在点P 处的切线,一定是以点P 为切点,过点P 的切线,不论点P 在不在曲线上,点P 不一定是切点.【例题选讲】[例1](1) (2021ꞏ全国甲)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________. (2) (2020ꞏ全国Ⅰ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1(3) (2018ꞏ全国Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x(4) (2020ꞏ全国Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为________.(5)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 .(6) (2021ꞏ新高考Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( )A .e b <aB .e a <bC .0<a <e bD .0<b <e a(7)已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)(8) (2019ꞏ江苏)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________.(9)设函数f (x )=x 3+(a -1)ꞏx 2+ax ,若f (x )为奇函数,且函数y =f (x )在点P (x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P (x 0,f (x 0))的坐标为 .(10)函数y =x -1x +1在点(0,-1)处的切线与两坐标轴围成的封闭图形的面积为( ) A .18 B .14 C .12 D .1(11)曲线y =x 2-ln x 上的点到直线x -y -2=0的最短距离是 .【对点训练】1.设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( )A .⎣⎡⎦⎤0,π2∪⎣⎡⎭⎫5π6,πB .⎣⎡⎭⎫2π3,πC .⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,πD .⎝⎛⎦⎤π2,5π6 2.函数f (x )=e x +1x 在x =1处的切线方程为 .3.(2019ꞏ全国Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.4.曲线f (x )=1-2ln x x在点P (1,f (1))处的切线l 的方程为( ) A .x +y -2=0 B .2x +y -3=0 C .3x +y +2=0 D .3x +y -4=05.(2019ꞏ全国Ⅱ)曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )A .x -y -π-1=0B .2x -y -2π-1=0C .2x +y -2π+1=0D .x +y -π+1=06.(2019ꞏ天津)曲线y =cos x -x 2(0,1)处的切线方程为________.7.已知f (x )=x ⎝⎛⎭⎫e x +a e x 为奇函数(其中e 是自然对数的底数),则曲线y =f (x )在x =0处的切线方程为 . 8.已知曲线y =13x 3上一点P ⎝⎛⎭⎫2,83,则过点P 的切线方程为________. 9.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 .10.设函数f (x )=f ′⎝⎛⎭⎫12x 2-2x +f (1)ln x ,曲线f (x )在(1,f (1))处的切线方程是( )A .5x -y -4=0B .3x -y -2=0C .x -y =0D .x =111.我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=ln(1+x ),则曲线y =f (x )在点(0,0)处的切线方程为________,用此结论计算ln2 022-ln2 021≈________. 12.曲线f (x )=x +ln x 在点(1,1)处的切线与坐标轴围成的三角形的面积为( )A .2B .32C .12D .1413.已知曲线y =133+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.14.设函数f (x )=ax -b x ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.15.(2021ꞏ全国乙)已知函数f (x )=x 3-x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.考点二 求参数的值(范围)【方法总结】处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.注意:曲线上横坐标的取值范围;谨记切点既在切线上又在曲线上.【例题选讲】[例1](1)已知曲线f (x )=ax 3+ln x 在(1,f (1))处的切线的斜率为2,则实数a 的值是________.(2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是 .(3)设函数f (x )=a ln x +bx 3的图象在点(1,-1)处的切线经过点(0,1),则a +b 的值为 .(4)(2019ꞏ全国Ⅲ)已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( )A .a =e ,b =-1B .a =e ,b =1C .a =e -1,b =1D .a =e -1,b =-1 (5)设曲线y =x +1x -2在点(1,-2)处的切线与直线ax +by +c =0垂直,则a b =( ) A .13 B .-13 C .3 D .-3(6)已知直线y =kx -2与曲线y =x ln x 相切,则实数k 的值为________.(7)已知函数f (x )=x +a 2x ,若曲线y =f (x )存在两条过(1,0)点的切线,则a 的取值范围是 . (8)关于x 的方程2|x +a |=e x 有3个不同的实数解,则实数a 的取值范围为________.【对点训练】1.若曲线y =x ln x 在x =1与x =t 处的切线互相垂直,则正数t 的值为________.2.设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a =( )A .0B .1C .2D .33.若曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)4.函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是 .5.已知函数f (x )=x cos x +a sin x 在x =0处的切线与直线3x -y +1=0平行,则实数a 的值为 .6.已知函数f (x )=x 3+ax +b 的图象在点(1,f (1))处的切线方程为2x -y -5=0,则a =________;b =________.7.若函数f (x )=ax -3x 的图象在点(1,f (1))处的切线过点(2,4),则a =________.8.若曲线y =e x 在x =0处的切线也是曲线y =ln x +b 的切线,则b =( )A .-1B .1C .2D .e9.曲线y =(ax +1)e x 在点(0,1)处的切线与x 轴交于点⎝⎛⎭⎫-12,0,则a = ; 10.过点M (-1,0)引曲线C :y =2x 3+ax +a 的两条切线,这两条切线与y 轴分别交于A 、B 两点,若|MA |=|MB |,则a = .11.已知曲线C :f (x )=x 3-3x ,直线l :y =ax -3a ,则a =6是直线l 与曲线C 相切的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.13.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.14.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求在曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.参考答案【例题选讲】[例1](1) (2021ꞏ全国甲)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________. 答案 5x -y +2=0 解析 y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2) (2020ꞏ全国Ⅰ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1答案 B 解析 f (1)=1-2=-1,切点坐标为(1,-1),f ′(x )=4x 3-6x 2,所以切线的斜率为k =f ′(1)=4×13-6×12=-2,切线方程为y +1=-2(x -1),即y =-2x +1.(3) (2018ꞏ全国Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x答案 D 解析 法一 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ),所以(-x )3+(a -1)(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0.因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .法二 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,此时f (x )=x 3+x (经检验,f (x )为奇函数),所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .法三 易知f (x )=x 3+(a -1)x 2+ax =x [x 2+(a -1)x +a ],因为f (x )为奇函数,所以函数g (x )=x 2+(a -1)x +a 为偶函数,所以a -1=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .(4) (2020ꞏ全国Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为________.答案 2x -y =0 解析 设切点坐标为(x 0,y 0),因为y =ln x +x +1,所以y ′=1x +1,所以切线的斜率为1x 0+1=2,解得x 0=1.所以y 0=ln 1+1+1=2,即切点坐标为(1,2),所以切线方程为y -2=2(x -1),即2x -y =0.(5)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 . 答案 x -y -1=0 解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+lnx ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0.(6) (2021ꞏ新高考Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( )A .e b <aB .e a <bC .0<a <e bD .0<b <e a答案 D 解析 根据y =e x 图象特征,y =e x 是下凸函数,又过点(a ,b )可以作曲线y =e x 的两条切线,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a .故选D .(7)已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)答案 C 解析 设切点P (x 0,y 0),f ′(x )=3x 2-1,又直线x +2y -1=0的斜率为-12,∴f ′(x 0)=3x 20-1=2,∴x 20=1,∴x 0=±1,又切点P (x 0,y 0)在y =f (x )上,∴y 0=x 30-x 0+3,∴当x 0=1时,y 0=3;当x 0=-1时,y 0=3.∴切点P 为(1,3)或(-1,3).(8) (2019ꞏ江苏)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________.答案 (e ,1) 解析 设A (m ,n ),则曲线y =ln x 在点A 处的切线方程为y -n =1m (x -m ).又切线过点(-e ,-1),所以有n +1=1m (m +e).再由n =ln m ,解得m =e ,n =1.故点A 的坐标为(e ,1).(9)设函数f (x )=x 3+(a -1)ꞏx 2+ax ,若f (x )为奇函数,且函数y =f (x )在点P (x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P (x 0,f (x 0))的坐标为 .答案 (0,0) 解析 ∵f (x )=x 3+(a -1)x 2+ax ,∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立,∴a =1,f ′(x )=3x 2+1,3x 20+1=1,x 0=0,f (x 0)=0,∴切点P (x 0,f (x 0))的坐标为(0,0).(10)函数y =x -1x +1在点(0,-1)处的切线与两坐标轴围成的封闭图形的面积为( )A .18B .14C .12D .1答案 B 解析 ∵y =x -1x +1,∴y ′=(x +1)-(x -1)(x +1)2=2 x +1 2,∴k =y ′|x =0=2,∴切线方程为y +1=2(x -0),即y =2x -1,令x =0,得y =-1;令y =0,得x =12,故所求的面积为12×1×12=14.(11)曲线y =x 2-ln x 上的点到直线x -y -2=0的最短距离是 . 答案 2 解析 设曲线在点P (x 0,y 0)(x 0>0)处的切线与直线x -y -2=0平行,则0|x x y '==12x x x x 0=⎛⎫- ⎪⎝⎭=2x 0-1x 0=1.∴x 0=1,y 0=1,则P (1,1),则曲线y =x 2-ln x 上的点到直线x -y -2=0的最短距离d =|1-1-2|12+(-1)2=2. 【对点训练】1.设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( )A .⎣⎡⎦⎤0,π2∪⎣⎡⎭⎫5π6,πB .⎣⎡⎭⎫2π3,πC .⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,πD .⎝⎛⎦⎤π2,5π6 1.答案 C 解析 y ′=3x 2-3,∴y ′≥-3,∴tan α≥-3,又α∈[0,π),故α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π,故 选C .2.函数f (x )=e x +1x 在x =1处的切线方程为 .2.答案 y =(e -1)x +2 解析 f ′(x )=e x -1x 2,∴f ′(1)=e -1,又f (1)=e +1,∴切点为(1,e +1),切线斜率k =f ′(1)=e -1,即切线方程为y -(e +1)=(e -1)(x -1),即y =(e -1)x +2.3.(2019ꞏ全国Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.3.答案 y =3x 解析 y ′=3(2x +1)e x +3(x 2+x )e x =3e x (x 2+3x +1),所以曲线在点(0,0)处的切线的斜率k =e 0×3=3,所以所求切线方程为y =3x .4.曲线f (x )=1-2ln x x在点P (1,f (1))处的切线l 的方程为( ) A .x +y -2=0 B .2x +y -3=0 C .3x +y +2=0 D .3x +y -4=04.答案 D 解析 因为f (x )=1-2ln x x f ′(x )=-3+2ln x x 2.又f (1)=1,且f ′(1)=-3,故所求切线方 程为y -1=-3(x -1),即3x +y -4=0.5.(2019ꞏ全国Ⅱ)曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )A .x -y -π-1=0B .2x -y -2π-1=0C .2x +y -2π+1=0D .x +y -π+1=05.答案 C 解析 设y =f (x )=2sin x +cos x ,则f ′(x )=2cos x -sin x ,∴f ′(π)=-2,∴曲线在点(π,-1)处的切线方程为y -(-1)=-2(x -π),即2x +y -2π+1=0.故选C .6.(2019ꞏ天津)曲线y =cos x -x 2(0,1)处的切线方程为________.6.答案 y =-12x +1 解析 y ′=-sin x -12,将x =0代入,可得切线斜率为-12.所以切线方程为y -1=-12x ,即y =-12x +1.7.已知f (x )=x ⎝⎛⎭⎫e x +a e x 为奇函数(其中e 是自然对数的底数),则曲线y =f (x )在x =0处的切线方程为 . 7.答案 2x -y =0 解析 ∵f (x )为奇函数,∴f (-1)+f (1)=0,即e +a e -1e -a e =0,解得a =1,f (x )=x ⎝⎛⎭⎫e x +1e x ,∴f ′(x )=⎝⎛⎭⎫e x +1e x +x ⎝⎛⎭⎫e x -1e x ,∴曲线y =f (x )在x =0处的切线的斜率为2,又f (0)=0,∴曲线y =f (x )在x =0处的切线的方程为2x -y =0.8.已知曲线y =13x 3上一点P ⎝⎛⎭⎫2,83,则过点P 的切线方程为________.8.答案 3x -3y +2=0或12x -3y -16=0 解析 设切点坐标为⎝⎛⎭⎫x 0,13x 30,由y ′=⎝⎛⎭⎫13x 3′=x 2,得y ′|x =x 0 =x 20,即过点P 的切线的斜率为x 20,又切线过点P ⎝⎛⎭⎫2,83,若x 0≠2,则x 20=13x 30-83x 0-2,解得x 0=-1,此时切线的斜率为1;若x 0=2,则切线的斜率为4.故所求的切线方程是y -83=x -2或y -83=4(x -2),即3x -3y +2=0或12x -3y -16=0.9.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 . 9.答案 x -y -1=0 解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0.10.设函数f (x )=f ′⎝⎛⎭⎫12x 2-2x +f (1)ln x ,曲线f (x )在(1,f (1))处的切线方程是( )A .5x -y -4=0B .3x -y -2=0C .x -y =0D .x =110.答案 A 解析 因为f (x )=f ′⎝⎛⎭⎫12x 2-2x +f (1)ln x ,所以f ′(x )=2f ′⎝⎛⎭⎫12x -2+f (1)x .令x =12得f ′⎝⎛⎭⎫12=2f ′⎝⎛⎭⎫12 ×12-2+2f (1),即f (1)=1.又f (1)=f ′⎝⎛⎭⎫12-2,所以f ′⎝⎛⎭⎫12=3,所以f ′(1)=2f ′⎝⎛⎭⎫12-2+f (1)=6-2+1=5.所以曲线在点(1,f (1))处的切线方程为y -1=5(x -1),即5x -y -4=0.11.我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=ln(1+x ),则曲线y =f (x )在点(0,0)处的切线方程为________,用此结论计算ln2 022-ln2 021≈________.11.答案 y =x 12 021 解析 函数f (x )=ln(1+x ),则f ′(x )=11+x,f ′(0)=1,f (0)=0,∴切线方程为y =x .∴ ln2 022-ln2 021=ln ⎝⎛⎭⎫1+12 021=f ⎝⎛⎭⎫12 021,根据以直代曲,x =12 021也非常接近切点x =0.∴可以将x =12 021代入切线近似代替f ⎝⎛⎭⎫12 021,即f ⎝⎛⎭⎫12 021≈12 021. 12.曲线f (x )=x +ln x 在点(1,1)处的切线与坐标轴围成的三角形的面积为( )A .2B .32C .12D .1412.答案 D 解析 f ′(x )=1+1x ,则f ′(1)=2,故曲线f (x )=x +ln x 在点(1,1)处的切线方程为y -1=2(x-1),即y =2x -1,此切线与两坐标轴的交点坐标分别为(0,-1),⎝⎛⎭⎫12,0,则切线与坐标轴围成的三角形的面积为12×1×12=14,故选D .13.已知曲线y =133+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.13.解析 (1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率为y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,则切线的斜率为y ′|x =x 0=x 20. ∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20ꞏx -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0.14.设函数f (x )=ax -b x ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.14.解析 (1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +b x 2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x (2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0).令x =0,得y =-6x 0, 从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6. 15.(2021ꞏ全国乙)已知函数f (x )=x 3-x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.15.解析 (1)由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ).①当a ≥13时,Δ≤0,f ′(x )≥0在R 上恒成立,所以f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3, 令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )在⎝ ⎛⎭⎪⎫-∞,1-1-3a 3上单调递增, 在⎝ ⎛⎭⎪⎫1-1-3a 3,1+1-3a 3上单调递减,在⎝ ⎛⎭⎪⎫1+1-3a 3,+∞上单调递增. (2)记曲线y =f (x )过坐标原点的切线为l ,切点为P (x 0,x 30-x 20+ax 0+1).因为f ′(x 0)=3x 20-2x 0+a ,所以切线l 的方程为y -(x 30-x 20+ax 0+1)=(3x 20-2x 0+a )(x -x 0).由l 过坐标原点,得2x 30-x 20-1=0,解得x 0=1,所以切线l 的方程为y =(1+a )x .由⎩⎪⎨⎪⎧y =(1+a )x ,y =x 3-x 2+ax +1解得⎩⎪⎨⎪⎧x =1,y =1+a 或⎩⎪⎨⎪⎧x =-1,y =-1-a . 所以曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标为(1,1+a )和(-1,-1-a ). 考点二 求参数的值(范围)【方法总结】处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.注意:曲线上横坐标的取值范围;谨记切点既在切线上又在曲线上.【例题选讲】[例1](1)已知曲线f (x )=ax 3+ln x 在(1,f (1))处的切线的斜率为2,则实数a 的值是________.答案 13 解析 f ′(x )=3ax 2+1x ,则f ′(1)=3a +1=2,解得a =13.(2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是 .答案 [2,+∞) 解析 直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线,∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0.又4x +1x ≥24x ꞏ1x =4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). (3)设函数f (x )=a ln x +bx 3的图象在点(1,-1)处的切线经过点(0,1),则a +b 的值为 .答案 0 解析 依题意得f ′(x )=a x +3bx 2,于是有⎩⎪⎨⎪⎧ f (1)=-1,f ′(1)=1+10-1,即⎩⎪⎨⎪⎧ b =-1,a +3b =-2,解得⎩⎪⎨⎪⎧a =1,b =-1,2.设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a =( )A .0B .1C .2D .32.答案 D 解析 ∵y =e ax -ln(x +1),∴y ′=a e ax -1x +1,∴当x =0时,y ′=a -1.∵曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,∴a -1=2,即a =3.故选D .3.若曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)3.答案 C 解析 f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验点(1,3),(-1,3)均不在直线y =2x -1上,故选C .4.函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是 .4.答案 (-∞,2) 解析 由题意知f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x 2,所以a 的取值范围是(-∞,2).5.已知函数f (x )=x cos x +a sin x 在x =0处的切线与直线3x -y +1=0平行,则实数a 的值为 . 5.答案 2 解析 f ′(x )=cos x +x ꞏ(-sin x )+a cos x =(1+a )cos x -x sin x ,∴f ′(0)=1+a =3,∴a =2. 6.已知函数f (x )=x 3+ax +b 的图象在点(1,f (1))处的切线方程为2x -y -5=0,则a =________;b =________. 6.答案 -1 -3 解析 由题意得f ′(x )=3x 2+a ,则由切线方程得⎩⎪⎨⎪⎧f (1)=1+a +b =2×1-5,f ′(1)=3+a =2,解得a = -1,b =-3.7.若函数f (x )=ax -3x 的图象在点(1,f (1))处的切线过点(2,4),则a =________.7.答案 2 解析 f ′(x )=a +3x 2,f ′(1)=a +3,f (1)=a -3,故f (x )的图象在点(1,a -3)处的切线方程为y-(a -3)=(a +3)(x -1),又切线过点(2,4),所以4-(a -3)=a +3,解得a =2.8.若曲线y =e x 在x =0处的切线也是曲线y =ln x +b 的切线,则b =( )A .-1B .1C .2D .e8.答案 C 解析 y =e x 的导数为y ′=e x ,则曲线y =e x 在x =0处的切线斜率k =1,则曲线y =e x 在x=0处的切线方程为y -1=x ,即y =x +1.设y =x +1与y =ln x +b 相切的切点为(m ,m +1).又y ′=1x ,则1m =1,解得m =1.所以切点坐标为(1,2),则2=b +ln 1,得b =2.9.曲线y =(ax +1)e x 在点(0,1)处的切线与x 轴交于点⎝⎛⎭⎫-12,0,则a = ; 9.答案 1 解析 y ′=e x (ax +1+a ),所以y ′|x =0=1+a ,则曲线y =(ax +1)e x 在(0,1)处的切线方程为y=(1+a )x +1,又切线与x 轴的交点为⎝⎛⎭⎫-12,0,所以0=(1+a )×⎝⎛⎭⎫-12+1,解得a =1. 10.过点M (-1,0)引曲线C :y =2x 3+ax +a 的两条切线,这两条切线与y 轴分别交于A 、B 两点,若|MA |=|MB |,则a = .10.答案 -274 解析 设切点坐标为(t ,2t 3+at +a ),∵y ′=6x 2+a ,∴6t 2+a =2t 3+at +a t +1,即4t 3+6t 2=0,解得t =0或t =-32,∵|MA |=|MB |,∴两切线的斜率互为相反数,即2a +6×⎝⎛⎭⎫-322=0,解得a =-274.11.已知曲线C :f (x )=x 3-3x ,直线l :y =ax -3a ,则a =6是直线l 与曲线C 相切的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 11.答案 A 解析 因为曲线C :f (x )=x 3-3x ,所以f ′(x )=3x 2-3.设直线l 与曲线C 相切,且切点的横坐标为x 0,则切线方程为y =(3x 20-3)x -2x 30,所以⎩⎨⎧ 3x 20-3=a ,2x 30=3a ,解得⎩⎨⎧ x 0=3,a =6或⎩⎨⎧ x 0=-32,a =-34,所以a =6是直线l 与曲线C 相切的充分不必要条件,故选A .12.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.12.解析 (1)y ′=x 2-4x +3=(x -2)2-1≥-1,∴当x =2时,y ′min =-1,y =53,∴斜率最小的切线过点⎝⎛⎭⎫2,53,斜率k =-1,∴切线方程为y -53=-1×(x -2),即3x +3y -11=0.(2)由(1)得k ≥-1,∴tan α≥-1,又∵α∈[0,π),∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 故α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 13.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.13.解析 f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1. (2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根,所以Δ=4(1-a )2+12a (a +2)>0,即4a 2+4a +1>0,所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞.14.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求在曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围. 14.解析 (1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1,即曲线C 上任意一点处的切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k (k ≠0),则由题意并结合(1)中结论可知⎩⎪⎨⎪⎧ k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1, 则-1≤x 2-4x +3<0或x 2-4x +3≥1,解得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).。
高考数学热点必会题型第4讲 导数求切线及公切线归类(原卷版)
高考数学热点必会题型第4讲 导数求切线及公切线归类 ——每天30分钟7天轻松掌握一、重点题型目录【题型】一、零点存在定理法判断函数零点所在区间 【题型】二、方程法判断函数零点个数 【题型】三、数形结合法判断函数零点个数 【题型】四、转化法判断函数零点个数 【题型】五、利用函数的零点或方程有根求参数 【题型】六、利用函数的交点或交点个数求参数 【题型】七、一元二次不等式恒成立问题 【题型】八、一元二次不等式能成立问题 二、题型讲解总结第一天学习及训练【题型】一、求曲线切线的斜率与倾斜角例1.(2023·全国·高三专题练习)函数()ln f x x x =+在1x =处的切线的斜率为( ) A .2B .-2C .0D .1例2.(2023·全国·高三专题练习)函数()f x 的导函数为()f x ',若已知()f x '的图像如图,则下列说法正确的是( )A .()f x 一定存在极大值点B .()f x 有两个极值点C .()f x 在(),a -∞单调递增D .()f x 在x =0处的切线与x 轴平行例3.(2023·全国·高三专题练习)若函数()()ln 2f x x x =+,则( ) A .()f x 的定义域是()0,∞+ B .()f x 有两个零点C .()f x 在点()()1,1f --处切线的斜率为1-D .()f x 在()0,∞+递增【题型】二、求在曲线上一点处的切线方程或斜率例4.(2023·上海·高三专题练习)2(5)3lim2,(3)32x f x f x →--==-,()f x 在(3,(3))f 处切线方程为( ) A .290x y ++= B .290x y +-= C .290x y -++=D .290x y -+-=例6.(2023·全国·高三专题练习)在平面直角坐标系xOy 中,抛物线2:2(0)C x py p =>的焦点为,F P 是C 上位于第一象限内的一点,若C 在点P 处的切线与x 轴交于M 点,与y 轴交于N 点,则与PF 相等的是( ) A .MNB .FNC .PMD .ON例7.(2023·江苏南京·高三阶段练习)已知双曲线C :224x y -=,曲线E :2y ax x b =++,记两条曲线过点()1,0的切线分别为1l ,2l ,且斜率均为正数,则( ) A .若=0a ,1b =,则C 与E 有一个交点B .若=1a ,=0b ,则C 与E 有一个交点C .若0a b ,则1l 与E 夹角的正切值为7-D .若==1a b ,则1l 与2l 例8.(2023·江苏·苏州中学高三阶段练习)已知函数()()e e x xf x x -=- ,则( )A .()f x 在()0,∞+单调递增B .()f x 有两个零点C .()=y f x 在点()()ln 2,ln 2f 处切线的 斜率为35ln 222+D .()f x 是奇函数第二天学习及训练【题型】三、利用导数求直线的倾斜角或倾斜角范围例9.(2023·全国·高三专题练习)已知()()2cos 0cos 2f x x f x π⎛⎫=-+ '⎪⎝⎭,则曲线()y f x =在点33,44f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为( )A B .C .D .-例10.(2023·全国·高三专题练习)已知点M 是曲线()22ln 5f x x x x =+-上一动点,当曲线在M 处的切线斜率取得最小值时,该切线的倾斜角为( ) A .4πB .3π C .23π D .34π 例11.(2022·江西省定南中学高二阶段练习(理))若()ln f x x x =,则()f x 图像上的点的切线的倾斜角α满足( ) A .一定为锐角B .一定为钝角C .可能为0︒D .可能为直角例12.(2022·全国·高三专题练习)已知函数()()ln 0sin 0x x f x x x ⎧-<=⎨≥⎩,,, ()020x kx x g x x >⎧=⎨≤⎩,,,若x 1、x 2、x 3,x 4是方程()()f x g x =仅有的4个解,且x 1<x 2<x 3<x 4,则( ) A .0<x 1x 2<1 B .x 1x 2>1 C .43πtan π2x ,⎛⎫∈ ⎪⎝⎭D .4πtan π2x ,⎛⎫∈ ⎪⎝⎭【题型】四、求在过一点的切线方程例13.(2023·全国·高三专题练习)过点()0,P b 作曲线e x y x =的切线,当240e b -<<时,切线的条数是( ) A .0B .1C .2D .3例14.(2023·全国·高三专题练习)若过点(,)a b 可以作曲线ln y x =的两条切线,则( ) A .ln a b <B .ln b a <C .ln b a <D .ln a b <例15.(2023·全国·高三专题练习)过曲线()3:C f x x ax b =-+外一点1,0A 作C 的切线恰有两条,则( ) A .a b =B .1a b -=C .1b a =+D .2a b =例16.(2023·江西·赣州市赣县第三中学高三期中(理))已知定义域为R 的奇函数()f x 满足:()()ln ,0121,1x x x f x f x x <≤⎧=⎨->⎩,若方程()12f x kx =-在[]1,2-上恰有三个根,则实数k 的取值范围是________.例17.(2023·全国·高三专题练习)若过点()1,P t 可作出曲线3y x =的三条切线,则实数t 的取值范围是___________第三天学习及训练【题型】五、利用导数值求出参数值例18.(2023·上海·高三专题练习)已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)⎡⎣B .)⎡⎣C .(,-∞D .(-∞例19.(2023·全国·高三专题练习)若曲线()ln a xf x x=在点(1,f (1))处的切线方程为1y x =-,则a =( ) A .1B .e2C .2D .e例20.(2023·全国·高三专题练习)首钢滑雪大跳台是冬奥史上第一座与工业旧址结合再利用的竞赛场馆,它的设计创造性地融入了敦煌壁画中飞天的元素,建筑外形优美流畅,飘逸灵动,被形象地称为雪飞天.中国选手谷爱凌和苏翊鸣分别在此摘得女子自由式滑雪大跳台和男子单板滑雪大跳台比赛的金牌.雪飞天的助滑道可以看成一个线段PQ 和一段圆弧QM 组成,如图所示.假设圆弧QM 所在圆的方程为22:(25)(2)162C x y ++-=,若某运动员在起跳点M 以倾斜角为45且与圆C 相切的直线方向起跳,起跳后的飞行轨迹是一个对称轴在y 轴上的抛物线的一部分,如下图所示,则该抛物线的轨迹方程为( )A .232(1)y x =--B .21364y x =-- C .232(1)x y =--D .2364x y =-+例21.(2023·全国·高三专题练习)已知奇函数()()()()220f x x x ax b a =-+≠在点()(),a f a处的切线方程为()y f a =,则b =( )A .1-或1B .C .2-或2D .例22.(2023·上海·高三专题练习)设函数()ln f x x x =,()1x g x x =+. (1)若直线12y x b =+是曲线()f x 的一条切线,求b 的值; (2)证明:①当01x <<时,()()()112g x f x x x ⋅>-; ②0x ∀>,()()2e-<g x f x .(e 是自然对数的底数,e 2.718≈) 【题型】六、已知切线的斜率求参数方程例23.(2023·江苏南京·高三阶段练习)已知函数()2e ,<1=e ,1x x x f x x -≥⎧⎨⎩若方程()0f x x a --=有三个不同的解,则a 的取值范围是( ) A .()0,1B .()1,e 1-C .()1,eD .()e 1,e -例24.(2023·江西·赣州市赣县第三中学高三期中(理))已知0a >,0b >,直线2e y x b-=+与曲线ln y x a =-相切,则11a b+的最小值是( ) A .16B .12C .8D .4例25.(2023·全国·高三专题练习)若函数()ln bf x a x x=-在点(1,f (1))处的切线的斜率为1,则22a b +的最小值为( )A .12B C D .34例26.(2023·全国·高三专题练习)已知点P 是曲线23ln y x x =-上任意的一点,则点P 到直线2230x y ++=的距离的最小值是( )A .74B .78C .2D例27.(2023·全国·高三专题练习)设函数()e 2xf x x =-,直线=+y ax b 是曲线()=y f x 的切线,则2a b +的最大值是__________第四天学习及训练【题型】七、两条切线平行、垂直、重合公切线问题例28.(2023·全国·高三专题练习)对于三次函数()f x ,若曲线()y f x =在点(0,0)处的切线与曲线()y xf x =在点(1,2)处点的切线重合,则(2)f '=()A .34-B .14-C .4-D .14例29.(2023·全国·高三专题练习)若直线l 与曲线e x y =和ln y x =都相切,则直线l 的条数有( ) A .0B .1C .2D .无数条例30.(2023·全国·高三专题练习)若直线l 与函数()e x f x =,()ln g x x =的图象分别相切于点()()11,A x f x ,()()22,B x g x ,则1212x x x x -+=( ) A .2-B .1-C .1D .2例31.(2023·全国·高三专题练习)已知函数()ln f x a x =,()e x g x b =,若直线()0y kx k =>与函数()f x ,()g x 的图象都相切,则1a b+的最小值为( )A .2B .2eC .2eD 例32.(2023·全国·高三专题练习)若两曲线ln 1y x =-与2y ax =存在公切线,则正实数a 的取值范围是( ) A .(]0,2eB .31e ,2-⎡⎫+∞⎪⎢⎣⎭C .310,e 2-⎛⎤⎥⎝⎦D .[)2e,+∞例33.(2023·全国·高三专题练习)若函数()()22ln 12x axf x x -=++的图象上,不存在互相垂直的切线,则a 的值可以是( )A .-1B .3C .1D .2【题型】八、已知某点处的导数求参数或自变量例34.(2023·全国·高三专题练习)已知曲线()40y x x x=+<在点P 处的切线与直线310x y -+=垂直,则点P 的横坐标为( )A .1B .1-C .2D .2-例35.(2023·全国·高三专题练习)已知函数()sin f x m x b =+在6x π=处的切线方程为1y x =+,则实数b 的值为( )A .12B C .1 D 例36.(2023·全国·高三专题练习)若实数a ,b ,c ,d 满足ln ,1a b c d =+=,则()()22a cb d -+-的最小值为______.。
高考数学讲义微专题14函数的切线问题(含详细解析)
微专题14 函数的切线问题一、基础知识: (一)与切线相关的定义1、切线的定义:在曲线的某点A 附近取点B ,并使B 沿曲线不断接近A 。
这样直线AB 的极限位置就是曲线在点A 的切线。
(1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A 附近的点向A 不断接近,当与A 距离非常小时,观察直线AB 是否稳定在一个位置上(2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。
例如函数3y x =在()1,1--处的切线,与曲线有两个公共点。
(3)在定义中,点B 不断接近A 包含两个方向,A 点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线AB 的极限位置唯一时,这个极限位置才能够成为在点A 处的切线。
对于一个函数,并不能保证在每一个点处均有切线。
例如y x =在()0,0处,通过观察图像可知,当0x =左边的点向其无限接近时,割线的极限位置为y x =-,而当0x =右边的点向其无限接近时,割线的极限位置为y x =,两个不同的方向极限位置不相同,故y x =在()0,0处不含切线(4)由于点B 沿函数曲线不断向A 接近,所以若()f x 在A 处有切线,那么必须在A 点及其附近有定义(包括左边与右边)2、切线与导数:设函数()y f x =上点()()00,,A x f x ()f x 在A 附近有定义且附近的点()()00,B x x f x x +∆+∆,则割线AB 斜率为:()()()()()000000AB f x x f x f x x f x k x x x x +∆-+∆-==+∆-∆ 当B 无限接近A 时,即x ∆接近于零,∴直线AB 到达极限位置时的斜率表示为:()()000limx f x x f x k x∆→+∆-=∆,即切线斜率,由导数定义可知:()()()'0000limx f x x f x k f x x∆→+∆-==∆。
高中数学高考中三次函数图象的切线问题
高中数学高考中三次函数图象的切线问题三次函数的切线蕴含着许多美妙的性质,三次函数的切线蕴含着许多美妙的性质,用导数方法探求切线的性质,用导数方法探求切线的性质,用导数方法探求切线的性质,为分为分析问题和解决问题提供了新的视角、析问题和解决问题提供了新的视角、新的方法,新的方法,新的方法,不仅方便实用,不仅方便实用,不仅方便实用,而且三次函数的而且三次函数的切线性质变得十分明朗切线性质变得十分明朗..纵览近几年高考数学试题,三次函数的切线问题频频出现,本文给出三次函数切线的三个基本问题现,本文给出三次函数切线的三个基本问题. .一、已知斜率为k 与三次函数图象相切的切线三次函数)0()(23¹+++=a d cx bx ax x f1、0>a ,斜率ab ac k 332-=时,有且只有一条切线;a b ac k 332->时,有两条不同的切线;ab ac k 332-<时,没有切线;2、0<a ,斜率ab ac k 332-=时,有且只有一条切线;a b ac k 332-<时,有两条不同的切线;ab ac k 332->时,没有切线;证明证明 c bx ax x f ++=23)(2/1、 0>a 当a b x 3-=时,.33)(2min /a b ac x f -=\ 当当ab ac k 332-= 时,方程ab ac c bx ax 332322-=++有两个相同解,所以斜率为k 的切线有且只有一条;其方程为:).3(33)3(2ab x a b ac a bf y +-=--当当a b ac k 332->时,方程k c bx ax =++232,有两个不同的解21,x x ,且21x x +=-a b 32-,即存在两个不同的切点))(,()),(,(2211x f x x f x ,且两个切点关于三次函数图象对称中心对称。
所以斜率为k 的切线有两条。
高中数学微重点02 函数的公切线问题(4大考点+强化训练)(习题版)
微重点02函数的公切线问题(4大考点+强化训练)函数的公切线问题,是导数的重要应用之一,利用导数的几何意义,通过双变量的处理,从而转化为零点问题,主要利用消元与转化,考查构造函数、数形结合能力,培养逻辑推理、数学运算素养.【知识导图】【考点分析】考点一:求两函数的公切线规律方法求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)·(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.【例1】已知抛物线21:2C y x x =+和22:C y x a =-+,如果直线l 同时是1C 和2C 的切线,称l 是1C 和2C 的公切线,公切线上两个切点之间的线段,称为公切线段.(1)a 取什么值时,1C 和2C 有且仅有一条公切线?写出此公切线的方程;(2)若1C 和2C 有两条公切线,证明相应的两条公切线段互相平分.考点二:与公切线有关的求值问题规律方法利用导数的几何意义解题,关键是切点,要充分利用切点既在曲线上又在切线上构造方程.【例2】(2024下·重庆·高三重庆一中校考开学考试)已知()e sin x f x x =+,()ln(1)1g x a x =+-.(1)若()f x 在(0,(0))f 处的切线也与()g x 的图象相切,求a 的值;(2)若()()0f x g x +≥在(1,)∈-+∞x 恒成立,求a 的取值集合.【变式】设0t ≠,点(),0P t 是函数()3f x x ax =+与2()g x bx c =+的图象的一个公共点,两函数的图象在点P处有相同的切线.(1)用t 表示a ,b ,c ;(2)若函数()()y f x g x =-在()1,3-上单调递减,求t 的取值范围.考点三:判断公切线条数规律方法运用导数与斜率之间的关系可以将两曲线公切线的切点表示出来,构造新的函数,通过零点存在定理判断函数零点个数,即方程解的情况.【例3】曲线C 1:x y e =与曲线C 2:y =ln x 公切线的条数是。
专题01 利用导函数研究函数的切线问题(原卷版)-2024年高考数学复习解答题解题思路训练
专题01利用导函数研究函数的切线问题(典型题型归类训练)目录一、必备秘籍.......................................................1二、典型题型.......................................................3题型一:在型求切线方程..........................................3题型二:过型求切线方程..........................................3题型三:已知切线斜率求参数......................................3题型四:确定过一点可以做切线条数................................4题型五:已知切线条数求参数......................................4题型六:距离问题转化为相切问题..................................5题型七:公切线问题..............................................5三、专项训练. (6)一、必备秘籍1、切线的斜率:函数()y f x =在点0x x =处的导数的几何意义,就是曲线()y f x =在点00(,)P x y 处的切线的斜率k ,即0()k f x '=.2、曲线的切线问题(基础题)(1)在型求切线方程已知:函数)(x f 的解析式.计算:函数)(x f 在0x x =或者))(,(00x f x 处的切线方程.步骤:第一步:计算切点的纵坐标)(0x f (方法:把0x x =代入原函数)(x f 中),切点))(,(00x f x .第二步:计算切线斜率'()k f x =.第三步:计算切线方程.切线过切点))(,(00x f x ,切线斜率)('0x f k =。
切线问题综合十一类题型(学生版)2025年高考数学热点题型
切线问题综合近5年考情(2020-2024)考题统计考点分析考点要求2024年甲卷第6题,5分考察导数的几何意义,切线的相关计算求值求参(1)求在某处的切线(2)设切点求过某点的切线以及公切线(3)利用切线的条数求参数范围2024年新高考I 卷第13题,5分2023年甲卷第8题,5分2022年I 卷第15题,5分2021年甲卷第13题,5分2021年I 卷第7题,5分热点题型解读(目录)【题型1】求在曲线上一点的切线【题型2】求过某点的切线【题型3】已知切线斜率求参数【题型4】通过切线求曲线上的点到直线距离最小值【题型5】奇偶函数的切线斜率问题【题型6】切线斜率取值范围问题【题型7】公切线问题【题型8】由切线条数求参数范围【题型9】两条切线平行、垂直、重合问题【题型10】与切线有关的参数范围或最值问题【题型11】牛顿迭代法核心题型·举一反三【题型1】求在曲线上一点的切线函数y =f (x )在点A (x 0 ,f (x 0))处的切线方程为y -f (x 0)=f (x 0)(x -x 0),抓住关键y 0=f (x 0)k =f (x 0)1.(2024年高考全国甲卷数学(文))曲线f x =x6+3x-1在0,-1处的切线与坐标轴围成的面积为()A.16B.32C.12D.-322.(2024年高考全国甲卷数学(理))设函数f x =e x+2sin x1+x2,则曲线y=f x 在0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.233.已知曲线f x =x ln x在点1,f1处的切线为l,则l在y轴上的截距为()A.-2B.-1C.1D.24.(23-24高三·福建宁德·期末)已知函数f x 在点x=-1处的切线方程为x+y-1=0,则f -1+ f-1=()A.-1B.0C.1D.2【题型2】求过某点的切线【方法技巧】设切点为P(x0,y0),则斜率k=f (x0),过切点的切线方程为:y-y0=f (x0)(x-x0),又因为切线方程过点A(a,b),所以b-y0=f (x0)(a-x0)然后解出x0的值.5.(2024·全国·模拟预测)过坐标原点作曲线f x =e x x2-2x+2的切线,则切线共有()A.1条B.2条C.3条D.4条6.(2022年新高考全国I卷T15)曲线y=ln|x|过坐标原点的两条切线的方程为,.7.已知直线y=ex-2是曲线y=ln x的切线,则切点坐标为()A.1e ,-1B.e,1C.1e,1D.0,18.(2024·山西吕梁·二模)若曲线f x =ln x在点P x0,y0处的切线过原点O0,0,则x0=.9.(2019·江苏卷)在平面直角坐标系xOy中,点A在曲线y=ln x上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是.10.(23-24高三·广东·期中)过点P1,1作曲线y=x3的两条切线l1,l2.设l1,l2的夹角为θ,则tanθ= ()A.513B.713C.913D.1113【题型3】已知切线斜率求参数已知切线或切点求参数问题,核心是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在曲线上;③切点在切线上.11.(2024·湖北武汉·模拟预测)已知曲线f x =ln x +x 2a 在点1,f 1 处的切线的倾斜角为π3,则a 的值为.12.(2024·贵州六盘水·三模)已知曲线y =x 2-3ln x 的一条切线方程为y =-x +m ,则实数m =()A.-2B.-1C.1D.213.(2024·全国·高考真题)若曲线y =e x +x 在点0,1 处的切线也是曲线y =ln (x +1)+a 的切线,则a =.14.(23-24高三·山西晋城·期末)过原点O 作曲线f (x )=e x -ax 的切线,其斜率为2,则实数a =()A.eB.2C.e +2D.e -215.(2024·四川·模拟预测)已知m >0,n >0,直线y =1ex +m +1与曲线y =ln x -n +3相切,则m +n =.16.(23-24高三·安徽合肥·期末)若函数f x =ln xx与g x =e x -a -b 在x =1处有相同的切线,则a +b =()A.-1B.0C.1D.217.(2024·河北沧州·模拟预测)已知直线l :y =kx 是曲线f x =e x +1和g x =ln x +a 的公切线,则实数a =.【题型4】通过切线求曲线上的点到直线距离最小值利用导数的几何意义求最值问题,利用数形结合的思想方法解决,常用方法平移切线法.18.(23-24高三·安徽·阶段练习)已知P 是函数f x =e x +x 2图象上的任意一点,则点P 到直线x -y -9=0的距离的最小值是()A.32B.5C.6D.5219.(23-24高三·广东惠州·阶段练习)已知点P 在函数f x =e 2x +x +9的图象上,则P 到直线l :3x -y -10=0的距离的最小值为.20.(23-24高三·河南南阳·阶段练习)点P 是曲线f (x )=x 上一个动点,则点P 到直线x -y +2=0的距离的最小值是()A.728B.74C.324D.3421.(23-24高三·河北石家庄·阶段练习)曲线y =ln (3x -2)上的点到直线3x -y +7=0的最短距离是()A.5 B.10C.35D.122.(23-24高三·河南·阶段练习)最优化原理是要求在目前存在的多种可能的方案中,选出最合理的,达到事先规定的最优目标的方案,这类问题称之为最优化问题.为了解决实际生活中的最优化问题,我们常常需要在数学模型中求最大值或者最小值.下面是一个有关曲线与直线上点的距离的最值问题,请你利用所学知识来解答:若点P 是曲线y =3ln x -12x 2上任意一点,则P 到直线4x -2y +5=0的距离的最小值为.23.(2024·山西朔州·模拟预测)已知A ,B 分别为曲线y =2e x +x 和直线y =3x -3上的点,则AB 的最小值为.【题型5】奇偶函数的切线斜率问题奇函数的导数是偶函数,偶函数的导数是奇函数.24.已知f x 为奇函数,且当x <0时,f x =xe x,其中e 为自然对数的底数,则曲线f x 在点1,f 1 处的切线方程为.25.(2024·福建福州·模拟预测)已知函数f x 是偶函数,当x >0时,f x =x 3+2x ,则曲线y =f x 在x =-1处的切线方程为()A.y =-5x -2B.y =-5x -8C.y =5x +2D.y =5x +826.(2024·湖北·一模)已知函数f x 为偶函数,其图像在点1,f 1 处的切线方程为x -2y +1=0,记f x的导函数为f x ,则f -1 =()A.-12B.12C.-2D.227.已知f x 是奇函数,当x <0时,f x =xx +2,则函数f x 的图象在x =1处的切线方程为()A.2x -y +1=0B.x -2y +1=0C.2x -y -1=0D.x +2y -1=028.(23-24高三·河南洛阳·期末)已知函数g x 为奇函数,其图象在点a ,g a 处的切线方程为2x -y +1=0,记g x 的导函数为g x ,则g -a =()A.2B.-2C.12D.-1229.(2024·山东济宁·三模)已知函数f (x )为偶函数,当x <0时,f (x )=ln (-x )+x 2,则曲线y =f (x )在点(1,f (1))处的切线方程是()A.3x -y -2=0B.3x +y -2=0C.3x +y +2=0D.3x -y +2=030.(2024·海南海口·二模)已知函数f x 的定义域为R ,f x +1 是偶函数,当x <12时,f x =ln 1-2x ,则曲线y =f x 在点2,f 2 处的切线斜率为()A.25B.-25C.2D.-231.(23-24高三·广东深圳·期中)已知函数f x =e x ln x 与偶函数g x 在交点1,g 1 处的切线相同,则函数g x 在x =-1处的切线方程为()A.ex -y +e =0B.ex +y -e =0C.ex -y -e =0D.ex +y +e =0【题型6】切线斜率取值范围问题利用导数的几何意义,求出导函数的值域,从而求出切线斜率的取值范围问题.一般地,直线的斜率与倾斜角的关系是:直线都有倾斜角,但不一定都有斜率32.点P 在曲线y =x 3-x +23上移动,设点P 处切线的倾斜角为α,则角α的范围是()A.0,π2B.π2,3π4C.3π4,π D.0,π2∪3π4,π33.(2021·河南洛阳·二模)已知点P 在曲线y =x 3-x 上移动,设点P 处切线的倾斜角为α,则角α的取值范围是.34.过函数f (x )=12e 2x-x 图像上一个动点作函数的切线,则切线倾斜角范围为()A.0,3π4B.0,π2 ∪3π4,π C.3π4,πD.π2,3π435.(22-23高三·江苏镇江·阶段练习)点P 在曲线y =x 3-33x +14上移动,设点P 处切线的倾斜角为α,则角α的范围是()A.5π6,π B.2π3,π C.0,π2 ∪5π6,π D.-π6,π2【题型7】公切线问题公切线问题应根据两个函数在切点处的斜率相等,并且切点不但在切线上而且在曲线上,罗列出有关切点横坐标的方程组,通过解方程组进行求解.公切线问题主要有以下3类题型(1)求2个函数的公切线解题方法:设2个切点坐标,利用切线斜率相同得到3个相等的式子,联立求解(2)2个函数存在公切线,求参数范围解题方法:设2个切点坐标,列出斜率方程,再转化为方程有解问题(3)已知两个函数之间公切线条数,求参数范围解题方法:设2个切点坐标,列出斜率方程,再转化为方程解的个数问题36.(浙江绍兴二模T 15)与曲线y =e x和y =-x 24都相切的直线方程为.37.(2024·广东茂名·一模)曲线y =ln x 与曲线y =x 2+2ax 有公切线,则实数a 的取值范围是()A.-∞,-12B.-12,+∞ C.-∞,12D.12,+∞ 38.(2024·福建泉州·模拟预测)若曲线y =x 2与y =te x t ≠0 恰有两条公切线,则t 的取值范围为()A.0,4e 2B.4e 2,+∞C.-∞,0 ∪4e2,+∞D.-∞,0 ∪4e 239.(23-24高三·江西吉安·期末)函数f(x)=2+ln x与函数g(x)=e x公切线的斜率为()A.1B.±eC.1或eD.1或e240.已知直线y=ax+b(a∈R,b>0)是曲线f x =e x与曲线g x =ln x+2的公切线,则a+b的值为.41.已知直线l与曲线C1:y=x2和C2:y=-1x均相切,则该直线与两坐标轴围成的三角形的面积为.42.已知函数f x =mx+ln x,g x =x2-mx,若曲线y=f x 与曲线y=g x 存在公切线,则实数m的最大值为.43.(2024·湖南长沙·三模)斜率为1的直线l与曲线y=ln x+a和圆x2+y2=12都相切,则实数a的值为()A.0或2B.-2或2C.-1或0D.0或144.(长沙雅礼中学月考(六))已知函数f x =2ln x,g x =ax2-x-12a>0,若直线y=2x-b与函数y=f x ,y=g x 的图象均相切,则a的值为;若总存在直线与函数y=f x ,y=g x 图象均相切,则a的取值范围是【题型8】由切线条数求参数范围设切点为P(x0 , y0),则斜率k=f (x0),过切点的切线方程为:y-y0=f (x0)(x-x0),又因为切线方程过点A(a,b),所以b-y0=f (x0)(a-x0)然后解出x0的值,有多少个解对应有多少条切线.45.(2022年新高考全国I卷数学真题)若曲线y=(x+a)e x有两条过坐标原点的切线,则a的取值范围是.46.(2024·河南信阳·模拟预测)若过点1,a仅可作曲线y=xe x的两条切线,则a的取值范围是. 47.(2024届广东省六校高三第一次联考T8)已知函数f(x)=-x3+2x2-x,若过点P1,t可作曲线y=f x 的三条切线,则t的取值范围是48.(23-24高三·湖北武汉·阶段练习)已知过点A a,0可以作曲线y=x-1e x的两条切线,则实数a的取值范围是()A.1,+∞B.-∞,-e ∪2,+∞C.-∞,-2 ∪2,+∞D.-∞,-3 ∪1,+∞49.(2024届·广州中山大学附属中学校考)过点3,0 作曲线f x =xe x 的两条切线,切点分别为x 1,f x 1 ,x 2,f x 2 ,则x 1+x 2=()A.-3B.-3C.3D.350.(2024·宁夏银川·二模)已知点P 1,m 不在函数f (x )=x 3-3mx 的图象上,且过点P 仅有一条直线与f (x )的图象相切,则实数m 的取值范围为()A.0,14 ∪14,12B.(-∞,0)∪14,+∞ C.0,14 ∪14,+∞ D.-∞,14 ∪12,+∞ 51.(2024·内蒙古·三模)若过点a ,2 可以作曲线y =ln x 的两条切线,则a 的取值范围为()A.-∞,e 2B.-∞,ln2C.0,e 2D.0,ln252.已知点A 在直线x =2上运动,若过点A 恰有三条不同的直线与曲线y =x 3-x 相切,则点A 的轨迹长度为()A.2B.4C.6D.853.若曲线f x =xe x有三条过点0,a 的切线,则实数a 的取值范围为()A.0,1e 2B.0,4e 2C.0,1eD.0,4e54.若过点a ,b 可以作曲线y =ln x 的两条切线,则()A.e b >0>aB.ln a >0>bC.e b >a >0D.ln a >b >055.(2024高三·辽宁本溪·期中)若过点1,b 可以作曲线y =ln x +1 的两条切线,则()A.ln2<b <2B.b >ln2C.0<b <ln2D.b >1【题型9】两条切线平行、垂直、重合问题利用导数的几何意义进行转化,再利用两直线平行或重合则斜率相等,两直线垂直则斜率之积为-1.56.(2024·河北邢台·二模)已知函数f x =x 2+2ln x 的图像在A x 1,f x 1 ,B x 2,f x 2 两个不同点处的切线相互平行,则下面等式可能成立的是()A.x1+x2=2B.x1+x2=103C.x1x2=2 D.x1x2=10357.已知函数f x =a-3x3+a-2x2+a-1x+a若对任意x0∈R,曲线y=f x 在点x0,f x0和-x0,f-x0处的切线互相平行或重合,则实数a=()A.0B.1C.2D.358.(2024·辽宁·二模)已知函数y1=x12的图象与函数y2=a x(a>0且a≠1)的图象在公共点处有相同的切线,则a=,切线方程为.59.(2024·全国·模拟预测)已知函数f x =x+a2+ln x的图象上存在不同的两点A,B,使得曲线y=f x 在点A,B处的切线都与直线x+2y=0垂直,则实数a的取值范围是()A.-∞,1-2B.1-2,0C.-∞,1+2D.0,1+260.(23-24高三·辽宁·阶段练习)已知函数f x =x m-e x,曲线y=f x 上存在不同的两点,使得曲线在这两点处的切线都与直线y=x平行,则实数m的取值范围是()A.1-e-2,1B.-1-e-2,-1C.-e-2,0D.1-e-2,+∞61.(2024·河南·三模)已知函数f(x)=x+12e x,x>0,x3,x<0,点A,B在曲线y=f(x)上(A在第一象限),过A,B的切线相互平行,且分别交y轴于P,Q两点,则BQAP的最小值为.62.(2024·北京朝阳·一模)已知函数f x =12sin2x.若曲线y=f x 在点A x1,f x1处的切线与其在点B x2,f x2处的切线相互垂直,则x1-x2的一个取值为.【题型10】与切线有关的参数范围或最值问题利用导数的几何意义以及利用导数研究函数单调性,从而求出相关式子的取值范围.63.(2024·全国·模拟预测)若直线y=2x-b与曲线f(x)=e2x-2ax(a>-1)相切,则b的最小值为()A.-eB.-2C.-1D.064.(2024·重庆·模拟预测)已知直线y=ax+b与曲线y=e x相切于点x0,e x0,若x0∈-∞,3,则a+b的取值范围为()A.-∞,eB.-e 3,eC.0,eD.0,e 365.(2024·广东广州·模拟预测)已知直线y =kx +b 恒在曲线y =ln x +2 的上方,则bk的取值范围是()A.1,+∞B.34,+∞C.0,+∞D.45,+∞66.已知直线y =kx +b 与函数f x =12x 2+ln x 的图象相切,则k -b 的最小值为.67.对给定的实数b ,总存在两个实数a ,使直线y =ax -b 与曲线y =ln x -b 相切,则b 的取值范围为.【题型11】牛顿迭代法数形结合处理68.(23-24高三·河南郑州·期中)“以直代曲”是微积分中的重要思想方法,牛顿曾用这种思想方法求高次方程的根.如图,r 是函数f x 的零点,牛顿用“作切线”的方法找到了一串逐步逼近r 的实数x 0,x 1,x 2,⋯,x n ,其中x 1是f x 在x =x 0处的切线与x 轴交点的横坐标,x 2是f x 在x =x 1处的切线与x 轴交点的横坐标,⋯,依次类推.当x n -r 足够小时,就可以把x n 的值作为方程f x =0的近似解.若f x =115x 3-35x 2+2x -125,x 0=4,则方程f x =0的近似解x 1=.69.(2024·山东潍坊·三模)牛顿迭代法是求方程近似解的一种方法.如图,方程f x =0的根就是函数f x 的零点r ,取初始值x 0,f x 的图象在点x 0,f x 0 处的切线与x 轴的交点的横坐标为x 1,f x 的图象在点x 1,f x 1 处的切线与x 轴的交点的横坐标为x 2,一直继续下去,得到x 1,x 2,⋯,x n ,它们越来越接近r .设函数f x =x 2+bx ,x 0=2,用牛顿迭代法得到x 1=1619,则实数b =()11A.1B.12C.23D.3470.牛顿迭代法是求方程近似解的另一种方法.如图,方程f x =0的根就是函数f x 的零点r ,取初始值x 0,f x 的图象在横坐标为x 0的点处的切线与x 轴的交点的横坐标为x 1,f x 的图象在横坐标为x 1的点处的切线与x 轴的交点的横坐标为x 2,一直继续下去,得到x 1,x 2,⋯,x n ,它们越来越接近r .若f x =x 2-2x >0 ,x 0=2,则用牛顿法得到的r 的近似值x 2约为()A.1.438B.1.417C.1.416D.1.37571.(2023·湖北咸宁·模拟预测)英国数学家牛顿在17世纪给出一种求方程近似根的方法一Newton -Raphson method 译为牛顿-拉夫森法.做法如下:设r 是f x =0的根,选取x 0作为r 的初始近似值,过点x 0,f x 0 作曲线y =f x 的切线l :y -f x 0 =f x 0 x -x 0 ,则l 与x 轴交点的横坐标为x 1=x 0-f x 0 f x 0f x 0 ≠0 ,称x 1是r 的一次近似值;重复以上过程,得r 的近似值序列,其中x n +1=x n -f x n f x nf x n ≠0 ,称x n +1是r 的n +1次近似值.运用上述方法,并规定初始近似值不得超过零点大小,则函数f x =ln x +x -3的零点一次近似值为( )(精确到小数点后3位,参考数据:ln2=0.693)A.2.207B.2.208C.2.205D.2.20472.(多选)牛顿在《流数法》一书中,给出了高次代数方程的一种数值解法--牛顿法.具体做法如下:如图,设r 是f x =0的根,首先选取x 0作为r 的初始近似值,在x =x 0处作f x 图象的切线,切线与x 轴的交点横坐标记作x 1,称x 1是r 的一次近似值,然后用x 1替代x 0重复上面的过程可得x 2,称x 2是r 的二次近似值;一直继续下去,可得到一系列的数x 0,x 1,x 2,⋯,x n ,⋯在一定精确度下,用四舍五入法取值,当x n-1,x n n∈N∗近似值相等时,该值即作为函数f x 的一个零点r,若使用牛顿法求方程x2=3的近似解,可构造函数f(x)=x2-3,则下列说法正确的是()A.若初始近似值为1,则一次近似值为3B.x4=x0-f x0f x0-f x1f x1-f x2f x2-f x3f x3C.对任意n∈N∗,x n<x n+1D.任意n∈N∗,x n+1=12x n+32x nx n≠012。
函数的切线问题专题
函数切线与导数1.已知函数()()2ln 222+--=x x x x x f ,则函数()x f y =在点()()1,1f 处的切线方程为 .2.已知函数()2ln bx x a x f -=上一点()()2,2f P 处的切线方程为22ln 23++-=x y 则=a =b .3.若曲线x ey -=上点P 处的切线平行于直线012=++y x ,则点P 的坐标为 . 4.已知函数()323+-=x x x f 上一动点P ,则函数()x f y =在点P 处的切线的倾斜角的取值范围为 .5.已知函数()()01923<---=a x ax x x f ,若函数()x f y =的斜率最小的切线与直线0612=-+y x 平行,则=a .6.直线1+=kx y 与曲线()b ax x x f ++=3切于点()3,1,则=b .7.已知直线1-+=a ex y 为曲线()x xe xf x ln 1++=的切线,则=a . 8.过点()8,2A 作函数()3x x f =的切线,则切线方程为 .9.已知直线1-=ax y为曲线x y ln =的切线,则=a . 10.已知曲线x x y ln +=在点()1,1处的切线与曲线()122+++=x a ax y 相切,则=a .11.设函数()()()2,0ln x x g a bx x a x f =>+=,且满足()()()()11,11g f g f '='=,若存在实数m k ,使得()()m kx x g m kx x f +≥+≤,成立,则=k =m . 12.过点()0,1的直线与曲线9415,23-+==x ax y x y 均相切,则=a . 13.已知函数()x x x f 323-=,若果过点()t P ,1存在三条直线与曲线()x f 相切,则实数t 的取值范围为 .14.若曲线x ae y x y ==与曲线2存在公切线,则a 的取值范围为 .设函数()()3,ln 23--=+=x x x g x x xa x f (1)讨论函数()()xx f x h =的单调性 (2)如果对任意的⎥⎦⎤⎢⎣⎡∈2,21,t s 都有()()t g s f ≥成立。
第17讲 函数的切线问题,导函数的几何意义(原卷版)-高考数学二轮复习
第17讲 函数的切线问题,导函数的几何意义一、知识与方法设函数()y f x =的图像如图2-1所示.AB 是过点()00,A x y 与点()()00,B x x f x x +∆+∆的一条割线.由此割线的斜率是()()00f x x f x y x x+∆-∆=∆∆. 可知曲线割线的斜率就是曲线的平均变化率.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线叫作此曲线在点A 的切线.于是,当0x ∆→时,割线AB 的斜率趋近于在点A 的切线AD 的斜率.即()()000lim x f x x f x x∆→+∆-=∆切线AD 的斜率.由导数意义可知,曲线()y f x =在点()()00,x f x 的切线的斜率等于()0f x '.即导数的几何意义是曲线的切线的斜率.若α表示这条切线与x 轴正向的夹角,则()0tan f x α'=.二、典型例题【例1】已知抛物线21:2C y x x =+和221:2C y x =--,如果直线l 同时是1C 和2C 的切线,称l 是1C 和2C 的公切线,求公切线l 的方程.【例2】(1)已知曲线3232y x x x =-+,直线:l y kx =,且l 与曲线相切于点()()000,0x y x ≠.求直线l 的方程和切点坐标;(2)已知曲线31433y x =+.①求曲线在点(2,4)P 处的切线方程; ②求曲线过点(2,4)P 的切线方程.【例3】已知()f x 是二次函数,()f x '是它的导函数.且对任意的x ∈R ,2()(1)f x f x x '=++恒成立.(1)求()f x 的解析式;(2)设0t >,曲线:()C y f x =在点(,())P t f t 处的切线为l ,l 与坐标轴围成的三角形面积为()S t ,求()S t 的最小值.三、易错警示【例】求曲线3:3C y x x =-过点(2,2)A -的切线方程.四、难题攻略【例】已知函数32()31()f x x x x =+-∈R ,记()y f x =的图像为曲线C .(1)求证:若以曲线C 上的任意一点()00,P x y 为切点作C 的切线,则切线的斜率存在最小值3-;(2)求证:以曲线C 上的两个动点A B 、为切点分别作C 的切线12l l 、,若12l l ∥恒成立,则动直线AB 恒过某定点M ;(3)在(2)条件下,当直线AB 的斜率2AB k =时,求OAB △的面积(其中O 是坐标原点).五、强化训练1.已知函数32()12f x ax bx x =+-在2x =±处取得极值.(1)求函数()f x 的解析式;(2)求证:对于区间[2,2]-上任意两个自变量的值12,x x 都有()()122||3f x f x -; (3)若过点(1,)A m 可作曲线()y f x =的3条切线,求实数m 的取值范围.2.已知函数321()23()3f x x x x x =-+∈R 的图像为曲线C .(1)求曲线C 上任意一点处的切线的斜率的取值范围;(2)若曲线C 上存在两点处的切线互相垂直,求其中一条切线与曲线C 的切点的横坐标的取值范围;(3)试问:是否存在一条直线与曲线C 同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,请说明理由.。
高考数学知识点复习:函数的切线问题
专题1函数的切线问题秒杀秘籍:第一讲切线的几何意义1.导数的几何意义:函数)(x f 在点0x 处的导数的几何意义就是曲线)(x f y 在点))(,(0x f x 处的切线的斜率.注:( tan k f x )切线方程 000()()y f x f x x x 的计算:2.在点00(,)A x y 处的切线方程: 000()()y f x f x x x 抓住关键:000()()y f x k f x3.过点11(,)A x y 的切线方程:设切点为00(,)P x y ,则斜率0()k f x ,过切点的切线方程为:∵过点11(,)A x y ,∴10010()()y y f x x x 然后解出0x 的值.(0x 有几个值,就有几条切线,三次函数多解)4.定理:令 ln x f x e g x x 过原点的切线斜率为1e e;ln ax xa h x e t x 过原点的切线斜率为1ae ae类推: ,,0,f x h x m g x t x m 过,0过的切线斜率分别为111m m e e (根据平移记忆)和111am m ae ae(不要求记忆)考点1切线及斜率问题【例1】曲线1x y xe 在点 11,处切线的斜率等于()A .e2B .e C .2D .1【解析】1101122x x x f x x e x e x e k f e,,C 选.【例2】设点P 是曲线3335y x x上的任意一点,点P 处切线的倾斜角为 ,则角 的范围是()A .203,B .2023,,C .223,D .233,【解析】 22233tan 333tan 33f x x x∵,,,( 为第二象限角)或02,( 为第一象限角).【例3】已知函数 f x 是偶函数,定义域为 00 ,,,且0x 时, 1xx f x e ,则曲线 y f x 在点 11f ,处的切线方程为.【解析】 21','1,10,xx f x f f e e∵∵曲线 y f x 在点 1,1f 处的切线方程为 11y x e ,又 f x 是偶函数, 曲线 y f x 在点 1,1f 处的切线方程与曲线 y f x 在点 1,1f 处的切线方程故意y 轴对称,为 11y x e,故答案为 11y x e.【例4】设P 是函数 1y x x 图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为 ,则 的取值范围是.【解析】由题意知313131tan 23222222y x x x x x x0,,22∵.【例5】若P 是函数 1ln 1f x x x 图象上的动点,点 1,1A ,则直线AP 斜率的取值范围为()A .1, B .0,1C .1,e eD .1,e【解析】由题意可得: 'ln 11f x x ,结合函数的定义域可知,函数在区间11,1e上单调递减,在区间11,e 上单调递增,且1111f e e,绘制函数图象如图所示,当直线与函数图象相切时直线的斜率取得最小值,设切点坐标为 000,1ln 1x x x ,该点的斜率为 0ln 11k x ,切线方程为: 00001ln 1ln 11y x x x x x ,切线过点 1,1 ,则: 000011ln 1ln 111x x x x ,解得:00x ,切线的斜率0ln 111k x ,综上可得:则直线AP 斜率的取值范围为 1, .【例6】已知函数 32f x mx nx 的图象在点 1,2 处的切线恰好与直线30x y 平行,若 f x 在区间,1t t 上单调递减,则实数t 的取值范围是.【解析】由题意知 32f x mx nx ,∴ 232f x mx nx .由题意得121323f m n f m n解得13m n ,∵ 323f x x x ,∴ 23632f x x x x x ,由 320f x x x ,得20x ,所以函数 f x 的单调减区间为 2,0 .由题意得 ,1t t 2,0 ,∴210t t,解得21t .考点2切线条数问题【例7】过点 ,A m m 与曲线 ln f x x x 相切的直线有且只有两条,则m 的取值范围是()A .e ,B .+e ,C .10e,D .1+ ,【解析】设切点为 00x y ,, ln 1f x x ,所以切线方程为: 0000ln ln 1y x x x x x ,代入 ,A m m ,得 0000ln ln 1m x x x m x ,即这个关于0x 的方程有两个解.化简方程为00ln x m x ,即0ln 1x m x,令 ln 0x g x x x, 21ln xg x x, g x 在 0e ,上单调递增,在e ,上单调递减, 1g e e,x , 0g x , 10g ,所以110m e,所以m e .故选B .【例8】已知曲线x a y e 与2y x 恰好存在两条公切线,则实数�的取值范围是()A .2ln 22+ ,B .2ln 2+ ,C .2ln 22 ,D .2ln 22 ,【解析】2y x 的导数2x a y x y e ,的导数为x a y e ,设与曲线x a y e 相切的切点为 2m n y x ,,相切的切点为 s t ,,则有公共切线斜率为2m at n s e s m,又2+m at s n e ,,即有222s s s s m,即为12s s m ,即有 202s m s ,则有2m a e s ,即为 2ln 202s a s s ,恰好存在两条公切线,即s 有两解,令 2ln 202x f x x x,则 112f x x ,当0x 时, 0f x f x ,递减,当02x 时, 0f x f x ,递增,即有2x 处 f x 取得极大值,也为最大值,且为2ln 22 ,由恰好存在两条公切线可得y a 与 y f x 有两个交点,结合函数的图象与单调性可得a 的范围是2ln 22a ,故选D .【例9】过点 A m n ,与曲线 ln f x x x 相切的直线有且只有两条,则实数m 的取值范围是()A .),(e B .),( e C .1,0(eD .),1( 【解析】设切点为 00x y ,, ln 1f x x ,所以切线方程为: 0000ln ln 1y x x x x x ,代入 A m n ,,得 0000ln ln 1m x x x m x ,即这个关于0x 的方程有两个解.化简方程为00ln m x x ,即0ln 1x m x,令 ln 0x g x x x, 21ln x g x x , g x 在 0,e 上单调递增,在 ,e 上单调递减, 1g e e,x , 0g x , 10g ,所以110m e,所以m e .【例10】设函数233)(x x x f ,若过点),2(n 可作三条直线与曲线)(x f y 相切,则实数n 的取值范围是()A .)4,5( B .)0,5( C .)0,4( D .]3,5( 【解析】法一: 323f x x x ,则 236f x x x ,设切点为 32000,3x x x ,则 200036f x x x .∴过切点处的切线方程为32200000336y x x x x x x ,把点2n ,代入得:322000003362n x x x x x .整理得:3200029120x x x n .若过点 2n ,可作三条直线与曲线y f x 相切,则方程3200029120x x x n 有三个不同根(左图)令 322912g x x x x ,则 261812612g x x x x x ,∴当 12+x ,,时, 0g x ;当 12x ,时, 0g x ,∴ g x 的单调增区间为 1 ,和 2+ ,;单调减区间为 12,.∴当1x 时, g x 有极大值为 15g ;当2x 时, g x 有极小值为 24g .由45n ,得54n .∴实数n 的取值范围是 54 ,.故选A .法二: 323f x x x 关于点 1,2 中心对称, 23613f x x x f ,在对称中心的切线方程为31,25y x x y 时,, 24f ,故当点 2,n 位于区域Ⅰ,有三条切线时,54n .(如右图)考点3零点、交点、极值点问题【例11】若函数 2x f x ae x a 有两个零点,则实数a 的取值范围是()A .1,eB .10,eC .0 ,D .0+ ,【解析】法一:∵ 2x f x ae x a ,∴ 1x f x ae .①当0a 时, 0f x 恒成立,故函数 f x 在R 上单调,不可能有两个零点;②当0a 时,令 0f x ,得1lnx a ,函数在1ln a -,上单调递减,在1ln +a,,上单调递增,所以 f x 的最小值为11ln 1ln 21ln 2f a a a a a,令 1ln 2,0g a a a a ,则 1122a g a a a ,∴当102a时, 0,g a g a 单调递增;当12a 时, 0g a , g a 单调递减.∴ max 1ln 02g a g a,∴ f x 的最小值为1ln 1ln 20f a a a,∴函数 2x f x ae x a 有两个零点.综上实数a 的取值范围是 0+ ,.法二: 202x x x f x ae x a e a,即x y e 与22y x a 交点问题,由图可知,0a 时,一定有两个交点,0a 时,有仅有一个交点;故选D .例题10例题11例题12【例12】关于x 的方程2xx a e 有3个不同的实数解,则实数a 的取值范围为.【解析】如图,临界情况为 2y x a 与xy e 相切的情况,'2xy e ,则ln2x ,所以切点坐标为ln2,2,则此时1ln2a ,所以只要2y x a 图象向左移动,都会产生3个交点,所以1ln2a ,即 1ln2, .【例13】已知函数ln f x x x ax 有两个极值点,则实数的取值范围是()A . 0 -,B .10,2C .0,1D .(0,)【解析】函数 ln f x x x ax ,则 1'ln ln 21f x x ax x a x ax x,令 'ln 210f x x ax 得ln 21x ax ,函数 ln f x x x ax 有两个极值点,等价于'ln 21f x x ax 有两个零点,等价于函数ln y x 与21y ax 的图象有两个交点,在同一坐标系中作出它们的图象(如图),当12a时,直线21y ax 与ln y x 的图象相切,由图可知,当102a 时,ln y x 与21y ax 的图象有两个交点,则实数a 的取值范围是10,2,故选B .【例14】设ln f x x ,若函数g x f x ax 在区间上有三个零点,则实数的取值范围()A .10,eB .211,e eC .222,e eD .221,e e【解析】令 0g x f x ax ,可得f x ax .在坐标系内画出函数 ln f x x 的图象(如图9所示).当1x 时, ln f x x .由ln y x 得1y x.设过原点的直线y ax 与函数y x ln 的图象切于点 00,ln A x x ,则有0001lnx ax a x,解得0 1x ea e .所以当直线y ax 与函数ln y x 的图象切时1a e .又当直线y ax 经过点2B ,2e 时,有22a e ,解得22a e.结合图象可得当直线y ax 与函数 ln f x x 的图象有3个交点时,实数a 的取值范围是221,e e.即函数 g x f x ax 在区间20,e 上有三个零点时,实数a 的取值范围是221,e e.故选D .例题13例题14【例15】对任意的0x ,总有 lg 0f x a x x ,则a 的取值范围是()A . lg lg lg e e,B .1 ,C . 1lg lg lg e e,D . lg lg lg e e,【解析】原问题即lg x x a 在区间 0, 上恒成立,考查临界情况,即函数 lg g x x 与 h x x a 相切时的情形,如图10,很明显切点横坐标位于区间 0,1内,此时, 1lg ,'ln10g x x g x x ,由 '1g x 可得:1lg ln10x e,则切点坐标为: lg ,lg lg e e ,切线方程为:lg lg lg y e x e ,令0x 可得纵截距为: lg lg lg e e ,结合如图所示的函数图象可得则a 的取值范围是 lg lg lg e e ,.选A .【例16】已知定义在, 上的函数 f x ,满足 f x f x ,且当 1,x 时 ln f x x ,若函数g x f x ax 在1,上有唯一的零点,则实数a 的取值范围是()A .1,ln eB . ln ,ln 0C .0,ln D . 1,ln 0e【解析】由题意知 1f x f x , 1,x 时, ln f x x ,1,1x时, 11,x ,11ln f f x x x, ln f x x , g x 零点,就是 y f x 与y ax 的交点,画出两函数图象,如图,由图11知,ln OA k 过原点与ln y x 相切的直线斜率为1e,所有直线与曲线有一个交点的a 的范围是1,ln 0e,故选D .【例17】若函数 ln f x x ax 存在与直线20x y 平行的切线,则实数a 的取值范围是.【解析】∵函数 ln f x x ax 存在与直线20x y 平行的切线,即 2y a x 与ln y x 切线平行,过原点且与ln y x 相切的直线为xy e,如下图所示,显然120,2a a e且,故实数a 的取值范围是11222e e,,.【例18】已知函数 f x 为偶函数,当0x 时, ln f x x ax .若直线y x 与曲线 y f x 至少有两个交点,则实数a 的取值范围是()A .111,1e eB .111,11e eC .11,eD .111,11,e e【解析】函数 f x 为偶函数,故当0x 时, ln f x x ax x 有交点,则 ln 1x a x 有解,故11a e ;当0x 时, ln f x x ax x,1y a x 与 ln y x 相切时,11a e ;如下图,1101,11a a e e,故a 的取值范围是111,11,e e.故选D .【例19】已知函数 201720161120162017f x x x x x x x ,在不等式20171x e ax x R 恒成立的条件下等式 20182017f a f b 恒成立,求b 的取值集合()A .{|20162018}b bB .2016,2018C . 2018D .2017【解析】20172017'2017xxee,函数2017,1x y e y ax 均经过点 0,1,则直线1y ax 是函数2017x y e 的切线,据此可得:2017a ,等式即: 12017f f b ,很明显函数 f x 是偶函数,则:20171b ,解得:2016b 或2018b ,结合绝对值和式的几何意义可得实数b 的取值范围是:{|20162018}b b .【例20】已知函数 ln f x x x x ,若k Z ,且 2k x f x 对任意的2x 恒成立,则k 的最大值为()(参考数据:ln20.6931,ln3 1.0986 )A .3B .4C .5D .6【解析】设直线 2y k x 与曲线 y f x 相切时的切点为 ,m f m ,此时0'2f m f m m ,即ln 2ln 2m m mm m ,化简得42ln 0m m ,设 42ln 0g m m m ,因为2280g e e ,33100g e e ,所以23e m e ,所以切线斜率2ln m 的取值范围为 4,5,所以整数k 的最大值为4,故选B .【例21】已知,a b 为正实数,直线y x a 与曲线 ln y x b 相切,则2b的取值范围为.【解析】由题意知1'1y x b,1x b ,切点为 1,0b ,代入y x a ,得1a b ,∵,a b 为正实数, 0,1a ,则2223a a b a ,令 23a g a a ,则26'03a a g a a ,则函数 g a 为增函数,210,22a b.【例22】若直线y kx b 为函数 ln f x x 图象的一条切线,则k b 的最小值为.【解析】设切点 0,ln P x x ,则 001k f x x ,所以方程为 0001ln y x x x x ,即001ln 1y x x x ,所以001,ln 1k b x x, 00001ln 1(0)g x k b x x x ,可得 0g x 在 0,1上单调递减,在 1, 单调递增,所以当01x 时,k b 取得最小值0.【例23】设点P 在曲线12x y e 上,点Q 在曲线 ln 2y x 上,则PQ 最小值为()A .1ln 2B21ln 2 C .1ln 2D21ln 2 【解析】两函数互为反函数,即图像关于y x 对称,函数12x y e 上的点12x x e,到直线y x 的距离为122xe x,设函数 11122x x g x e x g x e ,得 min 1ln 2g x ,所以min 1ln 22d ,由图像关于y x 对称得:PQ 的最小值为 min 221ln 2d .【例24】直线y m 分别与曲线 21y x ,与ln y x x 交于点,A B ,则AB 的最小值为()A .324B .2C .3D .32【解析】由题意可知,当过点B 的切线与 21y x 平行时,AB 取得最小值.为此对ln y x x 进行求导得11y x,令2y ,解得1x ,代入ln y x x ,知1y ,所以当BC 取到最小值时,1m ,所以 11112A B,,,,易知13122AB ,故选D .【例25】已知函数 02x f x f e x ,点P 为曲线 y f x 在点 00f ,处的切线l 上的一点,点Q 在曲线x y e 上,则PQ 的最小值为.【解析】由 02x f x f e ,令0x 可得 01f ,所以 2x f x e x ,所以切线的斜率 01k f ,又 01f ,故切线方程为10x y .由题意可知与直线10x y 平行且与曲线x y e 相切的切点到直线10x y 的距离即为所求.设切点为t Q t e ,,则11t k e ,故0t ,即 01Q ,,该点到直线10x y 的距离为222d.【例26】函数 21x f x e x x 与 g x 的图象关于直线230x y 对称,P Q 、分别是函数 f x g x 、图象上的动点,则PQ 的最小值为()A 5B 5C 25D .25【解析】由题意得当P 点处切线平行直线230x y ,Q 为P 关于直线230x y 对称点时,PQ 取最小值. 21x f x e x ∵, 2121202x x f x e x e x P ,,PQ 的最小值为02322514,故选D .考点6两点间距离平方问题【例27】已知实数a b 、满足225ln 0a a b c R ,,则 22a cbc 的最小值为()A .12B .32C .322D .92【解析】考查22a cbc 的最小值:x 代换a ,y 代换b ,则x y ,满足:225ln 0x x y ,即225ln 0y x x x ,以x 代换c ,可得点 x x ,,满足0y x .因此求 22a cbc 的最小值即为求曲线 225ln 0y x x x 上的点到直线0y x 的距离的最小值.设直线0y x m y +x +m =0与曲线 225ln 0y f x x x x 相切于点 00P x y ,, 54f x x x,则 000541f x x x ,解得01x ,∴切点为 12P ,.∴点P 到直线0y x 的距离33222d,得: 22a cbc 的最小值为92.【例28】已知 22ln S x a x a a R ,则S 的最小值为()A .22B .12C 2D .2【解析】设 ln A x x B a a ,,,,则问题化为求平面上两动点 ln A x x B a a ,,,之间距离的平方的最小值的问题,也即求曲线 ln f x x 上的点到直线y x 的点的距离最小值问题.因 1f x x,设切点 ln P t t ,,则切线的斜率1k t ,由题设当11t ,即1t 时,点 10P ,到直线y x 的距离最近,其最小值为min 12d ,所以所求S 的最小值为min 12S,故选B .达标训练1.直线y m 分别与曲线 21y x ,与ln y x x 交于点,A B ,则AB 的最小值为()A .324B .2C .3D .322.已知函数 3110sin 6f x x x在0x 处的切线与直线0nx y 平行,则二项式211nx x x 展开式中4x 的系数为()A .120B .135C .140D .1003.已知 4201xf x a x x x,若曲线 f x 上存在不同两点,A B ,使得曲线 f x 在点,A B 处的切线垂直,则实数a 的取值范围是()A . 3,3B .2,2 C .3,2D . 34.已知a b c R 、、,且满足221b c ,如果存在两条互相垂直的直线与函数 cos sin f x ax b x c x 的图象都相切,则23a b c 的取值范围是()A .2,2 B .5,5 C .6,6 D .2,225.设函数 222ln 2f x x a x a ,其中0x ,R a ,存在0x 使得 045f x成立,则实数a 的值是()A .15B .25C .12D .16.已知 f x 是定义在R 上的单调函数,满足 1x f f x e ,则 f x 在 0,0f 处的切线方程为()A .1y xB .1y xC .1y xD .1y x 7.已知12,P P 为曲线:ln C y x (0x 且1x )上的两点,分别过12,P P 作曲线C 的切线交y 轴于,M N 两点,若120PM P N ,则MN()A .1B .2C .3D .48.如右图,直线2y ax 与曲线 y f x 交于A B 、两点,其中A 是切点,记 ,f x h x g x f x ax x,则下列判断正确的是()A . h x 只有一个极值点B . h x 有两个极值点,且极小值点小于极大值点C . g x 的极小值点小于极大值点,且极小值为2D . g x 的极小值点大于极大值点,且极大值为29.过点 21A ,作曲线 33f x x x 的切线最多有()A .3条B .2条C .1条D .0条10.设函数 2340f x x ax a 与 22ln g x a x b 有公共点,且在公共点处的切线方程相同,则实数b的最大值为()A .21e B .212e C .213e D .214e 11.已知定义在1, 上的函数 f x ,满足 1f x f x,且当 1,x 时 ln f x x ,若函数g x f x ax 在1,上有唯一的零点,则实数a 的取值范围是()A .1,ln eB . ln ,ln 0C .0,ln D . 1,ln 0e12.已知 11,A x y , 22,B x y 12()x x 是函数 3f x x x 图像上的两个不同点.且在,A B 两点处的切线互相平行,则21x x 的取值范围是()A . 1,1B .1,2 C .2.0 D .1,0 13.设函数 232(0)2f x x ax a与 2g x a lnx b 有公共点,且在公共点处的切线方程相同,则实数b 的最大值为()A .212e B .212e C .1eD .232e14.设直线12,l l 分别是函数 ,01,1lnx x f x lnx x图象上点12,P P 处的切线,1l 与2l 垂直相交于点P ,且12,l l 分别与y 轴相交于点,A B ,则PAB 的面积的取值范围是()A .0,1B .1, C .0, D .0,215.函数 ln f x x 在点 00f P x x ,处的切线l 与函数 x g x e 的图象也相切,则满足条件的切点P 的个数有()A .0个B .1个C .2个D .3个16.已知函数 x af x x e (0)a ,且 y f x 的图象在0x 处的切线l 与曲x y e 相切,符合情况的切线()A .有0条B .有1条C .有2条D .有3条17.若曲线21(11)ln 1f x e x e a x和 32(0)g x x x x 上分别存在点,A B ,使得AOB 是以原点O 为直角顶点的直角三角形,且斜边AB 的中点y 轴上,则实数a 的取值范围是()A .2,e eB .2,2e eC .21,e D .1,e 18.已知函数 1x f x x a e,曲线 y f x 上存在两个不同点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是()A .2,eB .2,0e C .21,eD .21,0e19.已知函数 f x 为偶函数,当0x 时, ln f x x ax .若直线y x 与曲线 y f x 至少有两个交点,则实数a 的取值范围是()A .111,1e eB .111,11e eC .11,eD .111,11,e e20.若曲线21:(0)C y ax a 与曲线2:x C y e 存在公共切线,则a 的取值范围为()A .20,8eB .20,4eC .2,8eD .2,4e21.已知曲线21y x 在点200(,+1)P x x 处的切线为l ,若l 也与函数 ln ,0,1y x x 的图象相切,则0x 满足()(其中 2.71828...e )A .012x B 02x eC 03e x D 032x 22.已知曲线1C :2y x 与曲线2C :2ln (y x x,直线l 是曲线1C 和曲线2C 的公切线,设直线l 与曲线1C 切点为P ,则点P 的横坐标t 满足()A .102t eB .1122t e C .1222t D .222t 23.设函数 sin f x x 的图象与直线(0)y kx k 有且仅有三个公共点,这三个公共点横坐标的最大值为 ,则 ()A .cosB .tanC .sinD .tan24.已知函数 f x 是定义在 0, 的可导函数, f x 为其导函数,当0x 且1x 时,201f x xf x x ,若曲线 y f x 在1x 处的切线的斜率为34,则 1f ()A .0B .1C .83D .5125.函数 y f x 图象上不同两点 1122,,,A x y B x y 处的切线的斜率分别是,A B k k ,规定 ,A B k k A B AB叫做曲线在点A 与点B 之间的“弯曲度”.设曲线x y e 上不同的两点 1122,,,A x y B x y ,且121x x ,若 •,3t A B 恒成立,则实数t 的取值范围是()A .,3 B .,2 C .3 D .1,326.过点 22M p ,引抛物线 220x py p 的切线,切点分别为A B 、,若410AB ,则P 的值是()A .1或2B .2或2C .1D .227.已知曲线 32+3f x x x x 在1x 处的切线与抛物线22y px 相切,则抛物线的准线方程为()A .116xB .1x C .1y D .1y 28.已知函数 2,01,0x x a x f x x x的图象上存在不同的两点,A B ,使得曲线 y f x 在这两点处的切线重合,则实数a 的取值范围是.29.若 323f x f x x x 对R x 恒成立,则曲线 y f x 在点 2,2f 处的切线方程为.30.直线 22,1FB x y分别是函数 sin [0π]f x x x ,,图象上点12P P ,处的切线,12l l ,垂直相交于点P ,且12l l ,分别与y 轴相交于点A B ,,则PAB 的面积为.31.已知函数1*n n f x x x n N ,曲线 y f x 在点 2,2f 处的切线与y 轴的交点的纵坐标为n b ,则数列 n b 的前n 项和为.32.已知函数 21,f x g x x x.若直线l 与曲线 ,f x g x 都相切,则直线l 的斜率为.33.设P 是函数 1y x x 图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为 ,则 的取值范围是.34.在平面直角坐标系xOy 中,直线l 与函数 2220f x x a x 和 3220g x x a x 均相切(其中a 为常数),切点分别为 11,A x y 和 22,B x y ,则12x x 的值为.35.过点 11 ,与曲线 32f x x x 相切的直线方程是.36.若直线y kx b 为函数 ln f x x 图象的一条切线,则k b 的最小值为.37.若曲线 ln *2n y x x n N在2x n 处的切线斜率为n a ,则数列11n n a a的前n 项和n S.38.曲线(0)y x a 与曲线y x a 的值为.39.已知函数 f x 是偶函数,定义域为 00 ,,,且0x 时, 1x x f x e,则曲线 y f x 在点 11f ,处的切线方程为.40.已知函数 3f x x .设曲线 y f x 在点 11P x f x ,处的切线与该曲线交于另一点 22Q x f x ,,记 f x 为函数 f x 的导数,则12f x f x 的值为.41.若实数,,,a b c d 满足22ln 321a a c b d,则 22a cb d 是最小值为.42.已知函数2223ln 2f x x x a x a a R ,若关于x 的不等式 8f x 有解,则实数a 为.43.已知函数215()3,()322f x lnx x xg x x ,P ,Q 分别()f x ,()g x 为图象上任意一点,则||PQ 的最小值为.44.已知函数 222ln 323ln 310f x x x a x x a 若存在0x 使得 0110f x有解,则实数a 为.。
高考数学复习考点题型专题讲解5 导数切线方程
y = 2a ln x 的导数为 y′ = 2a ,由于直线 y = 2x + b 是曲线 y = 2a ln x 的切线,设切点为 (m, n) ,
x 则 2a = 2 ,
m
∴ m = a ,又 2m + b = 2a ln m ,∴ b = 2a ln a − 2a ( a > 0 ), b′ = 2 (ln a +1) − 2 = 2 ln a ,
7 / 39
【答案】0
【分析】由题意 f (e) = 2e, f ' (e) = 3 ,列方程组可求 a, b ,即求 a +b.
( 【详解】∵在点 e, f (e)) 处的切线方程为 y = 3x − e ,∴ f (e) = 2e ,代入 f ( x) = ax ln x − bx 得
a − b = 2 ①.
当 k ≠ 0 ,切点为 (2kπ , 4kπ +1)(k ∈ Z ) ,不满足题意,
综上可得,切点为 (0,1) .故答案为: (0,1) .
【题型三】求切线基础:无切点求参
【典例分析】
已知曲线 y = x3在点(a,b)处的切线与直线 x + 3y +1 = 0 垂直,则a 的取值是()
A.-1
【详解】因为
f
′(
x)
=
2(
x
+ 1) (
cos x −
x +1)2
2 sin
x
,所以
k
=
f
′(0)
=
2
,
则所求切线的方程为 y = 2x .故答案为: 2x − y = 0 .
【变式演练】
1.曲线 f (x) = (x +1)ex + x 在点(0,1) 处的切线方程为______. 【答案】3x − y +1 = 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的切线问题一、基础知识: (一)与切线相关的定义1、切线的定义:在曲线的某点A 附近取点B ,并使B 沿曲线不断接近A 。
这样直线AB 的极限位置就是曲线在点A 的切线。
(1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A 附近的点向A 不断接近,当与A 距离非常小时,观察直线AB 是否稳定在一个位置上(2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。
例如函数3y x =在()1,1--处的切线,与曲线有两个公共点。
(3)在定义中,点B 不断接近A 包含两个方向,A 点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线AB 的极限位置唯一时,这个极限位置才能够成为在点A 处的切线。
对于一个函数,并不能保证在每一个点处均有切线。
例如y x =在()0,0处,通过观察图像可知,当0x =左边的点向其无限接近时,割线的极限位置为y x =-,而当0x =右边的点向其无限接近时,割线的极限位置为y x =,两个不同的方向极限位置不相同,故y x =在()0,0处不含切线(4)由于点B 沿函数曲线不断向A 接近,所以若()f x 在A 处有切线,那么必须在A 点及其附近有定义(包括左边与右边)2、切线与导数:设函数()y f x =上点()()00,,A x f x ()f x 在A 附近有定义且附近的点()()00,B x x f x x +∆+∆,则割线AB 斜率为:()()()()()000000AB f x x f x f x x f x k x x x x +∆-+∆-==+∆-∆ 当B 无限接近A 时,即x ∆接近于零,∴直线AB 到达极限位置时的斜率表示为:()()000limx f x x f x k x∆→+∆-=∆,即切线斜率,由导数定义可知:()()()'0000lim x f x x f x k f x x∆→+∆-==∆。
故()'0f x 为()f x 在()()00,A x f x 处切线的斜率。
这是导数的几何意义。
3、从导数的几何意义中可通过数形结合解释几类不含导数的点:(1)函数的边界点:此类点左侧(或右侧)的点不在定义域中,从而某一侧不含割线,也就无从谈起极限位置。
故切线不存在,导数不存在;与此类似还有分段函数如果不连续,则断开处的边界值也不存在导数(2)已知点与左右附近点的割线极限位置不相同,则不存在切线,故不存在导数。
例如前面例子y x =在()0,0处不存在导数。
此类情况多出现在单调区间变化的分界处,判断时只需选点向已知点左右靠近,观察极限位置是否相同即可(3)若在已知点处存在切线,但切线垂直x 轴,则其斜率不存在,在该点处导数也不存在。
例如:y =()0,0处不可导综上所述:(1)-(3)所谈的点均不存在导数,而(1)(2)所谈的点不存在切线,(3)中的点存在切线,但没有导数。
由此可见:某点有导数则必有切线,有切线则未必有导数 。
(二)方法与技巧:1、求切线方程的方法:一点一方向可确定一条直线,在求切线时可考虑先求出切线的斜率(切点导数)与切点,在利用点斜式写出直线方程2、若函数的导函数可求,则求切线方程的核心要素为切点A 的横坐标0x ,因为0x 可“一点两代”,代入到原函数,即可得到切点的纵坐标()0f x ,代入到导函数中可得到切线的斜率()'0fx k =,从而一点一斜率,切线即可求。
所以在解切线问题时一定要盯住切点横坐标,千方百计的把它求解出来。
3、求切线的问题主要分为两大类,一类是切点已知,那么只需将切点横坐标代入到原函数与导函数中求出切点与斜率即可,另一类是切点未知,那么先要设出切点坐标()00,x y ,再考虑利用条件解出核心要素0x ,进而转化成第一类问题4、在解析几何中也学习了求切线的方法,即先设出切线方程,再与二次方程联立利用0∆=求出参数值进而解出切线方程。
解析几何中的曲线与函数同在坐标系下,所以两个方法可以互通。
若某函数的图像为圆锥曲线,二次曲线的一部分,则在求切线时可用解析的方法求解,例如:y =1,22⎛⎝⎭处的切线方程,则可考虑利用圆的切线的求法进行解决。
若圆锥曲线可用函数解析式表示,像焦点在y 轴的抛物线,可看作y 关于x 的函数,则在求切线时可利用导数进行快速求解(此方法也为解析几何中处理焦点在y 轴的抛物线切线问题的重要方法)5、在处理切线问题时要注意审清所给已知点是否为切点。
“在某点处的切线”意味着该点即为切点,而“过某点的切线”则意味着该点有可能是切点,有可能不是切点。
如果该点恰好在曲线上那就需要进行分类讨论了。
二、典型例题 例1:求函数()()32xf x ex =-在1x =处的切线方程思路:本题切点已知,代入原函数求得函数值,代入导函数中求得切线斜率,进而利用点斜式求出切线方程解:()1f e = ∴切点坐标为()1,e()()()'33231x x x f x e x e x e =+-=+()'14f e ∴= ∴切线方程为:()4143y e e x y ex e -=-⇒=-小炼有话说:切点已知时求切线方程是切线问题中较简单的一类问题,体会切点分别代入到函数与导函数中所起到的作用,体会切点横坐标在切线问题中的关键作用 例2:已知函数()ln 2f x x x =+,则:(1)在曲线()f x 上是否存在一点,在该点处的切线与直线420x y --=平行 (2)在曲线()f x 上是否存在一点,在该点处的切线与直线30x y --=垂直解: (1)思路:切点未知,考虑设切点坐标为()00,x y ,再利用平行条件求出0x ,进而求出切线方程设切点坐标为()00,x y ()'0012fx x ∴=+ 由切线与420x y --=平行可得: ()'00011242f x x x =+=⇒= 011ln 122y f ⎛⎫∴==+ ⎪⎝⎭∴切线方程为:11ln 244ln 212y x y x ⎛⎫-+=-⇒=-- ⎪⎝⎭(2)思路:与(1)类似,切点未知,考虑设切点坐标为()00,x y ,有垂直关系可得切线斜率与已知直线斜率互为负倒数,列出方程求出0x ,进而求出切线方程 设切点坐标()00,x y ()'0012fx x ∴=+,直线30x y --=的斜率为1 ()'00011213f x x x ∴=+=-⇒=- 而()00,x ∈+∞ 013x ∴=-不在定义域中,舍去∴不存在一点,使得该点处的切线与直线30x y --=垂直小炼有话说:(1)求切线的关键要素为切点,进而若切点已知便直接使用,切线未知则需先设再求。
两直线平行与垂直关系与直线的斜率密切相关,进而成为解出切点横坐标的关键条件(2)在考虑函数问题时首先要找到函数的定义域。
在解出自变量的值或范围时也要验证其是否在定义域内例3:函数()2ln f x a x bx =-上一点()()2,2P f 处的切线方程为32ln22y x =-++,求,a b 的值思路:本题中求,a b 的值,考虑寻找两个等量条件进行求解,P 在直线32ln22y x =-++上,322ln222ln24y ∴=-⋅++=-,即()2=2ln24f -,得到,a b 的一个等量关系,在从切线斜率中得到2x =的导数值,进而得到,a b 的另一个等量关系,从而求出,a b 解:P Q 在32ln22y x =-++上,()2322ln222ln24f ∴=-⋅++=-()2ln242ln24f a b ∴=-=-又因为P 处的切线斜率为3- ()'2afx bx x=- ()'2432af b ∴=-=-ln 242ln 2421432a b a a b b -=-⎧=⎧⎪∴⇒⎨⎨=-=-⎩⎪⎩小炼有话说:(1)本题中切线体现了两个作用:①切点在切线上,进而可间接求出函数值;②切线的斜率即为切点导数值(2)一般来说,在求未知量的值题目中,未知量的个数与所用条件的个数相等。
在本题中确定,a b 两个未知量,从而想到寻找两个条件来解决问题。
例4:曲线xy e =在点()22,e 处的切线与坐标轴所围三角形的面积为( )A.2eB. 22eC. 24eD.22e思路:()'x fx e = 由图像可得三角形的面积可用切线的横纵截距计算,进而先利用求出切线方程 ()'22fe ∴=所以切线方程为:()222y e e x -=-即220e x y e --=,与两坐标轴的交点坐标为()()21,00,e - 221122e S e ∴=⨯⨯=答案:D小炼有话说:在平面直角坐标系中,我们研究的问题不仅有函数,还有解析几何。
所以在求面积等问题时也会用到解析几何的一些理念与方法。
例如求三角形面积要寻底找高,而选择底和高以计算简便为原则,优先使用点的坐标表示。
在本题中选择横纵截距来刻画三角形的两条直角边有助于简化计算。
例5:一点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ). A.0,2π⎡⎤⎢⎥⎣⎦ B.30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭U C.3,4ππ⎡⎫⎪⎢⎣⎭ D.3,24ππ⎛⎤⎥⎝⎦思路:倾斜角的正切值即为切线的斜率,进而与导数联系起来。
'231y x =-,对于曲线上任意一点P ,斜率的范围即为导函数的值域:[)'2=311,y x -∈-+∞,所以倾斜角的范围是30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭U 答案:B小炼有话说:(1)对于切线而言,其倾斜角,斜率,切点处的导数联系紧密:倾斜角的正切值为斜率,斜率即为切点的导数值。
(2)斜率范围到倾斜角范围的转化要注意一下两点:① 斜率化倾斜角时尽量用图像进行辅助,观察斜率变化时,倾斜角的变化程度。
② 直线倾斜角的范围为[)0,π 例6:求过点()2,8A ,且与曲线()3f x x =相切的直线方程思路:()2,8A 满足()f x ,但题目并没有说明A 是否为切点,所以要分A 是否为切点进行分类讨论。
当A 是切点时,易于求出切线方程,当A 不是切点时,切点未知,从而先设再求,设切点()00,x y ,切线斜率为k ,三个未知量需用三个条件求解:① ()00y f x =,②()'0k f x =,③00AAy y k x x -=-解:(1)当()2,8A 为切点时 ()'23f x x =()'212f ∴= ∴切线方程为:()81221216y x y x -=-⇒=-(2)当()2,8A 不是切点时,设切点()00,P x y ()02x ≠,切线斜率为k3002000382y x k x y k x ⎧⎪=⎪⎪∴=⎨⎪-⎪=-⎪⎩,消去0,k y 可得:32000832x x x -=- 而()()3200008224x x x x -=-++ 02x ≠Q ∴方程等价于:222000032420x x x x x =++⇒--= 解得:02x =(舍),01x =-01,3y k ∴=-= ∴切线方程为()13132y x y x +=+⇒=+综上所述:切线方程为1216y x =-或32y x =+小炼有话说:(1)由于在导数中利用极限的思想对切线进行了严格定义,即割线的极限位置是切线,从而不能局限的认为切线与曲线的公共点一定就是切点,存在一条直线与曲线相切于一点,并与曲线的另一部分相交于一点的情况,本题便是一个典型的例子(2)在已知一点求切线方程时,要注意切线斜率不仅可用切点的导数值来表示,也可以用已知点与切点来进行表示,进而增加可以使用的条件。