离散数学第1章(2)
离散数学第1章习题答案
![离散数学第1章习题答案](https://img.taocdn.com/s3/m/519244daf111f18582d05a1d.png)
#include<stdio.h>#include<stdlib.h>#include<malloc.h>#define MAX_STACK_SIZE 100 typedef int ElemType; typedef struct{ElemType data[MAX_STACK_SIZE];int top;} Stack;void lnitStack(Stack *S){S->top=-1;}int Push(Stack *S,ElemType x){if(S->top==MAX_STACK_SIZE-1){printf("\n Stack is full!");return 0;}S->top++;S->data[S->top]=x;return 1;}int Empty(Stack *S){return (S->top==-1);}int Pop(Stack *S,ElemType *x){if(Empty(S)){printf("\n Stack is free!");return 0;}*x=S->data[S->top];S_>top__;return 1;}void conversion(int N){int e;Stack *S=(Stack*)malloc(sizeof(Stack));InitStack(S); while(N){Push(S,N%2);"}while(!Empty(S)){Pop(S, &e);printf("%d ",e);}}void main(){ int n;printf(" 请输入待转换的值n: \n");scanf ("%d",&n);conversion(n);1. 判断下列语句是否是命题,为什么?若是命题,判断是简单命题还是复合命题?(1) 离散数学是计算机专业的一门必修课。
离散数学第一章命题逻辑知识点总结
![离散数学第一章命题逻辑知识点总结](https://img.taocdn.com/s3/m/0fe78574f90f76c661371abc.png)
数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C)德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n) (2) A(p1, p2,…, p n) A* (p1,p2,…,p n) 定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i 表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)①(p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u)注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。
离散数学自考第一章(课后习题和答案)
![离散数学自考第一章(课后习题和答案)](https://img.taocdn.com/s3/m/e32c4c3967ec102de2bd8979.png)
每当P和Q的真值相同时,则(P↔Q)的真值 为“T”,否则(P↔Q)的真值为“F”。
(3)举例:
▪ 春天来了当且仅当燕子飞回来了。 ▪平面上二直线平行,当且仅当这二直线不相交。 ▪2+2=4当且仅当雪是白色的。 (两者没有关系,但是确实命题)
举例: (a)P:王华的成绩很好 Q:王华的品德很好。 则PΛQ:王华的成绩很好并且品德很好。 (b P:我们去种树 Q:房间里有一台电视机 则PΛQ:我们去种树与房间里有一台电视机。 (c) P:今天下大雨 Q:3+3=6 则PΛQ:今天下大雨和3+3=6
3.析取词(或运算) (1)符号“∨” 设P、Q为二个命题,则 (P∨Q)称作P与Q的“析取”,读作: “P或Q”。
(a)P:我拿起一本书 Q:我一口气读完了这本书 P→Q:如果我拿起一本书,则我一口气读完了这本书。 (b)P:月亮出来了 Q:3×3=9 P→Q:如果月亮出来了,则 3×3=9。(善意推定)
5.双条件联结词(“等价”词、“同”联结词、 “等同”词) (1)符号“↔”设P、Q为二个命题,则P↔ Q读作:“P当且仅当Q”,“P等价 Q”,“P是Q的充分必要条件”。 (2)定义(见真值表):
(4)P,Q中,P、Q的地位是平等的,P、Q 交换位置不会改变真值表中的值。
6.命题联结词在使用中的优先级 (1)先括号内,后括号外 (2)运算时联结词的优先次序为: ¬ Λ → ↔ (由高到低) (3)联结词按从左到右的次序进行运算
∨
¬P∨(Q∨R)可省去括号,因为“V”运算是可结合的。 ( ¬P∨Q)∨R可省去括号,因为符合上述规定 而P→(Q→R)中的括号不能省去,因为“→”不满足结合律。
精品文档-离散数学(方世昌)-第1章
![精品文档-离散数学(方世昌)-第1章](https://img.taocdn.com/s3/m/4f6cb23f81c758f5f71f678a.png)
第1章 数理逻辑
例 1.1 - 1 下述都是命题: (1) 今天下雪; (2) 3+3=6; (3) 2 是偶数而 3 是奇数; (4) 陈涉起义那天,杭州下雨; (5) 较大的偶数都可表为两个质数之和。
3
第1章 数理逻辑
以上命题中,(1)的真值取决于今天的天气; (2)和(3)是真; (4)已无法查明它的真值,但它是或真或假的, 故将它归属于 命题; (5)目前尚未确定其真假,但它是有真值的,应归属于 命题。
6
第1章 数理逻辑
从以上分析,我们得出他必须既非说谎也不是讲真话。 这 样,断言“我正在说谎”事实上不能指定它的真假,所以不是命 题。 这种断言叫悖论。
若一个命题已不能分解成更简单的命题,则这个命题叫原子 命题或本原命题。 例1.1 - 1中(1)、(2)、(4)、(5)都是本原命 题,但(3)不是,因为它可写成“2 是偶数”和“3 是奇数”两 个命题。
译为P∧Q,但“林芬和林芳是姐妹”就不能翻释成两个命题的合
取,它是一个原子命题。
34
第1章 数理逻辑
1.1.3 命题变元和命题公式 通常,如果P代表真值未指定的任意命题,我们就称P为命题
变元; 如果P代表一个真值已指定的命题,我们就称P为命题常元。 但由于在命题演算中并不关心具体命题的涵义,只关心其真假值, 因此,我们可以形式地定义它们。
以“真”、“假”为其变域的变元,称为命题变元; T和F称 为命题常元。
35
第1章 数理逻辑
习惯上把含有命题变元的断言称为命题公式。 但这样描述 过于表面,它没能指出命题公式的结构。 因为不是由命题变元、 联结词和一些括号组成的字符串都能成为命题公式,因此在计算 机科学中常用以下定义。
单个命题变元和命题常元叫原子公式。 由以下形成规则生 成的公式叫命题公式(简称公式):
离散数学.第1章
![离散数学.第1章](https://img.taocdn.com/s3/m/a3bb4c36580216fc700afd42.png)
例4
设P:我们去看电影。Q:房间里有十张桌子。则
P ∧ Q表示“我们去看电影并且房间里有十张桌子。”
10
3. 析取“∨”(相容或)[讲解教材P3-5关于或]
4. 定义1.3
由命题P和Q利用“∨”组成的复合命题,称 为析取式复合命题,记作“P∨Q”(读作“P或Q”)。 当且仅当P和Q至少有一个取值为真时,P∨Q取值为真。
练习1-1
1. 判断下列语句哪些是命题,若是命题,则指出其真值。
(1) (2) 只有小孩才爱哭。 X+6=Y ( 是 假 ) ( 不是 ) (是 真) ( 不是 )
(3)
银是白的。
(4) 起来吧,我的朋友。 2. 将下列命题符号化
(1) 我看见的既不是小张也不是老李。 解 令P:我看见的是小张;Q:我看见的是老李。 则该命题可表示为¬ P∧¬ Q (2) 如果晚上做完了作业并且没有其它的事,他就会 看电视或听音乐。 解 令 P:他晚上做完了作业;Q:他晚上有其它的事; R:他看电视; S:他听音乐。 则该命题可表示为(P∧¬ Q)→(R∨S)
28
1.3 等值演算
• 定义1.10 设A和B是两个命题公式, 若等价式A↔B 是重言式,则称公式A 和B等值,记为A B,称 AB为等 值式。
• 注意: (1)符号“”与“↔”的区别与联系 “”不是联结词,AB不表示一个公式, 它表示两个公式间的一种关系,即等值关系。 “↔”是联结词,A↔B是一个公式。 AB 当且仅当 A↔B 是永真公式。
1 0 1 0 1 0 1 0
0 0 1 1 1 1 1 1
0 0 0 1 0 0 0 1
1 1 0 1 0 0 0 1
离散数学(胡海涛)第1章答案
![离散数学(胡海涛)第1章答案](https://img.taocdn.com/s3/m/598ba66e02768e9951e738a1.png)
(2) ((P→Q)∨(R→S))→((P∨R)→(Q∨S))
P Q R S P→Q R→S (P→Q)∨(R→S) P∨R Q∨S (P∨R)→(Q∨S) 原公式
11 1 1 1
1
1
1
1
1
1
11 1 0 1
0
1
1
1
1
11Βιβλιοθήκη 0 1 1111
1
1
1
11 0 0 1
1
1
1
1
1
1
10 1 1 0
1
1
1
1
⇔P∧(┐P∨┐Q)⇔(P∧┐P)∨(P∧┐Q) ⇔F∨(P∧┐Q)⇔(P∧┐Q) ⇔┐(┐P∨Q)
(3)Q∨┐((┐P∨Q)∧P)⇔Q∨(┐(┐P∨Q)∨┐P)⇔ Q∨(P∧┐Q)∨┐P
⇔( Q∨┐P∨P ) ∧(Q∨┐P∨┐Q)⇔ T∨T⇔T
11. 试证明{∨},{→}不是全功能联结词集合。
证明:
若{∨}是最小联结词组,则 ┐P⇔( P∨...)
对所有命题变元指派 T,则等价式左边为 F,右边为 T,等价式矛盾。
若{→}是最小联结词组,则
┐P⇔ P→ ( P→( P→...)...)
对所有命题变元指派 T,则等价式左边为 F,右边为 T,等价式矛盾。
12. 证明下列蕴涵式:
(1)P∧Q⇒(P→Q)
(Q→┐R)⇔ ┐P→(Q→┐R) 15. 如果 A(P,Q,R)由 R↑(Q∧┐(R↓P))给出,求它的对偶 A*(P,Q,R),并求出与 A 及 A*
等价且仅包含联接词“∧”,“∨”及“┐”的公式。
解:
A*(P,Q,R):R↓ (Q∨┐(R↑P))
R↑(Q∧┐(R↓P))⇔┐(R∧(Q∧(R∨P)))⇔┐R∨┐Q∨(┐R∧┐P)
离散数学第二版罗熊课后答案
![离散数学第二版罗熊课后答案](https://img.taocdn.com/s3/m/212753e69fc3d5bbfd0a79563c1ec5da50e2d612.png)
离散数学第二版罗熊课后答案第1章绪论 1 .试述数据、数据库、数据库系统、数据库管理系统的概念。
答:( l )数据( Data ) :叙述事物的符号记录称作数据。
数据的种类存有数字、文字、图形、图像、声音、正文等。
数据与其语义就是不可分的。
解析在现代计算机系统中数据的概念就是广义的。
早期的计算机系统主要用作科学计算,处置的数据就是整数、实数、浮点数等传统数学中的数据。
现代计算机能够存储和处置的对象十分广为,则表示这些对象的数据也越来越繁杂。
数据与其语义就是不可分的。
500 这个数字可以表示一件物品的价格是 500 元,也可以表示一个学术会议参加的人数有 500 人,还可以表示一袋奶粉重 500 克。
( 2 )数据库( DataBase ,缩写 DB ) :数据库就是长期储存在计算机内的、存有非政府的、可以共享资源的数据子集。
数据库中的数据按一定的数据模型非政府、叙述和储存,具备较小的冗余度、较低的数据独立性和易扩展性,并可向各种用户共享资源。
( 3 )数据库系统( DataBas 。
Sytem ,缩写 DBS ) :数据库系统就是所指在计算机系统中导入数据库后的系统形成,通常由数据库、数据库管理系统(及其开发工具)、应用领域系统、数据库管理员形成。
解析数据库系统和数据库就是两个概念。
数据库系统就是一个人一机系统,数据库就是数据库系统的一个组成部分。
但是在日常工作中人们常常把数据库系统缩写为数据库。
期望读者能从人们讲话或文章的上下文中区分“数据库系统”和“数据库”,不要引发混为一谈。
( 4 )数据库管理系统( DataBase Management sytem ,简称 DBMs ) :数据库管理系统是位于用户与操作系统之间的一层数据管理软件,用于科学地组织和存储数据、高效地获取和维护数据。
DBMS 的主要功能包含数据定义功能、数据压低功能、数据库的运转管理功能、数据库的创建和保护功能。
解析 DBMS 就是一个大型的繁杂的软件系统,就是计算机中的基础软件。
离散数学第一章命题逻辑知识点总结
![离散数学第一章命题逻辑知识点总结](https://img.taocdn.com/s3/m/54a471865a8102d277a22f72.png)
数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C) 德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A 1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A 1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n)(2) A(p1, p2,…, p n) A* (p1,p2,…,p n)定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)① (p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u) 结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u) 注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。
离散数学课件 第一章
![离散数学课件 第一章](https://img.taocdn.com/s3/m/8bb3450f76c66137ee061945.png)
主讲教师 李红军 北京林业大学 理学院
BEIJING FOREST UNIVERSITY
教材及参考资料
教材:
1耿素云,屈婉玲,张立昂编著,离散数学,清华大学出版 社, 2008年3月(第4版) 2耿素云,屈婉玲编著.离散数学(修订版).高等教育出版社, 2004年
参考资料:
1 左孝凌编著,离散数学,上海科学技术出版社
1.1 命题与联结词 命题:能判断真假而不是可真可假的陈述句。 命题的真值:命题为真或者假的判断。 真命题:真值为真的命题。 假命题:真值为假的命题。 注:任何命题的真值都是惟一的;
用“1”表示真,用“0”表示假。
例 1.1 :判断下列句子哪些是命题.
(1)
3 是有理数。
(2) 2是素数。 (3) X+Y>10。
1 3
m z 1 r m 1
z m 1
1 2
1
3
比赛结束,三位观众各猜对了一半,并且没有并列名次.问:中 国、美国、日本的各排名第几? 设z1:中国第一;z2 :中国第三;r1:日本第一; m1:美国第一;m2:美国第二; m3:美国第三.
例1的参考答案 m1 z3 1 r1 m3 1 z1 m2 1
对偶原理
A和A*是互为对偶式,P1, P2 ,……Pn是出现在A和A*的原子变元,则 A(P1,…,Pn) A*( P1,…, Pn) A( P1,…, Pn) A*(P1,…,Pn)
即公式的否定等值于其变元否定的对偶式。 例:A为PQ,则A*为PQ, 则(PQ) PQ
真值表
将命题公式A在所有赋值下取值情况列成表
试考虑求公式A的真值表的步骤? 例1 求下列公式的真值表,并求出成真赋值和成假赋值. 1) p(¬ r∧q) 2) (p∨q)(¬ p q)
离散数学习题答案
![离散数学习题答案](https://img.taocdn.com/s3/m/653dc385856a561252d36f83.png)
P Q R QR PQR
00 0
0
1
00 1
1
1
01 0
1
1
01 1
1
1
(2)
10 0
0
0
10 1
1
1
11 0
1
1
11 1
1
1
P Q R Q R P (Q R)
0 00
1
1
0 01
1
1
0 10
0
0
0 11
1
1
1 00
1
1
1 01
1
1
1 10
0
1
1 11
1
1
(3)
P Q P P Q Q P Q (P Q) (P Q)
1.6 答案:
1(1) P P (2) (P Q) (P Q) (3) (P P) (Q Q) 2.(1) F (2) (P Q) (3) (P Q R)
1.7 答案:
1.(1) (P Q) F (2) (P Q) (P (Q R))
(3) (P T ) R (4) ((P Q) R) P
2(1) (P Q) R (2) P Q P Q 3.(1)析取范式 P Q ;合取范式 P (P Q)
(2)析取范式 (P Q R) (R P) (R Q) ; 合取范式 (P R) (Q R) (P Q R)
(3)析取范式 P∨(Q∧┐R) ;合取范式(P∨Q)∧(┐R∨P ) (4)析取范式(P┐Q)(Q┐P);合取范式(P∨Q)∧(┐P∨┐Q)
(5) C
T(3,4) I
(10) C C (矛盾) T(5,9)
8.证明 P Q , Q R , P S , S R (P Q) 。
离散数学课后习题答案(第一章)
![离散数学课后习题答案(第一章)](https://img.taocdn.com/s3/m/073a6b21bd64783e09122ba5.png)
1-1,1-2(1)指出下列哪些语句是命题,那些不是命题,如果是命题,指出它的真值。
a)离散数学是计算机科学系的一门必修课。
是命题,真值为T。
b)计算机有空吗?不是命题。
c)明天我去看电影。
是命题,真值要根据具体情况确定。
d)请勿随地吐痰。
不是命题。
e)不存在最大的质数。
是命题,真值为T。
f)如果我掌握了英语,法语,那么学习其他欧洲语言就容易多了。
是命题,真值为T。
g)9+5≤12.是命题,真值为F。
h)X=3.不是命题。
i)我们要努力学习。
不是命题。
(2)举例说明原子命题和复合命题。
原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。
(3)设P 表示命题“天下雪。
”Q 表示“我将去镇上。
”R 表示命题“我有时间。
”以符号形式写出下列命题a)如果天不下雪和我有时间,那么我将去镇上。
(┓P ∧R)→Q b)我将去镇上,仅当我有时间时。
Q→R c)天不下雪。
┓P d)天下雪,那么我不去镇上。
P→┓Q(4)用汉语写出一些句子,对应下列每一个命题。
a)()Q R P ∧¬�Q:我将去参加舞会。
R:我有时间。
P:天下雨。
Q ↔(R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。
b)R Q∧R:我在看电视。
Q:我在吃苹果。
R∧Q:我在看电视边吃苹果。
c)()()Q R R Q →∧→Q:一个数是奇数。
R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。
(5)将下列命题符号化。
a)王强身体很好,成绩也很好。
设P:王强身体很好。
Q:王强成绩很好。
P∧Qb)小李一边看书,一边听音乐。
设P:小李看书。
Q:小李听音乐。
P∧Qc)气候很好或很热。
设P:气候很好。
Q:气候很热。
P∨Qd)如果a 和b 是偶数,则a b +是偶数。
设P:a 和b 是偶数。
Q:a+b 是偶数。
P→Qe)四边形ABCD 是平行四边形,当且仅当它的对边平行。
离散数学黄亚群版课后答案
![离散数学黄亚群版课后答案](https://img.taocdn.com/s3/m/e135d34826d3240c844769eae009581b6bd9bd3f.png)
离散数学黄亚群版课后答案
一、第1章关系
1、1.1题:
答案:一个关系是一个二元数学对象的集合,它的两个元素分别称为关系的左边和右边,并用序偶对符号“(,)”表示。
一个关系R是一个集合,它由元素组成,每个元素是一个序偶,即(a,b),其中a 和b都是a关系R的左和右变量。
2、1.2题:
答案:关系的充要条件是:1)自反性:a)若(a,b)属于R,则(b,a)也属于R;b)若(a,a)属于R,则a自己和自己也互为关系。
2)可传递性:如果(a,b)和(b,c)均属于R,则必然有(a,c)也属于R。
3)对称性:若(a,b)属于R,则(b,a)也必然属于R。
二、第2章函数
1、2.1题:
答案:一个函数是一种特殊的关系,它有两个变量,一个变量是函数的自变量,另一个变量是函数的因变量,函数有分布统一和一一对应的性质,即:函数的自变量只能取唯一的值,而因变量可以取到任意值。
2、2.2题:
答案:函数的充要条件是:1)定义域:是给定的函数的自变量可取值的范围;2)值域:指函数的因变量可取值的范围;3)单调性:函
数的自变量可以只唯一的因变量值;4)可传递:函数的自变量和因变
量都有一般性,可以转换,两个或多个自变量可能对应同一个因变量;5)关系性:给定函数上任意自变量a所对应的因变量b,可以对任意
给定的自变量X,并且在函数关系R上找到唯一值X,从而实现反函数。
(完整版)哈工大《离散数学》教科书习题答案
![(完整版)哈工大《离散数学》教科书习题答案](https://img.taocdn.com/s3/m/2569ad94227916888586d73b.png)
教材习题解答第一章 集合及其运算8P 习题3. 写出方程2210x x ++=的根所构成的集合。
解:2210x x ++=的根为1x =-,故所求集合为{1}- 4.下列命题中哪些是真的,哪些为假a)对每个集A ,A φ∈;b)对每个集A ,A φ⊆; c)对每个集A ,{}A A ∈;d)对每个集A ,A A ∈; e)对每个集A ,A A ⊆;f)对每个集A ,{}A A ⊆; g)对每个集A ,2A A ∈;h)对每个集A ,2A A ⊆; i)对每个集A ,{}2A A ⊆;j)对每个集A ,{}2A A ∈; k)对每个集A ,2A φ∈;l)对每个集A ,2A φ⊆; m)对每个集A ,{}A A =;n){}φφ=;o){}φ中没有任何元素;p)若A B ⊆,则22A B ⊆q)对任何集A ,{|}A x x A =∈;r)对任何集A ,{|}{|}x x A y y A ∈=∈; s)对任何集A ,{|}y A y x x A ∈⇔∈∈;t)对任何集A ,{|}{|}x x A A A A ∈≠∈; 答案:假真真假真假真假真假真真假假假真真真真真 5.设有n 个集合12,,,n A A A 且121n A A A A ⊆⊆⊆⊆,试证: 12n A A A ===证明:由1241n A A A A A ⊆⊆⊆⊆⊆,可得12A A ⊆且21A A ⊆,故12A A =。
同理可得:134n A A A A ====因此123n A A A A ====6.设{,{}}S φφ=,试求2S ?解:2{,{},{{}},{,{}}}S φφφφφ=7.设S 恰有n 个元素,证明2S 有2n 个元素。
证明:(1)当n =0时,0,2{},212S S S φφ====,命题成立。
(2)假设当(0,)n k k k N =≥∈时命题成立,即22S k =(S k =时)。
那么对于1S ∀(11S k =+),12S 中的元素可分为两类,一类为不包含1S 中某一元素x 的集合,另一类为包含x 的集合。
离散数学课后习题答案
![离散数学课后习题答案](https://img.taocdn.com/s3/m/bfdb111ca2161479171128f6.png)
第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。
离散数学课后习题答案
![离散数学课后习题答案](https://img.taocdn.com/s3/m/2e8a3549852458fb770b5660.png)
第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,(4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是… … ”、“不仅……,而且… … ”、“一面……,一面… … ”、“……和… … ”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2 (1)p : 2是无理数,p 为真命题。
(2)p : 5能被2 整除,p 为假命题。
(6)p →q 。
其中,p : 2是素数,q:三角形有三条边。
由于p 与q 都是真命题,因而p →q 为假命题。
(7)p →q ,其中,p:雪是黑色的,q:太阳从东方升起。
由于p 为假命题,q 为真命题,因而p →q 为假命题。
(8)p : 2000年10 月1 日天气晴好,今日(1999 年2 月13 日)我们还不知道p 的真假,但p 的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
离散数学第二版邓辉文编著第一章第二节习题答案
![离散数学第二版邓辉文编著第一章第二节习题答案](https://img.taocdn.com/s3/m/3357b6c8f46527d3250ce07c.png)
离散数学第二版邓辉文编著第一章第二节习题答案1.2 映射的有关概念习题1.21. 分别计算⎡1. 5⎤,⎡-1⎤,⎡-1. 5⎤,⎣1. 5⎦,⎣-1⎦,⎣-1. 5⎦.解⎡1. 5⎤=2,⎡-1⎤=-1,⎡-1. 5⎤=-1,⎣1. 5⎦=1,⎣-1⎦=-1,⎣-1. 5⎦=-2.2. 下列映射中,那些是双射? 说明理由.(1)f :Z →Z , f (x ) =3x .(2)f :Z →N , f (x ) =|x |+1.(3)f :R →R , f (x ) =x 3+1.(4)f :N ⨯N →N , f (x 1, x 2) =x 1+x 2+1.(5)f :N →N⨯N , f (x ) =(x , x +1).解 (1)对于任意对x 1, x 2∈Z,若f (x 1) =f (x 2) ,则3x 1=3x 2,于是x 1=x 2,所以f 是单射. 由于对任意x ∈Z,f (x ) ≠2∈Z,因此f 不是满射,进而f 不是双射.(2)由于2, -2∈Z且f (2) =f (-2) =3,因此f 不是单射. 又由于0∈N,而任意x ∈Z均有f (x ) =|x |+1≠0,于是f 不是满射. 显然,f 不是双射.(3)对于任意对x 1, x 2∈R,若f (x 1) =f (x 2) ,则x 1+1=x 2+1,于是x 1=x 2,所以f 是单射. 对于任意y ∈R,取x =(y -1) ,这时1⎡⎤3f (x ) =x +1=⎢(y -1) 3⎥+1=(y -1) +1=y ,⎣⎦33313所以f 是满射. 进而f 是双射.(4)由于(1, 2), (2, 1) ∈N⨯N 且(1, 2) ≠(2, 1) ,而f (1, 2) =f (2, 1) =4,因此f 不是单射. 又由于0∈N,而任意(x 1, x 2) ∈N⨯N 均有f (x 1, x 2) =x 1+x2+1≠0,于是f 不是满射. 显然,f 就不是双射.(5)由于x 1, x 2∈N,若f (x 1) =f (x 2) ,则(x 1, x 1+1) =(x 2, x 2+1) ,于是x 1=x 2,因此f 是单射. 又由于(0, 0) ∈N⨯N ,而任意x ∈N均有f (x ) =(x , x +1) ≠(0, 0) ,于是f 不是满射. 因为f 不是满射,所以f 不是双射.3. 对于有限集合A 和B ,假定f :A →B且|A |=|B |,证明: f 是单射的充要条件是f 是满射. 对于无限集合,上述结论成立吗?举例说明.证(⇒) 因为f 是单射,所以|A |=|f (A ) |. 由于|A |=|B |,所以|f (A ) |=|B |. 又因为B 有限且f (A ) ⊆B ,故f (A ) =B ,即f 是满射.(⇐) 若f 是满射,则f (A ) =B . 由于|A |=|B |,于是|A |=|f (A ) |. 又因为A 和B 是有限集合,因此f 是单射.对于无限集合,上述结论不成立. 例如f :N →N,f (x ) =2x ,f 是单射,但f 不是满射.4. 设f :A →B , 试证明:(1)f I B =f .(2)I A f =f .特别地,若f :A →A,则f I A =I A f =f .证 (1)对于任意x ∈A,由于f (x ) ∈B,所以(f I B )(x ) =I B (f (x )) =f (x ) ,因此f I B =f .(2)对于任意x ∈A,由于I A (x ) =x ,所以(I A f )(x ) =f (I A (x )) =f (x ) ,于是有I A f =f .由(1)和(2)知,若f :A →A,则f I A =I A f =f .5. 试举出一个例子说明f f =f 成立,其中f :A →A且f ≠I A . 若f 的逆映射存在,满足条件的f 还存在吗?解令A ={a , b , c },f (a ) =f (b ) =f (c ) =a ,即对于任意x ∈A,f (x ) =a ,显然f :A →A且f ≠I A . 而对于任意x ∈A,有(f f )(x ) =f (f (x )) =f (a ) =a ,因此f f =f .若f f =f 且f 的逆映射f -1存在,由第3题知f f =f =f I A ,所以-1-1于是利用定理7有(f f ) f =(f f ) I A ,f -1 (f f ) =f -1 (f I A ) ,进而I A f =I A I A ,因此f =I A . 所以若f 的逆映射存在,满足条件的f 不存在.6. 设f :A →B , g :B →C . 若f 和g 是满射,则f g 是满射,试证明.证因为f 是满射,所以f (A ) =B . 又因为g 是满射,所以g (B ) =C . 于是(f g ) (A ) =g (f (A )) =g (B ) =C ,因此f g 是A 到C 的满射.另证对于任意z ∈C,因为g 是满射,于是存在y ∈B使得g (y ) =z . 又因为f 是满射,存在x ∈A使得f (x ) =y . 因此,(f g )(x ) =g (f (x )) =g (y ) =z ,所以f g 是A 到C 的满射.7. 设f :A →B , g :B →C . 试证明: 若f g 是单射,则f 是单射. 试举例说明,这时g 不一定是单射.证对于任意x 1, x 2∈A,假定f (x 1) =f (x 2) ,则显然g (f (x 1)) =g (f (x 2)) ,即(f g )(x 1) =(f g )(x 2) . 因为f g 是单射,所以x 1=x 2,于是f 是单射.例如A ={a , b },B ={1, 2, 3},C ={α,β,γ,δ},令f (a ) =1, f (b ) =2,g (1) =α, g (2) =β, g (3) =β,则显然有(f g )(a ) =g (f (a )) =g (1) =α, (f g )(b ) =g (f(b )) =g (2) =β,于是f g 是A 到C 的单射,但g 显然不是单射.8. 设f :A →B , 若存在g :B →A,使得f g =I A 且g f =I B ,试证明: f 是双射且f -1=g .证因为f g =I A ,而I A 是单射,所以f 是单射. 又因为g f =I B ,而I B 是满射,所以f 是满射. 因此f 是双射.由于f 是双射,所以f而(f -1-1存在. 因为f g =I A ,于是f -1 (f g ) =f -1 I A . f ) g =f -1 I A 且I B g =f -1,所以有f -1=g .9. 设f :A →B , g :B →C . 若f 和g 是双射,则f g 是双射且(f g ) -1=g -1 f -1.-1-1证根据定理4(1)(2)知,f g 是双射. 下证(f g ) =g f -1. 因为(f g ) (g -1 f -1) =f (g g -1) f -1=f I B f -1=f f -1=I A , (g -1 f -1) (f g ) =g -1 (f -1 f ) g =g -1 I B g =g -1 g =I C ,在上面的推导中多次利用了定理7. 由第7题知,(f g ) -1=g -1 f10. 设G 是集合A 到A 的所有双射组成的集合,证明(1)任意f , g ∈G,有f g ∈G .(2)对于任意f , g , h ∈G,有(f g ) h =f (g h ).(3)I A ∈G且对于任意f ∈G,有I A f =f I A =f .(4)对于任意f ∈G,有f -1-1. ∈G且f f -1=f -1 f =I A .证 (1)由定理5.(2)由定理7.(3)由第3题.(4)由定理4.11. 若A = {a , b , c }, B = {1, 2}, 问A 到B 的满射、单射、双射各有多少个? 试推广你的结论.解将A 中的3个元素对应到B 中的2个元素,相当于将3个元素分成2部分,共有3种分法; 在计算A 到B 的满射个数时还需要将B 中元素进行排列,共有2种排列方式,于是A 到B 的满射共有3⨯2=6个(请自己分别写出A 到B 的6个满射).由于|A |=3, |B |=2,所以A 到B 的单射没有,进而A 到B 的双射也没有. 假设|A |=m , |B |=n .(1) A到B 的满射若m(2) A到B 的单射若m >n ,不存在单射;若m ≤n,由于B 中任意选取m 个m 元素,再将其进行全排列都得到A 到B 的单射,故A 到B 的单射共有C n ⋅m ! 个.(3)A 到B 的双射若m ≠n,不存在双射;若m =n ,此时B 中元素的任意一个排列均可得到一个A 到B 的双射,因此A 到B 的双射共有m ! 个.12. 设A , B , C , D 是任意集合,f 是A 到B 的双射, g 是C 到D 的双射,令h :A ⨯C →B⨯D ,对任意(a , c ) ∈A⨯C , h (a , c ) =(f (a ), g (c )). 证明:h 是双射.证对于任意(a 1, c 1) ∈A⨯C ,(a 2, c 2) ∈A⨯C ,假定h (a 1, c 1) =h (a 2, c 2) ,即(f (a 1), g (c 1)) =(f (a 2), g (c 2)) ,于是f (a 1) =f (a 2) 且g (c 1) =g (c 2) ,根据已知条件有a 1=a 2且c 1=c 2,进而(a 1, c 1) =(a 2, c 2) ,因此h 是单射.任意(b , d ) ∈B⨯D ,则b ∈B , d ∈D,由于f 是A 到B 的双射且g 是C 到D 的双射,于是存在a ∈A , c ∈C使得f (a ) =b , g (c ) =d ,因此h (a , c ) =(f (a ), g (c )) =(b , d ) ,所以h 是满射.故h 是双射.13. 设f :A →B , g :B →C , h :C →A,若f g h =I A ,g h f =I B ,h f g =I C ,则f , g , h 均可逆,并求出f -1, g -1, h -1.证因为恒等映射是双射,多次使用定理6即可得结论.由于f g h =I A ,所以f 是单射且h 是满射. 由于g h f =I B ,所以g 是单射且f 是满射. 由于h f g =I C ,所以h 是单射且g 是满射. 于是f , g , h 是双射,因此f , g , h 均可逆.由于f g h =I A ,所以f -1=g h 且h -1=f g ,进而g -1=h f .14. 已知Ackermann 函数A :N ⨯N →N的定义为(1)A (0, n ) =n +1, n ≥0;(2)A (m , 0) =A (m -1, 1), m >0;(3)A (m , n ) =A (m -1, A (m , n -1)), m >0, n >0.分别计算A (2, 3) 和A (3, 2) .解由已知条件有A (0, 1) =2,A (1, 0) =A (0, 1) =2,于是A (1, 1) =A (0, A (1, 0)) =A (0, 2) =2+1=3,A (1, 2) =A (0, A (1, 1)) =A (0, 3) =3+1=4,由此可进一步得出A (1, n ) =n +2,A (2, 0) =A (1, 1) =3,A (2, 1) =A (1, A (2, 0)) =A (1, 3) =3+2=5,A (2, 2) =A (1, A (2, 1)) =A (1, 5) =5+2=7, A (2, 3) =A (1, A (2, 2)) =A (1, 7) =7+2=9. 因此有A (2, n ) =2n +3,A (3, 0) =A (2, 1) =2⋅1+3=5,A (3, 1) =A (2, A (3, 0)) =A (2, 5) =2⋅5+3=13, A (3, 2) =A (2, A (2, 2)) =A (2,13) =2⋅13+3=29. 所以有A (2, 3) =9, A (3, 2) =29.。
离散数学(屈婉玲)答案-1-5章
![离散数学(屈婉玲)答案-1-5章](https://img.taocdn.com/s3/m/b4747ff3ff00bed5b8f31d9d.png)
离散数学(屈婉玲)答案-1-5章第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式//最后一列全为1(5)公式类型为可满足式(方法如上例)//最后一列至少有一个1(6)公式类型为永真式(方法如上例)//第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,在(b)中为真命xF题。
离散数学第五版第一章(耿素云、屈婉玲、张立昂编著)
![离散数学第五版第一章(耿素云、屈婉玲、张立昂编著)](https://img.taocdn.com/s3/m/00088ddc26fff705cc170a32.png)
3) 我们只关心复合命题中命题之间的真值关系,而不关心命题 的内容。
22
命题与联结词
例 8 将下列命题符号化
① 设P表示“他有理论知识”, Q表示“他有实践经验”, 则“他 既有理论知识又有实践经验”可译为: 。
6
命题与联结词
一、命题 定义:能判断真假的陈述句,被称为命题。
说明:1) 命题的真值:作为命题所表达的判断只有两个结果:正确和
错误,此结果称为命题的真值。 命题是正确的,称此命题的真值为真;命题是错误的,称此 命题的真值为假。 真值为真的命题称为真命题 ;真值为假的命题称为假命题。 任何命题的真值都是唯一的。
1 0 1
1 1 0 1 1 1
0
0 1
0
0 1
1
1 1
29
等值式
二、16组重要的等值式 1. 双重否定 A A
2. 3. 4. 等幂律 交换率 结合律 (AB)C A(BC) (AB)C A(BC) 5. 分配律 (AB)C (AC)(BC) (AB)C (AC)(BC) A A A A A A AB B A AB B A
(pq)
0
0
(pq)(pq)
0
0
1 0
1 1
0
1
1
0
1
1
28
等值式
((pq)(pr))(p(qr))
p q r 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 ((pq)(pr)) 1 1 1 1 0 (p(qr)) 1 1 1 1 0 ((pq)(pr))(p(qr)) 1 1 1 1 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
1
1
1
0
1
0
1
1
0
0
0
连接词“∨” 表示自然语言中“或”、“或者”等逻辑抽象。
在自然语言中的“或”是多义的,可表示“排斥或”,也可表 示“可兼或”。析取连接词表示的是“可兼或”。
3. 析取
“排斥或”也是一种连接词,用P Q 表示。连 接词的真值如表1.1.4所示。
补充: 1.今天晚上我在家看电视或去剧场看戏 2.他可能是100米或400米赛跑的冠军 3.他昨天做了二十或三十道题
有的数学成果和方法,尤其是形式化的 公理方法,对具体事物进行抽象的形式 化研究。 数理逻辑的优点:表达简洁、推理方便、 概括性好、易于分析。
离散数学
第一章 命题逻辑
第一章 命题逻辑
1.1 命题与连接词 1.2 命题公式及命题公式的翻译 1.3 等价公式及公式的分类 1.4 蕴含式与对偶式 1.5 其他连接词与最小连接词组 1.6 范式 1.7 公式的主范式 1.8 推理理论
4. 条件
定义1.1.5 设P 和Q是两个命题,由连接词→将P、Q 联接成复合命
题,记作P →Q ,读作“如果P,那么Q ”,或“若P 则Q ”。在P →Q 中, P 称为前件,Q 称为后件。
当且仅当P 的真值为T,Q 的真值为F 时, P →Q 的真值为F,否则 P →Q 的真值为T。连接词→的真值如表1.1.5所示。
1
1
1
0
0
0
1
0
0
0
0
连接词“∧” 表示自然语言中“而且”、“并且”、“既…, 又…”等的逻辑抽象。
例:将下列命题符号化 1.猫吃鱼且2+2=4 2.张三虽聪明但不用功 3.今天下雨又刮风
解1:设P:猫吃鱼 Q:2+2=4
2: 设P:张三聪明 Q:张三用功
3: 设P:今天下雨 Q:今天刮风
P∧Q P ∧¬Q P∧Q
3. 析取
定义1.1.4 设P 和Q是两个命题,由连接词∨将P、Q 联接成复 合命题,记作P∨Q ,读作“P 和Q的析取 ”,或“P 析取Q ”。
当且仅当P、Q同时为F 时, P∨Q为F。在其它情况下,P∨Q 的真值为T。连接词∨的真值如表1.1.3所示。
表 1.1.3 连接词“∨”的真值表
P
Q
P ∨Q
1.1.1 命题的概念
例1.1.1 判断下列各语句是否为命题。 (1). 神州七号的成功发射是中国航天业的又一个壮
举。 (2). 地震是地球各大板块相互挤压造成的。 (3). 北京举办了2008年奥林匹克运动会。 (4). 游客止步! (5). 明天是否要下雨? (6). 校园的景色真美! (7). 如果功课不多,那么放学后我去打篮球。 (8). 我选修数学专业,或者我选修英语专业。 (9). x+y>5。
一个原子命题通常用大写字母或带下标的大写字母表示,如 P一,个Q命,题…标或识Pi符,如Q果i ,表…示。确表定示的原命子题命,题称的为符命号题称常为量命。题如标果识命符题。 标识符只表示命题的位置标志,称为命题变元。命题变元不能确 定真值,只有当命题变元用一个特定命题取代时,命题变元才有 真值。
例如:用P和Q分别表示原子命题“我是中国人”和“我为中 国的进步感到骄傲”,那么复合命题“我是中国人而且我为中国 的进步感到骄傲”,则可表示为“P而且Q”。自然语言中“而且” 这样的连接词是可用逻辑符号表示的。
1. 否定
定义1.1.2 设P是一个命题,P的否定是一个新的命题,记作 ¬P,读作“非P ”。连接词“¬”表示命题的否定。
若P为T,则¬P为F;若P为F,则¬P为T。命题P与其否定¬P
的关系如表1.1.1所示。
表 1.1.1 连接词“¬”的真值表
P ¬P
1
0
0
1
连接词“¬” 表示自然语言中“非”、“不”、“没有”的逻 辑抽象。
1.1 命题与连接词
1.1.1 命题的概念 1.1.2 逻辑连接词
1.1.2 逻辑连接词
自然语言中,常使用“或”、“与”、“如果…,那么…”等 一些连接词。连接词是复合命题的重要组成部分,为了便于书写 和推理,必须对连接词作出明确规定和符号化。
下面介绍常用的五种连接词: 1. 否定 2. 合取 3. 析取 4. 条件 5. 双条件
表 1.1.5 连接词“→”的真值表
P Q P →Q
11
1
10
0
01
1
00
1
4. 条件
在自然语言中,“如果…,则…”常常表示一 种因果关系,否则无意义。但对数理逻辑中的 条件命题P→Q来说,只要P、Q能够分别确定 真值, P→Q即成为命题。
在自然语言中,“如果…”为假时,则往往无 法判断“如果…,则…”的真假。但在数理逻 辑的条件命题中,该情况规定为“善意的推 定”,即当前提为F时,结论不论真假,条件 命题的真值都为T。
1.1.1 命题的概念
有两点需要注意: ■ 命题是可分辨真假的陈述句,但 不一定必须知道它的真假。 ■ 悖论的陈述句不是命题,因为悖 论往往产生自相矛盾的结论。
1.1.1 命题的概念
命题分为原子命题和复合命题两种类型。复合命题是由原子 命题和连接词复合而成。判断一个命题是否为复合命题,其关键 是连接词是否出现。若出现,则是复合命题;若不出现,则是原 子命题。
2. 合取
定义1.1.3 设P和Q是两个命题,由连接词∧将P、Q联接成复合 命题,记作P∧Q ,读作“P和Q的合取 ”,或“P合取Q ”。
当且仅当P、Q同时为T 时, P∧Q为T。在其它情况下,P∧Q的 真值为F。连接词∧的真值如表1.1.2所示。
表 1.1.2 连接词“∧”的真值表
P
Q P∧Q
1
1.1 命题与连接词
1.1.1 命题的概念 1.1.2 逻辑连接词
ቤተ መጻሕፍቲ ባይዱ
1.1.1 命题的概念
定义1.1.1 命题是具有真假意义的陈述句。
命题总是具有一个“值”,称为真值。真 值只有“真”和“假”两种,“真”用符号T或 1表示,“假”用符号F或0表示。
只有能够确定或能够分辨其真假的陈述句 才能称为命题。一切没有判断内容的句子、无 所谓是非的句子,如感叹句、疑问句、祈使句 等不是命题。
离散数学
离散数学
第一篇 数理逻辑
数理逻辑
逻辑学是一门研究人的思维形式和规律 的学科。
逻辑学可分为形式逻辑、辩证逻辑和数 理逻辑三大类。
数理逻辑是数学的一个分支,它用数学 的方法研究推理的过程。推理是从一种 判断推出另一种判断的思维过程。
数理逻辑
数学方法: 采用一套符号、公式表示体系,使用已