数学花园探秘 迎春杯 六年级决赛试卷及详解

合集下载

北京市第6届迎春杯小学数学竞赛决赛试题.doc

北京市第6届迎春杯小学数学竞赛决赛试题.doc

北京市第6届迎春杯小学数学竞赛决赛试题1.计算:6.8×+0.32×4.2-8÷252.计算:1000+999-998-997+996+995-994-993+…+108+107-106-105+104+103-102-101=________。

3.如果A=,B=,那么A与B中较大的数是________。

4.一个长方体的各条棱长的和是48厘米,并且它的长是宽的2倍,高与宽相等,那么这个长方体的体积是________立方厘米。

5.图中扇形的半径OA=OB=6厘米,∠AOB=45°,AC垂直OB于C,那么图中阴影部分的面积是________平方厘米。

(∏≈3.14)6.某商店把一些旧存小刀作为处理品降价出售。

小刀每把原价0.3元,降价后存货全部卖出,共卖得6.29元。

那么小刀每把降为________元。

7.一件工程,甲独做要12小时完成,乙独做要18小时完成。

如果先由甲工作1小时,然后由乙接替甲工作1小时,再由甲接替乙工作1小时,……两人如此交替工作,那么完成任务时共用了________小时。

8.从三点钟开始,分针与时针第二次形成30度角的时间是三点________分。

9.用三根等长的火柴可以摆成一个等边三角形。

用这样的等边三角形如图所示,拼合成一个大的等边三角形。

如果这个大的等边三角形的底为20根火柴长,那么一共要用________根火柴。

10.如图,平行四边形的花池边长分别为60米与30米。

小明和小华同时从A点出发,沿着平行四边形的边由A→B→C→D→A…顺序走下去。

小明每分钟走50米,小华每分钟走20米,出发5分钟后小明走到E点,小华走到F点。

连结AE、AF,则四边形AECF的面积与平行四边形ABCD的面积的比是________。

11.在1,9,8,9后面写一串这样的数字:先计算原来这4个数的后两个之和8+9=17,取个位数字7写在1,9,8,9的后面成为1,9,8,9,7;再计算这5个数的后两个之和9+7=16;取个位数字6写在1,9,8,9,7的后面成为1,9,8,9,7,6;再计算这6个数的后两个之和7+6=13,取个位数字3写在1,9,8,9,7,6的后面成为1,9,8,9,7,6,3。

迎春杯六年级复赛试题与解析

迎春杯六年级复赛试题与解析

2014“数学解题能力展示”读者评选活动复赛试题小学六年级(2014年2月6日)一、选择题(每小题8分,共32分)1.算式5258+172014201.42⨯÷-⨯的计算结果是( ). A.15 B .16 C.17 D.182.对于任何自然数,定义!123n n =⨯⨯⨯⨯.那么算式2014!3!-的计算结果的个位数字是( ). A.2 B.4 C.6 D .83.统统在计算有余数的除法时,把被除数472错看成了427,结果商比原来小5,但余数恰好相同,那么这个余数是( ).A .4B .5 C.6 D.74.下图中,正八边形ABCDEFGH 的面积为1,其中有两个正方形ACEG 和PQRS .那么正八边形中阴影部分的面积().H AA.12 B .23 C .35 D .58二、选择题(每题10分,共70分)5.右面竖式成立时的除数与商的和为( ).12642A.589B.653C.723D.7336.甲乙丙三人进行一场特殊的真人C S比赛,规定:第一枪由乙射出,射击甲或者丙,以后的射击过程中,若甲被击中一次,则甲可以有6发子弹射击乙或丙,若乙被击中一次,则乙可以有5发子弹射击甲或丙,若丙被击中一次,则丙可以有4发子弹射击甲或乙,比赛结束后,共有16发子弹没有击中任何人?则甲乙丙三人被击中的次数有( )种不同的情况.A .1 B.2 C.3 D .47.甲乙二人进行下面的游戏.二人先约定一个整数N ,然后由甲开始,轮流把1,2,3,4,5,6,7,8,9这九个数字之一填入下面任一方格中:□□□□□□,每一方格只填入一个数字,形成一个数字可以重复的六位数.若这个六位数能被N 整除,乙胜;否则甲胜.当N 小于15时,使得乙有必胜策略的N 有( ). A.5 B.6 C .7 D.88.在纸上任意写一个自然数,把这张纸旋转180度,数值不变,如0、11、96、888等,我们把这样的数称为“神马数”.在所有五位数中共有( )个不同的“神马数”.A.12B.36C.48 D.609.如图,第(1)个多边形由正三角形“扩展”而来,边数记为3a ,第(2)个多边形由正方形“扩展”而来,边数记为4a ,……,依此类推,由正n 边形“扩展”而来的多边形的边数记为n a (3n ≥ ),则34511112014++++6051n a a a a =,那么n =(). (4)(3)(2)(1)A .2014B .2015 C.2016 D .201710.如右图所示,五边形ABCDEF 面积是2014平方厘米,BC 与CE 垂直于C 点,EF 与CE 垂直于E 点,四边形ABDF 是正方形,:3:2CD DE =.那么,三角形ACE 的面积是 ( )平方厘米.FECB AA.1325 B .1400 C.1475 D .150011.甲乙两车分别从A、B两地同时出发,相向而行,甲车的速度大于乙车.甲行驶了60千米后和乙车在C点相遇.此后甲车继续向前行驶,乙车掉头与甲车同向行驶.那么当甲车到达B地时,甲乙两车最远相距()千米.A.10B.15 C.25 D.30三、选择题(每题12分,共48分)12.在“爸爸去哪儿”的节目中有一个任务,五个参加任务的孩子(天天、石头、Kimi、Cindy、Ange la)需要换爸爸(每个小朋友可以选择除了自己爸爸之外其他四位父亲中的任何一位),那么最终五人有( )种不同的选择结果.A.40 B.44 C.48 D.5213.老师在黑板上从1开始将奇数连续地写下去,写了一长串数后,擦去了其中的两个数,将这些奇数隔成了3串,已知第二串比第一串多1个数,第三串比第二串多1个数,且第三串奇数和为4147,那么被划去的两个奇数的和是().A.188B.178C.168D.15814.从一张大方格纸上剪下5个相连的方格(只有一个公共顶点的两个方格不算相连),要使剪下的图形可折叠为一个无盖的正方体,则共可以剪出()种不同的图形(经过旋转或翻转相同的图形市委同一种).A.8B.9 C.10 D.1115.老师把某个两位数的六个不同约数分别告诉了A F六个聪明诚实的同学.A和B同时说:“我知道这个数是多少了.”C和D同时说:“听了他们两人的话,我也知道这个两位数是多少了.”E:“听了他们的话,我知道我的数一定比F的大.”F:“我拿的数的大小在C和D之间.”那么六个人拿的数之和是( )A.141 B.152 C.171 D.175ﻬ2014“数学解题能力展示”读者评选活动复赛试题小学六年级参考答案部分解析一、选择题(每小题8分,共32分)1.算式5258+172014201.42⨯÷-⨯的计算结果是( ).A.15B.16C.17D.18【考点】计算【难度】☆☆【答案】D【解析】5258+1200 1.4201.41 72014201.42201.410201.42201.488⨯÷+=== -⨯⨯-⨯⨯2.对于任何自然数,定义!123n n=⨯⨯⨯⨯.那么算式2014!3!-的计算结果的个位数字是( ).A.2B.4 C.6D.8【考点】定义新运算【难度】☆☆【答案】B【解析】2014!个位数字是0,3!1236=⨯⨯=,所以2014!3!-个位是4.3.童童在计算有余数的除法时,把被除数472错看成了427,结果商比原来小5,但余数恰好相同,那么这个余数是().A.4 B.5 C.6 D.7【考点】整除同余【难度】☆☆【答案】A【解析】除数=(472427)59-÷=,4724(mod9)≡,所以余数是4.4.下图中,正八边形ABCDEFGH的面积为1,其中有两个正方形ACEG和PQRS.那么正八边形中阴影部分的面积().HAA.12B.23C.35D.58【考点】几何【难度】☆☆☆【答案】A【解析】等积变形.H AAH H A所以刚好各占一半. 二、选择题(每题10分,共70分)5.右面竖式成立时的除数与商的和为().12642A.589 B .653 C .723 D .733 【考点】数字谜 【难度】☆☆☆ 【答案】C【解析】首先根据倒数第三行可以确定0A =,4B =;241ECB A 60D22112611322440854815252824160120再根据顺数第三行最后一位为1可以确定,第一行D 和C 的取值为(1,1)或(3,7)或(9,9)或(7,3),根据尝试只有(1,1)符合题意.再依次进行推理,可得商和除数分别为:142和581.6.甲乙丙三人进行一场特殊的真人CS 比赛,规定:第一枪由乙射出,射击甲或者丙,以后的射击过程中,若甲被击中一次,则甲可以有6发子弹射击乙或丙,若乙被击中一次,则乙可以有5发子弹射击甲或丙,若丙被击中一次,则丙可以有4发子弹射击甲或乙,比赛结束后,共有16发子弹没有击中任何人?则甲乙丙三人被击中的次数有( )种不同的情况.A.1 B .2 C.3 D.4 【考点】不定方程 【难度】☆☆☆ 【答案】B【解析】设甲乙丙分别被击中x 、y 、z 次则三人分别发射6x 、51y +,4z 次[6(51)4]()16x y z x y z +++-++=化简得54315x y z ++=7.甲乙二人进行下面的游戏.二人先约定一个整数N ,然后由甲开始,轮流把1,2,3,4,5,6,7,8,9这九个数字之一填入下面任一方格中:□□□□□□,每一方格只填入一个数字,形成一个数字可以重复的六位数.若这个六位数能被N 整除,乙胜;否则甲胜.当N 小于15时,使得乙有必胜策略的N 有( ). A.5 B .6 C.7 D.8 【考点】数论 【难度】☆☆☆ 【答案】B【解析】若N 是偶数,甲只需第一次在个位填个奇数,乙必败只需考虑N 是奇数.1N =,显然乙必胜.39N =,,乙只需配数字和1-8,2-7,3-6,4-5,9-9即可.5N =,甲在个位填不是5的数,乙必败.71113N =,,,乙只需配成100171113abcabc abc abc =⨯=⨯⨯⨯.8.在纸上任意写一个自然数,把这张纸旋转180度,数值不变,如0、11、96、888等,我们把这样的数称为“神马数”.在所有五位数中共有( )个不同的“神马数”.A.12 B .36 C.48 D .60 【考点】数论 【难度】☆☆☆ 【答案】D【解析】设这个数为ABCBA ,A 位可以填11,88,69,96,4种情况,B 位可以填00,11,88,69,96,5种情况,C位可以填0,1,8,3种情况,453=60⨯⨯(个).9.如图,第(1)个多边形由正三角形“扩展”而来,边数记为3a ,第(2)个多边形由正方形“扩展”而来,边数记为4a ,……,依此类推,由正n 边形“扩展”而来的多边形的边数记为n a (3n ≥ ),则34511112014++++6051n a a a a =,那么n =( ).(4)(3)(2)(1)A.2014B.2015C.2016D.2017【考点】找规律【难度】☆☆☆【答案】C【解析】33(22)34a=⨯+=⨯,44(23)45a=⨯+=⨯,55(24)56a=⨯+=⨯,……(21)(1)na n n n n=⨯+-=+,34511111111120143445(1)316051na a a a n n n++++=+++=-=⨯⨯⨯++,12017n+=,2016n=.10.如右图所示,五边形ABCDEF面积是2014平方厘米,BC与CE垂直于C点,EF与CE垂直于E点,四边形ABDF是正方形,:3:2CD DE=.那么,三角形ACE的面积是()平方厘米.FECBAA.1325B.1400C.1475D.1500【考点】几何【难度】☆☆☆【答案】A【解析】作正方形ABCD的“弦图”,如右图所示,IHGFEDCBA假设CD的长度为3a,DE的长度为2a,那么3BG a=,2DG a=,根据勾股定理可得2222229413BD BG DG a a a=+=+=,所以,正方形ABDF的面积为213a;因为CD EF=,BC DE=,所以三角形BCD和三角形DEF的面积相等为23a;又因为五边形ABCEF面积是2014平方厘米,所以222136192014a a a+==,解得2106a=, 三角形ACE的面积为:2255522a a a⨯÷=,即2510613252⨯=.11.甲乙两车分别从A 、B 两地同时出发,相向而行,甲车的速度大于乙车.甲行驶了60千米后和乙车在C点相遇.此后甲车继续向前行驶,乙车掉头与甲车同向行驶.那么当甲车到达B 地时,甲乙两车最远相距( )千米.A .10 B.15 C.25 D .30 【考点】行程问题 【难度】☆☆☆ 【答案】A【解析】假设甲走60千米时,乙走了a 千米,甲到达B 地时,乙车应走26060a a a ⨯=千米,此时甲、乙相差最远为1(60)6060a a a a -=⨯-⨯,和一定,差小积大,60a a -=,30a =.甲、乙最远相差900301560-=(千米).三、选择题(每题12分,共48分)12.在“爸爸去哪儿”的节目中有一个任务,五个参加任务的孩子(天天、石头、K imi 、Cin dy、Angela )需要换爸爸(每个小朋友可以选择除了自己爸爸之外其他四位父亲中的任何一位),那么最终五人有( )种不同的选择结果.A .40 B.44 C.48 D.52 【考点】排列组合 【难度】☆☆☆ 【答案】B【解析】设五个爸爸分别是A B C D E 、、、、,五个孩子分别是a b c d e 、、、、,a 有4种选择,假设a 选择B ,接着让b 选择,有两种可能,选择A 和不选择A ,(1)选择A ,c d e 、、 选择三个人错排,(2)不选择A ,则b c d e 、、、 选择情况同4人错排.所以5434()S S S =⨯+ 同理4323()S S S =⨯+ ,3212()S S S =⨯+,而10S =(不可能排错),21S =,所以32S =,49S =,544S =.13.老师在黑板上从1开始将奇数连续地写下去,写了一长串数后,擦去了其中的两个数,将这些奇数隔成了3串,已知第二串比第一串多1个数,第三串比第二串多1个数,且第三串奇数和为4147,那么被划去的两个奇数的和是( ).A.188 B .178 C.168 D.158 【考点】数论 【难度】☆☆☆ 【答案】C【解析】设第一段有n 个,则第2段有1n +个,第一个擦的奇数是21n +,第二个擦的奇数是45n +,和为66n +,是6的倍数.只有168符合.14.从一张大方格纸上剪下5个相连的方格(只有一个公共顶点的两个方格不算相连),要使剪下的图形可折叠为一个无盖的正方体,则共可以剪出( )种不同的图形(经过旋转或翻转相同的图形视为同一种).A.8 B .9 C .10 D .11 【考点】立体几何 【难度】☆☆☆ 【答案】A【解析】如下图15.老师把某个两位数的六个不同约数分别告诉了A F六个聪明诚实的同学.A和B同时说:“我知道这个数是多少了.”C和D同时说:“听了他们两人的话,我也知道这个两位数是多少了.”E:“听了他们的话,我知道我的数一定比F的大.”F:“我拿的数的大小在C和D之间.”那么六个人拿的数之和是()A.141 B.152 C.171D.175【考点】数论【难度】☆☆☆☆【答案】A【解析】(1)这个数的因数个数肯定不低于6个(假定这个数为N,且拿到的6个数从大到小分别是、、、、、)A B C D E F(2)有两个人同时第一时间知道结果,这说明以下几个问题:第一种情况:有一个人知道了最后的结果,这个结果是怎么知道的呢?很简单,他拿到的因数在5099之间(也就是说A的2倍是3位数,所以A其实就是N)第二种情况:有一个人拿到的不是最后结果,但是具备以下条件:1)这个数的约数少于6个,比如:有人拿到36,单他不能断定N究竟是36还是72.2)这个数小于50,不然这个数就只能也是N了.3)这个数大于33,比如:有人拿到29,那么他不能断定N是58还是87;这里有个特例是27,因为272=54⨯,因数个数少于6个,所以如果拿到27可以判断⨯,因数个数不少于6个;273=81N只能为54)4)这个数还不能是是质数,不然不存在含有这个因数的两位数.最关键的是,这两人的数是2倍关系但是上述内容并不完全正确,需要注意还有一些“奇葩”数:17、19、23也能顺利通过第一轮.因此,这两个人拿到的数有如下可能:(54,27)(68,34)(70,35)(76,38)(78,39)(92,46)(98,49)(3)为了对比清晰,我们再来把上面所有的情况的因数都列举出来:(54,27,18,9,6,3,2,1)(68,34,17,4,2,1)(×)(70,35,14,10,7,5,2,1)(76,38,19,4,2,1)(×)(78,39,26,13,6,3,2,1)(92,46,23,4,2,1)(×)(98,49,14,7,2,1)对于第一轮通过的数,我们用红色标注,所以N不能是68、76、92中的任意一个.之后在考虑第二轮需要通过的两个数.用紫色标注的6、3、2、1,因为重复使用,如果出现了也不能判断N是多少,所以不能作为第二轮通过的数.用绿色标注的14和7也不能作为第二轮通过的数,这样N也不是98.那么通过第二轮的数只有黑色的数.所以N只能是54、70、78中的一个.我们再来观察可能满足E和F所说的内容:(54,27,18,9,6,3,2,1)(70,35,14,10,7,5,2,1)(78,39,26,13,6,3,2,1)因为F说他的数在C和D之间,我们发现上面的数据只有当70、(10和N=的时候,7F=,在C D5)之间,是唯一满足条件的一种情况.又因为E确定自己比F的大,那么他拿到的数一定是该组中剩余数里最大的.所以E拿到的是14(70N=).所以70N=,六个人拿的数之和为:70+35+14+10+7+5=141.。

六年级下册数学试题-迎春杯培训第4讲杂题教师版全国通用含答案

六年级下册数学试题-迎春杯培训第4讲杂题教师版全国通用含答案

第四讲杂题这一讲主要涉及逻辑推理、排列组合、最值问题、容斥原理、抽屉原理等几部分知识。

由于这些知识的题型较为灵活,因此在迎春杯中,每次都要占到2至3题。

希望同学们把这部分知识中基本题型掌握全面,并在竞赛中取得好的成绩。

知识概要:加法原理和乘法原理:在做一件事情时,要分几步完成,而在完成每一步时又有几种不同的方法,要知道完成这件事一共有多少种方法,就用乘法原理来解决。

做一件事时有几类不同的方法,而每一类方法中又有几种可能的做法就用加法原理来解决。

抽屉原理:如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。

如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。

如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。

这些简单内的例子就是数学中的“抽屉原理”。

基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。

(2)如果把m×x×k(x>k ≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。

利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。

b、把元素放入(或取出)抽屉。

C、说明理由,得出结论。

例1.有6个学生都面向南站成一行,每次只能有5个学生向后转,则最少要做次,就能使这6个学生都面向北解答:最少需要转6次,我们把6个学生能编为1号-6号,第一次1号不转,第二次2号不转…第六次6号不转,所以最后每个人都转了5次,所以6个学生都面向北了.例2.某花园的小径如图50所示。

一个人能不能从图中第1个点的位置出发,不重复地走过所有小径?如果能,请标出所经过各点的顺序(如:1→2→3→…→1)。

如果不能,请标出至少必须重复的小径(如1→2,2→3,8→9或11→12等等)。

解答:这是个一笔画问题,需要考察“奇点”的个数,只有当奇点个数是0或2时才可以一笔画,而这个图里的奇点有8个,显然不能一笔画,每重复走一条小径可以消灭2个奇点所以至少要重复走4条小径,例如1->2,3->4,5->6,7->8例3.一次环保知识竞赛,一共有10道判断题。

“迎春杯”数学花园探秘科普活动试卷(六年级初赛b卷)

“迎春杯”数学花园探秘科普活动试卷(六年级初赛b卷)

2015年“迎春杯”数学花园探秘科普活动试卷(六年级初赛B卷)一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(+++)×2015的计算结果是.2.(8分)如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是3.(8分)A电池的广告语是“一节更比六节强”.意义是A电池比其他电池更耐用.我们就假定1节A电池的电量是B电池的6倍,有两种耗电速度一样的时钟,现在同时在甲钟里装了2节A电池,乙钟里装了2节B电池,结果乙时钟正常工作了2个月电池就耗尽了,那么甲时钟的正常工作时间比乙时钟多个月.4.(8分)如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.二、填空题(共4小题,每小题10分,满分40分)5.(10分)一个正整数A乘以6后所得结果的因数个数变为原来的3倍,那么符合条件的A最小是.6.(10分)在2014年北京APEC会议期间,京津冀实施道路限行和污染企业停工等措施,来保证空气质量达到良好水平,在经历了一个月三场雾霾,北京11月3日空气达到一级优水平,人们称为“APEC蓝”,2013年北京优良空气天数仅占47.9%,2014上半年实行减排30%的措施,优良空气天数比2013年同期增加20天,要达到全年优良空气天数增加20%的目标,下半年需要使优良天气相比2013年同期至少增加天.7.(10分)甲、乙、丙三户人家打算订阅报纸,共有5种不同的报纸可供选择,已知每户人家都订两份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有几种不同的订阅方式?8.(10分)6个半径相等的小圆和1个大圆如图摆放.图中大圆的面积是120,那么,一个小圆面积是.三、填空题(共3小题,每小题12分,满分36分)9.(12分)希希和姗姗各有若干张积分卡.希希对姗姗说:“如果你给我3张,我的张数就是你的3倍”姗姗对希希说:“如果你给我4张,我的张数就是你的4倍”希希对姗姗说:“如果你给我5张,我的张数就是你的5倍”已知以上三句话中恰有一句不正确,那么,原来希希有张积分卡.10.(12分)如图,A、B为圆形轨道一条直径的两个端点,甲、乙、丙三个微型机器人在圆形轨道上同时出发,作匀速圆周运动,甲、乙从A出发,丙从B出发;乙顺时针运动,甲、丙逆时针运动,出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到达A后,再过秒钟,乙才第一次到达B.11.(12分)在空格内填入数字1﹣6,使得每行每列数字不重复,黑点两边的数是两倍的关系,白点两边的数差为1.那么第四行所填数字从左往右前5位组成的五位数是.2015年“迎春杯”数学花园探秘科普活动试卷(六年级初赛B卷)参考答案与试题解析一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(+++)×2015的计算结果是2418 .【解答】解:(+++)×2015=()×2015==2418故答案为:2418.2.(8分)如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是20685【解答】解:依题意可知:首先根据图中方框代表的是金三角,只能唯一情况是10﹣9.所以结果1中的百位和十位为10,那么除数的百位和十位就是10,商的首位是1.再根据结果2的首位数字是9,那么商的十位数字是9,根据尾数是5,推理出除数为105.商的前两位是19.最后结果3的数字经尝试不能是600多只能是105的7倍735.被除数为105×197=20685.故答案为:206853.(8分)A电池的广告语是“一节更比六节强”.意义是A电池比其他电池更耐用.我们就假定1节A电池的电量是B电池的6倍,有两种耗电速度一样的时钟,现在同时在甲钟里装了2节A电池,乙钟里装了2节B电池,结果乙时钟正常工作了2个月电池就耗尽了,那么甲时钟的正常工作时间比乙时钟多10 个月.【解答】解:根据分析,因都是正常耗电,正常工作,故耗电速度一样,甲时钟耗尽电量所需时间是乙时钟的电池耗尽电量所需时间的6倍,所以甲时钟可以正常工作:6×2=12个月,比乙时钟多工作:12﹣2=10个月.故答案是:10.4.(8分)如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的 3 倍.【解答】解:根据分析,如图所示,将图进行分割成面积相等的三角形,阴影部分由18个小三角形组成,而空白部分有6个小三角形,故阴影部分面积是空白部分面积的18÷6=3倍.故答案是:3.二、填空题(共4小题,每小题10分,满分40分)5.(10分)一个正整数A乘以6后所得结果的因数个数变为原来的3倍,那么符合条件的A最小是 2 .【解答】解:假设原数分解质因数后为2a×3b,乘6后变为2a+1×3b+1,由题意:3(a+1)(b+1)=(a+2)(b+2),由于A要尽可能小,因此令a=1,b=0即可得到答案.所以满足条件的A最小值为2.6.(10分)在2014年北京APEC会议期间,京津冀实施道路限行和污染企业停工等措施,来保证空气质量达到良好水平,在经历了一个月三场雾霾,北京11月3日空气达到一级优水平,人们称为“APEC蓝”,2013年北京优良空气天数仅占47.9%,2014上半年实行减排30%的措施,优良空气天数比2013年同期增加20天,要达到全年优良空气天数增加20%的目标,下半年需要使优良天气相比2013年同期至少增加15 天.【解答】解:365×47.9%×20%﹣20≈174.8×20%﹣20≈35.0﹣20=15(天)答:下半年需要使优良天气相比2013年同期至少增加15天.故答案为:15.7.(10分)甲、乙、丙三户人家打算订阅报纸,共有5种不同的报纸可供选择,已知每户人家都订两份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有几种不同的订阅方式?【解答】解:由题意可知,有ab,ac,ad和ab,ac,bc两种不同的订阅类型:ab,ac,ad有×=5×(4×3×2)=5×24=120种;ab,ac,bc有×=10×6=60种.所以共有120+60=120种不同的订阅方式.8.(10分)6个半径相等的小圆和1个大圆如图摆放.图中大圆的面积是120,那么,一个小圆面积是40 .【解答】解:根据分析,如图1所示,由对称性可知,△ADE与△OBE面积相等,因此可知,△AOD的面积与△AOB的面积相等,都等于△ABC面积的三分之一,由于△AOD与△ABC都是圆的内接正三角形,因此可以得到小圆的面积为大圆面积的三分之一,依此小圆面积为40故答案是:40.三、填空题(共3小题,每小题12分,满分36分)9.(12分)希希和姗姗各有若干张积分卡.希希对姗姗说:“如果你给我3张,我的张数就是你的3倍”姗姗对希希说:“如果你给我4张,我的张数就是你的4倍”希希对姗姗说:“如果你给我5张,我的张数就是你的5倍”已知以上三句话中恰有一句不正确,那么,原来希希有15 张积分卡.【解答】解:根据分析,假设第一、二句是对的,那么总和应该是20的倍数,根据第一句,希希与珊珊积分卡之比应该为15:5,根据第二句,希希与珊珊卡数之比应该为4:16,每个人差的11倍对应了7张卡,不是整数,舍去.假设第一、三句是对的,总和应该是12的倍数,根据第一句,二人积分卡之比为9:3,根据第二句,二人积分卡之比为10:2,差的1份为多给的2张,成立,因此希希和珊珊积分卡之比为6:24,根据第三句,希望和珊珊积分卡之比为25:5,相差的19份为9张,不是整数,不成立,舍去.综上,第一、三句是对的,希希有15张积分卡.故答案是:15.10.(12分)如图,A、B为圆形轨道一条直径的两个端点,甲、乙、丙三个微型机器人在圆形轨道上同时出发,作匀速圆周运动,甲、乙从A出发,丙从B出发;乙顺时针运动,甲、丙逆时针运动,出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到达A后,再过56 秒钟,乙才第一次到达B.【解答】解:甲经过12秒钟到从A到达B,则再过9秒钟后甲到达C点,且BC的长度等于AB长度的,则AC的长度等于AB长度的,即21秒钟的时间内,甲的路程为AB+BC=AB段,乙的路程为AC=AB,丙的路程为BC=AB,则速度比甲:乙:丙=7:1:3,丙从C到达A所用时间=21×=7(秒),此时乙从C点到达D点,所用时间也为7秒,因为CA=BC,则CD=AC,则CB=8CD,丙到达A后乙到达B的所需时间:8×7=56(秒)故答案为:5611.(12分)在空格内填入数字1﹣6,使得每行每列数字不重复,黑点两边的数是两倍的关系,白点两边的数差为1.那么第四行所填数字从左往右前5位组成的五位数是21436 .【解答】解:依题意可知:如图所示,D,E,F必然是1,2,4或者4,2,1.因此B,C一定是3和6.故可知A是5.而G,H,I为三个连续自然数,I存在2倍关系,则只能是1,2,3.故右上角为6.左上角为4.并可以判定B是6,C是3.因此C的右边临格为6.以此为突破口,可以填表如图所示:故答案为:21436声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:12:42;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800第11页(共11页)。

六年级迎春杯试题及答案

六年级迎春杯试题及答案

六年级迎春杯试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是正确的?A. 地球是平的B. 地球是圆的C. 地球是方的D. 地球是三角形的2. 以下哪个数学公式是正确的?A. 圆的面积 = 半径× 半径B. 圆的面积 = 半径× π × 半径C. 圆的周长 = 直径× 2D. 圆的周长 = 半径× 2π3. 根据题目所给信息,以下哪个选项是错误的?A. 春天是一年四季之一B. 迎春杯是冬季举行的竞赛C. 迎春杯是为了庆祝春天的到来D. 迎春杯通常在春季举行4. 以下哪个成语与“春天”有关?A. 春暖花开B. 秋高气爽C. 夏日炎炎D. 冬日暖阳5. 以下哪个选项是迎春杯试题的类型?A. 选择题B. 填空题C. 判断题D. 论述题二、填空题(每题2分,共10分)6. 春天是_________、_________、_________和_________四个季节之一。

7. 迎春杯试题的类型包括选择题、填空题、_________和_________。

8. 地球的形状是_________,因为它在自转和公转时表现出的离心力和引力的平衡。

9. 圆的周长公式是_________,其中C代表周长,d代表直径。

10. 成语“春暖花开”常用来形容_________。

三、判断题(每题1分,共5分)11. 迎春杯试题及答案的标题是“六年级迎春杯试题及答案”。

()12. 地球的形状是平的。

()13. 迎春杯试题通常在冬季举行。

()14. 成语“秋高气爽”与春天有关。

()15. 圆的面积公式是πr²,其中r代表半径。

()四、简答题(每题5分,共10分)16. 请简述迎春杯试题的特点。

17. 请解释为什么地球的形状是圆的。

五、论述题(15分)18. 论述春天对人们生活的影响。

参考答案:1. B2. B3. B4. A5. A6. 春、夏、秋、冬7. 判断题、论述题8. 圆的9. C = πd10. 春天的气候温暖,百花盛开的景象11. √12. ×13. ×14. ×15. √16. 迎春杯试题通常包括选择题、填空题、判断题和论述题,旨在考查学生的综合能力。

2020年“春笋杯”数学花园探秘网试试卷(六年级)

2020年“春笋杯”数学花园探秘网试试卷(六年级)

2015年“迎春杯”数学花园探秘网试试卷(六年级)一、填空题Ⅰ(每题8分,共24分)1.(8分)如果两个质数的差恰好是2,称这两个数为一对孪生质数.例如:3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.如果一对孪生质数中的两个质数都不超过200,这两个质数的和最大为.2.(8分)大圆柱的高是小圆柱的2倍,大圆柱的侧面积是小圆柱侧面积的12倍,大圆柱的体积是小圆柱体积的倍.3.(8分)图中共有个格点可以与A和B这两点构成等腰三角形的三个顶点.二、填空题(每题10分,共30分)4.(10分)在1220后写上一个三位数,得到一个七位数;如果这个七位数是2014的倍数,那么这个三位数是.5.(10分)请在如图的每个方框中填入适当的数字,使得竖式成立(现已填入“2015”)那么竖式中乘积的最大值是.6.(10分)近年来网略购物已成为一种主要的购物方式.王阿姨经营着一家卖洗衣机的网店,她每月平均可以卖出50台洗衣机,每台成本为1200元,由于售货时是包邮的,所以每台洗衣机还需要王阿姨支付20元的快递费,除此之外每个月还需要给运营网站交付1万元的“店面费”,返修每月需要5000元,那么她经营的洗衣机每台售价至少应定为元才能使她每月售货的利润率不低于20%.三、填空题Ⅲ(每题15分,共30分)7.(15分)如图,已知正方形ABCD面积为2520;E、F、G、H为边上的靠近正方形顶点的四等分点,连AG、EC、HB、DF.那么图中“X”部分的面积是.8.(15分)在四边形ABCD中,AB=BC=9厘米,AD﹣DC=8厘米,AB垂直于BC,AD 垂直于DC.那么四边形ABCD的面积是平方厘米.四、亲子互动操作题Ⅳ(每小题18分,共36分)9.(18分)把一张边长为11厘米的正方形纸片,剪成若干边长小于11的整数厘米的正方形纸片(不必全相同,允许重复剪成同一种尺寸,纸片没有浪费),最少能剪成片.10.(18分)在空格里填入数字1~6,使得每行、每列和每宫数字不重复.盘面外的数字表示斜线方向所有格的和.那么,第四行从左往右的前5个数字组成的五位数是.2015年“迎春杯”数学花园探秘网试试卷(六年级)参考答案与试题解析一、填空题Ⅰ(每题8分,共24分)1.(8分)如果两个质数的差恰好是2,称这两个数为一对孪生质数.例如:3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.如果一对孪生质数中的两个质数都不超过200,这两个质数的和最大为396.【解答】解:求最大质数和那么从最大是数字开始枚举.根据乘积一定时一个数字大则另一个数字小.199不是2,3,5,7,11,17,19的倍数,如果有超过19的因数那么一定对应比较小的数字,所以199是质数.197同理验证也是质数.最大是199+197=396.故答案为:396.2.(8分)大圆柱的高是小圆柱的2倍,大圆柱的侧面积是小圆柱侧面积的12倍,大圆柱的体积是小圆柱体积的72倍.【解答】解:圆柱的侧面积=2πrh,设大圆柱的侧面积为S大,小圆柱的侧面积为S小,由题意得S大=12S小;h大=2h小∴r大=6r小;则大圆柱的体积:V大=πr大2h大=π(6r小)2×2h小=72πr小2h小=72V小故答案为:72.3.(8分)图中共有5个格点可以与A和B这两点构成等腰三角形的三个顶点.【解答】解:画图如下:根据上图可知,可以与A和B这两点构成等腰三角形的顶点有:C、D、E、F、G共5个点.答:图中共有5个格点可以与A和B这两点构成等腰三角形的三个顶点.故答案为:5.黑豆网https://黑豆网是国内不错的在线观看电影的网站,涵盖电影,电视剧,综艺,动漫等在线观看资源!二、填空题(每题10分,共30分)4.(10分)在1220后写上一个三位数,得到一个七位数;如果这个七位数是2014的倍数,那么这个三位数是484.【解答】解:在1220后加3个0,得1220000,1220000除以2014等于605余1530,为保证该数为2014的倍数,需要在1220000的基础上加上2014﹣1530=484.故答案为:4845.(10分)请在如图的每个方框中填入适当的数字,使得竖式成立(现已填入“2015”)那么竖式中乘积的最大值是19864.【解答】解:依题意可知首先是一个两位数乘以2得到是三位数中不可能是200多,所以是100多那么第一个乘数的十位数字就是5.个位数字是乘以2没有进位的那么就是小于4的数字.所以必定是50﹣54的数字.当该两位数是54时,第三行是无法填出的.当该两位数是53时,三位因数最大是362,乘积为19186.当该两位数是52时,三位因数最大是382,乘积为19864.当该两位数是51,50时,没有符合条件的数字.故答案为:198646.(10分)近年来网略购物已成为一种主要的购物方式.王阿姨经营着一家卖洗衣机的网店,她每月平均可以卖出50台洗衣机,每台成本为1200元,由于售货时是包邮的,所以每台洗衣机还需要王阿姨支付20元的快递费,除此之外每个月还需要给运营网站交付1万元的“店面费”,返修每月需要5000元,那么她经营的洗衣机每台售价至少应定为1824元才能使她每月售货的利润率不低于20%.【解答】解:根据分析,平均每台洗衣机的成本为:1200+20+(10000+5000)÷50=1520(元);利润率为20%时,则售价为:1520×(1+20%)=1824(元).故答案是:1824.三、填空题Ⅲ(每题15分,共30分)7.(15分)如图,已知正方形ABCD面积为2520;E、F、G、H为边上的靠近正方形顶点的四等分点,连AG、EC、HB、DF.那么图中“X”部分的面积是1155.【解答】解:如图:中间菱形的两条对角线长度分别是AE和,AE=AD×÷2=所以重叠面积是正方形面积的,两个平行四边形的面积都是正方形面积的,+﹣=2520×=1155答:图中“X”部分的面积是1155.故答案为:1155.8.(15分)在四边形ABCD中,AB=BC=9厘米,AD﹣DC=8厘米,AB垂直于BC,AD 垂直于DC.那么四边形ABCD的面积是65平方厘米.【解答】解:根据分析,如图所示,设CE=x,则AC=x+8在Rt△ABC中,由勾股定理得:AB2+BC2=AC2在Rt△ADC中,AD2+DC2=AC2即:AB2+BC2=AD2+DC292+92=(x+8)2+x2得:x2+8x=49∴x(x+8)=49S△ADC=×AD×CD=x(x+8)=×49=S△ABC=×AB×BC=×9×9=S四边形ABCD=S△ADC+S△ABC=+=65故答案为:65四、亲子互动操作题Ⅳ(每小题18分,共36分)9.(18分)把一张边长为11厘米的正方形纸片,剪成若干边长小于11的整数厘米的正方形纸片(不必全相同,允许重复剪成同一种尺寸,纸片没有浪费),最少能剪成11片.【解答】解:根据分析,如图;11厘米若分成两个边长一样的正方形,则无法保证边长为整数,故只能一个是6厘米,另一个为5厘米,故可以分成一个6厘米的正方形,两个边长为5厘米的正方形,剩下的还至少可以分成三个边长为3的正方形,最后剩下中间的8个小方格,再分,至少可以分成一个边长为2的小正方形,和4个边长为1的小正方形.综上,共可以分成:1+2+3+1+4=11个正方形.故答案是:11.10.(18分)在空格里填入数字1~6,使得每行、每列和每宫数字不重复.盘面外的数字表示斜线方向所有格的和.那么,第四行从左往右的前5个数字组成的五位数是35126.【解答】解:首先确定四个角上的数字,盘面外的数字7和5,可以确定相应的数字,再用类似的方法,即可得出图中的结论.所以第四行从左往右的前5个数字组成的五位数是35126.故答案为35126.。

2016年迎春杯网考六年级解析12月18日2015年与知识点总结

2016年迎春杯网考六年级解析12月18日2015年与知识点总结

99,总箱子数是 100 . 5.将右图中的乘法竖式补充完整后,两个乘数的和是_______.

2 0 1 6 5
【答案】 935 【解析】因为 abc 2 的计算结果是四位数, abc d 的计算结果是一位数,所以可得 b=1,d=1,c=3 或 8.最高位 a 只能取 5、 6、 7、 8、 9 中的一种.因为积的万位是 5, 千位相加的进位只能是 0、 1、 2, 因此 a 只能取 7. 71c e f 0 gi , 可推出 e=7,c=8.因此上式为 718 217 155806 ,因此 718 217 935 . a b c 2 d e
事先的约定,这个数是去掉那箱毒品后,其他各箱号的平均数,那么那箱毒品的号码是________ 【答案】 19
9 559 50.8 ,所以去掉该箱后箱子数量必为 11 的倍数.箱数平均数是 50.8, 11 11 (1 100) 100 x 559 ,因此,毒 所以箱子数可估算为 99,设毒品箱编号为 x,根据题意,可列方程: 2 , x 19 99 11
【答案】2275 【解析】图中每段圆弧的圆心都是 O,对应的角度也一样,所以各种颜色“圆环”的面积都可以表示出来. 设 OD= r , 每种颜色宽度都是 a, 可得: ① 紫色面积为: [(r a) r ] π n 360
2 2
② 蓝色面积为: [(r 2a) (r a) ] π n 360
2 2
两者相比可得出: r
19 a ; 2
2 2
③ 红色面积为: [(r 7a) (r 6a) ] π n 360 = (2r 13a) π n 360 =400 ④“彩虹”面积为: [(r 7a) r ] π n 360 = (14r 49a) π n 360

“迎春杯”数学花园探秘科普活动试卷(小中组决赛b卷)

“迎春杯”数学花园探秘科普活动试卷(小中组决赛b卷)

2015年“迎春杯”数学花园探秘科普活动试卷(小中组决赛B卷)一、填空题Ⅰ(每题8分,共32分)1.(8分)算式2015﹣20×15的计算结果是.2.(8分)如图中共能数出个长方形.3.(8分)有一根绳子,第一次把它按左图方式对折,在对折处标记①,第二次我们将它按中图方式对折,在对折处在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果右图中②号点和③号点之间的距离为20厘米,那么这根绳子的总长度是厘米(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计)4.(8分)请将0~9折10个数分别填入如图的10个方框中,使得减法算式成立.如果“6”、“1”这两个数字分别填在被减数的前两个方框中,那么算式的差是.二、填空题Ⅱ(每题10分,共40分)5.(10分)现有四张卡片,分别写有2、0、1、5,甲、乙、丙、丁四人各分了一张卡片.甲说:你们三人拿的数字中没有我拿的数字差1的;乙说:你们三人拿的数字中必有我拿的数字差1的;丙说:我拿的数字不能作四位数的首位数字;丁说:我拿的数字不能作四位数的个位数字.如果发现,凡是拿偶数数字的都说假话,而拿奇数数字的都说真话.那么甲、乙、丙、丁四人所拿数字依次组成的四位数是.6.(10分)大长方形中如图摆放了四个小正方形,如果每个小正方形的边长都是6厘米,那么图中阴影部分的面积是平方厘米.7.(10分)一家玩具店出售一类拼装积木:星际飞船每个售价8元,机甲每个售价26元;一个星际飞船和一个机甲可以拼出终极机甲,终极机甲每套售价33元.如果店主一个星期共售出了星际飞船与机甲共31个,收入370元;那么其中单独售出的星际飞船共个.8.(10分)请在如图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字.那么图中第二行从左到右所填数字依次组成的四位数是(如图是一个3×3的例子).三、填空题Ⅲ(每题16分,共48分)9.(16分)有六堆苹果,它们的个数刚好组成一个等差数列,俊俊挑选出其中一堆,拿出了其中的150个苹果,分配给其余5堆,每堆依次分配给其余5堆,每堆依次是10个、20个、30个、40个、50个.分配好了之后,俊俊神奇地发现,这5堆苹果的个数依次是被他选出那一堆的2倍、3倍、4倍、5倍、6倍.那么这六堆苹果一共有个.10.(16分)图1是由2个小等边三角形组成的菱形纸片;图2是一个固定好的正六边形棋盘ABCDEF,它由24个同样大小的小等边三角形组成,现用12块菱形纸片完全覆盖正六边形棋盘,共有种不同的覆盖方法.11.(16分)现有一个三位数111,每次操作是将其中2位数字都变成这两位数字和的个位数字.例如:111→122→144→554→004(允许首位为0).如果要将111变成777,那么至少需要操作次.2015年“迎春杯”数学花园探秘科普活动试卷(小中组决赛B卷)参考答案与试题解析一、填空题Ⅰ(每题8分,共32分)1.(8分)算式2015﹣20×15的计算结果是1715 .【解答】解:2015﹣20×15=2015﹣300=1715故答案为:1715.2.(8分)如图中共能数出11 个长方形.【解答】解:根据分析可得,4+7=11(个)答:图中共能数出11个长方形.故答案为:11.3.(8分)有一根绳子,第一次把它按左图方式对折,在对折处标记①,第二次我们将它按中图方式对折,在对折处在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果右图中②号点和③号点之间的距离为20厘米,那么这根绳子的总长度是120 厘米(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计)【解答】解:由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份设每一份为x,则③到绳子末端的距离=20+x,那么3x=20+x,x=10(厘米),则③到绳子末端的距离为30厘米,绳子的全长是30×4=120(厘米).故答案为:120.4.(8分)请将0~9折10个数分别填入如图的10个方框中,使得减法算式成立.如果“6”、“1”这两个数字分别填在被减数的前两个方框中,那么算式的差是59387 .【解答】解:根据题意可知:首先确定结果的首位数字一定是5,因为百位数字有0,无借位所以结果中千位数字一定是9.在剩下的数字0,2,3,4,6,7,8中.看尾数符合的组合有7+5=12,8+5=13两组.当尾数是8+5组合时,没有满足条件的数字.当尾数是7+5=12的组合时.十位数字需要向百位借位才满足条件,同时百位数字相差1.分析可得:故答案为:59387二、填空题Ⅱ(每题10分,共40分)5.(10分)现有四张卡片,分别写有2、0、1、5,甲、乙、丙、丁四人各分了一张卡片.甲说:你们三人拿的数字中没有我拿的数字差1的;乙说:你们三人拿的数字中必有我拿的数字差1的;丙说:我拿的数字不能作四位数的首位数字;丁说:我拿的数字不能作四位数的个位数字.如果发现,凡是拿偶数数字的都说假话,而拿奇数数字的都说真话.那么甲、乙、丙、丁四人所拿数字依次组成的四位数是5120 .【解答】解:根据分析,若丙说的话是真的,则他拿的是奇数,而显然矛盾,故他拿的是偶数而且不是0,故他拿的是2;剩下一个偶数,和两个奇数,故还有两个人说的话是真话,有一个人说的是假话,而和2差1的只有1,故乙拿的是1,而没有相差1的数只有5,故甲拿的是5,剩下的是0显然就是丁拿的了,故答案是:5120.6.(10分)大长方形中如图摆放了四个小正方形,如果每个小正方形的边长都是6厘米,那么图中阴影部分的面积是126 平方厘米.【解答】解:6×6×3.5=36×3.5=126(平方厘米)答:图中阴影部分的面积是 126平方厘米.故答案为:126.7.(10分)一家玩具店出售一类拼装积木:星际飞船每个售价8元,机甲每个售价26元;一个星际飞船和一个机甲可以拼出终极机甲,终极机甲每套售价33元.如果店主一个星期共售出了星际飞船与机甲共31个,收入370元;那么其中单独售出的星际飞船共20 个.【解答】解:设单独出售星际飞船共x个,单独出售机甲为y个,打包销售共个8x+26y+×33=370化简得:17x﹣19y=283因为x和y都是小于31的整数,同时17x大于283,那么x>16的整数.枚举法即可解得x=20,y=3.故答案为:208.(10分)请在如图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字.那么图中第二行从左到右所填数字依次组成的四位数是(如图是一个3×3的例子).【解答】解:根据分析,从第二行第一个开始推导,故第一个应填1;第二个指向右边两空,只能填1或2,若填1,因第三个指向右边一个数故只能填1,故第四个箭头只能填1,而第四个箭头指向下面两个数,若为1则第三行第四个箭头只能填3,而第三行第四个指向上面两个数,不能填3,故矛盾,所以第二个指向只能填2;第二行第三个指向右边,而右边只有一个数,故只能填1;而第二行第四个指向下面两个,又前面第二个指向说明,第四个数和第三个数不同,故四个数只能填2.所以,第二行应填入的数是:1212,如图:故此四个数为:1212,故答案是:1212.三、填空题Ⅲ(每题16分,共48分)9.(16分)有六堆苹果,它们的个数刚好组成一个等差数列,俊俊挑选出其中一堆,拿出了其中的150个苹果,分配给其余5堆,每堆依次分配给其余5堆,每堆依次是10个、20个、30个、40个、50个.分配好了之后,俊俊神奇地发现,这5堆苹果的个数依次是被他选出那一堆的2倍、3倍、4倍、5倍、6倍.那么这六堆苹果一共有735 个.【解答】解:设后来的每一份分别为:a,2a,3a,4a,5a,6a.那么他们原来就是a+150,2a﹣10,3a﹣20,4a﹣30,5a﹣40,6a﹣50.根据后面的数字得到公差为5a﹣40﹣(4a﹣30)=a﹣10.那么根据根据公差2a﹣10前面应该是a﹣20.所以a+150为数列的最大值.a+150﹣(a﹣10)=160.那么6a﹣50=160.所以a=35.故后来的数量为35,70,105,140,175,210.总数为35+70+105+140+175+210=735(个)故答案为:73510.(16分)图1是由2个小等边三角形组成的菱形纸片;图2是一个固定好的正六边形棋盘ABCDEF,它由24个同样大小的小等边三角形组成,现用12块菱形纸片完全覆盖正六边形棋盘,共有20 种不同的覆盖方法.【解答】解:将正六边形棋盘分为内外两部份(分法见下图),接下来分类讨论:①内外两部份分开各自密铺:外面环形有2种密铺法,里面小正六边形也有2种密铺法,故此时有2×2=4种;②里面有2个三角形与外面相邻的环形上2个三角形相接密铺,这2个三角形必须相邻或相对:当这2个三角形相邻时,共有6种密铺法;当这2个三角形相对时,共有3种密铺法;此时共有6+3=9种;③里面有4个三角形与外面相邻的环形上4个三角形相接密铺,由于里面剩下的2个三角需要组成菱形,所以剩下这2个三角形相邻,故此时有6种密铺法:④里面有6个三角形与外面相邻的环形上6个三角形相接密铺时,此时有1种密铺法;综上,此题一共有4+9+6+1=20种.故答案为:20.11.(16分)现有一个三位数111,每次操作是将其中2位数字都变成这两位数字和的个位数字.例如:111→122→144→554→004(允许首位为0).如果要将111变成777,那么至少需要操作10 次.【解答】解:根据分析,逆向推导:①777←770←700←755←778←988←944←995←455←441←221←111;②777←770←700←773←433←449←599←554←144←122←111,③777←770←700←755←778←988←999←990←900←955←996←366 ←333←330←300←337←677←661←331←211←229←119←299←227←④777←770←700←755←778←988←999←990←900←991⑤777←770←700←易知,至少需要操作10次.故答案是:10.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:11:40;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800第11页(共11页)。

迎春杯六年级试题及答案

迎春杯六年级试题及答案

迎春杯六年级试题及答案一、选择题(每题3分,共30分)1. 以下哪个数是质数?A. 15B. 23C. 48D. 66答案:B2. 一个长方体的长、宽、高分别是10cm、8cm和6cm,那么它的体积是多少立方厘米?A. 480B. 400C. 320D. 240答案:A3. 一个数的3倍是48,这个数是多少?A. 16B. 12C. 8D. 6答案:A4. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A5. 一个圆的直径是14cm,那么它的半径是多少?B. 14cmC. 21cmD. 28cm答案:A6. 一个数除以5余3,除以7余1,这个数最小是多少?A. 36B. 37C. 38D. 39答案:B7. 一个等腰三角形的底边长为10cm,两腰长为8cm,那么它的周长是多少?A. 26cmB. 28cmD. 32cm答案:A8. 一个数的5倍加上3等于这个数的7倍减去5,这个数是多少?A. 4B. 5C. 6D. 7答案:A9. 一个长方形的长是宽的两倍,如果宽增加2cm,长减少2cm,那么它的面积不变,原来的长方形的长和宽分别是多少?A. 长8cm,宽4cmB. 长10cm,宽5cmC. 长12cm,宽6cmD. 长14cm,宽7cm答案:B10. 一个数的1/4加上这个数的1/3等于9,这个数是多少?A. 12B. 18C. 24D. 36答案:C二、填空题(每题4分,共40分)11. 一个数的倒数是1/5,这个数是______。

答案:512. 一个数的1/2加上这个数的1/3等于7,这个数是______。

答案:1213. 一个数的3倍减去2等于这个数的2倍加上3,这个数是______。

答案:514. 一个长方体的长、宽、高分别是a、b、c,那么它的表面积是______。

答案:2(ab + ac + bc)15. 一个数的1/4加上这个数的1/6等于1/2,这个数是______。

“迎春杯”六年级数学花园探秘科普活动总决赛试卷

“迎春杯”六年级数学花园探秘科普活动总决赛试卷

第 1 页 共 3 页
2018年“迎春杯”六年级数学花园探秘科普活动总决赛试卷解
析版
一、填空题。

(每小题10分,共30分)
1.(10分)如图,在每个空格内填入1~4中的一个,使每行、每列以及每个由粗线所围成
的区域中的四个数都不重复,且任意相邻两个空格所填数的和都是质数.那么四位数ABCD = 2143 .
【解答】解:由题意,C 在1的上方,只能填偶数,但是同一列已经有2,所以C =4, 则B 和D 只能是奇数,在同一区域中已经有1,所以D =3,则B =1,
剩下A =2,四位数ABCD =2143.
故答案为:2143.
2.(10分)一个半径为5厘米的轮子放置在如图的阴影弓形中,它能沿着弓形的弦AB 滚动,
如果弓形的半径OA 、OB 为25厘米,AB 长为48厘米.那么轮子在AB 上滚动时能扫过区域的面积为 395 平方厘米.(π取3)
【解答】解:
先作OC ⊥AB ,过E 点作EF ∥AB ,并与OC 的延长线相交于F 点.
在直角三角形OCB 中,OB =25(厘米),BC =48÷2=24(厘米)
,根据勾股定理求出。

数学花园探秘(迎春杯)六年级决赛试卷及详解

数学花园探秘(迎春杯)六年级决赛试卷及详解

数学花园探秘(迎春杯)六年级决赛试卷及详解1002017 年“数学花园探秘”科普活动⼩学⾼年级组决赛试卷 A(测评时间:2017 年 1 ⽉ 1 ⽇ 8:00—9:30)⼀.填空题Ⅰ(每⼩题 8 分,共 40 分)2.⼀个边长为 100 厘⽶的正五边形和五个扇形拼成如图的“海螺”,那么这个图形的周长是厘⽶(π取 3.14).3.在 2016 年⾥约奥运会⼥排决赛中,中国队战胜了塞尔维亚队获得冠军.统计 4 局⽐赛中中国队的得分,发现前 2 局的得分之和⽐后 2 局的得分之和少 12%,前 3 局的得分之和⽐后 3 局的得分之和少8%.已知中国队在第 2 局和第 3 局中各得了 25 分,那么中国队在这 4 局中的得分总和为分.4.右⾯三个算式中,相同汉字代表相同数字,不同汉字代表不同数字;那么四位数“ 李⽩杜甫 ”=.5. n 个数排成⼀列,其中任意连续三个数之和都⼩于30,任意连续四个数之和都⼤于 40,则n 的最⼤值为.⼆.填空题Ⅱ(每⼩题 10 分,共 50 分)6.算式的计算结果是.7.有⼀个四位数,它和 6 的积是⼀个完全⽴⽅数,它和 6 的商是⼀个完全平⽅数;那么这个四位数是.8.在空格⾥填⼊数字 1~6,使得每⾏、每列和每个 2×3的宫(粗线框)内数字不重复.若虚线框A,B,C,D,E,F 中各⾃数字和依次分别为 a ,b ,c ,d ,e ,f ,且 a =b ,c =d ,e >f .那么第四⾏的前五个数字从左到右依次组成的五位数是.10120 C P 179. 抢红包是微信群⾥⼀种有趣的活动,发红包的⼈可以发总计⼀定⾦额的⼏个红包,群⾥相应数量的成员可以抢到这些红包,并且⾦额是随机分配的.⼀天陈⽼师发了总计 50 元的 5 个红包,被孙、成、饶、赵、乔五个⽼师抢到.陈⽼师发现抢到红包的 5 个⼈抢到的⾦额都不⼀样,都是整数元的,⽽且还恰好都是偶数.孙⽼师说:“我抢到的⾦额是10 的倍数.” 成⽼师说:“我和赵⽼师抢到的加起来等于孙⽼师的⼀半.” 饶⽼师说:“乔⽼师抢到的⽐除了孙⽼师以外其他所有⽼师抢到的总和还多.” 赵⽼师说:“其他所有⽼师抢到的⾦额都是我的倍数.” 乔⽼师说:“饶⽼师抢到的是我抢到的 3 倍.” 已知这些⽼师⾥只有⼀个⽼师没说实话,那么这个没说实话的⽼师抢到了元的红包.D10. 如图,P 为四边形 ABCD 内部的点,AB :BC :DA =3:1:2,∠DAB =∠ CBA =60°.图中所有三⾓形的⾯积都是整数.如果三⾓形PAD 和三⾓形 PBC 的⾯积分别为 20 和 17,那么四边形ABCD 的⾯积最⼤是.三.填空题Ⅲ(每⼩题 12 分,共 60 分)A B11. 有⼀列正整数,其中第 1 个数是 1,第 2 个数是 1、2 的最⼩公倍数,第 3 个数是 1、2、3 的最⼩公倍数,……,第 n 个数是1、2、……、n 的最⼩公倍数.那么这列数的前 100个数中共_______个不同的值.12. 如图,有⼀个固定好的正⽅体框架,A 、B 两点各有⼀只电⼦跳蚤同时开 A 始跳动.已知电⼦跳蚤速度相同,且每歩只能沿棱跳到相邻的顶点,两只电⼦跳蚤各跳了 3 歩,途中从未相遇的跳法共有种.13. 甲以每分钟 60 ⽶的速度从 A 地出发去 B 地,与此同时⼄从 B 地出发匀速去 A 地;过了 9 分钟,丙从 A 地出发骑车去 B 地,在途中 C 地追上了甲甲、⼄相遇时,丙恰好到 B 地;丙到 B 地后⽴即调头,且速度下降为原来速度的⼀半;当丙在 C 地追上⼄时,甲恰好到 B 地.那么AB 两地间的路程为⽶.10214. 在⼀个 8×8 的⽅格棋盘中放有 36随后的空格棋⼦,则不能进⾏操作.那么最后在棋盘上最少剩下枚棋⼦. 15. 你认为本试卷中⼀道最佳试题是第题(答题范围为01~14);你认为本试卷整体的难度级别是(最简单为“1”,最难为“9”,答题范围为 1~9);你认为本试卷中⼀道最难试题是第题;(答题范围为 01~14).(所有答题范围内的作答均可得分,所有的评定都将视为本⼈对本试卷的有效评定,不作答或者超出作答范围不得分.)2017数学花园探秘科普活动⼩⾼决赛A解析1.答案:64 解析:原式=(632-163)+(1-163)=63+1=642.答案:2384 解析:500+15×2×π×(100+200+300+400+500)=23843.答案:94 解析:注意到前三局⽐前两局多25分,后三局⽐后两局多25分,所以中国队得分总和为25+(18%-112%)÷12%×(1+1-12%)=94分。

六年级下册数学试题-2019年“迎春杯”数学花园探秘决赛试卷(小高组c卷)(含答案解析)全国通用

六年级下册数学试题-2019年“迎春杯”数学花园探秘决赛试卷(小高组c卷)(含答案解析)全国通用

2019年“迎春杯”数学花园探秘决赛试卷(小高组C卷)一、填空题(共5小题,每小题8分,满分40分)1.(8分)算式2016÷(13﹣8)×(﹣)的计算结果是.2.(8分)帅帅七天背了一百多个单词,前三天所背单词量与后四天所背单词量的比是3:4,后三天所背单词量与前四天所背单词量的比是5:6;那么帅帅第四天背了个单词.3.(8分)四段相同的圆弧围成了图①的地板砖,且每段圆弧都是同一个圆的四分之一(这样的地板砖可以如图②那样密铺平面),如果地板砖的两段外凸弧的中点间距离30厘米,那么一块地板砖的面积是平方分厘米.4.(8分)销售一种商品,利润率为25%,如果想把利润率提高到40%,那么售价应该提高%.5.(8分)将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是.二、填空题(共5小题,每小题10分,满分50分)6.(10分)某项工程,单独做甲需要24天,乙需要36天,丙需要60天;已知三个队伍都恰好干了整数天,且18天内(含18天)完成了任务,那么甲至少干了天.7.(10分)请将1﹣9分别填入下面算式的方框中,每个数字恰用一次,使等式成立,已知两位数不是3的倍数,那么五位数是.8.(10分)九张卡片上分别写着2,3,4,5,6,7,8,9,10(不能倒过来看).甲乙丙丁四人分别抽取其中的两张.甲说:“我拿到的两个数互质,因为它们相邻”乙说:“我拿到的两个数不互质,也不是倍数关系”丙说:“我拿到的两个数都是合数,但它们互质”丁说:“我拿到的两个数是倍数关系,它们也不互质”如果这4人说的都是真话,那么剩下的一张卡片上与的数是.9.(10分)在空格内填入1﹣6,使得每行和每列的数字都不重复.图中相同符号所占的两格数字组合相同,数字顺序不确定,那么最后一行前五个数字按从左到右的顺序组成的五位数是.10.(10分)分数化成循环小数后,循环节恰有位.三、填空题(共4小题,每小题12分,满分48分)11.(12分)如图,在七个空白的方格内各填入一个正整数(可以相同),使得上下相邻的两个数,下面是上面的倍数;左右相邻的两个数,右面是左面的倍数,那么共有种填法.12.(12分)甲乙两人从A地去B地,甲出发48分钟后,乙再出发,结果当甲走了全程的时被乙追上.如果乙到达B地后立即原速返回,则乙离开B地6分钟后与甲相遇,那么当乙再次来到追上甲的地点后,甲还要走分钟到达B地.13.(12分)正十二边形的边长是12厘米,那么图中阴影部分的面积是平方厘米.14.(12分)如图的字母分别表示1﹣9内的不同数字,相邻两格中数字共能组成24个两位数(如,,),同行或同列三个数字共能依次组成12个三位数(如,,),这36个数中,合数最多有个.2019年“迎春杯”数学花园探秘决赛试卷(小高组C卷)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)算式2016÷(13﹣8)×(﹣)的计算结果是105.【解答】解:2016÷(13﹣8)×(﹣)=2016÷×=2016××=105故答案为:105.2.(8分)帅帅七天背了一百多个单词,前三天所背单词量与后四天所背单词量的比是3:4,后三天所背单词量与前四天所背单词量的比是5:6;那么帅帅第四天背了18个单词.【解答】解:根据分析,设前三天背的单词量为3k,则后四天背的单词量为4k,第四天的单词量为a,则后三天背的单词量为4k﹣a,按题意,有:,解得:a=,故后三天背的单词量为:,故:前三天,第四天,后三天背的单词量之比为:3k::=33:9:35,设前三天,第四天,后三天背的单词量分别为:33b,9b,35b,则七天的单词量为:33b+9b+35b=77b,∵100<77b<200∴b=2,即:第四天背的单词量为:9×2=18个.故答案是:18.3.(8分)四段相同的圆弧围成了图①的地板砖,且每段圆弧都是同一个圆的四分之一(这样的地板砖可以如图②那样密铺平面),如果地板砖的两段外凸弧的中点间距离30厘米,那么一块地板砖的面积是450平方分厘米.【解答】450解:30÷2=15(厘米)3.14×(30÷2)2÷4﹣15×15÷2=3.14×225÷4﹣112.5=176.625﹣112.5=64.125(平方厘米)3.14×(30÷2)2﹣64.125×4=3.14×225﹣256.5=706.5﹣256.5=450(平方厘米)答:一块地板砖的面积是450平方厘米.故答案为:450.4.(8分)销售一种商品,利润率为25%,如果想把利润率提高到40%,那么售价应该提高12%.【解答】解:1+25%=125%1+40%=140%(140%﹣125%)÷125%=15%÷125%=12%答:售价应该提高12%.故答案为:12.5.(8分)将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是2601.【解答】解:根据分析,将2016的四个数字重新编排,设此四位数为A=n2,322<1026≤A≤6210<802,32<n<80,要想组成一个四位完全平方数,则个位数必为0,1,6,又因为个位为0时,四位数必然出现两个0才能是一个平方数,故可以排除个位数是0和2的数,个位数为1和6的数有:2061、2601、6021、6201、1206、1026、2016、2106,共八个数,其中,若个位数为6,则n=36、46、56、66、76,而362=1296,462=2116,562=3136,662=4356,762=5776,均不合题意,故排除,所以个位数为1,而2061、2601、6021、6201,这四个数中只有2601=512,是一个平方数,此四位数是2601,故答案是:2601.二、填空题(共5小题,每小题10分,满分50分)6.(10分)某项工程,单独做甲需要24天,乙需要36天,丙需要60天;已知三个队伍都恰好干了整数天,且18天内(含18天)完成了任务,那么甲至少干了6天.【解答】解:依题意可知:甲乙丙的效率为:,,.要甲最少干几天那么需要乙丙工作天数多.当乙正好工作18天时,工作总量为18×=.当乙工作天数为18天时,剩余的工作总量丙工作不是整数天.那么分析60的约数15天时,丙的工作量为:.甲的工作天数为:(1﹣﹣)=6(天)故答案为:67.(10分)请将1﹣9分别填入下面算式的方框中,每个数字恰用一次,使等式成立,已知两位数不是3的倍数,那么五位数是85132.【解答】解:2016=2×2×2×2×2×7×3×3,因为两位数不是3的倍数,则后面必乘以至少有一个能被3整除的个位数,此时,2016=32×7×9=56×6×6;显然56×6×6不合题意,舍去,故2016=×□×□=32×7×9,=32;1~9数字已经用了2,3,7,9;再看看□×□×(﹣C)只能是1,4,5,6,8.只有2016=4×8×63=6×8×42=4×6×84可能符合,①若2016=4×8×63,则63=70﹣7=71﹣8=72﹣9=64﹣1=65﹣2=66﹣3=67﹣4=68﹣5=69﹣6(数字重复,故舍去);②若2016=6×8×42,则42=50﹣8=51﹣9=43﹣1=44﹣2=45﹣3=46﹣4=47﹣5=48﹣6=49﹣7(数字重复,故舍去),③若2016=4×6×84,则84=90﹣6=91﹣7=92﹣8=93﹣9=85﹣1=86﹣2=87﹣3=88﹣4=89﹣5,符合条件的只有84=85﹣1,故2016=4×6×(85﹣1)即:,C=1.此五位数是:85132.故答案是:85132.8.(10分)九张卡片上分别写着2,3,4,5,6,7,8,9,10(不能倒过来看).甲乙丙丁四人分别抽取其中的两张.甲说:“我拿到的两个数互质,因为它们相邻”乙说:“我拿到的两个数不互质,也不是倍数关系”丙说:“我拿到的两个数都是合数,但它们互质”丁说:“我拿到的两个数是倍数关系,它们也不互质”如果这4人说的都是真话,那么剩下的一张卡片上与的数是7.【解答】解:根据丙说:“我拿到的两个数都是合数,但它们互质”可得,是4、8、9、10中的两张,丙抽取的两张是9和4、8、10中的一张;根据乙说:“我拿到的两个数不互质,也不是倍数关系”可得,肯定没有2,那么只能是4、6、8、10中的两个,即4和6、4和10、6和8、6和10、8和10;先假设,丙抽取的两张是9和4;乙抽取的两张是8和6,还剩下,2、3、5、7、10,此时,先满足甲说:“我拿到的两个数互质,因为它们相邻”,满足此条件的是2、3;则,还剩下5、7、10,其中满足丁说:“我拿到的两个数是倍数关系,它们也不互质”是5和10,所以,最后还剩下数字7.答:剩下的一张卡片上写的数是7.故答案为:7.9.(10分)在空格内填入1﹣6,使得每行和每列的数字都不重复.图中相同符号所占的两格数字组合相同,数字顺序不确定,那么最后一行前五个数字按从左到右的顺序组成的五位数是46123.【解答】解:依题意可知:首先是第二行第二列的数字只能是5,第三行第四列只能是6.继续推理可知答案如图所示:故答案为:46123.10.(10分)分数化成循环小数后,循环节恰有6位.【解答】解:=1÷2016=0.00049603174603174…,所以,循环节是603174,循环节恰有6位.故答案为:6.三、填空题(共4小题,每小题12分,满分48分)11.(12分)如图,在七个空白的方格内各填入一个正整数(可以相同),使得上下相邻的两个数,下面是上面的倍数;左右相邻的两个数,右面是左面的倍数,那么共有136种填法.【解答】解:(1)E=1时,B=1,D=1;F=1时,C=1,此时一共有6种填法;F=3时,C=1或3,此时一共有12种填法;F=9时,C=1或3或9,此时一共有18种填法;(2)E=3,B=D=1时,F=3,C=1或3,此时一共有2•(2+2+1)=10种填法;F=9,C=1或3或9,此时一共有3•(2+2+1)=15种填法;(3)E=3,B=1,D=3时,F=3,C=1或3,此时一共有2•(2+1)=6种填法;F=9,C=1或3或9,此时一共有3•(2+1)=9种填法;(4)E=3,B=3,D=1时,同(3)有6+9=15种填法;(5)E=B=D=3时,F=3,C=3,此时一共有3种填法;F=9,C=3或9,此时一共有6种填法;(6)E=9,B=D=1时,F=9,C=1或3或9,H=9,G=1或3或9,此时一共有9种填法;(7)E=9,B=1,D=3时,F=9,H=9,G=3或9,C=1或3或9,此时一共有6种填法;(8)E=9,B=1,D=9时,F=9,此时有3种填法,同理E=9,B=3时,一共有6+4+2=12种填法;E=9,B=8时,一共有6种填法,综上所述,一共有36+25+30+9+9+6+15+6=136种.12.(12分)甲乙两人从A地去B地,甲出发48分钟后,乙再出发,结果当甲走了全程的时被乙追上.如果乙到达B地后立即原速返回,则乙离开B地6分钟后与甲相遇,那么当乙再次来到追上甲的地点后,甲还要走12分钟到达B地.【解答】解:设甲、乙的速度分别为v甲、v乙,当甲走了全程的时被乙追上,时间为t 小时,则,v甲(t+)=v乙t=S,∴v甲=,v乙=,又v甲(t+++)+v乙=S代入整理可得t=小时=24分钟,所以甲行全程需要108分钟,又相遇后乙再次来到追上甲的地点的时间为24分钟,即又甲行了24分钟,总共行了72+24=96分钟,所以甲还要走108﹣96=12分钟.故答案为12分钟.13.(12分)正十二边形的边长是12厘米,那么图中阴影部分的面积是576平方厘米.【解答】解:如图,易知∠ADC=(180°﹣30°)=75°,∠DAC=(150°﹣90°)=30°,∴∠ACD=180°﹣∠ADC﹣∠DAC=75°,∴AD=AC=12,∵∠ACB=180°﹣75°﹣45°=60°,∴∠ABC=30°,∵∠CAB=90°,∴BC=2AC=24,∴阴影部分的面积=24×24=576平方厘米.故答案为57614.(12分)如图的字母分别表示1﹣9内的不同数字,相邻两格中数字共能组成24个两位数(如,,),同行或同列三个数字共能依次组成12个三位数(如,,),这36个数中,合数最多有33个.【解答】解:由题意,与5有关的两位质数只有两个53,59两种情况,故E取5,又3,6,9无论怎么组合,都是两位或3位合数,故考虑C=3,F=6,I=9,此时H=4,49,94都是合数,剩下4个数1,2,7,8,个位数是偶数,该数一定是合数,故考虑A=8,G=2,进而D=1,B=7,此时36个数中,只有13,31,457不是合数,所以36个数中,合数最多有33个.故答案为33.。

六年级下册数学试题-2019年“迎春杯”数学花园探秘决赛试卷(小高组c卷)(含答案解析)全国通用

六年级下册数学试题-2019年“迎春杯”数学花园探秘决赛试卷(小高组c卷)(含答案解析)全国通用

2019年“迎春杯”数学花园探秘决赛试卷(小高组C卷)一、填空题(共5小题,每小题8分,满分40分)1.(8分)算式2016÷(13﹣8)×(﹣)的计算结果是.2.(8分)帅帅七天背了一百多个单词,前三天所背单词量与后四天所背单词量的比是3:4,后三天所背单词量与前四天所背单词量的比是5:6;那么帅帅第四天背了个单词.3.(8分)四段相同的圆弧围成了图①的地板砖,且每段圆弧都是同一个圆的四分之一(这样的地板砖可以如图②那样密铺平面),如果地板砖的两段外凸弧的中点间距离30厘米,那么一块地板砖的面积是平方分厘米.4.(8分)销售一种商品,利润率为25%,如果想把利润率提高到40%,那么售价应该提高%.5.(8分)将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是.二、填空题(共5小题,每小题10分,满分50分)6.(10分)某项工程,单独做甲需要24天,乙需要36天,丙需要60天;已知三个队伍都恰好干了整数天,且18天内(含18天)完成了任务,那么甲至少干了天.7.(10分)请将1﹣9分别填入下面算式的方框中,每个数字恰用一次,使等式成立,已知两位数不是3的倍数,那么五位数是.8.(10分)九张卡片上分别写着2,3,4,5,6,7,8,9,10(不能倒过来看).甲乙丙丁四人分别抽取其中的两张.甲说:“我拿到的两个数互质,因为它们相邻”乙说:“我拿到的两个数不互质,也不是倍数关系”丙说:“我拿到的两个数都是合数,但它们互质”丁说:“我拿到的两个数是倍数关系,它们也不互质”如果这4人说的都是真话,那么剩下的一张卡片上与的数是.9.(10分)在空格内填入1﹣6,使得每行和每列的数字都不重复.图中相同符号所占的两格数字组合相同,数字顺序不确定,那么最后一行前五个数字按从左到右的顺序组成的五位数是.10.(10分)分数化成循环小数后,循环节恰有位.三、填空题(共4小题,每小题12分,满分48分)11.(12分)如图,在七个空白的方格内各填入一个正整数(可以相同),使得上下相邻的两个数,下面是上面的倍数;左右相邻的两个数,右面是左面的倍数,那么共有种填法.12.(12分)甲乙两人从A地去B地,甲出发48分钟后,乙再出发,结果当甲走了全程的时被乙追上.如果乙到达B地后立即原速返回,则乙离开B地6分钟后与甲相遇,那么当乙再次来到追上甲的地点后,甲还要走分钟到达B地.13.(12分)正十二边形的边长是12厘米,那么图中阴影部分的面积是平方厘米.14.(12分)如图的字母分别表示1﹣9内的不同数字,相邻两格中数字共能组成24个两位数(如,,),同行或同列三个数字共能依次组成12个三位数(如,,),这36个数中,合数最多有个.2019年“迎春杯”数学花园探秘决赛试卷(小高组C卷)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)算式2016÷(13﹣8)×(﹣)的计算结果是105.【解答】解:2016÷(13﹣8)×(﹣)=2016÷×=2016××=105故答案为:105.2.(8分)帅帅七天背了一百多个单词,前三天所背单词量与后四天所背单词量的比是3:4,后三天所背单词量与前四天所背单词量的比是5:6;那么帅帅第四天背了18个单词.【解答】解:根据分析,设前三天背的单词量为3k,则后四天背的单词量为4k,第四天的单词量为a,则后三天背的单词量为4k﹣a,按题意,有:,解得:a=,故后三天背的单词量为:,故:前三天,第四天,后三天背的单词量之比为:3k::=33:9:35,设前三天,第四天,后三天背的单词量分别为:33b,9b,35b,则七天的单词量为:33b+9b+35b=77b,∵100<77b<200∴b=2,即:第四天背的单词量为:9×2=18个.故答案是:18.3.(8分)四段相同的圆弧围成了图①的地板砖,且每段圆弧都是同一个圆的四分之一(这样的地板砖可以如图②那样密铺平面),如果地板砖的两段外凸弧的中点间距离30厘米,那么一块地板砖的面积是450平方分厘米.【解答】450解:30÷2=15(厘米)3.14×(30÷2)2÷4﹣15×15÷2=3.14×225÷4﹣112.5=176.625﹣112.5=64.125(平方厘米)3.14×(30÷2)2﹣64.125×4=3.14×225﹣256.5=706.5﹣256.5=450(平方厘米)答:一块地板砖的面积是450平方厘米.故答案为:450.4.(8分)销售一种商品,利润率为25%,如果想把利润率提高到40%,那么售价应该提高12%.【解答】解:1+25%=125%1+40%=140%(140%﹣125%)÷125%=15%÷125%=12%答:售价应该提高12%.故答案为:12.5.(8分)将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是2601.【解答】解:根据分析,将2016的四个数字重新编排,设此四位数为A=n2,322<1026≤A≤6210<802,32<n<80,要想组成一个四位完全平方数,则个位数必为0,1,6,又因为个位为0时,四位数必然出现两个0才能是一个平方数,故可以排除个位数是0和2的数,个位数为1和6的数有:2061、2601、6021、6201、1206、1026、2016、2106,共八个数,其中,若个位数为6,则n=36、46、56、66、76,而362=1296,462=2116,562=3136,662=4356,762=5776,均不合题意,故排除,所以个位数为1,而2061、2601、6021、6201,这四个数中只有2601=512,是一个平方数,此四位数是2601,故答案是:2601.二、填空题(共5小题,每小题10分,满分50分)6.(10分)某项工程,单独做甲需要24天,乙需要36天,丙需要60天;已知三个队伍都恰好干了整数天,且18天内(含18天)完成了任务,那么甲至少干了6天.【解答】解:依题意可知:甲乙丙的效率为:,,.要甲最少干几天那么需要乙丙工作天数多.当乙正好工作18天时,工作总量为18×=.当乙工作天数为18天时,剩余的工作总量丙工作不是整数天.那么分析60的约数15天时,丙的工作量为:.甲的工作天数为:(1﹣﹣)=6(天)故答案为:67.(10分)请将1﹣9分别填入下面算式的方框中,每个数字恰用一次,使等式成立,已知两位数不是3的倍数,那么五位数是85132.【解答】解:2016=2×2×2×2×2×7×3×3,因为两位数不是3的倍数,则后面必乘以至少有一个能被3整除的个位数,此时,2016=32×7×9=56×6×6;显然56×6×6不合题意,舍去,故2016=×□×□=32×7×9,=32;1~9数字已经用了2,3,7,9;再看看□×□×(﹣C)只能是1,4,5,6,8.只有2016=4×8×63=6×8×42=4×6×84可能符合,①若2016=4×8×63,则63=70﹣7=71﹣8=72﹣9=64﹣1=65﹣2=66﹣3=67﹣4=68﹣5=69﹣6(数字重复,故舍去);②若2016=6×8×42,则42=50﹣8=51﹣9=43﹣1=44﹣2=45﹣3=46﹣4=47﹣5=48﹣6=49﹣7(数字重复,故舍去),③若2016=4×6×84,则84=90﹣6=91﹣7=92﹣8=93﹣9=85﹣1=86﹣2=87﹣3=88﹣4=89﹣5,符合条件的只有84=85﹣1,故2016=4×6×(85﹣1)即:,C=1.此五位数是:85132.故答案是:85132.8.(10分)九张卡片上分别写着2,3,4,5,6,7,8,9,10(不能倒过来看).甲乙丙丁四人分别抽取其中的两张.甲说:“我拿到的两个数互质,因为它们相邻”乙说:“我拿到的两个数不互质,也不是倍数关系”丙说:“我拿到的两个数都是合数,但它们互质”丁说:“我拿到的两个数是倍数关系,它们也不互质”如果这4人说的都是真话,那么剩下的一张卡片上与的数是7.【解答】解:根据丙说:“我拿到的两个数都是合数,但它们互质”可得,是4、8、9、10中的两张,丙抽取的两张是9和4、8、10中的一张;根据乙说:“我拿到的两个数不互质,也不是倍数关系”可得,肯定没有2,那么只能是4、6、8、10中的两个,即4和6、4和10、6和8、6和10、8和10;先假设,丙抽取的两张是9和4;乙抽取的两张是8和6,还剩下,2、3、5、7、10,此时,先满足甲说:“我拿到的两个数互质,因为它们相邻”,满足此条件的是2、3;则,还剩下5、7、10,其中满足丁说:“我拿到的两个数是倍数关系,它们也不互质”是5和10,所以,最后还剩下数字7.答:剩下的一张卡片上写的数是7.故答案为:7.9.(10分)在空格内填入1﹣6,使得每行和每列的数字都不重复.图中相同符号所占的两格数字组合相同,数字顺序不确定,那么最后一行前五个数字按从左到右的顺序组成的五位数是46123.【解答】解:依题意可知:首先是第二行第二列的数字只能是5,第三行第四列只能是6.继续推理可知答案如图所示:故答案为:46123.10.(10分)分数化成循环小数后,循环节恰有6位.【解答】解:=1÷2016=0.00049603174603174…,所以,循环节是603174,循环节恰有6位.故答案为:6.三、填空题(共4小题,每小题12分,满分48分)11.(12分)如图,在七个空白的方格内各填入一个正整数(可以相同),使得上下相邻的两个数,下面是上面的倍数;左右相邻的两个数,右面是左面的倍数,那么共有136种填法.【解答】解:(1)E=1时,B=1,D=1;F=1时,C=1,此时一共有6种填法;F=3时,C=1或3,此时一共有12种填法;F=9时,C=1或3或9,此时一共有18种填法;(2)E=3,B=D=1时,F=3,C=1或3,此时一共有2•(2+2+1)=10种填法;F=9,C=1或3或9,此时一共有3•(2+2+1)=15种填法;(3)E=3,B=1,D=3时,F=3,C=1或3,此时一共有2•(2+1)=6种填法;F=9,C=1或3或9,此时一共有3•(2+1)=9种填法;(4)E=3,B=3,D=1时,同(3)有6+9=15种填法;(5)E=B=D=3时,F=3,C=3,此时一共有3种填法;F=9,C=3或9,此时一共有6种填法;(6)E=9,B=D=1时,F=9,C=1或3或9,H=9,G=1或3或9,此时一共有9种填法;(7)E=9,B=1,D=3时,F=9,H=9,G=3或9,C=1或3或9,此时一共有6种填法;(8)E=9,B=1,D=9时,F=9,此时有3种填法,同理E=9,B=3时,一共有6+4+2=12种填法;E=9,B=8时,一共有6种填法,综上所述,一共有36+25+30+9+9+6+15+6=136种.12.(12分)甲乙两人从A地去B地,甲出发48分钟后,乙再出发,结果当甲走了全程的时被乙追上.如果乙到达B地后立即原速返回,则乙离开B地6分钟后与甲相遇,那么当乙再次来到追上甲的地点后,甲还要走12分钟到达B地.【解答】解:设甲、乙的速度分别为v甲、v乙,当甲走了全程的时被乙追上,时间为t 小时,则,v甲(t+)=v乙t=S,∴v甲=,v乙=,又v甲(t+++)+v乙=S代入整理可得t=小时=24分钟,所以甲行全程需要108分钟,又相遇后乙再次来到追上甲的地点的时间为24分钟,即又甲行了24分钟,总共行了72+24=96分钟,所以甲还要走108﹣96=12分钟.故答案为12分钟.13.(12分)正十二边形的边长是12厘米,那么图中阴影部分的面积是576平方厘米.【解答】解:如图,易知∠ADC=(180°﹣30°)=75°,∠DAC=(150°﹣90°)=30°,∴∠ACD=180°﹣∠ADC﹣∠DAC=75°,∴AD=AC=12,∵∠ACB=180°﹣75°﹣45°=60°,∴∠ABC=30°,∵∠CAB=90°,∴BC=2AC=24,∴阴影部分的面积=24×24=576平方厘米.故答案为57614.(12分)如图的字母分别表示1﹣9内的不同数字,相邻两格中数字共能组成24个两位数(如,,),同行或同列三个数字共能依次组成12个三位数(如,,),这36个数中,合数最多有33个.【解答】解:由题意,与5有关的两位质数只有两个53,59两种情况,故E取5,又3,6,9无论怎么组合,都是两位或3位合数,故考虑C=3,F=6,I=9,此时H=4,49,94都是合数,剩下4个数1,2,7,8,个位数是偶数,该数一定是合数,故考虑A=8,G=2,进而D=1,B=7,此时36个数中,只有13,31,457不是合数,所以36个数中,合数最多有33个.故答案为33.。

六年级下册数学试题-2019年“迎春杯”数学花园探秘初赛试卷(六年级a卷)(含答案解析)全国通用

六年级下册数学试题-2019年“迎春杯”数学花园探秘初赛试卷(六年级a卷)(含答案解析)全国通用

2019年“迎春杯”数学花园探秘初赛试卷(六年级A卷)一、填空题Ⅰ(每题10分,共40分)1.(10分)算式:2016×的计算结果是.2.(10分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有.3.(10分)如图,一道除法竖式中已经填出了“2016”和“0”,那么被除数是.4.(10分)每场篮球比赛都分为四节,在某场比赛中,加西亚在前两节中投篮20次,命中12次,在第三节中,他一共投篮10次,但命中率有所下降,只有前两节总体命中率的50%,在最后一节中,命中率有所回升,比第三节提高了,最后全场命中率为46%.那么加西亚在第四节一共投中次.二、填空题(共7小题,每小题15分,满分60分)5.(15分)如图,正方形边长为80厘米,O为正方形中心,A为OB中点,在正方形内以A点为圆心,OA为半径的圆,以B点为圆心,OB为半径的圆与正方形的一边围成了一个特殊的图形.将这个图形绕O点顺时针旋转三次能够得到一个风车的形状.那么这个风车(阴影部分)的面积是平方厘米.(π取3.14)6.(15分)对于自然数N,如果在1~9这九个自然数中至少有六个数可是N的因数,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.7.(15分)如图是由9块相同的长方体摆放而成的大长方体,已知大长方体的表面积是360平方厘米,那么一个小长方体的表面积是平方厘米.8.(15分)跑跑家族七人分别要通过图中7个门完成挑战;第一个人可以任选一个门激活,完成挑战后,将会激活左右相邻的门;下一个人可以在已激活的门中任选一个未被挑战的门挑战,完成挑战后将会激活左右相邻门中未被激活的门;以此类推.结果跑跑家族七人全部都完成了挑战,按照他们挑战的次序将七个门的编号排序将会得到一个七位数,这个七位数一共有种不同可能.9.如图,四边形EFCD是平行四边形,如果梯形ABCD的面积是320,四边形ABGH的面积是80,那么三角形OCD的面积是.10.某城市早7:00到8:00是高峰时段,所有车辆的行驶速度变为原来的一半.每天早上6:50,甲、乙两人从这城市的A、B两地同时出发,相向而行,在距离A地24千米的地方相遇.如果甲晚出发20分钟,两人恰好在AB中点相遇;如果乙早出发20分钟,两人将在距离A地20千米的地方相遇.那么,AB两地相距千米.11.在每个空格中填入数字1﹣4,使得每行和每列的数字都不重复.表格外的数字表示该方向所在行或列里第一个奇数或者第一个偶数,那么,第三行的四个格从左到右所填的数字组成的四位数是.2019年“迎春杯”数学花园探秘初赛试卷(六年级A卷)参考答案与试题解析一、填空题Ⅰ(每题10分,共40分)1.(10分)算式:2016×的计算结果是1024.【解答】解:分母:1+++++=1+1﹣+﹣+﹣+﹣+﹣=2﹣=则,2016×=2016×=2016×=1024故答案为:1024.2.(10分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有66张.【解答】解:彤彤给林林6张,林林有总数的;林林给彤彤2张,林林有总数的;所以总数:(6+2)÷(﹣)=96,林林原有:96×﹣6=66,故答案为:66.3.(10分)如图,一道除法竖式中已经填出了“2016”和“0”,那么被除数是83720.【解答】解:4.(10分)每场篮球比赛都分为四节,在某场比赛中,加西亚在前两节中投篮20次,命中12次,在第三节中,他一共投篮10次,但命中率有所下降,只有前两节总体命中率的50%,在最后一节中,命中率有所回升,比第三节提高了,最后全场命中率为46%.那么加西亚在第四节一共投中8次.【解答】解:根据分析,前两节的命中率为:=60%;第三节的命中率为:50%×60%=30%,投中次数为:10×30%=3次;最后一节的命中率为:=40%,设再第四节中一共投中n次,则投篮次数为:,根据全场命中率可得:,解得:n=8.故答案是:8.二、填空题(共7小题,每小题15分,满分60分)5.(15分)如图,正方形边长为80厘米,O为正方形中心,A为OB中点,在正方形内以A点为圆心,OA为半径的圆,以B点为圆心,OB为半径的圆与正方形的一边围成了一个特殊的图形.将这个图形绕O点顺时针旋转三次能够得到一个风车的形状.那么这个风车(阴影部分)的面积是912平方厘米.(π取3.14)【解答】解:依题意可知:图中三角形OBC的面积为80×80÷4=1600(平方厘米).可得出OB2=1600.OB2=3200.∵∠OBC=45°.八分之一的圆的面积为πOB2=400×3.14=1256(平方厘米).OA2==800.四分之一的圆的面积为:πOA2=628(平方厘米).小三角形的面积是整个三角形OBC的四分之一.1600÷4=400(平方厘米).一个小阴影的面积为:1256﹣628﹣400=228(平方厘米).整个阴影面积为:228×4=912(平方厘米).故答案为:9126.(15分)对于自然数N,如果在1~9这九个自然数中至少有六个数可是N的因数,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是2016.【解答】解:由题意可知,这个六合数一定有因数1,一定是一个偶数.大于2000的偶数有:2002、2004、2006、2008、2010、2012、2014、2016、2018、2020…在这些数中,最小是2016符合六合数的条件.故本题答案为2016.7.(15分)如图是由9块相同的长方体摆放而成的大长方体,已知大长方体的表面积是360平方厘米,那么一个小长方体的表面积是88平方厘米.【解答】解:根据分析,设小长方体的长为a,宽为b,高为c,如下图所示,则有:3b =2a,a=3c故大长方体的表面积=2×(b+c)×(b+b+b)+2×(b+c)×a+2×a×(b+b+b)=360⇒3b2+3bc+4ab+ac=180又3b=2a,a=3c,可解得:a=6,b=4,c=2,则一个小长方体的表面积是:2×6×4+2×6×2+2×4×2=88平方厘米.故答案是:88平方厘米.8.(15分)跑跑家族七人分别要通过图中7个门完成挑战;第一个人可以任选一个门激活,完成挑战后,将会激活左右相邻的门;下一个人可以在已激活的门中任选一个未被挑战的门挑战,完成挑战后将会激活左右相邻门中未被激活的门;以此类推.结果跑跑家族七人全部都完成了挑战,按照他们挑战的次序将七个门的编号排序将会得到一个七位数,这个七位数一共有64种不同可能.【解答】解:由题意,每种选择情况一定对应一个七位数,第一人选完后,后六人只需要选择“左”还是“右”,而第一个人的门可以完全由后六个人的“左”“右”总情况逆推出来,即后六人中每人都有两种选择方法,所以按照他们挑战的次序将七个门的编号排序将会得到一个七位数,这个七位数一共有26=64种不同可能.故答案为64.9.如图,四边形EFCD是平行四边形,如果梯形ABCD的面积是320,四边形ABGH的面积是80,那么三角形OCD的面积是45.【解答】解:S AHGB=S△AHE+S△GHE+S△GEF+S△GBF=S△AHE+S△CHE+S△GDF+S△GBF=S△ACE+S△BDF即AHGB的面积相当于一个底是AE+BF=AB﹣EF=AB﹣CD,高是梯形的高的三角形面积,设AB=a,CD=b,,解得,从而由蝴蝶模型,S△OCD占S ABCD的,所以三角形OCD的面积为320×=45.10.某城市早7:00到8:00是高峰时段,所有车辆的行驶速度变为原来的一半.每天早上6:50,甲、乙两人从这城市的A、B两地同时出发,相向而行,在距离A地24千米的地方相遇.如果甲晚出发20分钟,两人恰好在AB中点相遇;如果乙早出发20分钟,两人将在距离A地20千米的地方相遇.那么,AB两地相距42千米.【解答】解:甲晚出发20分钟,乙已经走了10分钟快速及10分钟慢速的路(即15分钟快速的路),而乙早出发20分钟,即早走了20分钟快速的路,所以中点的位置应该在24千米处和20千米处之间的处,即24﹣(24﹣20)×=21(千米)21×2=42(千米)故:AB两地相距42千米.11.在每个空格中填入数字1﹣4,使得每行和每列的数字都不重复.表格外的数字表示该方向所在行或列里第一个奇数或者第一个偶数,那么,第三行的四个格从左到右所填的数字组成的四位数是4213.【解答】解:依题意可知根据第一行的数字规律可知从左到右是3在1前面,2在4前面,第一个位置不能填写1,第二和第四不能填写2,再根据上面的数字是3424推断符合条件的数字3124的概率比较大.枚举法即可排除.故答案为:4213。

2016年“迎春杯”数学花园探秘决赛试卷(小中组C卷)

2016年“迎春杯”数学花园探秘决赛试卷(小中组C卷)

2016年“迎春杯”数学花园探秘决赛试卷(小中组C卷)一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(1+3+5+…+89)﹣(1+2+3+…+63)的计算结果是.2.(8分)沿长方形ABCD中的虚线将长方形剪成两部分,会发现两部分形如汉字“凹凸”.已知长方形AD=10厘米,宽AB=6厘米,EF=GH=2厘米;那么剪成的“凹凸”两部分的周长和为厘米.3.(8分)蓉蓉从一班转到了二班,蕾蕾从二班转到了一班,于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米,如果蕾蕾身高158厘米,蓉蓉身高140厘米,那么两个班共有学生人.4.(8分)大正方形ABCD的边长为10厘米,小正方形边长为1厘米;如图小正方形沿着大正方形的AB边从A滑动到B,再从B沿着对角线BD滑动到D,再从D沿着DC边滑动到C;小正方形经过的面积是平方厘米.二、填空题(共4小题,每小题10分,满分40分)5.(10分)今天是1月30日,我们先写下130;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面,于是得到:130、67、132、68…,那么这列数中第2016个数是.(10分)将数字1~6分别填入图中的6个方框中,能得到的最小结果是.6.7.(10分)仙山上只有九头鸟和九尾狐这两种传说中的神兽;九头鸟有九头一尾,九尾狐有九尾一头,一只九头鸟发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的4倍;一只九尾狐发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的3倍,那么仙山上共有九尾狐只.8.(10分)图③是由6个图①这样的模块拼成的,如果最底层已经给定两块的位置(如图②),那么剩下部分一共有种不同的拼法.三、填空题(共3小题,每小题12分,满分36分)9.(12分)在如图所示每个格子里填入数字1~4中的一个,使得每一行和每一列数字都不重复,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(如图给出了一个填1~3的例子,如图中第3行从左到右三格依次为2,3,1),那么如图中最下面一行的两个数字按从左到右的顺序依次组成的四位数是.10.(12分)自然数1、2、3、…、2014、2015、2016顺时针排成一圈,由数1开始,顺时针如下操作.第一步:划掉1,保留2;第二步:依次划掉3、4,保留5;第三步:依次划掉6、7、8,保留9;第四步:依次划掉10、11、12、13,保留14;…;即第几步操作就先依次划掉几个数,再保留1个数,这样操作,直到将所有的数划掉为止,那么最后一个被划掉的数是.11.(12分)如图,有编号1~9的9个小正方形狗舍,每个狗舍至多住1只小狗;原有3只小狗,它们所在的狗舍互不相邻(相邻的小正方形有公共边);当有新的小狗入住时,与之相邻的小狗就会喊一声表示欢迎;现在又先后依次新入住5只小狗,每只小狗入住时都恰好有2只小狗喊一声;已知第1只新入住的小狗住2号狗舍,第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;就这5只新入住小狗所住狗舍号依次为A、B、C、D、E,那么五位数ABCDE= .2016年“迎春杯”数学花园探秘决赛试卷(小中组C卷)参考答案与试题解析一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(1+3+5+…+89)﹣(1+2+3+…+63)的计算结果是9 .【分析】首先根据等差数列的求和公式,分别求出1+3+5+...+89、1+2+3+...+63的值各是多少;然后把它们相减,求出算式(1+3+5+...+89)﹣(1+2+3+ (63)的计算结果是多少即可.【解答】解:(1+3+5+...+89)﹣(1+2+3+ (63)=(1+89)×[(89﹣1)÷2+1]÷2﹣(1+63)×63÷2=90×45÷2﹣64×63÷2=2025﹣2016=9故答案为:9.【点评】此题主要考查了加减法中的巧算问题,要熟练掌握,解答此题的关键是要明确等差数列的求和公式:和=(首项+末项)×项数÷2.2.(8分)沿长方形ABCD中的虚线将长方形剪成两部分,会发现两部分形如汉字“凹凸”.已知长方形AD=10厘米,宽AB=6厘米,EF=GH=2厘米;那么剪成的“凹凸”两部分的周长和为52 厘米.【分析】观察图象可知:剪成的“凹凸”两部分的周长和=AB+CD+AD+BC+2(ME+FH+GN)+2(EF+GH).【解答】解:观察图象可知:剪成的“凹凸”两部分的周长和=AB+CD+AD+BC+2(ME+FH+GN)+2(EF+GH)=6+6+10+10+2×6+2×4=52cm,故答案为52【点评】本题考查剪切和拼接、长方形的性质等知识,解题的关键是学会用整体的思想思考问题.3.(8分)蓉蓉从一班转到了二班,蕾蕾从二班转到了一班,于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米,如果蕾蕾身高158厘米,蓉蓉身高140厘米,那么两个班共有学生15 人.【分析】首先用蕾蕾的身高减去蓉蓉的身高,求出两人的身高的差是多少;然后分别用两人的身高的差除以2、3,求出一班、二班的人数各是多少,再把一班、二班的人数相加,求出两个班共有学生多少人即可.【解答】解:158﹣140=18(厘米),18÷2+18÷3=9+6=15(人)答:两个班共有学生15人.故答案为:15.【点评】此题主要考查了平均数问题,要熟练掌握,解答此题的关键是分别求出一班、二班的人数各是多少.4.(8分)大正方形ABCD的边长为10厘米,小正方形边长为1厘米;如图小正方形沿着大正方形的AB边从A滑动到B,再从B沿着对角线BD滑动到D,再从D沿着DC边滑动到C;小正方形经过的面积是36 平方厘米.【分析】可以将图画出,用虚线表示小正方形经过的区域,可以用大正方形的面积减去其它空白部分的面积,而其它空白部分是两个相等的直角三角形,刚好可以拼接成一个边长为10﹣2=8厘米的正方形,故不难求得小正方形经过的区域的面积.【解答】解:根据分析,如图所示,a和b部分的面积刚好可以拼接成一个边长为:10﹣2×1=8厘米的正方形,小正方形经过的区域的面积=10×10﹣8×8=36(平方厘米).故答案是;36.【点评】本题考查剪切和拼接,突破点是:利用剪切和拼接,将图形简化,不难求得小正方形经过的区域的面积.二、填空题(共4小题,每小题10分,满分40分)5.(10分)今天是1月30日,我们先写下130;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面,于是得到:130、67、132、68…,那么这列数中第2016个数是 6 .【分析】首先发现数字求的是2016项,那么一定是有规律的计算,找到周期规律即可.【解答】解:依题意可知:数字规律是130、67、132、68、36、20、12、8、6、5、8、6、5、8、6、5、去掉钱7项是循环周期数列2016﹣7=2009.每3个数字一个循环2009÷3=667 (2)循环数列的第二个数字就是6.故答案为:6【点评】本题考查对数字规律的理解和运用,关键问题是根据枚举法找到周期规律.问题解决.6.(10分)将数字1~6分别填入图中的6个方框中,能得到的最小结果是342 .【分析】要使得数最小,由于有乘法,所以两个两位数,要用最小的四个数字1、2、3、4组成,且最高位放最小的数字;剩下的为5×6;据此解答即可.【解答】解:最小的1和2,分别放在十位上,剩下的3与1组成13,2和4组成24,最后5和6组成算式5×6,所以得数最小是:13×24+5×6=312+30=342答:能得到的最小结果是 342.故答案为:342.【点评】本题重点是理解,要使两个数的积最小,尽量把小的数字放在最高位上.7.(10分)仙山上只有九头鸟和九尾狐这两种传说中的神兽;九头鸟有九头一尾,九尾狐有九尾一头,一只九头鸟发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的4倍;一只九尾狐发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的3倍,那么仙山上共有九尾狐14 只.【分析】首先根据题意,设仙山上共有九尾狐x只,九头鸟y只,然后根据:九尾狐的数量×9+九头鸟的数量﹣1=[(九头鸟的数量﹣1)×9+九尾狐的数量]×4,(九尾狐的数量﹣1)×9+九头鸟的数量=[九头鸟的数量×9+九尾狐的数量﹣1]×3,列出二元一次方程组,求出仙山上共有九尾狐多少只即可.【解答】解:设仙山上共有九尾狐x只,九头鸟y只,则由(1),可得:x﹣7y+7=0(3)由(2),可得:3x﹣13y﹣3=0(4)(4)×7﹣(3)×13,可得8x﹣112=08x﹣112+112=0+1128x=1128x÷8=112÷8x=14答:仙山上共有九尾狐14只.故答案为:14.【点评】此题主要考查了差倍问题,考查了分析推理能力的应用,要熟练掌握,首先要把题意弄清,再根据等量关系列出方程组解答即可.8.(10分)图③是由6个图①这样的模块拼成的,如果最底层已经给定两块的位置(如图②),那么剩下部分一共有 2 种不同的拼法.【分析】因最底层已经给定两块的位置,且拼成生图③是上下两层的,所以剩下部分的拼法有只能是把图①立起来拼,且两个一组的在上面,从一个缺口处两块的位置有两种拼法,所以共有两种拼法.【解答】解:如图:答:剩下部分一共有2种不同的拼法.故答案为:2.【点评】本题主要考查了学生对图形拼法的掌握情况,重点是根据最底层给定的两块的位置,再进行拼.三、填空题(共3小题,每小题12分,满分36分)9.(12分)在如图所示每个格子里填入数字1~4中的一个,使得每一行和每一列数字都不重复,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(如图给出了一个填1~3的例子,如图中第3行从左到右三格依次为2,3,1),那么如图中最下面一行的两个数字按从左到右的顺序依次组成的四位数是2143 .【分析】按照题目要求,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和填入具体的数字,即可得出结论.【解答】解:如图所示,根据每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和,由于1+2=3,4+2=6,3+2=5,结合每一行和每一列数字都不重复,可得最下面一行的两个数字按从左到右的顺序依次组成的四位数是2143.故答案为2143.【点评】本题考查凑数字,考查学生的动手能力,正确理解题意,得出图形是关键.10.(12分)自然数1、2、3、…、2014、2015、2016顺时针排成一圈,由数1开始,顺时针如下操作.第一步:划掉1,保留2;第二步:依次划掉3、4,保留5;第三步:依次划掉6、7、8,保留9;第四步:依次划掉10、11、12、13,保留14;…;即第几步操作就先依次划掉几个数,再保留1个数,这样操作,直到将所有的数划掉为止,那么最后一个被划掉的数是2015 .【分析】首先分析题意首项数字保留的是2,可分析出保留的数字的规律,进而得出最后一个保留的数字是多少.【解答】解:依题意可知:第一轮保留的数字是2,5,9,…那么第一轮保留的最大数字为:2+3+4+…+n=当n=63时,数列和是2015.说明2015是保留的数字.此时数字没有全部划掉还需要继续划.但由于是圆圈,继续划掉的话,划掉的顺序是2016,2,5,9…,这次是第63次操作,2015是最后一个被划掉的.故答案为:2015.【点评】本题考查对数字问题的理解和运用,关键问题是理解数字和的规律即运用.问题解决.11.(12分)如图,有编号1~9的9个小正方形狗舍,每个狗舍至多住1只小狗;原有3只小狗,它们所在的狗舍互不相邻(相邻的小正方形有公共边);当有新的小狗入住时,与之相邻的小狗就会喊一声表示欢迎;现在又先后依次新入住5只小狗,每只小狗入住时都恰好有2只小狗喊一声;已知第1只新入住的小狗住2号狗舍,第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;就这5只新入住小狗所住狗舍号依次为A、B、C、D、E,那么五位数ABCDE= 25649 .【分析】首先分析新二只和新三只能放在哪一个狗舍,推理出原来的不相邻的狗舍位置继续推理即可求解.【解答】解:依题意可知:①首先第一只小狗在2号狗舍.第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;说明第2只小狗旁边进来2只小狗.小狗入住时都恰好有2只小狗喊一声,所以新2号小狗不能在角落1,3,6,7,8,9狗舍.只能在5号狗舍.②第4只新入住的小狗住4号狗舍,它没喊过;小狗入住时都恰好有2只小狗喊一声说明1和7是有一个是空的,如果是1空那么小狗舍会相邻.只能是7空.③新2号小狗喊2声,那么说明在6号或者8号入住一只小狗原来也是有1只小狗.那么只能是8号是原来的,6号是新入住的.④那么原来的三个不相邻的狗舍就是在1,3,8狗舍.第五只在9号.故答案为:25649【点评】本题考查对逻辑推理的理解和运用,关键问题是找到新2和新3的位置.问题解决.。

2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)

2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)

2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)一、解答题(共11小题,满分0分)1.算式67×67﹣34×34+67+34的计算结果是.2.在横式×+C×D=2017中,相同的字母代表相同的数字,不同的字母代表不同的数字,若等式成立,那么代表的两位数是.3.如图中共有个平行四边形.4.小兔与蜘蛛共50名学员参加舞蹈训练营,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔只.(注:蜘蛛有8只脚)5.一组有两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7,现在从空间一点看一个骰子,能看到所有点数之和最小是1,最大是15(15=4+5+6),那么在1~15中,不可能看到的点数和是.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子,几名同学依次轮流向格子中放棋子.每人每次只放一枚且必须放在相邻两个棋子正中间的格子中(如从左到右第3格,第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但第4格,第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有名同学.8.蕾蕾买了一些山羊和绵羊,如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了只羊.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班三天,每天将有3名安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙,可惜不算值班;D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是.(如果第2次、第6次、第10次值班分别在12月3日、12月17日,则答案为,31217)10.如图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为平方厘米.11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有种不同的走法.2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)参考答案与试题解析一、解答题(共11小题,满分0分)1.算式67×67﹣34×34+67+34的计算结果是3434 .【分析】根据乘法的分配律简算即可.【解答】解:67×67﹣34×34+67+34=67×(67+1)﹣34×34+34=67×2×34﹣34×34+34=101×34=3434故答案为:3434.【点评】此题重点考查了学生对运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法.2.在横式×+C×D=2017中,相同的字母代表相同的数字,不同的字母代表不同的数字,若等式成立,那么代表的两位数是14 .【分析】由于0<C×D<100,所以1900<×<2017,根据130×13=1690,140×14=1960,150×15=2250,即可得出结论.【解答】解:由于0<C×D<100,所以1900<×<2017,因为130×13=1690,140×14=1960,150×15=2250,所以=14,进一步可得C×(14+D)=57,C=3,D=5.故答案为14.【点评】本题考查位值原则,考查学生的计算能力,确定1900<×<2017是关键.3.如图中共有15 个平行四边形.【分析】把图中的平行四边形分三类计数:①单个的(红色);②两个组成的(蓝色);③6部分组成的(黄色).【解答】解:根据分析可得,①单个的(红色)有:4个;②两个组成的(蓝色)有8个;③6部分组成的(黄色)有:3个;共有:4+8+3=15(个);答:图中共有 15个平行四边形.故答案为:15.【点评】本题要注意按顺序分类计数,防止遗漏.4.小兔与蜘蛛共50名学员参加舞蹈训练营,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔40 只.(注:蜘蛛有8只脚)【分析】每走一只小兔,总腿数少了4,每增加一只蜘蛛,总腿数多了8,由此要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍,从而可得原有动物共5份,即可得出结论.【解答】解:每走一只小兔,总腿数少了4,每增加一只蜘蛛,总腿数多了8,由此要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍,把增加的蜘蛛当作1份,那么原蜘蛛数量也是1份,走了的兔子数量是2份,原有兔子数量为4份,则原有动物共5份,是50只,1份有10只,所以原有兔子4×10=40只.故答案为40.【点评】本题考查差倍问题,考查学生转化问题的能力,确定要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍是关键.5.一组有两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差9900 .【分析】将每个奇数项与后面相邻的偶数项合并,由于每一项都是两位数,所以合并后的四位数列和与原数列的和相差所有奇数项的和的99倍,即可得出结论.【解答】解:设这个等差数列的奇数项分别为a1,a3,a5,…,公差为d,那么将每个奇数项与后面相邻的偶数项合并,由于每一项都是两位数,所以合并后的四位数列可以表示为a1×100+a1+d,a2×100+a2+d,…,所以新数列的和与原数列的和相差99×(a1+a3+a5+…),由于奇数项的和为100,所以99×(a1+a3+a5+…)=99×100=9900,故答案为9900.【点评】本题考查等差数列,考查学生的计算能力,确定合并后的四位数列和与原数列的和相差所有奇数项的和的99倍是关键.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7,现在从空间一点看一个骰子,能看到所有点数之和最小是1,最大是15(15=4+5+6),那么在1~15中,不可能看到的点数和是13 .【分析】骰子上相对的两面点数分别为(1,6),(2,5),(3,4),从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面,在1~15中,点数1~6显然可以看到,7~15进行分拆,即可得出结论.【解答】解:骰子上相对的两面点数分别为(1,6),(2,5),(3,4),从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面,在1~15中,点数1~6显然可以看到,7=1+2+7,8=6+2,9=6+3,10=6+4,11=6+5,12=6+2+4,14=6+5+3,15=4+5+6,13无法拆出,即在1~15中,不可能看到的点数和是13.故答案为13.【点评】本题考查筛选与枚举,考查学生分析解决问题的能力,解题的关键是从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子,几名同学依次轮流向格子中放棋子.每人每次只放一枚且必须放在相邻两个棋子正中间的格子中(如从左到右第3格,第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但第4格,第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有7 名同学.【分析】由题意可得,若相邻两枚棋子之间有偶数个空格子,则无法再往其中放棋子,那么若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.进而推出总共放下的棋子个数应该为等比数列1,2,4,8,…的和,而由于每人都放9次,因此这个和为9的倍数,且该和不能超过100,枚举可得1+2+4+8+16+32=63,满足条件,则共有63÷9=7名同学.【解答】解:由题意可得,若相邻两枚棋子之间有偶数个空格子,则无法再往其中放棋子,那么若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.第一轮只能在最中间放1枚棋子,此时将格子分为前半部分和后半部分,那么第二轮在每一部分的中间,都可以放1枚棋子,总共可以放2枚,此时将格子分成了4,第三轮在每一部分的中间,都可以放1枚棋子,总共可以放4枚,以此类推,总共放下的棋子个数应该为等比数列1,2,4,8,…的和,而由于每人都放9次,因此这个和为9的倍数,且该和不能超过100,枚举可得1+2+4+8+16+32=63,满足条件,则共有63÷9=7名同学,棋子分布依次为:1,651,33,651,17,33,49,651,9,17,25,33,41,49,57,65,…故答案为7.【点评】本题考查找规律,考查枚举与筛选,解题的关键是若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.8.蕾蕾买了一些山羊和绵羊,如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了10 只羊.【分析】如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元,两次变化都是两只山羊的价钱,变化的总价格应该相等,即可得出结论.【解答】解:假设蕾蕾买了x只羊,原平均价格为a元,买2只山羊,每只羊的平均价格会增加60元,总价格增加60x+2(a+60)元;少买2只山羊,那么每只羊的平均价格会减少90元,总价格减少90x+2(a﹣90)元,两次变化都是两只山羊的价钱,应该相等,所以60x+2(a+60)=90x+2(a﹣90),解得x=10,故答案为10.【点评】本题考查等量关系与方程,考查学生分析解决问题的能力,正确建立等量关系是关键.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班三天,每天将有3名安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙,可惜不算值班;D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是41016 .(如果第2次、第6次、第10次值班分别在12月3日、12月17日,则答案为,31217)【分析】画出12月份值班表,分析A在12月份中第2,6,10次值班日期依次为4,10,16,即可得出结论.【解答】解:12月份值班表如下:由E说的话可知,25日A和E都值班,又由D的话可知D和E永远在一起,那么可以判断5日这一竖列值班人为A,D,E.由C的话可知,3日他不值班,由于每天必须有3人值班,所以D,E中必须有一个,又因为D,E在一起,所以3日这一竖列,D,E都值班.通过A的话判断,A,B在周末值班的日子比C,D,E多,统计出每一列中的周末数量,为2,1,2,2,2,每人都要在三列中值班,若要A,B比其他人多,那么1那一列必须是C,D,E值班,每天都要有3人值班,D,E现在已经排满,因此第1,4列为A,B,C值班.还剩第3列没有排完,B要跟每个人都搭配过,因此此处为B.A在12月份中第2,6,10次值班日期依次为4,10,16,故五位数为41016.故答案为41016.【点评】本题考查逻辑推理,考查学生分析解决问题的能力,确定A在12月份中第2,6,10次值班日期依次为4,10,16是关键.10.如图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为84 平方厘米.【分析】如图所示,补出右边的一些小等边三角形,则△ABC被分为面积相等的三个钝角三角形△AMB,△BNC,△APC,以及一个小正三角形△PMN,其中△AMB面积是所在的平行四边形ADBM的一半,即可得出结论.【解答】解:如图所示,补出右边的一些小等边三角形,则△ABC被分为面积相等的三个钝角三角形△AMB,△BNC,△APC,以及一个小正三角形△PMN,其中△AMB面积是所在的平行四边形ADBM的一半为12×4÷2=24平方厘米,那么△ABC面积为3×24+12=84平方厘米.故答案为84.【点评】本题考查面积的计算,考查补形方法的运用,正确补形是关键.11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有1476 种不同的走法.【分析】考虑起始时,警察与小偷所在房间有三类关系相邻、相隔、相对,分别求出各种情况的不同的走法,即可得出结论.【解答】解:考虑起始时,警察与小偷所在房间有三类关系相邻、相隔、相对.相邻:如1与2,那么下一步都顺时针走,可变为2与3,都逆时针走,变为6与1,一个顺时针,一个逆时针变为2与1或6与3,都有3种可能相邻,1种可能相对;相隔:如1与3,那么下一步可能变为2与4,6与2,6与4,都有3种可能相邻;相对:如1与4,那么下一步可能变为2与3,6与5,6与3,2与5,即有2种相邻的可能和2种相对的可能.假设警察初始房间为1,小偷与其相邻可能为2或6,那么3次之后不相遇的走法有2×(27+9+6+6+6+2+4+4)=128种相隔⇌3相隔⇌9相隔⇌27相隔.假设警察初始房间为1,小偷与其相邻可能为3或5,那么3次之后不相遇的走法有2×27=54种,假设警察初始房间为1,小偷与其相对为4,那么3次之后不相遇的走法有18+6+4+4+12+4+8+8=64种,综上所述,警察若初始位置为1,满足题目条件的走法有128+54+64+246种,那么警察初始位置还能选择2~6,因此共有246×6=1476种走法.故答案为1476.【点评】本题考查排列组合知识的运用,考查分类讨论的数学思想,正确分类讨论是关键.。

2014年六年级数学解题能力展示(迎春杯)网考解析

2014年六年级数学解题能力展示(迎春杯)网考解析

7. 阿笠博士发明了一个奇怪的计算器,当用户输入一个正整数时,它会经过三次运算显 示一个正整数. 每次运算的规则是:如果上一次运算的结果是奇数,则将这个结果乘
学而思小升初指导中心·刘力 3
以 3 再加 1;如果上一次运算的结果是偶数,则将这个结果除以 2(第一次运算用的是 用户输入的数) .柯南、步美、元太、光彦各输入了一个互不相同的正整数,发现计算 器显示的结果相同,则这个相同的结果最小为 .
【考点】行程 【难度】★★★★ 【答案】864
【分析】
A
C
D
B
设 AC 1份,CD b份,DB a份 列表表示每个阶段两人走的路程,同时将甲第三阶段走的路程折算成原速本该走的路程,从 而表中的甲乙每个阶段的路程之比均相等。 阶段 1 2 3 甲 乙
1 b
a 1.44
a 1 b 1
学而思小升初指导中心·刘力
4
a :1 ,解出 a 1.2 ,从而 v甲 : v乙 5 : 6 1.44 再根据第 2 过程,列出方程: b : (1 b) 5 : 6 ,解出 b 5
对比 1、3 阶段,列出方程: 1: a 于是 AB 120 (1 5 1.2) 864km
9. 小张、小王、小李夫妻在图书馆借六本编号分别为 1~6 的书看,六个人都是每天看一 本,而且每天看的书都不一样.六天后,六个人把六本书都看完了. 如果: (1) 同一对夫妻,丈夫前三天看的三本都恰好是妻子后三天看的; (2) 张先生六天按顺序依次看了第 1、2、3、4、5、6 本,恰和李太太顺序完全相反; (3) 1 号书第三天在王太太手里,第五天在张太太手里; (4) 王先生最后一天看了 4 号书. 那么,李先生前五天看的书按顺序组成的五位数是 .

六年级迎春杯试题及答案

六年级迎春杯试题及答案

六年级迎春杯试题及答案【试题】一、选择题(每题2分,共10分)1. 下列哪个成语用来形容人非常谨慎,做事小心?A. 小心翼翼B. 胆大心细C. 心不在焉D. 心急如焚2. 下列哪个选项是正确的成语使用?A. 一言既出,驷马难追B. 一言既出,马难追C. 一言既出,四马难追D. 一言既出,马难追追3. 以下哪个选项是正确的数学表达式?A. 3 + 2 = 5B. 4 × 3 = 12C. 5 - 2 = 3D. 6 ÷ 2 = 34. 下列哪个选项是正确的英语表达?A. I am go to school.B. I go to school.C. I am going to school.D. I go to the school.5. 下列哪个选项是正确的历史事件顺序?A. 秦始皇统一六国,商鞅变法,秦始皇焚书坑儒B. 商鞅变法,秦始皇统一六国,秦始皇焚书坑儒C. 商鞅变法,秦始皇焚书坑儒,秦始皇统一六国D. 秦始皇焚书坑儒,商鞅变法,秦始皇统一六国二、填空题(每空1分,共10分)6. 请写出《静夜思》的作者______。

7. 请写出中国四大名著之一《红楼梦》的作者______。

8. 请写出圆周率π的近似值______。

9. 请写出“春眠不觉晓”的下一句______。

10. 请写出“三人行,必有我师”的出处______。

三、简答题(每题5分,共10分)11. 请简述《三国演义》中“赤壁之战”的背景和结果。

12. 请简述圆周率π在数学中的重要性。

四、作文题(20分)13. 题目:《我的家乡》要求:不少于300字,描述你的家乡的自然风光、文化特色等。

【答案】一、选择题1. A2. A3. B4. C5. B二、填空题6. 李白7. 曹雪芹8. 3.141599. 处处闻啼鸟10. 《论语》三、简答题11. 《三国演义》中的“赤壁之战”是东汉末年的一场著名战役,发生在公元208年。

六年级下册数学竞赛试题-北京市“迎春杯”数学竞赛决赛试卷(含答案解析)全国通用

六年级下册数学竞赛试题-北京市“迎春杯”数学竞赛决赛试卷(含答案解析)全国通用

北京市“迎春杯”小学数学竞赛决赛试卷一、计算:1.(×1.65﹣+×)×47.5×0.8×2.5.2.(﹣)÷[+(4﹣)÷1.35].二、填空题(共20小题,每小题3分,满分60分)3.(3分)用一个杯子盛满水向一个空罐里倒水.如果倒进2杯水,连罐共重0.6千克;如果倒进5杯水,连罐共重0.975千克.这个空罐重千克.3.(3分)计算:÷÷=.4.(3分)一个直角梯形,它的上底是下底的60%.如果上底增加24米,可变成正方形.原来直角梯形的面积是平方米.5.(3分)如果按一定规律排出的加法算式是:3+4,5+9,7+14,9+19,11+24,….那么,把各个算式中前后两个加数分别排到第10个就是和;第80个算式就是.6.(3分)甲、乙两人共同加工一批零件,8小时可以完成任务,如果甲单独加工,需要12小时完成,现在甲、乙两人共同生产了2小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务,乙一共加工了零件多少个?7.(3分)把一个长25厘米,宽10厘米,高4厘米的长方体木块锯成若干个大小相等的正方体,然后拼成一个大的正方体.这个大正方体的表面积是平方厘米.8.(3分)有5000多根牙签,可按六种规格分成小包.如果10根一包,那么最后还剩9根.如果9根一包,那么最后还剩8根.第三、四、五、六种的规格是,分别以8、7、6、5根为一包,那么最后也分别剩7、6、5、4根.原来一共有牙签根.9.(3分)用红、黄、蓝、黑、白、绿六种颜色分别涂在正方体的各面上(每个面只涂一种颜色),现在涂色方式完全一样的相同的四块小正方体,把它们拼成一长方体,如图所示.试回答:每个小正方体红色面的对面涂的是色,黄色面的对面涂的是色,黑色面的对面涂的是色.10.(3分)李刚给军属王奶奶运蜂窝煤,第一次运了全部的,第二次运了50块.这时,已运来的恰好是没运来的.还有块蜂窝煤没有运来.11.(3分)在下面各数之间,填上适当的运算符号和括号,使等式成立.10 6 9 3 2=48.13.(3分)有一个长方形,它的各边的长度都是小于10的自然数.如果用宽作分子,长作分母,那么所得的分数值比要大,比要小.那么满足上述条件的各个长方形的面积和是.14.(3分)一个1994位的整数,各个数位上的数字都是3.它除以13,商的第200位(从左往右数)数字是,商的个位数字是,余数是.15.(3分)有黑白两种棋子共300枚,黑乌鸦将黑白两种棋子按每堆3枚分成100堆.其中只有l枚白子的共有27堆,有2枚或3枚黑子的共有42堆,有3枚白子的与3枚黑子的堆数相等.那么,在这些棋子中白子共有枚.16.(3分)如图,已知长方形ADEF的面积是16,三角形ADB的面积是3,三角形ACF 的面积是4,那么三角形ABC的面积是.17.(3分)在小于5000的自然数中,能被11整除,并且数字和为13的数,共有个.18.(3分)已知算术式﹣=1994,其中、均为四位数;a、b、c、d、e、f、g、h是0、1、2、…、9中8个不同整数,且a≠0,e≠0.那么与之和的最大值是,最小值是.19.(3分)男、女两名田径运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B).两人同时从A点出发,在A、B之间不停地往返奔跑.如果男运动员上坡速度是每秒3米,下坡速度是每秒5米;女运动员上坡速度是每秒2米,下坡速度是每秒3米,那么两人第二次迎面相遇的地点离A点米.20.(3分)用1×2的小长方形或1×3的小长方形覆盖2×6的方格网(如图),共有种不同的盖法.21.(3分)某车间原有工人不少于63人.在1月底以前的某一天调进了若干工人,以后,每天都增调1人进车间工作.现知该车间1月份每人每天生产一件产品,共生产1994件.试问:1月几号开始调进工人?共调进多少工人?22.(3分)一个自然数除以8得到的商加上这个数除以9的余数,其和是13.求所有满足条件的自然数.北京市第十届“迎春杯”小学数学竞赛决赛试卷参考答案与试题解析一、计算:1.(×1.65﹣+×)×47.5×0.8×2.5.【解答】解:(×1.65﹣+×)×47.5×0.8×2.5=×(1.65﹣1+)×47.5×(0.8×2.5)=×1×47.5×2=×1×47.5×2=1994.2.(﹣)÷[+(4﹣)÷1.35].【解答】解:(﹣)÷[+(4﹣)÷1.35],=÷[+÷1.35],=÷[+],=÷,=.二、填空题(共20小题,每小题3分,满分60分)3.(3分)用一个杯子盛满水向一个空罐里倒水.如果倒进2杯水,连罐共重0.6千克;如果倒进5杯水,连罐共重0.975千克.这个空罐重0.35千克.【解答】解:3杯水重:0.975﹣0.6=0.375(千克),2杯水重:0.375÷3×2=0.25(千克),空罐重:0.6﹣0.25=0.35(千克);答:这个空罐重0.35千克.3.(3分)计算:÷÷=.【解答】解:÷÷,=××,=××,=××,=,=.故答案为:.4.(3分)一个直角梯形,它的上底是下底的60%.如果上底增加24米,可变成正方形.原来直角梯形的面积是2880平方米.【解答】解:原来直角梯形的下底是:24÷(1﹣60%)=60(米);原來直角梯形的上底是:60×60%=36(米);原來直角梯形的面积是:(60+36)×60÷2=2880(平方米);答:原来直角梯形的面积是2880平方米.故答案为:2880.5.(3分)如果按一定规律排出的加法算式是:3+4,5+9,7+14,9+19,11+24,….那么,把各个算式中前后两个加数分别排到第10个就是21和49;第80个算式就是161+399.【解答】解:第10个算式的加数分别是:2×10+1=21,5×10﹣1=49,这两个加数就是21,49.第80个算式的加数分别是:2×80+1=81,5×80﹣1=399,第80个算式是161+399.故答案为:21,49,161+399.6.(3分)甲、乙两人共同加工一批零件,8小时可以完成任务,如果甲单独加工,需要12小时完成,现在甲、乙两人共同生产了2小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务,乙一共加工了零件多少个?【解答】解:加工的总零件为:420÷(1﹣2×)=420÷(1﹣)=420÷=600(个);乙一共加工的零件为:600﹣600÷12×2=600﹣120=480(个);答:乙一共加工了480个零件.7.(3分)把一个长25厘米,宽10厘米,高4厘米的长方体木块锯成若干个大小相等的正方体,然后拼成一个大的正方体.这个大正方体的表面积是600平方厘米.【解答】解:长25厘米,宽10厘米,高4厘米的长方体木块锯成边长为1厘米的正方体的个数:25×10×4=1000;1000个小正方体拼成一个大的正方体的长、宽、高为10厘米,因为10×10×10=1000;所以,这个大正方体的表面积是:10×10×6=600平方厘米;答:这个大正方体的表面积是600平方厘米.故答案为:600.8.(3分)有5000多根牙签,可按六种规格分成小包.如果10根一包,那么最后还剩9根.如果9根一包,那么最后还剩8根.第三、四、五、六种的规格是,分别以8、7、6、5根为一包,那么最后也分别剩7、6、5、4根.原来一共有牙签5039根.【解答】解:这个数+1=10、9、8、7、6、5的公倍数,10,9、8、7、6、5的最小公倍数为:5×2×3×3×4×7=2520,满足5000多这个条件的公倍数是2520×2=5040,牙签的数量就是5040﹣1=5039(根).答:原来一共有牙签5039根.故答案为:5039.9.(3分)用红、黄、蓝、黑、白、绿六种颜色分别涂在正方体的各面上(每个面只涂一种颜色),现在涂色方式完全一样的相同的四块小正方体,把它们拼成一长方体,如图所示.试回答:每个小正方体红色面的对面涂的是绿色色,黄色面的对面涂的是蓝色色,黑色面的对面涂的是白色色.【解答】解:通过以上分析可知,红色的对面是绿色;黄色的对面是蓝色;黑色的对面是白色.故答案为:①绿色;②蓝色;③白色.10.(3分)李刚给军属王奶奶运蜂窝煤,第一次运了全部的,第二次运了50块.这时,已运来的恰好是没运来的.还有700块蜂窝煤没有运来.【解答】解:已运来的恰好是没运来的,那么已运来的就是全部的:=,没运来的就是全部的:=;50÷()=50÷,=1200(块);1200×=700(块);答:还有700块没运来.故答案为:700.11.(3分)在下面各数之间,填上适当的运算符号和括号,使等式成立.10 6 9 3 2=48.【解答】解:10×6﹣(9﹣3)×2=48.13.(3分)有一个长方形,它的各边的长度都是小于10的自然数.如果用宽作分子,长作分母,那么所得的分数值比要大,比要小.那么满足上述条件的各个长方形的面积和是133.【解答】解:根据题意,可知<<,变换后可得:2×宽<长<×宽,所以:(1)若宽=1,则2<长<10/3,长=3;(2)若宽=2,则4<长<20/3,长=5或6;(3)若宽=3,则6<长<10,长=7或8或9;(4)若宽=4,则8<长<10<40/3,长=9.所以所有满足条件的长方形面积之和为1×3+2×5+2×6+3×7+3×8+3×9+4×9=133.14.(3分)一个1994位的整数,各个数位上的数字都是3.它除以13,商的第200位(从左往右数)数字是5,商的个位数字是2,余数是7.【解答】解:试探≈0.2307692308、≈2.5384615385、≈25.615384615…=25641,所以这个1994位数除以13的结果是:25641的循环.(忽略小数部分),故200÷6=33…2,商的第200位(从左往右数)数字是5;1994÷6=332…2,33÷13的结果33÷13=2…7,由此可以知道商的个位数字是2余数是7.答:一个1994位数,各个数位的数字都是3,它除以13,商的第200位(从左往右数)数字是5,商的个位是2,余数是7.故答案为:5、2、7.15.(3分)有黑白两种棋子共300枚,黑乌鸦将黑白两种棋子按每堆3枚分成100堆.其中只有l枚白子的共有27堆,有2枚或3枚黑子的共有42堆,有3枚白子的与3枚黑子的堆数相等.那么,在这些棋子中白子共有158枚.【解答】解:只有一枚白子,即1白2黑,是27堆,2黑或3黑共42堆,其中2黑已经知道有27堆,那么3黑的就有:42﹣27=15(堆),所以,3白的也是15堆,又因为一共有100堆,那么2白1黑的就有:100﹣27﹣15﹣15=43(堆),所以,白子共有:27×1+15×0+15×3+43×2=158(枚);答:白子共有158枚.故答案为:158.16.(3分)如图,已知长方形ADEF的面积是16,三角形ADB的面积是3,三角形ACF 的面积是4,那么三角形ABC的面积是 6.5.【解答】解:△AEC的面积:16÷2﹣4=4,△ABE的面积:16÷2﹣3=5,BD:BE=3:5,DE=BD+BE=3+5=8,△BCE的面积:4×=2.5,△ABC的面积:16﹣(3+4+2.5)=6.5;故答案为:6.5.17.(3分)在小于5000的自然数中,能被11整除,并且数字和为13的数,共有18个.【解答】解:①奇数位数字和=12,偶数位数字和=1,为3190,3091,4180,4081共4种可能.②奇数位数字和=1,偶数位数字和=12.为1309,1408,1507,1606,1705,1804,1903;319,418,517,616,715,814,913共14种可能.共4+14=18种.故答案为:18.18.(3分)已知算术式﹣=1994,其中、均为四位数;a、b、c、d、e、f、g、h是0、1、2、…、9中8个不同整数,且a≠0,e≠0.那么与之和的最大值是15000,最小值是4988.【解答】解:由以上分析可知,和的最大值为8497+6503=15000;和的最小值为3496+1502=4998.故答案为:15000,4998.19.(3分)男、女两名田径运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B).两人同时从A点出发,在A、B之间不停地往返奔跑.如果男运动员上坡速度是每秒3米,下坡速度是每秒5米;女运动员上坡速度是每秒2米,下坡速度是每秒3米,那么两人第二次迎面相遇的地点离A点47米.【解答】解:设两人第二次迎面相遇的地点离A点X米,则++=+,+=,220+2x=550﹣5x,7x=330,x=47;答:两人第二次迎面相遇的地点离A点47米.故此题答案为:47.20.(3分)用1×2的小长方形或1×3的小长方形覆盖2×6的方格网(如图),共有30种不同的盖法.【解答】解:(1)都用1×2的长方形,共需要6个:①都横着放,1种方法;②都竖着放,1种方法;③2个横放,4竖放,5种方法.④4个横放,2竖放,6种方法.(2)都用1×3的长方形,共需4个,只用1种方法,都横放.(3)用2个1×3的长方形,3个1×2的长方形:①,两个1×3的长方形并排放,2种方法,②,两个1×3的长方形排成1列,10种方法,③,两个1×3的长方形错着放,4种方法.其他数量都不可以.1+1+5+6+1+10+2+4=30(种)一共27种.故答案为:30.21.(3分)某车间原有工人不少于63人.在1月底以前的某一天调进了若干工人,以后,每天都增调1人进车间工作.现知该车间1月份每人每天生产一件产品,共生产1994件.试问:1月几号开始调进工人?共调进多少工人?【解答】解:因为原有工人不少于63人,并且1994=63×31+41,1994=64×31+10,1994<65×31,所以,这个车间原有工人不多于64人,即这个车间原有工人63人或64人.这个车间原有工人1月份完成产品是63×31=1953或64×31=1984(件).于是可知,余下的41件或10件产品应该表示为连续自然数之和.据已知,不能是1月31日调进工人,设第一天调进x名工人,共调入n天,那么显然2≤n≤8.事实上,九个连续自然数之和最小为1+2+3+4+5+6+7+8+9=45>41.经检验,当n=2时x=20,并且有:20+21=41;当n=4时x=1,并且有:1+2+3+4=10.答:从1月30日开始调进工人,共调进工人21名;或者从1月28日开始调进工人,共调进工人4人.22.(3分)一个自然数除以8得到的商加上这个数除以9的余数,其和是13.求所有满足条件的自然数.【解答】解:设这个数为n,除以9所得余数r≤8,所以除以8得到的商q≥13﹣8=5,又显然q≤13.q=5时,r=8,n=5×8+4=44;q=6时,r=7,n=6×8+4=52;q=7时,r=6,n=7×8+4=60;q=8时,r=5,n=8×8+4=68;q=9时,r=4,n=9×8+4=76;q=10时,r=3,n=10×8+4=84;q=11时,r=2,n=11×8+4=92;q=12时,r=1,n=12×8+4=100;q=13时,r=0,n=13×8+4=108.满足条件的自然数共有9个:108,100,92,84,76,68,60,52,44.答:满足条件的自然数共有9个:108,100,92,84,76,68,60,52,44.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

100
2017 年“数学花园探秘”科普活动 小学高年级组决赛试卷 A
(测评时间:2017 年 1 月 1 日 8:00—9:30)
一.填空题Ⅰ(每小题 8 分,共 40 分)
2.一个边长为 100 厘米的正五边形和五个扇形拼成如图的
“海螺”,那么这个图形的周长是 厘米(π取 3.14).
3.在 2016 年里约奥运会女排决赛中,中国队战胜了塞尔维亚队获得冠军.统计 4 局比赛中中国队的得分,发现前 2 局的得分之和比后 2 局的得分之和少 12%,前 3 局的得分之和比后 3 局的得分之和少8%.已知中国队在第 2 局和第 3 局中各得了 25 分,那么中国队在这 4 局中的得分总和为 分.
4.右面三个算式中,相同汉字代表相同数字,不同汉字代表不同数
字;那 么四位数“ 李白杜甫 ”= .
5. n 个数排成一列,其中任意连续三个数之和都小于30,任意连续四个数之和都大于 40,则n 的最大值为 .
二.填空题Ⅱ(每小题 10 分,共 50 分)
6.算式
的计算结果是 .
7.有一个四位数,它和 6 的积是一个完全立方数,它和 6 的商是一个完全平方数;那么这个四位数是 .
8.在空格里填入数字 1~6,使得每行、每列和每个 2×
3的宫(粗线框)内数字不重复.若虚线框
A,B,C,D,E,F 中各自数字和依次 分别为 a ,b ,c ,d ,e ,f ,且 a =b ,c =
d ,
e >
f .那么第四行的前五个数 字从左到右依次组成
的五位数是.
101
20 C P 17
9. 抢红包是微信群里一种有趣的活动,发红包的人可以发总计一定金额的几个红包,群里相应
数量的 成员可以抢到这些红包,并且金额是随机分配的.一天陈老师发了总计 50 元的 5 个红包,被孙、成、饶、赵、乔五个老师抢到.陈老师发现抢到红包的 5 个人抢到的金额都不一样,都是整数元的,而且还恰好都是偶数.孙老师说:“我抢到的金额是 10 的倍
数.” 成老师说:“我和赵老师抢到的加起来等于孙老师的一半.” 饶老师说:“乔老师抢到的比除了孙老师以外其他所有老师抢到的总和还多.” 赵老师说:“其他所有老师抢到的
金额都是我的倍数.” 乔老师说:“饶老师抢到的是我抢到的 3 倍.” 已知这些老师里只有一个老师没说实话,那么这个没说实话的老师抢到了 元的红包.
D
10. 如图,P 为四边形 ABCD 内部的点,AB :BC :DA =3:1:2,∠DAB =∠ CBA =60°.图中所有三角形的面积都是整数.如果三角形
PAD 和 三角形 PBC 的面积分别为 20 和 17,那么四边形
ABCD 的面积最 大是 .
三.填空题Ⅲ(每小题 12 分,共 60 分)
A B
11. 有一列正整数,其中第 1 个数是 1,第 2 个数是 1、2 的最小公倍数,第 3 个数是 1、2、3 的最小 公倍数,……,第 n 个数是 1、2、……、n 的最小公倍数.那么这列数的前 100个数中共_______个不同的值.
12. 如图,有一个固定好的正方体框架,
A 、
B 两点各有一只电子跳蚤同时开 A 始跳
动.已知电子跳蚤速度相同,且每歩只能
沿棱跳到相邻的顶点,两 只电子跳蚤各跳
了 3 歩,途中从未相遇的跳法共有 种.
13. 甲以每分钟 60 米的速度从 A 地出发去 B 地,与此同时乙从 B 地出
发匀速 去 A 地;过了 9 分钟,丙从 A 地出发骑车去 B 地,在途中 C 地
追上了甲甲、乙相遇时,丙恰好到 B 地;丙到 B 地后立即调头,且速
度下降为原来速度的一半;当丙在 C 地追上乙时,甲恰好到 B 地.那么
AB 两地间的路程为 米.
102
14. 在一个 8×8 的方格棋盘中放有 36
随后的空格棋子,则不 能进行操作.那么最后在棋盘上 最少剩下 枚棋子. 15. 你认为本试卷中一道最佳试题是第 题(答题范围为 01~14); 你认为本试卷整体的难度级别是 (最简单为“1”,最难为“9”,答题范围为 1~9); 你认为本试卷中一道最难试题是第 题;(答题范围为 01~14).
(所有答题范围内的作答均可得分,所有的评定都将视为本人对本试卷的有效评定,不作答或者超 出作答范围不得分.)
2017数学花园探秘科普活动小高决赛A解析
1.答案:64 解析:原式=(632-
1
63
)+(1-
1
63
)=63+1=64
2.答案:2384 解析:500+1
5
×2×π×(100+200+300+400+500)=2384
3.答案:94 解析:注意到前三局比前两局多25分,后三局比后两局多25分,所以中国队得
分总和为25+(
1
8%
-
1
12%
)÷12%×(1+1-12%)=94分。

4.答案:9285 解析:首先,比较两个式子,由白与诗不同可推知甫=5;其次,李白 +杜甫
≤97+86=183,所以,背=1,诗不超过7;再次由第三个式子知李-杜=1,白不超过2,诗不小于6.注意到白与背不同,所以,白=2,诗=7. 李白 +杜甫 =177,李白 -杜甫 =7,所以
李白 =92,杜甫 =85
5.答案:5 解析:注意到连续三个数之和小于30,任意连续四个数之和大于40.所以若n≥6,则第四、五、六个数均大于10,推知矛盾。

而12,12,5,12,12满足要求,所以n的最大
值为5.
6.答案:7776 解析:注意到这个数和6的积也是一个完全平方数,所以一定是一个六次方数,所以这个四位数是66的倍数。

注意到65=7776,所以这个四位数是7776
7.答案:32 解析:
8.答案:31462
103
9.答案:16 解析:注意到饶老师和乔老师的话是矛盾的,所以其余三位老师的话都是诚实的,推知孙老师抢得20元,成老师抢得8元,找老师抢得2元。

如果乔老师是诚实的,那么乔老师抢到5元,不是偶数。

故乔老师没说实话,所以乔老师抢得至少16元。

注意到5个人抢得的金额都不一样,所以乔老师抢得16元。

10.答案:36 解析:注意到只有n的质因数仅一种时,第n个数才会大于第n-1个数,其他
情况下低n个数和第n-1个数相同。

1到100中有质数25个,质数的二次方4个,质数的三次
方2个,质数的四次方2个,质数的五次方、六次方各1个,所以这列正整数中共有
1+25+4+2+2+1+1=36个不同的值。

11.答案:1620 解析:线段图见右:注意到从丙追上甲到甲乙相遇,丙走CB,甲走CD;
从甲乙相遇到丙追上乙,丙伴宿走BC,甲走DB,乙走CD。

所以BD=2CD,乙的速度为每分钟60
÷2=30米,甲走CB时,丙走了CB并半速走BC,所以丙的速度为每分钟60×3=180米。

所以AB两地路程为(60+30)×9÷(180-60-30)×180=1620米
12.答案:2
解析:注意到如下操作:
所以每次可以将一个“L”形的四个棋子中去掉3个,另一个回到原格。

所以将36枚棋子按图中的分组依次去掉,最后剩下右下的1×3的棋子,再操作一次即可剩下2枚。

下面证明最少剩下2枚棋子
104
105
如下图对期盼进行三染色,则每次操作时,有两种颜色格内的棋子数减1,第三种颜色格内的棋子数加1,而开始时三种颜色格内的棋子数均相等,所以每次操作后三种颜色格内的棋子数奇偶性相同,而最后棋子不可能一枚不剩,所以最少剩下2枚棋子。

13.答案:147 解析:延长AD,BC 交于点Q ,连接PQ ,∠DAB=∠CBA=60°,所以三角形ABQ 为正三角形。

由于AB:BC:DA=3:1:2,所以PCQD 的面积为20÷2+17×2=44.而三角形QCD 面积占
QAB 面积13 ×23 =29 ,ABCD 面积是QCD 面积的(1-29 )÷29 =72
倍。

注意到ABCD 中各三角形面积均为整数,所以QAB 面积为9的倍数。

QCD 面积是2的倍数,所以QCD 面积最大为42,ABCD 面积最大为42×72
=147
14.答案:343 解析:注意到每次跳跃后,两只电子跳蚤仍然是在正方体某一面的面对角线的两个端点处。

而每次跳跃时,两只跳蚤有3×3-2=7种跳法互不相遇,所以三次跳跃从未相遇的跳法有7×7×7=343种。

相关文档
最新文档