小世界网络
小世界网络和无标度网络
⼩世界⽹络和⽆标度⽹络锚点的重要性线性⽹络中锚点的识别可以有许多⽤途,例如在具有线性拓扑的社区宽带⽹络中,其中⼀个锚点可以作为因特⽹的⽹关,进⽽优化社区⽹络中的整体传输时间。
⽤于军事或者应急响应场景中时,可以通过将其中⼀个锚点作为中⼼节点来添加⼀些LL,从⽽能够创建具有⼩APL值的⽹络拓扑。
锚点的识别也有利于车间通信。
对于⼀个给定的图,最⼩化APL等价于最⼩化图的总路径长度。
锚点的固定⽐例位置始终为0.2N或者0.8N.基于启发式⽅法的确定性链路添加两种确定性链路添加策略,即最⼤CC差异(MaxCCD),和顺序确定性LL添加。
两个节点之间的接近中⼼性差异CCD定义为两个节点的CC值之间的差。
MaxCCD策略在具有最⼤CCD的节点对之间添加LL。
APL表⽰在整个⽹络上节点对之间的路径长度平均值。
AEL刻画了⽹络上平均每条链路的长度。
节点的BC值表⽰其在⽹络中的重要性。
节点的CC值刻画了该节点与其他节点的接近程度。
平均⽹络时延:(Average Network Delay,ANeD)度量了⼀组数据从源节点传播到⽬的节点所需的平均时间。
ANeD等于传播时延和传输时延之和。
顺序确定性L添加是另⼀种基于启发式的确定LL添加⽅法,它将正则线性⽹络转化为由k条LL构成的⼩世界⽹络。
基于⼩世界特征的平均流容量增强启发式算法ACES布雷斯悖论⼩世界⽹络中的路由路由可以被定义为将⽹络中的特定信息从源节点转发到⽬的节点的过程。
分布式路由算法⾃适应分布式路由算法前瞻式路由算法⼩世界⽹络中的容量⽹络容量定义为可以在单位时间内从⽹络的⼀部分传输到另⼀部分的信息量。
增加⽹络容量是提⾼底层⽹络整体性能的关键挑战之⼀。
可以通过两种变换⽅式将正则⽹络转为⼩世界⽹络:重连现有链路NL;添加新链路LL第五章⽆标度⽹络⾃然界中⼴泛存在的⽆标度⽹络遵循幂律度分布。
多种创建⽆标度⽹络的⽅法:通过偏好连接;通过基于适应度的模型;通过改变内在适应度;通过相似性和流⾏度的局部优化;使⽤度指数1;通过贪⼼的全局优化。
小世界网络(SWN)及其在经济管理领域的应用
小世界网络(SWN)及其在经济管理领域的应用
小世界网络(SWN)及其在经济管理领域的应用
小世界网络(SWN)理论由物理、数学、行为科学和计算机科学等多学科交叉生成,用以说明世界上几乎任何两个人都可以通过中间人用较少的连接联系起来,其典型连接数为6-本文称之为"六度分离".SWN 理论一经使用,势必为经济管理领域带来全新思路,提供一种有效的技术工具,展现出广泛的适用性和广阔的发展前景.本文介绍有关SWN的由来、原理及其在经济管理领域的应用.
作者:田颖杰李南江可申作者单位:南京航空航天大学刊名:世界经济研究 PKU CSSCI英文刊名:WORLD ECONOMY STUDY 年,卷(期):2001 ""(6) 分类号:关键词:网络结构小世界网络随机网络特征路径长度集团化。
课题:WS小世界网络模型构造
课题:WS小世界网络模型构造姓名赵训学号 2班级计算机实验班一、WS 小世界网络简介1998年, Watts和Strogatz 提出了小世界网络这一概念,并建立了WS模型。
实证结果表明,大多数的真实网络都具有小世界特性(较小的最短路径) 和聚类特性(较大的聚类系数) 。
传统的规则最近邻耦合网络具有高聚类的特性,但并不具有小世界特性;而ER 随机网络具有小世界特性但却没有高聚类特性。
因此这两种传统的网络模型都不能很好的来表示实际的真实网络。
Watts 和Strogatz建立的WS小世界网络模型就介于这两种网络之间,同时具有小世界特性和聚类特性,可以很好的来表示真实网络。
二、WS小世界模型构造算法1、从规则图开始:考虑一个含有N个点的最近邻耦合网络,它们围成一个环,其中每个节点都与它左右相邻的各K/2节点相连,K是偶数。
2、随机化重连:以概率p随机地从新连接网络中的每个边,即将边的一个端点保持不变,而另一个端点取为网络中随机选择的一个节点。
其中规定,任意两个不同的节点之间至多只能有一条边,并且每一个节点都不能有边与自身相连。
在上述模型中,p=0对应于完全规则网络,p=1则对应于完全随机网络,通过调节p的值就可以控制从完全规则网络到完全随机网络的过渡,如图a所示。
图a相应程序代码(使用Matlab实现)ws_net.m (位于“代码”文件夹内)function ws_net()disp('WS小世界网络模型')N=input('请输入网络节点数');K=input('请输入与节点左右相邻的K/2的节点数');p=input('请输入随机重连的概率');angle=0:2*pi/N:2*pi-2*pi/N;x=100*cos(angle);y=100*sin(angle);plot(x,y,'r.','Markersize',30);hold on;%生成最近邻耦合网络;A=zeros(N);for i=1:Nif i+K<=Nfor j=i+1:i+KA(i,j)=1;endelsefor j=i+1:NA(i,j)=1;endfor j=1:((i+K)-N)A(i,j)=1;endendif K<ifor j=i-K:i-1A(i,j)=1;endelsefor j=1:i-1A(i,j)=1;endfor j=N-K+i:NA(i,j)=1;endendenddisp(A);%随机化重连for i=1:Nfor j=i+1:Nif A(i,j)==1pp=unifrnd(0,1);if pp<=pA(i,j)=0;A(j,i)=0;b=unidrnd(N);while i==bb=unidrnd(N); endA(i,b)=1;A(b,i)=1;endendend%根据邻接矩阵连线for i=1:Nfor j=1:Nif A(i,j)==1plot([x(i),x(j)],[y(i),y(j)],'linewidth',1); hold on;endendendhold offaver_path=aver_pathlength(A);disp(aver_path);对应输出(取网络节点数N=16,K=2;p分别取0,0.1,1)。
浅谈小世界网络
浅谈小世界网络20世纪末,很多科学家发现研究过的自然、社会和技术网络中,大都具有这些特征:高度的集群性、不均衡的度分布以及中心节点结构。
这些特征的出现不是偶然的,为什么现实世界中的网络会具有这些特征呢?这是网络科学的主要问题,目前基本上已经通过建立网络的发展模型解决了。
其中有两类模型被深入地进行了研究,分别是小世界网络和无尺度网络,这里结合原始论文谈谈对小世界网络的认识。
1998年,邓肯·瓦特和斯托加茨在《自然》杂志上发表了关于小世界网络模型的论文Collectivedynamics of‘small-world’ n etworks,首次提出并从数学上定义了小世界概念,并预言它会在社会、自然、科学技术等领域具有重要的研究价值。
所谓小世界网络,就是相对于同等规模节点的随机网络,具有较短的平均路径长度和较大的聚类系数特征的网络模型。
以前,人们认为网络分为完全规则网和完全随机网,这两类网络具有各自的特征。
规则网具有较大的特征路径长度,聚类系数也较大,而随机网络具有较小的特征路径长度,但是聚类系数较小。
难道特征路径长度较大(小)一定伴随着较大(小)的聚类系数?另外,很多现实中的网络如电网,交通网络,脑神经网络,社交网络,食物链等都表现出小世界特性,即具有较小的特征路径长度。
Watt采用一种随机重连边的方法,以探求位于规则网和随机网的中间地带。
如图:规则网有N个节点,每个节点与K个最近邻节点相连(K是偶数)。
上图的规则网有20个节点,每个节点与相邻的4个节点互联。
然后,对每条边进行以概率P进行随机重连(0<=P<=1)。
P=0时对应规则网,P=1时对应完全随机网,通过调整P的值可以得到位于两种网络中间的网络模型,然后探究其特征。
通过实验并统计网络呈现出的特征,得到下图(归一化处理后)。
可见,在P较小时(P<0.01),特征路径长度急剧下降,而聚类系数几乎没有变化。
这样,我们发现这些网络具有较短的特征路径长度和较大的聚类系数,我们称其为“小世界网络”。
小世界网络
在 NW 模型中由于基础的规则网络的连接始终没有变化,是一种有序的连接关系,而随机连接构成的随机网络,构成一种无序的连接关系。它们的合理叠加描述了客观世界具有的这种有序和无序的混杂特征。而且由于 NW 模型中没有键断开,很好的解决了WS 模型中出现孤立点的问题。
本文为了使人们更好地了解小世界网络模型,在简单介绍小世界网络的研究背景的前提下对小世界网络结构理论由规则网络,随机网络逐步发展到小世界网络的过程做了简要的阐述。本文还介绍了小世界网络的平均路径长度,群集系数和度的分布,并且对于小世界网络在Internet,舆论方面的应用做了一些初步的介绍。
关键词:复杂网络 小世界网络 流言传播 Internet小世界网络
Abstract
In recent years, the academic research on complex networks is ascendant. In particular, two international pioneeringresearchestriggeranupsurge of considerableworkon complex networks.In1998,Wattsand Strogatzpublishedtheir original articlein the journalnamedNATURE. The small world network modelwasintroducedin this article.
1.2.1 规则网络
规则模型就像一个规则可循的晶格点阵,模型中各点的连接相同。最简单的规则模型是完全有序的一维点阵。如果将一维点阵中各个点的 K 个邻居连接起来,很明显各个点的邻居又互为邻居体现集团化特征,对点阵采用循环边界条件则会形成环(如图2)。
小世界效应
大量的实证研究表明,许多真实网络都具有小世界效应,有的甚至具有所谓的超小世界效应,小世界网络模型正是模拟了真实网络的这一特点。
1998年Watts和Strogatz提出了一种小世界网络模型(WS)的构造方法:对规则网络中每一个节点的所有连边,以一定的概率P断开一个端点,然后重新连接到其他任意一节点上,如图2.1。
当重连概率P=0时,网络是一个规则网络;P=1时形成的网络为完全随机网络;当0<P<1时,形成的网络为小世界网络。
小世界网络是介于完全规则网络和完全随机网络之间的网络,既具有与规则网络类似的类聚特性,又具有与随机网络类似的较小的平均路径长度,即同时具有大的簇团系数和小的平均最短距离。
对WSd"世界网络统计特性模拟研究的结果如图2.3所示,当P=0等于零时,即对于规则网络来说,簇团系数C(P)和最短距离,(p)都较大,当P=l时,即对于随机网络来说,系统的簇团系数和最短距离都较小,而存在一个很大的P的区域,系统同时具有大的簇团系数和较小的最短距离,此即是世界效应。
WS小世界网络的构造,P=0时,是一规则网络,P=1时是完全随机网络,0<P<1时,是一小世界网络,同时具有固定连边和长程随机连边。
随着对网络研究的深入,人们发现真实网络在许多性质上与随机网络仍然有比较大的差别。
在现实世界中很多网络并不能抽象成为规则网络,也不能抽象成为随机网络,而是一种介于规则网络和随机网络之间的一种网络。
这些网络存在我们称之为“小世界效应”的特性。
对于“小世界效应’’的研究可以追溯到1967年。
在那一年,著名的心理学家Mil掣锄在HaⅣard大学做过一个简单的实验。
这个实验的过程可以进行如下简述:Mil孕锄随机的将一些信件分发给内布拉斯加少}I(Nebraska)的一些实验参与者,这些信件的送往的目的地是马萨诸塞州(Massachusetts)的首府波士顿(Boston)(之所以这么选择,是因为Mil留am认为这两个地方相距甚远)。
小世界复杂网络模型研究
小世界复杂网络模型研究摘要:复杂网络在工程技术、社会、政治、医药、经济、管理领域都有着潜在、广泛的应用。
通过高级计算机网络课程学习,本文介绍了复杂网络研究历史应用,理论描述方法及阐述对几种网络模型的理解。
1复杂网络的发展及研究意义1.1复杂网络的发展历程现实世界中的许多系统都可以用复杂网络来描述,如社会网络中的科研合作网、信息网络中的万维网、电力网、航空网,生物网络中的代谢网与蛋白质网络。
由于现实世界网络的规模大,节点间相互作用复杂,其拓扑结构基本上未知或未曾探索。
两百多年来,人们对描述真实系统拓扑结构的研究经历了三个阶段。
在最初的一百多年里,科学家们认为真实系统要素之间的关系可以用一些规则的结构表示,例如二维平面上的欧几里德格网;从20世纪50年代末到90年代末,无明确设计原则的大规模网络主要用简单而易于被多数人接受的随机网络来描述,随机图的思想主宰复杂网络研究达四十年之久;直到最近几年,科学家们发现大量的真实网络既不是规则网络,也不是随机网络,而是具有与前两者皆不同的统计特性的网络,其中最有影响的是小世界网络和无尺度网络。
这两种网络的发现,掀起了复杂网络的研究热潮。
2复杂网络的基本概念2.1网络的定义自随机图理论提出至今,在复杂网络领域提出了许多概念和术语。
网络(Network)在数学上以图(Graph)来表示,图的研究最早起源于18世纪瑞士著名数学家Euler的哥尼斯堡七桥问题。
复杂网络可以用图论的语言和符号精确简洁地加以描述。
图论不仅为数学家和物理学家提供了描述网络的语言和研究的平台,而且其结论和技巧已经被广泛地移植到复杂网络的研究中。
网络的节点和边组成的集合。
节点为系统元素,边为元素间的互相作用(关系)。
若用图的方式表示网络,则可以将一个具体网络可抽象为一个由点集V和边集E 组成的图G=(V,E )。
节点数记为N=|V|,边数记为M=|E|.E 中每条边都有V 中一对点与之相对应。
如果任意点对(i,j )与(j,i )对应同一条边,则该网络成为无向网络(undirected network ),否则称为无权网络(unweighted netwo rk )。
小世界网络
4.2 小世界网络4.2.1 小世界网络简介1998年, Watts和Strogatz 提出了小世界网络这一概念,并建立了WS模型。
实证结果表明,大多数的真实网络都具有小世界特性(较小的最短路径)和聚类特性(较大的聚类系数)。
传统的规则最近邻耦合网络具有高聚类的特性,但并不具有小世界特性;而随机网络具有小世界特性但却没有高聚类特性。
因此这两种传统的网络模型都不能很好的来表示实际的真实网络。
Watts和Strogatz建立的小世界网络模型就介于这两种网络之间,同时具有小世界特性和聚类特性,可以很好的来表示真实网络。
4.2.2 小世界模型构造算法1、从规则图开始:考虑一个含有N个点的最近邻耦合网络,它们围成一个环,其中每个节点都与它左右相邻的各K/2节点相连,K是偶数。
2、随机化重连:以概率p随机地从新连接网络中的每个边,即将边的一个端点保持不变,而另一个端点取为网络中随机选择的一个节点。
其中规定,任意两个不同的节点之间至多只能有一条边,并且每一个节点都不能有边与自身相连。
在上述模型中,p=0对应于完全规则网络,p=1则对应于完全随机网络,通过调节p的值就可以控制从完全规则网络到完全随机网络的过渡。
相应程序代码(使用Matlab实现)ws_net.m (位于“代码”文件夹内)function ws_net()disp('小世界网络模型')N=input('请输入网络节点数');K=input('请输入与节点左右相邻的K/2的节点数');p=input('请输入随机重连的概率');angl e=0:2*pi/N:2*pi-2*pi/N;x=100*cos(angl e);y=100*sin(angl e);pl ot(x,y,'r.','Markersize',30);hol d on;%生成最近邻耦合网络;A=zeros(N);disp(A);for i=1:Nif i+K<=Nfor j=i+1:i+KA(i,j)=1;endelsefor j=i+1:NA(i,j)=1; endfor j=1:((i+K)-N) A(i,j)=1; endendif K<ifor j=i-K:i-1 A(i,j)=1;endelsefor j=1:i-1A(i,j)=1; endfor j=N-K+i:N A(i,j)=1; endendenddisp(A);%随机化重连for i=1:Nfor j=i+1:Nif A(i,j)==1pp=unifrnd(0,1); if pp<=pA(i,j)=0; A(j,i)=0;b=unidrnd(N); whil e i==bb=unidrnd(N); endA(i,b)=1; A(b,i)=1; endendendend%根据邻接矩阵连线for i=1:Nfor j=1:Nif A(i,j)==1pl ot([x(i),x(j)],[y(i),y(j)],'linewidth',1); hol d on;endendendhol d offaver_path=aver_pathl ength(A);disp(aver_path);4.2.3小世界网络模型平均路径长度与聚类系数对于纯粹的规则网络,当其中连接数量接近饱和时,集聚系数很高,平均路径长度也十分短。
常州指尖小世界网络科技有限公司介绍企业发展分析报告模板
Enterprise Development专业品质权威Analysis Report企业发展分析报告常州指尖小世界网络科技有限公司免责声明:本报告通过对该企业公开数据进行分析生成,并不完全代表我方对该企业的意见,如有错误请及时联系;本报告出于对企业发展研究目的产生,仅供参考,在任何情况下,使用本报告所引起的一切后果,我方不承担任何责任:本报告不得用于一切商业用途,如需引用或合作,请与我方联系:常州指尖小世界网络科技有限公司1企业发展分析结果1.1 企业发展指数得分企业发展指数得分常州指尖小世界网络科技有限公司综合得分说明:企业发展指数根据企业规模、企业创新、企业风险、企业活力四个维度对企业发展情况进行评价。
该企业的综合评价得分需要您得到该公司授权后,我们将协助您分析给出。
1.2 企业画像类别内容行业空资质空产品服务的设计、制作;计算机网络技术开发、技术服务1.3 发展历程2工商2.1工商信息2.2工商变更2.3股东结构2.4主要人员2.5分支机构2.6对外投资2.7企业年报2.8股权出质2.9动产抵押2.10司法协助2.11清算2.12注销3投融资3.1融资历史3.2投资事件3.3核心团队3.4企业业务4企业信用4.1企业信用4.2行政许可-工商局4.3行政处罚-信用中国4.4行政处罚-工商局4.5税务评级4.6税务处罚4.7经营异常4.8经营异常-工商局4.9采购不良行为4.10产品抽查4.11产品抽查-工商局4.12欠税公告4.13环保处罚4.14被执行人5司法文书5.1法律诉讼(当事人)5.2法律诉讼(相关人)5.3开庭公告5.4被执行人5.5法院公告5.6破产暂无破产数据6企业资质6.1资质许可6.2人员资质6.3产品许可6.4特殊许可7知识产权7.1商标7.2专利7.3软件著作权7.4作品著作权7.5网站备案7.6应用APP7.7微信公众号8招标中标8.1政府招标8.2政府中标8.3央企招标8.4央企中标9标准9.1国家标准9.2行业标准9.3团体标准9.4地方标准10成果奖励10.1国家奖励10.2省部奖励10.3社会奖励10.4科技成果11土地11.1大块土地出让11.2出让公告11.3土地抵押11.4地块公示11.5大企业购地11.6土地出租11.7土地结果11.8土地转让12基金12.1国家自然基金12.2国家自然基金成果12.3国家社科基金13招聘13.1招聘信息感谢阅读:感谢您耐心地阅读这份企业调查分析报告。
网络拓扑知识:小世界网络拓扑的特征与应用
网络拓扑知识:小世界网络拓扑的特征与应用网络拓扑是指网络中不同节点之间连接的形式和方式。
小世界网络,又称“六度分隔理论”,是指在一个网络中,任意两个节点之间的距离不到几个步骤,这种网络结构是由多个密集连接在一起的“群集”和少量连接距离较远的“枢纽”节点组成的。
小世界网络拓扑的特征是,这种网络具有密集连接和随机连接两种属性。
密集连接的节点形成群集,枢纽节点则连接不同的群集,从而形成了一个具有高效率和短路径的网络。
小世界网络的应用十分广泛。
在社交网络中,小世界网络的结构可以解释为“六度分隔理论”,即人际之间的关系网相当密切。
在社交网络中,小世界网络的结构可以用来描述人们之间的联系,这样在社交媒体营销中,可以利用这种结构,通过社交网络快速地传达信息和推广产品。
在科学研究领域,小世界网络被广泛应用于描述生物、神经元和蛋白质等巨大的复杂系统之间的联系。
例如在生物网络中,小世界网络可以被应用于描述基因表达及其蛋白质之间的关系;在神经网络中,小世界网络可被利用于描述神经元之间的连接方式,以及神经网络的特性等。
此外,在电力网络、航空网络等大型系统中也可以应用小世界网络的拓扑结构,如在电力网络中,小世界网络可以用来预测电力系统的失效和优化电力传输;在航空网络中,小世界网络可以用来优化航班调度和预测航班延误等。
小世界网络拓扑的发现已经成为了我们更好地理解网络结构的基础。
在当前信息时代,如何从这种拓扑结构中挖掘更多有价值的信息,是一个值得继续探讨的问题。
在小世界网络中,节点间的关系一直在变化,这使得这种网络具有较好的鲁棒性和动态特性。
与其他网络拓扑相比,小世界网络在不同的应用领域具有更好的适应性,因而在未来的研究中,它将发挥着重要的作用。
第五章 小世界网络
5.1.1 Watts Strogatz (WS)过程
• 给定节点数n,重连概率p,k=2。生成一个 k-规则网络。有m=2n条链路。
• 对每一条链路,以概率p重连。
5.1.2 一般的WS过程
5.1.3 小世界网络的度序列
• Barrat, A. and M. Weigt, On the properties of small-world network models, Eur. Phys. J. B 13:547 (2000).
min{d k ,k}
h(d) B(k,i, (1 p))P(1, d k i); d k i1
• 小世界网络是具有高聚类系数、相对较小 的平均路径长度、可变化的熵的稀疏网络
• Milgram六度分离。
• WS(Watts,Strogatz,1998)提出小世界网络 模型。
• 小世界网络介于规则网络和随机网络之间 。许多实际网络都是小世界网络。其研究 有广泛应用价值。
5.1 生成一个小世界网络
• 从k-规则网络开始。
小世界网络模型
作为从完全规则网络向完全随机图的过渡,Watts和Strogtz于1998年 引入了一个小世界网络模型,称为WS小世界模型。其构造算法如下 :
①从规则图开始:考虑一个含有N个点的最近邻耦合网络,它们围成一 个环,其中每个节点都与它左右相邻的各K/2个节点相连,K是偶数 。
第5章小世界网络
5 1生成一个小世界网络 5 1 1Watts Strogatz (WS)过程 5 1 2一般的WS过程 5 1 3小世界网络的度序列 5 2小世界网络属性 5 2 1熵与重联概率 5 2 2熵与密度 5 2 3小世界网络的路径长度 5 2 4小世界网络的聚类系数 5 2 5小世界中的紧度 5 3相变 5 3 1路径长度和相变 5 3 2材料中的相变 5 4小世界网络中的导航 5 5小世界网络中的弱联系 5 6分析 练习
(完整版)小世界网络简介及及MATLAB建模
小世界网络MATLAB建模1.简介小世界网络存在于数学、物理学和社会学中,是一种数学图的模型。
在这种图中大部份的结点不与彼此邻接,但大部份结点可以通过任一其它节点经少数几步就可以产生联系。
若将一个小世界网络中的点代表一个人,而联机代表人与人之间是相互认识的,则这小世界网络可以反映陌生人通过彼此共同认识的人而起来产生联系关系的小世界现象。
在日常生活中,有时你会发现,某些你觉得与你隔得很“遥远”的人,其实与你“很近”。
小世界网络就是对这种现象的数学描述。
用数学中图论的语言来说,小世界网络就是一个由大量顶点构成的图,其中任意两点之间的平均路径长度比顶点数量小得多。
除了社会人际网络以外,小世界网络的例子在生物学、物理学、计算机科学等领域也有出现。
许多经验中的图可以用小世界网络来作为模型。
因特网、公路交通网、神经网络都呈现小世界网络的特征。
小世界网络最早是由邓肯·瓦茨(Duncan Watts)和斯蒂文·斯特罗加茨(Steven Strogatz)在1998年引进的,将高聚合系数和低平均路径长度作为特征,提出了一种新的网络模型,一般就称作瓦茨-斯特罗加茨模型(WS模型),这也是最典型的小世界网络的模型。
由于WS小世界模型构造算法中的随机化过程有可能破坏网络的连通性,纽曼(Newman)和瓦茨(Watts)提出了NW小世界网络模型,该模型是通过用“随机化加边”模式来取代WS小世界网络模型构造中的“随机化重连”。
在考虑网络特征的时候,使用两个特征来衡量网络:特征路径长度和聚合系数。
特征路径长度(characteristic path length):在网络中,任选两个节点,连同这两个节点的最少边数,定义为这两个节点的路径长度,网络中所有节点对的路径长度的平均值,定义为网络的特征路径长度。
这是网络的全局特征。
聚合系数(clustering coefficient):假设某个节点有k个边,则这k条边连接的节点之间最多可能存在的边的个数为k(k-1)/2,用实际存在的边数除以最多可能存在的边数得到的分数值,定义为这个节点的聚合系数。
小世界网络
NW 模型:Newman 在 WS 小世界模型的基础上,通过捷径额外链接建构了另一种小世界模型,称为 NW 小世界模型[15]。其构建方法为:在规则网络的基础上,按确定平均连接度个数,添加随机选择的点(随机网络),不再拆开规则网络的连接。实际上,NW 小世界模型是规则网络和随机网络的叠加(见图6)。
第二章 小世界网络的特性
Watts和Strogatz的开创性文章引发了研究小世界网络和Watts-Strogatz(WS)模型特性的热潮。通过进一步研究Newman和Watts对WS模型的作了改进,其中边被加入随机选取的两点之间,但却不从规则网中移除。这一模型比原始Watts-Strogatz模型容易分析,因为它不会形成孤立的群集,但是在原始模型中有可能发生。对于足够小的p和大N,这一模型等价于WS模型。接下来我们将总结关于小世界网络的主要特性。
首先,网络的现象涵盖极其广泛,因此,对网络的研究极具意义。其次,复杂网络的研究,在大量网络现象的基础上抽象出两种复杂网络:一种即小世界网络,另一种即无标度网络。这两种网络都同时具有两个基本特征:高平均集聚程度、小的最短路径。对这两种网络的研究,有利于人们理解现实世界中的网络现象。
科学家在研究复杂网络的过程中,通过在规则网络的基础上,断开其中某些顶点的链接,然后导入随机链接其中若干顶点的方法,结果构造出来的网络立刻就具有了小世界的特性。
对于规则环状网格和随机网络之间添加随机再连接的过程,没有改变图中的顶点数或者边数。N 个顶点的环,每个顶点通过随机的边连接到它的 k 个最近的邻居。我们选择一个顶点和它的边,以顺时针方向连接它和它最近的邻居,然后以概率 p 重新连接这条边到一个环上随机选择的顶点,不允许重复,否则我们不动这条边。我们通过沿着环顺时针移动来重复这个过程,在轮流的过程中每个点都要考虑到直到一圈结束。接着再考虑顺时针连接它们第二近邻顶点的边。沿着这个循环操作并且在每一圈以后逐步向远距离的邻居行进,直到原始网格中的每一条边都被考虑过(见图4)。
聚类系数对小世界交通网络搜索路径的影响
聚类系数对小世界交通网络搜索路径的影响聚类系数是网络科学中的一个重要指标,用来衡量网络中节点之间相互连接紧密程度的指标,也被称为节点的集聚程度。
在交通网络中,聚类系数可以用来衡量交通网络中节点之间的密集程度,从而影响到交通网络的搜索路径。
下面将从聚类系数的定义、小世界网络的特点和聚类系数对小世界交通网络搜索路径的影响三个方面进行探讨。
首先,聚类系数是网络中节点之间相互连接紧密程度的指标。
聚类系数越高,节点之间的相互连接就越紧密,意味着网络中的节点之间越容易形成一个群组,交通网络中同样如此。
例如,在城市中,一个居民区中的道路相互连接紧密,形成了一个小地区,这个小地区的居民之间的交通比较频繁,很少会跨越到其他区域。
所以,在交通网络中,聚类系数可以用来衡量交通网络中节点之间的密集程度,从而影响到交通网络的搜索路径。
其次,小世界网络是一种介于规则网络和随机网络之间的网络模型,具有局部紧密和全局短距离两个特点。
在小世界交通网络中,每个节点都与它相邻的节点紧密相连,并且具有高聚类系数。
但是,节点之间的全局距离比较短,意味着节点之间非常容易相连。
这种特性使得小世界交通网络具有高效的搜索路径,同时又可以保持较强的局部联系。
例如,在城市道路交通中,交通路线可以基本保持单向行驶,节省了交通时间,而同时它们又能够相互交错穿插,使得道路交通更加高效,形成了一个具有高效搜索特性的小世界网络。
最后,聚类系数对小世界交通网络搜索路径具有重要影响。
当交通网络中的聚类系数越高,交通网络的搜索路径也越复杂,搜索路径的长度也相应地增加。
当交通网络中的聚类系数越低,局部联系较弱,但全局距离较近,搜索路径也可以更加高效。
因此,适当的聚类系数可以在小世界交通网络中形成更加高效的搜索路径,从而提高交通的效率与可持续性。
综上所述,聚类系数是一种重要的指标,它可以用来衡量交通网络中节点之间的密集程度,从而影响到交通网络的搜索路径。
小世界网络具有高效的搜索路径,聚类系数对小世界交通网络搜索路径具有重要影响,因此在交通规划中,需要根据实际情况制定合理的聚类系数,以达到高效的交通运行和可持续发展。
小世界网络与无标度网络的社区结构研究!
’
!!
7
(!2 ) ] "
# !0 0!&
’
(8)
如果 / 大于 $2’ 就表明网络存 9:;<)= 进一步指出, 网络的社区结构就越 在明显的社区结构 " / 越大,
[#$, ’6] 明显 "
!"!" 分析方法 对于 >/? 模型, 本文在不同的重新连接概率 ! 、 邻近节点数 " 以及网络规模 * 时, 依据 >/? 模型产 生相应网络, 然后计算平均聚类系数、 平均路径长度 以及模块性, 考察其统计平均值随网络主要参数 ! , 探讨影响 >/? 模型社区结构的 " 和 * 的变化情况, 变化规律和主要因素 " (/0 模型社区结构的分析思 路与 >/? 模型基本一致, 所不同的是网络参数主要 集中在边增加数 & 和网络规模 * " 由于初始节点数 [&#] , 其对网络结构的影响较小, 因 &$ 要远远小于 *
[8, 19] 平均 布 ! 作为判断网络小世界现象的主要参数,
聚类系数和平均路径长度可以利用公式计算 ! 度分 布是否符合幂律是无标度特性判断的主要指标, 然 而实际网络度分布的判定因无法利用理论计算实现 而相对困难, 多依据对数图形或采用拟合的方法判
[95, 96] 断 也可以 ! 模块性是度量网络社区结构的指标,
网络可以表示为 , ! 3( " , #) 即网络成员的集合, 其中 " 表示给定节点, # 表示 边, 即网络成员关系的集合 ! $ 3 4 " 4 是网络成员数 目, ( %&’ ) 是相应的邻接矩阵, 对于 5, !3 6 矩阵 ! ,
复杂网络的特性与应用研究
复杂网络的特性与应用研究复杂网络是指由大量节点和边组成的非线性网络。
在复杂网络中,节点之间相互连接形成了复杂的拓扑结构,这种结构使得网络的行为表现出多样性和非线性,产生了许多有趣的特性。
本文将介绍一些复杂网络的特性和应用研究。
一、小世界网络小世界网络是指在网络中,节点之间的连接呈现出高度的局部聚集性和短路径的全局连通性。
这种结构是由于存在一些“枢纽节点”,这些节点具有极高的度数,连接了大量的节点。
小世界网络在现实世界中广泛存在,例如社交网络、互联网等。
小世界网络的特点是具有高度的效率和鲁棒性。
在网络中引入大量的短程边可以加速信息传播的速度,而且在攻击或随机故障的情况下,小世界网络仍然可以维持连通性和稳定性。
二、无标度网络无标度网络是指节点的度分布呈现出幂律分布的网络。
换句话说,少数节点具有极高的度数,而绝大多数节点的度数较低。
无标度网络可以模拟许多现实世界中的现象,如互联网中的超链接结构、社交网络中的社区结构等。
无标度网络的特点是具有高度的鲁棒性和易受攻击性。
因为少数的高度连接节点对于整个网络的连通性至关重要,所以在攻击或随机故障的情况下,无标度网络的稳定性会受到很大的影响。
三、复杂网络的应用研究复杂网络的应用研究具有广泛的领域,包括社交网络、生物网络、金融网络、交通运输网络等。
在社交网络中,复杂网络可以用来研究人际关系的网络结构和信息传播的机制。
在生物网络中,复杂网络可以应用于研究基因相互作用网络、蛋白质相互作用网络等生物信息学问题。
在金融网络中,复杂网络可以用于分析金融市场的稳定性和研究风险管理策略。
在交通运输网络中,复杂网络可以应用于交通拥堵的模拟和路网优化问题等。
总之,复杂网络是现代科学研究中不可缺少的工具之一。
通过对其特性和应用研究的深入探索,我们可以更好地理解和应对现实中面临的各种问题。
小世界网络简介及及MATLAB建模
小世界网络MATLAB建模1.简介小世界网络存在于数学、物理学和社会学中,是一种数学图的模型。
在这种图中大部份的结点不与彼此邻接,但大部份结点可以通过任一其它节点经少数几步就可以产生联系。
若将一个小世界网络中的点代表一个人,而联机代表人与人之间是相互认识的,则这小世界网络可以反映陌生人通过彼此共同认识的人而起来产生联系关系的小世界现象。
在日常生活中,有时你会发现,某些你觉得与你隔得很“遥远”的人,其实与你“很近”。
小世界网络就是对这种现象的数学描述。
用数学中图论的语言来说,小世界网络就是一个由大量顶点构成的图,其中任意两点之间的平均路径长度比顶点数量小得多。
除了社会人际网络以外,小世界网络的例子在生物学、物理学、计算机科学等领域也有出现。
许多经验中的图可以用小世界网络来作为模型。
因特网、公路交通网、神经网络都呈现小世界网络的特征。
小世界网络最早是由邓肯·瓦茨(Duncan Watts)和斯蒂文·斯特罗加茨(Steven Strogatz)在1998年引进的,将高聚合系数和低平均路径长度作为特征,提出了一种新的网络模型,一般就称作瓦茨-斯特罗加茨模型(WS模型),这也是最典型的小世界网络的模型。
由于WS小世界模型构造算法中的随机化过程有可能破坏网络的连通性,纽曼(Newman)和瓦茨(Watts)提出了NW小世界网络模型,该模型是通过用“随机化加边”模式来取代WS小世界网络模型构造中的“随机化重连”。
在考虑网络特征的时候,使用两个特征来衡量网络:特征路径长度和聚合系数。
特征路径长度(characteristic path length):在网络中,任选两个节点,连同这两个节点的最少边数,定义为这两个节点的路径长度,网络中所有节点对的路径长度的平均值,定义为网络的特征路径长度。
这是网络的全局特征。
聚合系数(clustering coefficient):假设某个节点有k个边,则这k条边连接的节点之间最多可能存在的边的个数为k(k-1)/2,用实际存在的边数除以最多可能存在的边数得到的分数值,定义为这个节点的聚合系数。
WS以及NW小世界网络的生成(MATLAB)
WS以及NW⼩世界⽹络的⽣成(MATLAB)WS⼩世界⽹络⽣成算法,⼀般⼩世界⽹络⽣成算法速度慢,节点度分布与数学推导不符,在⽹络仿真中造成不便,这⾥针对实际⽹络动⼒学仿真过程撰写了WS⼩世界⽹络的MATLAB⽣成算法,并考虑了矩阵化,具有较⾼的速度。
以下是対应的代码:% The simulation of WS-smallworld network% the algorithm of WS-smallworld's generation has been improved in speed,% and tend to be easily understood% writen by winter-my-dream@% Example:% N = 100; %network size (number of nodes)% m = 6; %2*m is the average edges of each nodes% p = 0.1; %rewiring probability% matrix = small_world_WS_new(N,m,p);function matrix = small_world_WS_new(N,m,p)rng('default')rng('shuffle')matrix=zeros(N,N);% generate regular networkfor i=m+1:N-mmatrix(i,i-m:i+m)=1;endfor i=1:mmatrix(i,1:i+m)=1;endfor i=N-m+1:Nmatrix(i,i-m:N)=1;endfor i=1:mmatrix(i,N-m+i:N)=1;matrix(N-m+i:N,i)=1;end% rewiring the networkfor i = 1:N% then rewiring the edges with the probability of p[series1,series2] = range_sort(N,m,i);index0 = series1(rand(2*m,1)>1-p);if(~isempty(index0))matrix(i,index0) = 0;matrix(i,series2(randperm(length(series2),length(index0))))=1;endendmatrix = matrix -diag(diag(matrix));endfunction [series1,series2] = range_sort(N,m,i)% select the index of nodes in row i for rewiringif(i-m>0 && i+m<=N)series1 = i-m:i+m;series2 = setdiff(1:N,series1);elseif(i-m<=0)series1 = [1:i+m,N-m+i:N];series2 = setdiff(1:N,series1);elseseries1 = [1:m-N+i,i-m:N];series2 = setdiff(1:N,series1);end% Without considering the connection of diagonal elementsseries1(series1==i) = [];end参考⽂献:Watts D J, Strogatz S H. Collective dynamics of ‘small-world’networks[J]. nature, 1998, 393(6684): 440-442.NW⼩世界⽹络的⽣成⽅法相对简单,我这⾥附加对应代码:% 基于Matlab 的⼩世界⽹络仿真% 经过矩阵化修改后,⽣成速度已经⼤⼤加快function matrix = small_world_NW(N,m,p)% N=50;m=3;p=0.1;% matrix=sparse([]);matrix = zeros(N,N);for i=m+1:N- mmatrix(i,i- m:i+m)=1;endfor i=1:mmatrix(i,1:i+m)=1;endfor i=N- m+1:Nmatrix(i,i- m:N)=1;endfor i=1:mmatrix(i,N- m+i:N)=1;matrix(N- m+i:N,i)=1;end% Random add edgekk=(rand(N,N)<p);matrix = logical(matrix + kk);matrix = matrix -diag(diag(matrix));对应⽣成⽹络的测试图的代码:clear,clc,close all% load A.txtN=10;m=2;p=0.1;% A= small_world_WS_new(N,m,p);A = small_world_NW(N, m, p);t=linspace(0,2*pi,N+1);x=sin(t);y=cos(t);figureset(gcf,'color','w')plot(x,y,'o','markerfacecolor','k'),hold onfor i=1:Nfor j=1:Nif (A(i,j)==1)fp1=plot([x(i),x(j)],[y(i),y(j)],'r-'); hold on set(fp1,'linesmoothing','on')endendendaxis([-1.05,1.05,-1.05,1.05])axis squareaxis offsum(sum(A))。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2 小世界网络4.2.1 小世界网络简介1998年, Watts和Strogatz 提出了小世界网络这一概念,并建立了WS模型。
实证结果表明,大多数的真实网络都具有小世界特性(较小的最短路径)和聚类特性(较大的聚类系数)。
传统的规则最近邻耦合网络具有高聚类的特性,但并不具有小世界特性;而随机网络具有小世界特性但却没有高聚类特性。
因此这两种传统的网络模型都不能很好的来表示实际的真实网络。
Watts和Strogatz建立的小世界网络模型就介于这两种网络之间,同时具有小世界特性和聚类特性,可以很好的来表示真实网络。
4.2.2 小世界模型构造算法1、从规则图开始:考虑一个含有N个点的最近邻耦合网络,它们围成一个环,其中每个节点都与它左右相邻的各K/2节点相连,K是偶数。
2、随机化重连:以概率p随机地从新连接网络中的每个边,即将边的一个端点保持不变,而另一个端点取为网络中随机选择的一个节点。
其中规定,任意两个不同的节点之间至多只能有一条边,并且每一个节点都不能有边与自身相连。
在上述模型中,p=0对应于完全规则网络,p=1则对应于完全随机网络,通过调节p的值就可以控制从完全规则网络到完全随机网络的过渡。
相应程序代码(使用Matlab实现)ws_net.m (位于“代码”文件夹内)function ws_net()disp('小世界网络模型')N=input('请输入网络节点数');K=input('请输入与节点左右相邻的K/2的节点数');p=input('请输入随机重连的概率');angl e=0:2*pi/N:2*pi-2*pi/N;x=100*cos(angl e);y=100*sin(angl e);pl ot(x,y,'r.','Markersize',30);hol d on;%生成最近邻耦合网络;A=zeros(N);disp(A);for i=1:Nif i+K<=Nfor j=i+1:i+KA(i,j)=1;endelsefor j=i+1:NA(i,j)=1; endfor j=1:((i+K)-N) A(i,j)=1; endendif K<ifor j=i-K:i-1 A(i,j)=1;endelsefor j=1:i-1A(i,j)=1; endfor j=N-K+i:N A(i,j)=1; endendenddisp(A);%随机化重连for i=1:Nfor j=i+1:Nif A(i,j)==1pp=unifrnd(0,1); if pp<=pA(i,j)=0; A(j,i)=0;b=unidrnd(N); whil e i==bb=unidrnd(N); endA(i,b)=1; A(b,i)=1; endendendend%根据邻接矩阵连线for i=1:Nfor j=1:Nif A(i,j)==1pl ot([x(i),x(j)],[y(i),y(j)],'linewidth',1); hol d on;endendendhol d offaver_path=aver_pathl ength(A);disp(aver_path);4.2.3小世界网络模型平均路径长度与聚类系数对于纯粹的规则网络,当其中连接数量接近饱和时,集聚系数很高,平均路径长度也十分短。
例如完全耦合网络,每两个节点之间都相连,所以集聚系数是1,平均路径长度是1。
然而,现实中的复杂网络是稀疏的,连接的个数只是节点数的若干倍,远远不到饱和。
如果考虑将节点排列成正多边形,每个节点都只与距离它最近的2K 个节点相连,那么在K比较大时,其集聚系数为:()()()()13232214K K C i K K --=≈-虽然能保持高集聚系数,但平均路径长度为: ()4N l O N K ≈= 平均路径长度与节点数成正比。
纯粹的随机网络有着很小的平均路径长度,但同时集聚系数也很小。
可是现实中的不少网络虽然有很小的平均路径长度,但却也有着比随机网络高出相当多的集聚系数。
因此瓦茨和斯特罗加茨认为,现实中的复杂网络是一种介于规则网络和随机网络之间的网络。
他们把这种特性称为现实网络的小世界特性,就是:1. 有很小的平均路径长度:在节点数N 很大时,平均路径长度近似于随机网络;2. 有很高的集聚系数:集聚系数大约和规则网络在同一数量级,远大于随机网络的集聚系数。
相应程序代码(使用Matlab 实现)ws.m (位于“代码”文件夹内)cl c;cl ear all;format long;n=1000;k=5;L=zeros(14,20);C=zeros(14,20);for i=1:14p(15-i,1)=1/2^(i-1);end% p=zeros(1,14);% p1=zeros(14,20);% LWS=zeros(14,1);% CWS=zeros(14,1);%%生成最近邻耦合网络A=zeros(n);for i=1:nfor j=i+1:i+kjj=j;if j>njj=mod(j,n);endA(i,jj)=1; A(jj,i)=1;endend%%计算平均路径长度L(0)D1=A;D1(find(D1==0))=inf; %将邻接矩阵变为邻接距离矩阵,两点无边相连时赋值为inf,自身到自身的距离为0.for i=1:nD1(i,i)=0;endm=1;whil e m<=n %Fl oyd算法求解任意两点的最短距离for i=1:nfor j=1:nif D1(i,j)>D1(i,m)+D1(m,j)D1(i,j)=D1(i,m)+D1(m,j);endendendm=m+1;endL0=sum(sum(D1))/(n*(n-1)); %平均路径长度%%计算聚类系数C(0)Ci0=zeros(n,1);for i=1:naa1=find(D1(i,:)==1); %寻找子图的邻居节点if isempty(aa1)Ci0(i)=0;elsem1=l ength(aa1);if m1==1Ci0(i)=0;elseB1=D1(aa1,aa1); % 抽取子图的邻接矩阵Ci0(i)=l ength(find(B1==1))/(m1*(m1-1));endendendC0=mean(Ci0);for z=1:14% p(z)=1/2^(z-1);for g=1:20%%生成最近邻耦合网络B=zeros(n);for i=1:nfor j=i+1:i+kjj=j;if j>njj=mod(j,n);endB(i,jj)=1; B(jj,i)=1;endend%随机化重连% for i=1:n% p_rand=rand(1,1);% b=find(B(i,:)==1);% for j=1:l ength(b)% j1=b(j);% if p_rand<p(z,1) %% 生成的随机数小于p,则边进行随机化重连,否则,边不进行重连% B(i,j1)=0;B(j1,i)=0;% bb=randint(1,1,[1,n]);% if B(i,bb)==0&&B(bb,i)==0&&bb~=i %重连条件% B(i,bb)=1;B(bb,i)=1;% end% end% end% endfor i=1:nfor j=1:kp_rand=rand(1,1);if p_rand<p(z,1)bb=randint(1,1,[1,n]);if B(i,bb)==0&&B(bb,i)==0&&bb~=i %重连条件j2=j+i;if j2>nj2=mod(j2,n);endB(i,j2)=0;B(j2,i)=0;B(i,bb)=1;B(bb,i)=1;endendendend%%计算平均路径长度aver_L% n1=size(A,2);D=B;D(find(D==0))=inf; %将邻接矩阵变为邻接距离矩阵,两点无边相连时赋值为inf,自身到自身的距离为0.for i=1:nD(i,i)=0;endm2=1;whil e m2<=n %Fl oyd算法求解任意两点的最短距离for i=1:nfor j=1:nif D(i,j)>D(i,m2)+D(m2,j)D(i,j)=D(i,m2)+D(m2,j);endendendm2=m2+1;end% if l ength(infline)>0% D(infline,:)=[];% D(:,infline)=[];% n2=size(D,2);% L(z,g)=sum(sum(D))/(n2*(n2-1));%求出平均路径% elseL(z,g)=sum(sum(D))/(n*(n-1));%求出平均路径% end%%计算聚类系数aver_CCi=zeros(n,1);for i=1:naa=find(D(i,:)==1); %寻找子图的邻居节点if isempty(aa)Ci(i)=0;elsem3=l ength(aa);if m3==1Ci(i)=0;elseBB=D(aa,aa); % 抽取子图的邻接矩阵Ci(i)=l ength(find(BB==1))/(m3*(m3-1));endendendC(z,g)=mean(Ci);endendfigureLWS=mean(L,2);CWS=mean(C,2);semilogx(p,LWS/L0,'ro');hol d on;semilogx(p,CWS/C0,'b*');4.2.4 小结在网络理论中,小世界网络是一类特殊的复杂网络结构,在这种网络中大部分的节点彼此并不相连,但绝大部份节点之间经过少数几步就可到达。
在日常生活中,有时你会发现,某些你觉得与你隔得很“遥远”的人,其实与你“很近”。
小世界网络就是对这种现象(也称为小世界现象)的数学描述。
用数学中图论的语言来说,小世界网络就是一个由大量顶点构成的图,其中任意两点之间的平均路径长度比顶点数量小得多。
除了社会人际网络以外,小世界网络的例子在生物学、物理学、计算机科学等领域也有出现。
许多经验中的图可以由小世界网络来作为模型。
万维网、公路交通网、脑神经网络和基因网络都呈现小世界网络的特征。
小世界网络模型反映了朋友关系网络的一种特性,即大部分的人的朋友都是和他们住在同一条街上的邻居或在同一单位工作的同事。
另一方面,也有些人是住得较远的,甚至是远在异国他乡的朋友,这种情形对应于小世界模型中通过重新连线产生的远程连接。