肌松监测概述

合集下载

肌松监测)

肌松监测)
特点:
观察4个肌颤搐衰减程度可以确定肌松药阻滞特性及评定 肌松作用,通常用TOFR=T4 / T1来表示,无需术前对照,引 起的疼痛较轻,通常不会影响神经肌肉阻滞的程度
强直刺激(TS)
定义:
刺激频率>20Hz,临床常用模式是50Hz持续刺激5s
特点:
引起剧痛,在神经肌肉恢复后期引起刺激部位对神经 肌肉阻滞的持续抵抗,刺激反应不再代表其他部位的肌群
神经电刺激模式
单刺激(single-twitch stimulation,SS) 四个成串刺激(train-of-four stimulation, TOF) 强直刺激(tetanic stimulation,TS) 强直刺激后计数(post-tetanic count stimulation, PTC) 双短强直刺激(double-burst stimulation,DBS)
神经肌肉传递功能监测
目的
➢ 指导围术期科学地合理地使用肌松药 ➢ 减少肌松药的不良反应 ➢ 术后及时正确地使用肌松药的拮抗药,逆转残余
肌松作用
方法
➢ 直接测定随意肌的肌力,如抬头、握力、睁眼、伸舌 ➢ 间接测定呼吸运动如潮气量、肺活量、分钟通气量和
吸气产生最大负压,甚至在X线下观察横膈活动 ➢ 通过监测外周神经受到超强刺激后所产生的肌肉反应
诱发反应记录的评价
非去极化神经肌肉阻滞
极度阻滞
对任何神经刺激模式都无反应 也称为无反应期。注射插管剂量的非去极化肌松药 后3~6min内发生,依赖于药物种类和剂量及患者对药物 的敏感性
深度阻滞
TOF无反应,但PTC有反应。 虽然不能精确地确定深度阻滞会持续多久,但是PTC 刺激与TOF刺激的第一个反应出现的时间之间存在相关性

肌松药作用的监测

肌松药作用的监测

肌松药作用的监测现代全麻包含了全身麻醉药,麻醉性镇痛药和肌肉松弛药。

肌松药的应用,对维持适当麻醉,避免麻醉过深所导致的生理干扰、为手术提供安静术野和良好的操作条件,增加机体对气管插管的耐受具有不可替代的作用,已成为现代全麻的三要素之一。

但是多年来,临床评价肌松药的标准多以临床征象为主,如睁眼、抬头、举臂、吐舌、潮气量及吸气负压等试验,因影响因素多,且很不精确,其实验结果评价肌松作用有很大局限性,故并不可靠。

许多文献报道,可采用神经刺激器等进行肌松药的监测,有些可达定性,有些指标具有定量意义,对临床合理应用肌松药有很强的指导意义。

一、全麻期间肌松监测的意义(1)决定最佳的气管内导管插管时机。

(2)维持适当的肌松,保证对气管内插管的良好耐受,为术者提供松弛,安静的术野,保证手术各阶段顺利进行,尤其精细手术的进行。

(3)避免琥珀胆碱过量,并对其用量过多引起的II相阻滞作出正确诊断。

(4)合理使用药物,可节省肌松药量。

(5)决定肌松药逆转的时机及拮抗药的剂量。

(6)指导肌松药的使用方法和追加肌松药的时间。

(7)对术后呼吸功能不全进行原因的鉴别,确诊是否存在肌松药的残余效应,及决定最佳拔管时机。

二、肌松药作用的监测方法1.神经刺激器是临床上常规应用的肌松药作用监测仪,要求操作简单,轻便,安全可靠。

脉冲宽度0.2-0.3ms,单相正弦波,电池使用时间长。

理想的神经刺激器应为桓流,呈线性输出。

输出电压300-400V,当皮肤阻抗为0-2.5千欧姆时,输出电流25-50mA,最大电流60-80mA。

但末梢较冷时.皮肤阻抗增大(>2.5-5千欧姆),则输出电流减少,对刺激的反应降低,为克服上述缺点,神经刺激器应有电流指示及低电流报警,避免判断错误。

远端电极放在近端腕横纹1cm尺侧屈腕肌桡侧,近端电极置于远端电极近侧2-3cm处。

对尺神经刺激,产生拇指内收和余四指屈曲,凭视觉和触觉估计肌松程度。

此方法系客观指标,主观评价的方法。

肌松监测

肌松监测
以上才可应用
整理课件
20
缺点
❖ 敏感性差,当突触后膜的受体被肌松药占据75%时, 肌颤搐才开始降低
❖ 不能反应肌松药对突触前膜的作用 ❖ 无法评价肌松残余 ❖ 不能区分阻滞的性质(如II相阻滞)
整理课件
21
四次成串刺激(TOF )
基本方法:
❖ 连续给予四个波宽为0.2ms,频率为2Hz的电刺激, 记录肌颤搐强度。
整理课件
31
华翔肌松监测仪的使用
2、测量 按“TOF”键开始四次成串刺激,为循环连续 功能,再按为结束 按“STC”键开始单次刺激,为循环连续功能, 再按为结束 按“PTC”键发出强直后刺激,为单次功能。 在刺激状态下,TOF、STC、PTC三种刺激模 式可直接转换,按相应的键即入进该刺激模式, 不用先停止上一种刺激模式,即实行一键转换。

7. 预防肌松药的残余作用所引起的术后呼吸功能 不全
整理课件
11
肌松监测仪的原理
➢ 肌收缩的机械效应 ➢ 肌收缩的电效应 ➢ 肌收缩的加速度效应
整理课件
12
机械效应
用握持器感应并传入信号
整理课件
13
电效应
用两个电极感应并传入信号
整理课件
14
加速度效应
❖ 用加速度感应器感应
整理课件
15
常用刺激及监测的位置
整理课件
33
整理课件
32
华翔肌松监测仪的使用
3、回放 在待刺激状态下,按向上键进入回放状态。时 间标尺上边连续出现变动的时间序列,T1/TC、 T4/T1下面的数值闪动,图形区逐渐绘出当时 T1、T2、T3、T4反应程度竖线。STC刺激回 放时,只有T1/TC闪动。 在回放状态持续按向上键,可暂停回放,停按 后继续回放。按“确认”键终止回放,返回 TOF界面。

肌松药的临床应用和肌松监测课件(PPT演示)

肌松药的临床应用和肌松监测课件(PPT演示)

新型肌松药物的作用机制和 特点
新型肌松药物通过不同的作用机制实现肌松作用, 具有更好的安全性和有效性,如罗库溴铵等。
新型肌松药物的临床应用 前景
新型肌松药物在外科手术、重症监护等领域 具有广阔的临床应用前景,有望为临床提供 更多更好的治疗选择。
未来发展趋势预测
肌松药的个性化治疗
随着精准医疗的发展,未来肌松药的治疗将更加个性化,根据不同 患者的具体情况制定个性化的治疗方案。
优点
操作简便、可重复性好、结果客 观。
缺点
对肌肉质量和收缩力量有一定要 求,可能受到外界干扰。
肌电图监测
原理
01
记录肌肉电活动,包括肌纤维动作电位和肌电总和电位等,反
映神经肌肉系统功能状态。
优点
02
灵敏度高、可定量评估肌松程度。
缺点
03
操作相对复杂、需要专业解读。
其他监测技术
力学监测
通过测量肌肉收缩产生的力量来评估肌松程度,如握力监测等。
心理支持策略与方法
建立良好的医患关系
医生应主动与患者沟通,了解其心理需求和困惑,给予及 时解答和引导,帮助患者树立战胜疾病的信心。
实施心理干预
针对患者出现的焦虑、抑郁等心理问题,医生可采取心理 疏导、认知行为疗法等心理干预措施,帮助患者调整心态, 积极面对治疗。
鼓励家属参与心理支持
家属是患者心理支持的重要来源,医生应鼓励家属积极参 与患者的心理支持过程,给予患者更多的关爱和支持。
维库溴铵
维库溴铵也是一种非去极化肌松药,作用与阿曲库铵相似,但起效略 慢,适用于肝肾功能不全患者。
罗库溴铵
罗库溴铵是一种新型非去极化肌松药,起效迅速,作用时间长,且心 血管副作用较小,适用于老年患者和心血管功能不稳定患者。

医学知识一术中肌松监测

医学知识一术中肌松监测
去极化)。 评定术后残余肌松作用
强直刺激用50Hz,持续5秒’’→无衰 减现象
→随意肌张力恢复的指标。
强直刺激后单刺激的肌颤计数 (PTC)
➢ 定义:强直刺激(50Hz,持续5’’)后,间隔3’’ 再给予1Hz单刺激。
非去极化肌松药完全抑制了单刺激和四个成 串刺激引起的肌颤搐时, 可用PTC来进一步估计 阻滞的程度。
肌松药的拮抗
拮抗时机: “金标准”:当T1恢复到25%(SS),或TOF刺激
有至少两次反应(T1, T2 恢复, 可使用拮抗剂)。
新斯的明拮抗剂量:
新斯的明+阿托品2 : 1 • <0.04mg/kg时,剂量增加,恢复速度加快
• >0.04mg/kg时,剂量增加,恢复速度加快不明显
• 极量 0.07 mg/kg
四个成串刺激特点
• TOF比值评定肌松药的残余作用方面比单次刺激更敏感。 T1的价值等同于单次肌颤搐刺激,使用TOF时,可以不设 定参照值
• 可用于清醒病人,20—30mA的电流强度
• TOF可以进行连续肌松监测,每两次的间隔为12—15秒
• TOF比值用来评价肌松残余 非去极化阻滞: T4,T3、T2和Tl依次衰减至消失 去极化阻滞:幅度均降低,T4/T1>0.9或接近1.0, 双相阻滞:T4/Tl逐渐下降,T4/T1<0.7 可疑, T4/T1<0.5时肯定为II相阻滞
应 分析术后自主呼吸不能恢复的原因。 应用于科研,评价新的肌松药。
肌松监测原理
• 用电刺激周围运动神经达到一定刺激强度(阈值)时,肌 肉就会发生收缩产生一定的肌力。如刺激强度超过阈值, 神经支配的所有肌纤维都收缩,肌肉产生最大收缩力。临 床上用大于阈值20%至25%的刺激强度,称为超强刺激, 以保证能引起最大的收缩反应。给予肌松剂后,肌肉反应 性降低的程度与被阻滞肌纤维的数量呈平行关系,保持超 强刺激程度不变,所测得的肌肉收缩力强弱就能表示神经 肌肉阻滞的程度。

肌松监测

肌松监测

肌松药作用机制

神经肌肉接头
肌松药作用机制

神经-肌肉兴奋传递是通过轴突末端释放乙酰胆 碱,作用于肌膜上的乙酰胆碱受体改变其离子通 道,引起膜的电位变化使肌膜去极化,进而触发 了兴奋-收缩耦联,引起肌纤维收缩
肌松药作用机制
作用于接头后膜

竞争性阻滞 非去极化肌松药与去极化肌松药两类肌松药的分子都具有 与乙酰胆碱相似的结构,均可与乙酰胆碱竞争受体上α蛋 白亚基的乙酰胆碱结合部位,所不同的是结合后产生的阻 滞方式不同。非去极化肌松药与受体结合后受体的构型即 不发生改变,离子通道不开放,就不能产生去极化,从而 阻滞了神经肌肉兴奋传递。 去极化肌松药与受体结合后 可使受体构型改变,离子通道开放而去极化,但终板的持 续去极化阻滞了正常的神经肌肉兴奋传递
肌松药作用的影响因素

肌松药的种类、剂量 病人的生理和病理状况 年龄、肥胖、低温、酸碱失衡、电解质失衡、肝肾功不良、 重症肌无力、肌强直综合症、血浆胆碱酯酶异常

合并使用的药物的影响 增强:吸入全麻药、静脉全麻药、氨基糖甙类抗生素、钙 通道阻滞剂 减弱:氨茶碱、苯妥英钠
肌松监测的目的和意义

肌松监测的常用指标
TOF的作用
1. 2. 3.
T1的价值等同于SS 使用TOF时可以不设定参照值
TOF比值(T4/T1)代表肌松残余程度
TOF=0.7,抬头5s,伸舌,握力好 TOF=0.7-0.9, 仍有吞咽无力,复视,咬肌无力等不适
TOF<0.9,食道上端肌肉未完全恢复
TOF>=0.9,“压舌板试验”良好,可认为基本无肌松 残余
握拳:TOF比值恢复到 65%左右 抬头5s 试验:青壮年-- TOF 比值恢复到 70% 老年人-- TOF比值≥ 90%

肌松药作用的监测

肌松药作用的监测

肌松药作用的监测肌松药是一类常用于麻醉手术中的药物,通过阻断神经肌肉信号传导,使患者的肌肉松弛,达到手术需要的效果。

但是,肌松药也具有一定的潜在风险,因此需要对其作用进行监测,以保证手术的安全和有效性。

一、神经肌肉传导监测:肌松药的主要作用是阻断神经肌肉接头的神经肌肉传导,使肌肉松弛。

在手术过程中,可以通过监测肌肉的反应来评估肌松药的效果。

常用的监测方法包括肌电图(EMG)、人工触发肌电传导监测(TOF)等。

这些监测方法可以通过测量肌肉的电活动来判断肌松药的作用程度,从而调整肌松药的剂量。

二、呼吸监测:肌松药能够通过阻断呼吸肌肉的神经肌肉传导,导致呼吸肌肉麻痹,从而影响患者的呼吸功能。

为了保证患者的呼吸安全,需要进行呼吸监测。

常用的呼吸监测指标包括呼吸频率、氧饱和度(SpO2)等。

通过对呼吸监测指标的监测,可以及时发现呼吸功能异常,采取相应的措施,如进行辅助通气等。

三、血压、心率监测:肌松药的应用可能会导致循环动力学的变化,如血压的下降、心率的改变等。

为了及时发现和处理这些循环动力学的变化,需要进行血压、心率监测。

常用的监测方法包括无创血压监测、心电图(ECG)等。

通过对血压、心率的监测,可以判断循环动力学的变化,及时调整药物的使用和剂量,保证患者的循环稳定。

四、肌张力监测:肌松药的应用会导致患者的肌肉松弛,为了评估肌松的程度和调整肌肉松弛药的剂量,需要进行肌张力监测。

目前,常用的肌张力监测方法包括神经肌肉电刺激监测、加权肌张力监测等。

通过对肌张力的监测,可以判断肌松的程度,及时调整肌松药的使用和剂量。

总之,监测肌松药的作用是保证手术的安全和有效性的重要手段。

通过监测神经肌肉传导、呼吸、血压心率以及肌张力等指标,可以评估肌松药的作用程度,及时调整药物的使用和剂量,确保手术过程中患者的生命体征和功能的稳定和安全。

在肌松药的应用过程中,医护人员应密切监测并及时调整相关参数,以确保患者的安全。

肌松药的临床应用和肌松监测

肌松药的临床应用和肌松监测
选择合适的肌松药物
根据不同手术和患者情况,通过肌松监测结果,医生可以选择更加合适的肌松药 物,提高手术效果。
预测和预防肌松药物的并发症
预测肌松药物过量风险
通过实时监测肌肉松弛程度,医生可以及时发现肌松药物过量的迹象,从而采取措施预防并发症的发 生。
及肌松药物引起的各种并发症,如呼吸抑制、心律失 常等。
肌松药的临床应用和肌松 监测
汇报人:可编辑
2024-01-11
CATALOGUE
目 录
• 引言 • 肌松药的临床应用 • 肌松监测的方法和指标 • 肌松监测的临床意义 • 肌松监测的未来发展
01
CATALOGUE
引言
肌松药的定义和作用
01
肌松药是一种用于抑制神经肌肉 传导的药物,通过阻断神经信号 传递到肌肉,使肌肉松弛。
02
CATALOGUE
肌松药的临床应用
手术麻醉
手术麻醉过程中使用肌松药可以有效地抑制患者的自主呼吸,使手术操作更加顺利 ,减少手术并发症。
肌松药可以降低患者的应激反应,减轻手术过程中的疼痛感,提高患者的舒适度。
在全身麻醉过程中,肌松药可以辅助其他麻醉药物,使患者快速进入麻醉状态,缩 短手术时间。
治疗。
在呼吸机治疗过程中,肌松药可 以减轻患者的呼吸肌疲劳和疼痛
感,提高患者的舒适度。
肌松药还可以协助呼吸机治疗过 程中的其他治疗措施,如肺复张
、气道管理等。
神经肌肉疾病的诊断和治疗
对于神经肌肉疾病患者,肌松药可用 于诊断和治疗,如重症肌无力、肌无 力综合征等。
在治疗神经肌肉疾病时,肌松药可以 缓解患者的肌肉疼痛和痉挛症状,提 高患者的生活质量。
02
肌松药在临床上的应用广泛,主 要用于手术麻醉、重症监护、呼 吸机辅助呼吸等领域。

麻醉设备学(阮肖晖)第六章肌松监测仪器

麻醉设备学(阮肖晖)第六章肌松监测仪器
无损检测技术
无损检测技术如超声、磁共振等在 肌松监测仪器中的应用,能够减少 对患者的损伤,提高监测的安全性。
应用领域的拓展
重症监护
肌松监测仪器在重症监护领域的应用逐渐增多,能够实时监测重 症患者的肌肉松弛程度,为医生提供准确的诊断依据。
康复医学
肌松监测仪器在康复医学领域的应用也逐渐拓展,能够帮助医生评 估患者的肌肉功能恢复情况,制定个性化的康复方案。
定期校准
按照仪器说明书要求,定 期对肌松监测仪器进行校 准,以确保监测结果的准 确性。
05
肌松监测仪器的发展趋势 与展望
技术创新与升级
无线化技术
随着无线通信技术的发展,肌松 监测仪器逐渐实现无线化,方便
医生随时随地进行监测。
智能化技术
通过引入人工智能和大数据分析, 肌松监测仪器能够自动识别和分析 数据,提高监测准确性和效率。
其他类型肌松监测仪器
总结词
其他非主流的肌松监测技术
详细描述
除了上述三种主流的肌松监测仪器,还有一些非主流的监测技术,如机械压力传感器、电阻抗分析等 。这些技术各有优缺点,但在某些特定情况下可能具有一定的应用价值。
03
肌松监测仪器在临床麻醉 中的应用
手术前的评估
评估患者肌松状态
通过肌松监测仪器,医生可以在手术前评估患者的肌肉松弛 程度,了解患者的肌松状态,为手术过程中的麻醉管理提供 参考。
手术后的恢复
评估患者的恢复情况
手术后,通过肌松监测仪器可以评估患者的肌肉松弛恢复情况,了解患者术后恢复的状 态,为后续治疗提供参考。
指导术后用药
根据肌松监测的结果,医生可以指导患者术后使用相关药物,促进肌肉松弛的恢复,减 少并发症的发生。
04

术中肌松监测课件

术中肌松监测课件
术中肌松监测课件
• 术中肌松监测概述 • 术中肌松监测的应用
CHAPTER 01
术中肌松监测概述
定义与重要性
01
术中肌松监测是指通过仪器设备 对手术过程中肌肉松弛程度进行 量化和评估的技术。
02
术中肌松监测对于手术效果和患 者安全具有重要意义,能够及时 发现和处理肌肉松弛问题,确保 手术顺利进行。
THANKS
[ 感谢观看 ]
神经调节与刺激
利用神经调节和刺激技术,通过刺 激神经通路来诱发肌肉收缩,以评 估神经肌肉功能和肌松药物的效能。
个体化监测与治疗
基于个体的监测参数
根据患者的生理特征和手术需求,制 定个体化的监测参数和标准,以提高 监测的准确性和针对性。
精准用药方案
根据患者的生理特征和手术需求,制 定精准的肌松药物用药方案,以提高 治疗效果和减少副作用。
提高监测准确性与操作便捷性
自动化监测技术
通过自动化监测技术,减 少人为操作失误和提高监 测准确性,同时降低操作 难度和复杂度。
多模态监测融合
将多种监测模态如电生理、 力学、超声等融合起来, 以提高监测的全面性和准 确性。
智能算法辅助分析
利用智能算法对监测数据 进行自动分析和解读,为 医生提供更准确、及时的 决策支持。
肌肉松弛监测是通过测量肌肉松弛程度 来评估肌肉的功能状态和松弛程度。
常用的术中肌松监测技术包括:神经电 生理监测、肌肉松弛监测和运动功能监 测等。
神经电生理监测是通过记录神经肌肉的 电活动来评估肌肉的神经控制和功能状态。
CHAPTER 02
术中肌松监测的应用
全身麻醉手 术
全身麻醉手术需要确保患者的肌肉松弛,以确保手术顺利进行。
操作流程

肌松监测概述

肌松监测概述

1.概述现代医学中,肌松药已广泛应用于临床麻醉以及危重病人得呼吸支持与呼吸治疗中[1]。

由于不同得个体对于肌松药得敏感性与反应性差异很大,加之肌松药得作用受到挥发性麻醉药、静脉麻醉药、氨基糖贰类抗生素以及病人得年龄、体温等多种因素得影响,因此通过适宜得方法监测应用肌松药后机体神经肌肉传递功能得阻滞程度与恢复状况,对于降低术后因肌松作用残留而引起得各种严重并发症得发生率、提高肌松药临床应用得安全性与合理性十分必要[2]。

肌松监测仪得出现,为此研究开拓了更广阔得空间。

肌松监测仪就是通过刺激周围神经,引起患者肌颤搐来观察肌松药效得仪器。

除了监测肌松情况,还用于肌松药药代动力学与药效动力学得研究,有助于发现肌松药敏感得病人与评价神经肌肉功能得恢复程度。

使用肌松监测仪进行肌松药作用监测能够:1、决定气管插管与拔管时机;2、维持适当肌松,满足手术要求,保证手术各阶段顺利进行;3、指导使用肌松药得方法与追加肌松药得时间;4、避免琥珀胆碱用量过多引起得Ⅱ相阻滞;5、节约肌松药用量;6、决定肌松药逆转得时机及拮抗药得剂量;7、预防肌松药得残余作用所引起得术后呼吸功能不全。

2.肌松监测基本原理生理学原理已经阐明,在神经肌肉功能完整得情况下,用电刺激周围运动神经达到一定刺激强度(阈值)时,肌肉就会发生收缩产生一定得肌力。

单根肌纤维对刺激得反应遵循全或无模式,而整个肌群得肌力取决于参与收缩得肌纤维数目。

如刺激强度超过阈值,神经支配得所有肌纤维都收缩,肌肉产生最大收缩力。

临床上用大于阈值20%至25%得刺激强度,称为超强刺激,以保证能引起最大得收缩反应。

超强刺激会产生疼痛,患者于麻醉期间无痛感,恢复期却能感到疼痛。

因此,有人提出在恢复期使用次强电流刺激,但其监测结果得准确性目前还难以接受。

所以要尽可能使用超强刺激。

给予肌松剂后,肌肉反应性降低得程度与被阻滞肌纤维得数量呈平行关系,保持超强刺激程度不变,所测得得肌肉收缩力强弱就能表示神经肌肉阻滞得程度。

【麻醉兵器库】肌松监测

【麻醉兵器库】肌松监测

【⿇醉兵器库】肌松监测1942年,Harold Griffith发表了关于⿇醉中使⽤所提取的箭毒的研究结果。

神经肌⾁阻滞剂很快成为⿇醉医⽣的常规选择⽤药,临床中的⼤多数⼿术都需要神经肌⾁阻滞剂(以下简称肌松药)的帮助,在使⽤肌松药后我们常使⽤⼀些临床体征来判断肌⼒恢复情况。

临床体征:(1)清醒、呛咳和吞咽反射恢复;(2)头能持续抬离枕头5 s以上;(3)呼吸平稳、呼吸频率10~20次/分,最⼤吸⽓压≤-50 cm H2O;(4)PETCO2和PaCO2≤45 mm Hg。

其实,除了临床体征以外,我们有更加确切和可靠的⽅法来评价神经肌⾁功能,那就是------肌松监测。

⽅法与原理将⼀对氯化银ECG盘状电极或⽪下针状电极置于⼀条外周运动神经表⾯,利⽤外周神经刺激器传输⼀频率和幅度均可变的电流到电极上,然后观察该神经⽀配的肌⾁诱发的机械或电反应。

肌⾁对⼀个刺激的反应取决于被刺激所兴奋的肌纤维数⽬,如果刺激强度⾜够,则这根神经所⽀配的所有肌纤维都会兴奋,会激发出最⼤反应。

给予肌松药后,肌⾁反应的降低与阻滞的肌纤维数⽬成正⽐。

在刺激强度稳定时,反应降低的程度能代表神经肌⾁阻滞的程度。

不同模式的神经刺激a、单刺激(single-twitch stimulation,SS)b、四个成串刺激(train-of-four stimulation,TOF)c、强直刺激(titanic stimulation ,TS)d、强直刺激后计数(post-tetanic count stimulation,PTC)e、双短强直刺激(double -burst stimulation ,DBS)单刺激:给予外周运动神经单次超强点刺激,频率1.0Hz(每秒1个)到0.1Hz(每10秒1个)。

在使⽤肌松药前需要设定参照值(T0),术中通过观察T/T0来判断肌松药的作⽤。

注:Non-dep ⾮去极化肌松药,Dep 去极化肌松药四个成串刺激(TOF):间隔0.5s(2Hz)的四个超强刺激,⼀般每隔10-20s重复⼀串刺激,⽤第四个反应幅度除以第⼀个反应幅度所得的TOF⽐值评价肌松。

肌松检测仪的原理

肌松检测仪的原理

肌松检测仪的原理肌松检测仪是一种用于评估患者肌肉松弛程度的仪器。

它通过监测肌肉收缩力量的改变来判断肌松状态。

肌松检测仪通常由传感器、信号放大器和数据处理系统构成,其工作原理主要包括肌电信号采集、信号放大与滤波、数据处理与分析等几个步骤。

肌电信号采集是肌松检测仪的第一步。

传感器一般采用表面电极或插入式电极,能够将肌电信号转化为电流信号。

这些电极贴附在患者的皮肤上或插入至皮下,以便测量患者的肌肉电活动。

信号放大与滤波是肌松检测仪的第二步。

在这个步骤中,采集到的肌电信号被放大器放大,并通过滤波器进行滤波处理。

信号放大是为了放大微弱的肌电信号,以便更好地捕捉和分析。

滤波则是为了去除背景噪声和干扰信号,以提高信号质量和准确性。

数据处理与分析是肌松检测仪的最后一步。

在这个步骤中,通过数据处理系统对放大和滤波后的信号进行处理和分析,以评估患者的肌肉松弛程度。

常用的分析方法包括时域分析和频域分析。

时域分析主要是通过测量肌电信号的振幅和持续时间来评估肌肉的收缩力量和持续时间。

频域分析则是通过分析肌电信号中的频率成分来评估肌肉松弛程度。

肌松检测仪的工作原理是基于肌肉电活动和肌肉收缩之间的关系。

正常情况下,人体的肌肉收缩需要神经冲动来引起肌肉纤维的收缩。

而当患者接受麻醉或肌松剂时,神经冲动传导受到抑制,导致肌肉无法正常收缩。

这时,通过监测肌肉电活动,肌松检测仪可以判断肌肉收缩力量的变化,从而评估肌松状态。

肌松检测仪的应用范围很广,主要用于麻醉科和重症监护室中对患者进行肌松状态监测和调整麻醉药物剂量。

在麻醉手术过程中,通过肌松检测仪可以有效监测患者的肌松状态,避免术中术后肌松过深或不足的情况发生,确保术中操作的顺利进行。

在重症监护室中,肌松检测仪可以用于评估和监测机械通气患者的肌肉松弛程度,以及调整肌松剂的使用和剂量。

总之,肌松检测仪的工作原理是通过监测肌电信号的变化来评估肌松状态。

它是一种非侵入性、实时性强的检测方法,广泛应用于麻醉科和重症监护室等临床领域,提高了麻醉和机械通气操作的安全性和准确性。

肌松监测概述

肌松监测概述

1.概述现代医学中,肌松药已广泛应用于临床麻醉以及危重病人的呼吸支持和呼吸治疗中[1]。

由于不同的个体对于肌松药的敏感性和反应性差异很大,加之肌松药的作用受到挥发性麻醉药、静脉麻醉药、氨基糖贰类抗生素以及病人的年龄、体温等多种因素的影响,因此通过适宜的方法监测应用肌松药后机体神经肌肉传递功能的阻滞程度和恢复状况,对于降低术后因肌松作用残留而引起的各种严重并发症的发生率、提高肌松药临床应用的安全性和合理性十分必要[2]。

肌松监测仪的出现,为此研究开拓了更广阔的空间。

肌松监测仪是通过刺激周围神经,引起患者肌颤搐来观察肌松药效的仪器。

除了监测肌松情况,还用于肌松药药代动力学和药效动力学的研究,有助于发现肌松药敏感的病人和评价神经肌肉功能的恢复程度。

使用肌松监测仪进行肌松药作用监测能够:1.决定气管插管和拔管时机;2.维持适当肌松,满足手术要求,保证手术各阶段顺利进行;3.指导使用肌松药的方法和追加肌松药的时间;4.避免琥珀胆碱用量过多引起的Ⅱ相阻滞;5.节约肌松药用量;6.决定肌松药逆转的时机及拮抗药的剂量;7.预防肌松药的残余作用所引起的术后呼吸功能不全。

2.肌松监测基本原理生理学原理已经阐明,在神经肌肉功能完整的情况下,用电刺激周围运动神经达到一定刺激强度(阈值)时,肌肉就会发生收缩产生一定的肌力。

单根肌纤维对刺激的反应遵循全或无模式,而整个肌群的肌力取决于参与收缩的肌纤维数目。

如刺激强度超过阈值,神经支配的所有肌纤维都收缩,肌肉产生最大收缩力。

临床上用大于阈值20%至25%的刺激强度,称为超强刺激,以保证能引起最大的收缩反应。

超强刺激会产生疼痛,患者于麻醉期间无痛感,恢复期却能感到疼痛。

因此,有人提出在恢复期使用次强电流刺激,但其监测结果的准确性目前还难以接受。

所以要尽可能使用超强刺激。

给予肌松剂后,肌肉反应性降低的程度与被阻滞肌纤维的数量呈平行关系,保持超强刺激程度不变,所测得的肌肉收缩力强弱就能表示神经肌肉阻滞的程度。

第十一章 肌松监测仪器讲解

第十一章   肌松监测仪器讲解
3.刺激间隔时间长短由刺激频率而定,刺 激频率越慢,间隔时间相应缩短。
二、电刺激方式
据神经肌肉阻滞性质、浓度及阻滞后的 恢复过程选用不同的电刺激方式
(一)单次颤搐刺激
神经刺激器产生单刺激输出方波,每 隔10~20秒刺激一次,频率为0.1Hz,超强 刺激电流为40~65mA,脉冲宽度为0.2ms 优点:简单、病人不适感轻,可反复测试。
一、直接监测MMG型肌松监测仪 1.测量原理:在患者手术中用不变的、强度 足够大的刺激,使用肌力传感器测得肌肉 收缩力,可知神经肌肉的松弛程度。 2.优点:直接反应受检部位肌肉的收缩力。 3.缺点:设备复杂、影响因素多、检测结果 不稳定。
二、加速度肌松监测仪
是一种间接检测肌肉收缩力大小的检测仪器。 结构:
TOF反应消失与阻滞深度关系
非去极化阻滞程度较浅时,四次颤
搐反应幅度虽都降低,但均能出现,T4 首先发生衰减,据T4/T1值可判断神经肌 肉阻滞性质与程度。
进一步加深,四次刺激应按4、3、2、 1的顺序消失
用去极化神经肌肉阻滞药后,四次刺
激不出现衰减现象,颤搐反应高度同等降 低。
深度非去极化阻滞后的恢复,四次刺 激反应按1、2、3、4的顺序出现,临床以 ##T4/T1值恢复至0.7为NMT恢复的指标或 全麻后拔除气管导管的指征,但仍有药物 的残余。
CPU处理单元、显示器、打印机、电源 等。
##临床麻醉中放置位置: 首选腕部、肘部尺神经
其次腕部正中神经,胫后神经、腓 神经、面部运动神经
注意:
1. 刺激电极放在运动神经干走向的 皮肤上,电极间距离为2~3cm
2.远离高频电器,避免同一肢体上 连接其他监测仪器,减少干扰
第二节 MMG型肌松自动监测仪

麻醉设备学第六章肌松监测仪器

麻醉设备学第六章肌松监测仪器

第三节 MMG型肌松自动监测仪
整理课件
一、直接监测MMG型肌松监测仪
直接检测肌肉收缩力大小来判断神经肌 肉的松弛程度
通常以应变电阻作肌力传感器,固定在 被测肢端
肌肉收缩力作用于应变电阻,其电阻值 随收缩力的大小发生相应的改变
通过惠斯登电桥电路将电阻改变量转换 为电信号
整理课件
直接监测MMG型肌松监测仪
整理课件
第二节 EMG型肌松监测仪
整理课件
EMG型肌松监测
刺激器按需设置刺激方式,输出刺激电流 刺激电流经刺激电极通过人体,使相应的肌肉产生
肌电反应 测量电极拾取肌电反应信号,送往处理系统进行放
大、处理 处理系统可检出每个肌电信号的振幅和面积
整理课件
刺激电极与测量电极
EMG型肌松监测
刺激电极与测量电极有两类: 表面电极和针型电极。表面电 极放置在皮肤表面;针型电极 放置在皮下,不能直接接触神 经干
应用直接监测MMG型肌松监测仪,易受肢 体移位与自主运动的干扰,需用夹板等器 材将受检肢体固定,使大拇指运动所产生 的力量始终对着应变电阻的长轴
整理课件
二、加速度肌松监测仪
整理课件
加速度肌松监测仪
间接检测肌肉收缩力大小来判 断神经肌肉的松弛程度
加速度传感器由质量块、压电 陶瓷、基座等组成,和患者拇 指用胶带固定在一起
电刺激参数
整理课件
(三)刺激脉冲参数
电刺激参数
刺激脉冲波形为单向方波 频率从0.1Hz~200Hz 脉冲宽度常用0.2~0.3ms 不同的刺激频率、刺激脉冲数量和时间间
隔组成的刺激脉冲可应用于不同的监测方 法
整理课件
二、电刺激方式
(一)单次颤搐刺激 刺激波为单个方波 每隔10~20s刺激一次 脉冲宽度为0.2ms 超强刺激电流为40~65mA

肌松监测仪简介

肌松监测仪简介

产品介绍:TOF-Watch® SX 是TOF-Watch 实时肌松监测仪家族中设计最为考究的一款。

秉承了肌松监测在手术室及ICU中使用所要求的所有特性,同时它也完全符合临床科研要求。

清晰的界面提供了所有的相关数据。

同时这些数据可以通过光纤同步上传到装有TOF-Watch® SX 软件的计算机中。

TOF-Watch® SX在临床上可用于1.判断神经肌肉阻滞的类型2.测定肌松药作用起效时间和气管插管时机的选择3.维持术中最佳肌松状态4.神经肌肉阻滞的恢复判断5.神经定位配置需求:1.TOF-Watch SX Sales package(肌松监测仪主机及导线)2.TOF-LINK USB interface incl.TOF-MONITOR program(USB导线及接口,含安装程序)3.Handadapter(手掌适配器)4.Stimulation Cable for needle electrode(LA)针电极刺激导线5.Mounting bracket(clamp for IV-pole)输液架支架产品名称肌松监测仪产品型号TOF-Watch®SX生产企业爱尔兰,欧加农产品组成产品由监测仪主机、温度传感器、表层加速度传感器组成。

技术参数1)刺激模式TOFPTC1Hz ST0.1Hz STDBS(3.3或3.2Hz)TET(50或100Hz)慢速TOF(TOFs)可在1~60min编程2)刺激电流(0~60mA 阻抗≤5kOhm)3)刺激脉冲宽度单相200µs4)刺激脉冲宽度单相300µs5)根据用户选择的电流校正6)根据自动设定的亚极量电流校正7)手动调整传感器灵敏度8)用户编辑的TOF和TOFs的报警上下限(OFF,计数或%TOF)9)用户编辑的声音报警(ON或OFF)10) 自动电源关闭(2小时没任何操作)11) 表面温度探头(20~41.5℃)12) 连接电脑,实时采集,分析数据13) 神经定位--LA(1Hz刺激)电流0~6mA阻抗≤5kOhm脉冲宽度40µs单相。

肌松监测仪器

肌松监测仪器

刺激
反映
非去极化阻滞
去极化阻滞
(二)强直刺激
20ms
刺激频率:30Hz、50Hz、100Hz或200Hz, 常用频率为50Hz。 超强刺激电流:50~60mA,刺激持续时间为5s。 强直后易化现象:神经肌肉非去极化阻滞应 用强直刺激后,肌肉擅搐反应幅度增高可超 过强直前一倍。 临床上即利用神经肌肉对强直刺激反应有无 衰减和强直后易化现象,监测神经肌肉阻滞 性质,判断其属于去极化阻滞或非去极化阻滞。
二、加速度肌松监测仪
传 感 器 程序存贮器 EPROM I/O (Ⅰ) 显示器
电荷放大器滤波与自调零电极路电流检测峰值保持
模 数 转 换 电 路
8031 单 片 机 (Ⅰ)
数据存贮器 RAM
I/O (Ⅱ)
键盘
脉冲功率放大
脉冲整形变换 电路故障检测
隔离电路 脉冲分配整形 电流输出电路 步进电机驱动 尺神经部位 I/O (Ⅲ) 8031 单 片 机 (Ⅱ) 程序存贮器 EPROM
一、电刺激参数
1、电压限制:300~400mV,常用100~150mV。 2、最大刺激电流:60~80mA,一般常用20~50mA, 3、超强刺激电流:引起神经肌肉最大诱发反应的刺激电流。约40~60mA。 应用肌松药前超强刺激所诱发的肌肉收缩力或肌电反应值即设定为术 前的参照值。应用肌松药后的测量值与参照值比较,即表示神经肌肉的阻 滞程度。 4、亚强刺激:刺激电流小于超强刺激,且不引起神经肌肉最大反应的刺激。 一般为20~30mA。
第十四章
肌松监测仪器
肌松效应监测:临床麻醉病人使用肌松药后,对神经肌肉阻滞性质和效能 的监测。 作用:保证手术期间获得良好的肌松效果;
准确掌握应用后的恢复情况; 防止术后因残余肌松而抑制呼吸。

麻醉肌松监测课件PPT

麻醉肌松监测课件PPT
通过监测肌肉反应和收缩力变化,客观评估肌肉松弛程度。
麻醉肌松监测的发展历程
初始阶段
20世纪初期,随着全身麻醉技术 的广泛应用,手术中肌肉松弛的 需求逐渐增加,麻醉肌松监测开
始受到关注。
发展阶段
20世纪中叶,随着电刺激技术的进 步和应用,麻醉肌松监测逐渐发展 成为一种定量监测技术。
成熟阶段
20世纪末至21世纪初,随着神经肌 肉传递功能测试的普及和应用,麻 醉肌松监测技术逐渐成熟,成为手 术麻醉的重要保障。
心律失常
麻醉过程中可能出现各种心律失常,如心动过缓、心动过速、室性早搏等。应根 据具体病情给予相应的抗心律失常药物进行治疗。
其他并发症
过敏反应
部分患者可能对麻醉药物或肌松药物产生过敏反应,如皮疹、呼吸困难、低血压等。应立即停止使用相关药物, 给予抗过敏治疗,并密切观察病情变化。
神经肌肉损伤
长时间使用肌松药物可能对神经肌肉造成损伤,导致肌肉无力或瘫痪。应尽量缩短肌松药物的持续时间,并在必 要时给予神经肌肉兴奋药物进行治疗。
根据患者的病情和手术需求,选择适合的麻醉方式和肌松监 测技术。
麻醉诱导
在麻醉诱导前,应先给予肌松药以实施气管插管,并在使用 肌松药后进行肌松监测,以确保气管插管的顺利进行。
术中监测与处理
肌松监测
在手术过程中,应定期进 行肌松监测,以确保患者 肌松程度适宜,保障手术 顺利进行。
呼吸功能监测
呼吸功能监测可以评估患 者的呼吸情况,以及判断 是否存在呼吸抑制等并发 症。
麻Hale Waihona Puke 肌松监测课件目 录• 麻醉肌松监测概述 • 麻醉肌松监测的方法 • 麻醉肌松监测的仪器与设备 • 麻醉肌松监测的临床应用 • 麻醉肌松监测的并发症与处理 • 麻醉肌松监测的未来展望
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 •概述现代医学中,肌松药已广泛应用于临床麻醉以及危重病人的呼吸支持和呼吸治疗中[1]。

由于不同的个体对于肌松药的敏感性和反应性差异很大,加之肌松药的作用受到挥发性麻醉药、静脉麻醉药、氨基糖贰类抗生素以及病人的年龄、体温等多种因素的影响,因此通过适宜的方法监测应用肌松药后机体神经肌肉传递功能的阻滞程度和恢复状况,对于降低术后因肌松作用残留而引起的各种严重并发症的发生率、提高肌松药临床应用的安全性和合理性十分必要[2]。

肌松监测仪的出现,为此研究开拓了更广阔的空间。

肌松监测仪是通过刺激周围神经,引起患者肌颤搐来观察肌松药效的仪器。

除了监测肌松情况,还用于肌松药药代动力学和药效动力学的研究,有助于发现肌松药敏感的病人和评价神经肌肉功能的恢复程度。

使用肌松监测仪进行肌松药作用监测能够:1.决定气管插管和拔管时机; 2.维持适当肌松,满足手术要求,保证手术各阶段顺利进行; 3.指导使用肌松药的方法和追加肌松药的时间;4.避免琥珀胆碱用量过多引起的□相阻滞; 5.节约肌松药用量;6.决定肌松药逆转的时机及拮抗药的剂量;7.预防肌松药的残余作用所引起的术后呼吸功能不全。

2 •肌松监测基本原理生理学原理已经阐明,在神经肌肉功能完整的情况下,用电刺激周围运动神经达到一定刺激强度(阈值)时,肌肉就会发生收缩产生一定的肌力。

单根肌纤维对刺激的反应遵循全或无模式,而整个肌群的肌力取决于参与收缩的肌纤维数目。

如刺激强度超过阈值,神经支配的所有肌纤维都收缩,肌肉产生最大收缩力。

临床上用大于阈值20 %至25 %的刺激强度,称为超强刺激,以保证能引起最大的收缩反应。

超强刺激会产生疼痛,患者于麻醉期间无痛感,恢复期却能感到疼痛。

因此,有人提出在恢复期使用次强电流刺激,但其监测结果的准确性目前还难以接受。

所以要尽可能使用超强刺激。

给予肌松剂后,肌肉反应性降低的程度与被阻滞肌纤维的数量呈平行关系,保持超强刺激程度不变,所测得的肌肉收缩力强弱就能表示神经肌肉阻滞的程度。

3 •神经电刺激模式及其作用3.1 单刺激:Sin gle-Twitch Stimulatio n, SS单刺激模式使用频率为1Hz到0.1Hz的单个超强刺激作用于外周运动神经,肌力反应取决于单刺激频率。

其可用于监测非去极化和去极化肌松药对神经肌肉功能的阻滞作用。

图为注射非去极化和去极化肌松剂(箭毒)后,使用单刺激(0.1到1.0Hz )的电刺激模式及肌力反应情况。

值得注意的是,除了时间因素,两者的肌力反应强度无差异。

3.2 四个成串刺激:Train-of-Four Stimulation, TOF又称连续四次刺激,用于评价阻滞程度,是临床应用最广的刺激模式[3]。

其间隔0.5秒连续发出四个超强刺激(即2Hz ),通常每10 - 12秒重复一次。

四个成串刺激分别引起四个肌颤搐,记为T1、T2、T3、T4。

观察其收缩强度以及T1与T4间是否依次出现衰减,根据衰减情况可以确定肌松剂的阻滞特性、评定肌松作用。

第四个刺激产生的反应振幅除以第一个刺激产生的反应振幅得到TOF比率(T4/T1 ),可反应衰减的大小。

神经肌肉兴奋传递功能正常时T4/T1接近1.0 ;非去极化阻滞不完全时出现衰减,T4/T1<1.0 ,随着阻滞程度的增强,比值逐渐变小直至为0。

阻滞进一步加深,由T4到T1依次消失。

而非去极化肌松剂作用消退时,T1到T4按顺序出现。

去极化阻滞不引起衰减,T4/T1为0.9 — 1.0。

但若持续使用去极化肌松剂,其阻滞性质由I相转变为H相时,该值逐渐变小。

如T4/T1V0.70 ,提示可能发生□相阻滞;(T4/T1 )<0.50时,提示已发生□相阻滞。

图为注射非去极化和去极化肌松剂(箭毒)后,使用四个成串刺激时电刺激模式和肌力反应情况。

3.3 强直刺激:Tetanic Stimulation, TS强直刺激由快速发放的电刺激(30, 50或100Hz )形成,临床实践中最常用的模式是持续5秒的50 Hz电刺激。

神经肌肉传递功能正常和去极化阻滞时,肌肉对持续5秒的50 Hz强直刺激可以保持不变。

而非去极化阻滞和使用琥珀胆碱后的□相阻滞时,肌力反应出现衰减现象。

3.4 强直刺激后单刺激计数:Post-Teta nic Cou nt Stimulatio n, PTC当非去极化阻滞较深,以致对四个成串刺激和单刺激均无肌颤搐反应时使用此模式。

其组成是:给予持续5秒的50Hz强直刺激,间隔3秒后改为1Hz的单刺激,观察单刺激时肌颤搐的次数。

该模式可以量化肌肉阻滞的程度,预计神经肌肉收缩功能开始恢复的时间,更敏感地评价残余肌松作用。

3.5 双短强直刺激:Double Burst Stimulation, DBS双短强直刺激由两串间距750ms的50Hz强直刺激组成,每串强直刺激有3或4个波宽为0.2ms 的矩形波。

其主要用于没有监测肌颤搐效应记录设备时,通过手感或目测来感觉神经肌肉功能的恢复程度。

临床多使用含3个刺激脉冲的DBS (DBS3,3)。

3.6 磁力刺激:Magnetic Stimulation磁力刺激法是将一圆形的磁力刺激线圈(外直径14cm)通过一特制的支架沿受刺激神经的正切向放置,距离皮肤约2-3cm。

在磁力刺激线圈的中心,可产生 1.5Tesla的电场。

将磁力刺激器的电磁输出调至引起肌肉最大颤搐反应再增加10%的强度,以确保神经肌肉各单元完全去极化。

磁力刺激每4-10秒刺激一次,其只能引起神经产生冲动,而不能使神经所支配的肌肉出现收缩;随着神经肌肉接头功能的恢复,肌肉收缩的幅度逐渐增大⑷。

4.肌松诱发反应的记录记录方法主要有三种:诱发机械反应测量(机械肌动图),诱发电反应测量(肌电图)和肌肉反应的加速度测量(加速度肌动图)。

诱发电位和机械反应代表不同的生理事件。

诱发肌电图记录的是一个或多个肌肉的电活动变化,而诱发机械肌动图记录的是与兴奋收缩偶联和肌肉收缩相关联的所有改变。

因此用这些方法获得的结果可能不一样。

尽管诱发肌电反应通常与诱发机械反应良好相关,然而有时也会出现明显的差别。

尤其是对司可林的反应和非去极阻滞恢复期间的TOF比值测量。

迄今为止,只有个别研究[5]探究了神经肌肉功能充分恢复临床标准与诱发肌电图反应的相关性。

通过同步测量诱发电位和机械反应的方法比较阿曲库铵阻滞临床恢复过程与TOF比值之间的关系。

这两种类型的诱发反应与临床恢复表现之间的关系非常相似。

故还需更多研究来确定诱发肌电反应与手术肌松临床标准和神经肌肉阻滞完全恢复之间的相关性。

加速度肌动图是手术室和ICU中分析神经肌肉功能的简单方法,要求监测肌肉能自由活动。

在非去极化神经肌肉阻滞期间,加速度肌动图测得的TOF比值与肌张力-位移换能器或肌电图测得的TOF比值之间有良好的相关。

同时,加速度肌动图的准确性基本可以与机械力学测量方法相媲美[6,7]。

5 •肌松监测的临床意义为顺利进行气管内插管或保证全麻患者在术中绝对安静,常给予足量的非去极化肌松药,使外周肌的神经肌肉接头发生深度阻滞。

临床监测最常使用的TOF模式,因其获得数据直观、简单、快捷,在肌松起效阶段结果可靠,但其无法对深度阻滞状态进行评估,且对残余肌松作用进行主观评估时,假阴性率较高。

PTC主要用于使用非去极化肌松药后对SS或TOF刺激无反应时对神经肌肉阻滞程度的评估[8,9]。

强直刺激后肌颤搐反应(PTT )是非去极化肌松药在接头前区域产生神经肌肉阻滞的敏感指标,而TOF的T1受接头后作用的影响。

吸入麻醉药延长非去极化肌松药产生神经肌肉阻滞有效间期的部位主要在接头后膜,故进行PTC监测时会发现PTT第一次出现的时间未受影响,但TOF的T1显现时间明显延长,七氟醚和安氟醚最明显,异氟醚次之,氟烷和神经安定麻醉几乎无差异,可能与氟烷麻醉时骨骼肌血流量的增加程度比其它吸入麻醉药小有关[10]。

为防止病人手术期间突然出现随意运动,外周肌神经肌肉阻滞强度需达到PTC=O。

由于TS可影响去极化神经肌肉阻滞的恢复过程,故使用去极化肌松药后不能使用P TC 进行监测[11]。

DBS为临床麻醉工作提供了一种凭主观感觉(主要是触觉和目测)就能正确有效地判断衰减的方法,以便在无肌颤搐反应记录设备时,仅使用神经刺激器就能对肌松残余作用做出合理可信的判断。

根据目前的文献资料可以认为DBS能在更广的麻醉范围内监测到衰减,故适用于肌松恢复期对衰减程度的判断[12]。

Fruergaard K 等[13]的9例病人在术毕神经肌肉功能自然恢复期间,实测TOFr。

在12秒交替进行TOF和DBS时,28名观察者不知晓TOFr的测定结果,凭目测和触感判定DBS反应衰减消失时分别相当于实测TOFr为0.69 ±).09 和0.74 ±).08 ;目测或触感判定DBS反应衰减消失到实测TOFr> 0.75 的时间分别为7.9 ±5.0min 和5.2 ±2.4min ,显示触感评估比目测更准确。

6 •肌松监测的影响因素6.1人-机连接界面的影响肌松监测仪设有刺激电流输出与信息输入环路,此环路中影响肌松监测的常见因素有:①粘贴电极处的皮肤未处理干净,阻抗增加对照值校准困难;②电极表面导电膏过多,电极间形成短路,对照值校准失真或无法校准;③刺激电极未放在神经干走向的皮肤上,或两个刺激电极间距超过2厘米,即使刺激电流超过70mA仍未获得对照值,使校准失败;④肌电图型肌松监测仪,参考电极与测拾电极间距离<2厘米,监测过程容易出现伪差;⑤长时间连续监测,导电膏性能降低,刺激电流与肌电信息衰减增加,监测数据失真或术毕不能恢复至对照值[14]o6.2对照值校准时机的影响中枢神经系统状态及静脉、吸入麻醉药均可影响神经-肌肉传递功能。

即使全麻诱导时不使用肌松药,诱导后TOF的T1下降20 %〜40 % [15]。

若对照值校准时机选在全麻诱导前、清醒状态下,所需刺激电流小,术中维持既定肌松程度所需肌松药因此而减少,术毕无肌松残余作用,但因全麻药或意识状态的影响,常使肌颤搐反应不能恢复至对照值。

若在全麻诱导及意识消失后、静注肌松药前进行校准,要将已经下降的肌颤搐反应提高至100 %所需刺激电流增大,降低术毕肌颤搐不能恢复至对照值的发生率。

故对照值校准时机宜选在全麻诱导后,静注肌松药前。

6.3中心体温与受检部位温度的影响Heier T[16]在排除麻醉药对神经-肌肉传递功能的影响后,界定当T1低于对照值的98 %时即认为中心体温或局部温度使其下降,证实T1下降幅度与中心体温、被检部位温度降低呈线性相关;并将肌颤搐反应高度与中心体温、拇内收肌及鱼际皮肤温度之间的变化用线性回归表示,依此推测肌颤搐为100 %时所对应的温度即为引起T1下降的温度阈值。

相关文档
最新文档