小功率调频发射机电路的设计

合集下载

小功率调频发射机(工程)

小功率调频发射机(工程)

高频课程设计一、题目小功率调频发射机的设计与制作二、主要技术指标1.中心频率f=12MHzf >10kHz2.最大频偏mP≥30mW3.输出功率o4.电源电压 Vcc=9V三、设计和制作任务1.确定电路形式,选择各级电路的静态工作点。

画出电路图。

2.计算各级电路元件参数并选取元件。

3.画出电路装配图。

4.组装焊接电路。

5.调试并测量电路性能。

6.写出课程设计报告书,内容包括:●任务及性能指标要求●电路和方案选择的依据,元件的理论计算和选择●调试方法和步骤,调试中问题的分析及解决●测试仪器,实验结果及分析●改进设想,实验心得四、设计提示通常小功率发射机采用直接调频方式,它的组成框图如图1所示。

其中调频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供未级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免未级功放的工作状态变化而直接影响振荡级的频率稳定度;功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。

图1调频发射机组成上述框所示小功率发射机设计的主要任务是选择各级电路形式和各级元器件参数的计算。

1.调频振荡级由于是固定的中心频率,可考虑采用频率稳定度较高的克拉泼振荡电路。

2.缓冲级由于对该级有一定增益要求,考虑到中心频率固定,因此可采用以LC并联回路作负载的小信号谐振放大器电路。

对该级管子的要求是f T≥(3-5)foV(BR)CEO≥2Vcc至于谐振回路的计算,一般先根据fo计算出LC的乘积值。

然后选择合适的C再求出LC。

根据本课题的频率可取100pF-200pF 。

3.功放输出级为了获得较大的功率增益和较高的集电极效率,该级可采用共发射极电路,且工作在丙类状态。

输出回路用来实现阻抗匹配并进行滤波,从结构简单、调节方便起见,本课题可采用π型网络,计算元件参数时通常取Qe1在10以内,计算公式请参阅教材。

小功率调频发射机高频课设报告

小功率调频发射机高频课设报告

课程设计报告——小功率调频发射机的设计与制作一、框图及原理图图1.1 调频发射机组成框图图1.2 调频发射机组成原理图二、原理一、震荡级 震荡级电路常见的是三点式,电容三点式和电感三点式。

虽然电容三点式的频偏大,但频率稳定度较低。

因此选用电容三点式的改进型电路——克拉泼振荡电路。

克拉泼电路的主要部分是电感和与它串联的小电容C3,要求这个小电容C3远小于另两个电容C1和C2,这样三个电容串联的值主要取决于小电容C3,从而减小了三极管极间电容对振荡频率的影响。

一般来说,这个小电容越小,振荡频率越稳定,但过小的电容会减小开环增益,引起起振困难,所以综合考虑,C3去220p 比较合理。

三极管采用分压式偏执,以提高电路的稳定度。

Rb1、Rb2、Re 、Rc 为偏置电阻,使得三极管工作在放大区。

Cb 为高频旁路电容,使得交流通路可实现射同它反。

调 频 震荡级 缓 冲 放大级 功 率 输出级图2.1 震荡级电路二、缓冲级缓冲级作为前级振荡器与末级功率放大部分的桥梁,一方面它将前级信号放大到足以激励功率放大级的程度,另一方面它将两级隔离,避免相互影响。

本电路采用L1和C1组成的网络实现滤波和阻抗匹配。

由于频率固定在12M ,根据)2/(10LC f π=可以确定相应的电感和电容,这里采用100p 的电容和可调电感组合可以达到最好的效果。

其中可调电感通过圈数粗调电感值,通过转动中心磁芯细调电感值。

R1、R2、R3为偏置电阻,将三极管的静态工作点调在放大区。

C1和C3为前后级耦合电容,这两个电容的取值不能太大也不能太小。

如果取值过大,则前后级耦合效果虽然增强,但相互影响也增大;相反,如果取值太小,则导致前后级的容抗较大,影响耦合效果。

综合考虑,取值在100p 到200p 较好。

图2.2 缓冲级三、功率放大级功率放大级做为最后一级,其最主要的任务是提供较大的放大倍数和发射功率,以保证信号较远距离的传输。

放大倍数受Re(即图中R2)和Rc(即LC回路的谐振阻抗)影响较大,其中放大倍数与Re成反比,而与Rc成正比。

推荐-小功率调频发射机设计 精品

推荐-小功率调频发射机设计 精品

课程设计课程名称通信电子线路课程设计课题名称小功率调频发射机设计专业电子信息工程班级学号姓名指导教师20XX年09 月08 日课程设计任务书课程名称通信电子线路课程设计题目小功率调频发射机设计专业班级电子信息工程班0881 学生姓名学号10指导老师审批任务书下达日期:20XX 年08 月29 日设计完成日期:20XX 年09 月08 日目录一.设计目的无线电发射与接收设备是高频电子线路的综合应用,是现代化通信系统、广播与电视系统、无线安全防范系统、无线遥控和遥测系统、雷达系统、电子对抗系统、无线电制导系统等,必不可少的设备。

本次设计要达到以下目的:1. 进一步认识射频发射系统;2. 掌握调频(或调幅)无线电发射机的设计;3. 学习无线电通信系统的设计与调试。

二.基本原理与方案比较2.1FM 调制原理载波()t w U t u c cm c cos )(=,调制信号()t u Ω;通过FM 调制,使得)(t u c 频率变化量与调制信号()t u Ω的大小成正比。

即已调信号的瞬时角频率()()t u k w t w f c Ω⋅+=已调信号的瞬时相位为()()t d t u k t w t d t w t tf c t ''+=''=⎰⎰Ω)(00ϕ 实现调频的方法分为直接调频和间接调频两大类。

2.1.1 直接调频直接调频的基本原理是利用调制信号直接控制振荡器的振荡频率,使其反映调制信号变化规律。

要用调制信号去控制载波振荡器的振荡频率,就是用调制信号去控制决定载波振荡器振荡频率的元件或电路的参数,从而使载波振荡器的瞬时频率按调制信号变化规律线性地改变,就能够实现直接调频。

直接调频可用如下方法实现:(1)改变振荡回路的元件参数实现调频在LC 振荡器中,决定振荡频率的主要元件是LC 振荡回路的电感L 和电容C 。

在RC 振荡器中,决定振荡频率的主要元件是电阻和电容。

因而,根据调频的特点,用调制信号去控制电感、电容或电阻的数值就能实现调频。

小功率调频发射机的设计

小功率调频发射机的设计

小功率调频发射机的设计一、设计原理1.调频器:负责将音频信号转换成频率调制信号。

在调频器中,我们可以使用电容或电感进行频率调制。

2.放大器:负责将调频器输出的调制信号放大到适合无线传输的功率水平。

放大器主要使用晶体管、场效应管或管子放大器等器件。

3.混频器:负责将振荡器产生的射频信号与调制信号进行混频,形成调频发射信号。

4.振荡器:用于产生稳定的射频信号,其频率由调频电路控制。

5.滤波器:用于滤除混频后产生的杂散分量,只保留感兴趣的射频信号。

6.功率放大器:负责将滤波器输出的射频信号放大到更高的功率水平,使其能够被天线辐射出去。

二、设计步骤1.确定应用场景和需求:首先需要确定该小功率调频发射机的应用场景和需求,包括工作频率范围、传输距离、功率要求等。

2.确定天线类型和参数:根据应用场景的不同,选择适合的天线类型和参数,如定向天线、全向天线、增益、方向性等。

3.确定调制方式:根据应用需求,选择合适的调制方式,如频率调制、相位调制、脉冲调制等。

4.按照电路图设计电路:根据设计需求,绘制出整个调频发射机的电路图。

根据电路图,选择合适的器件和数值进行电路设计。

5.PCB设计和制作:将电路图转化为PCB图,设计并制作出电路板。

在设计电路板时,需要注意布局合理性和信号线的走向,以避免干扰和噪声。

6.组件的选择和安装:根据设计需求,选择合适的器件和元件,并进行焊接和安装。

7.调试和测试:将制作完成的发射机进行调试和测试,确保其可以正常工作并满足设计需求。

8.优化和改进:根据测试结果,对发射机进行优化和改进,提高其性能和稳定性。

小功率调频发射机的设计需要一定的电子技术和通信原理的基础,对器件的选择和电路设计也需要一定的经验和专业知识。

在设计过程中,需要考虑信号传输的稳定性、抗干扰性和功率效率等因素,以保证发射机的性能和可靠性。

总结:小功率调频发射机的设计是一个综合性较强的工程项目,它需要掌握多种电子技术和通信原理知识,并进行电路设计、PCB制作和调试等工作。

小功率调频发射机的设计.

小功率调频发射机的设计.

一、电路原理1.电路原理及用途通常小功率发射机采用直接调频方式其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。

晶体管器件课程设计是电子科学与技术专业学科实践性课程,其任务是使学生运用模拟电路等电路课程中所学的知识,利用晶体管等器件,设计出一些完成一定功能的电路,并对电路进行分析和调试。

掌握设计和调试电路的一些方法和技巧。

与调幅电路相比,调频系统由于高频振荡输出振幅不变, 因而具有较强的抗干扰能力与效率.所以在无线通信、广播电视、遥控测量等方面有广泛的应用.2.主要技术指标设计一个小功率调频发射机,主要技术指标为:(1) 载波中心频率f0=6.5MHz;(2) 发射功率PA>100mW;(3) 负载电阻RL=75Ω;(4) 调制灵敏度Sf≥25kHz/V;二、设计步骤和调试过程1、总体设计电路2、电路工作状态或元件参数的确定实际功率激励输入功率不高拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。

单元电路级数尽可能少,以减少级间的相互感应、干扰和自激。

由于本题要求的发射功率Po不大,工作中心频率f0也不高,因此晶体管的参量影响及电路的分布参数的影响不会很大,整机电路可以设计得简单些,各组成部分的作用是:(1)LC调频振荡器:产生频率f0=6.5MHz的高频振荡信号,变容二极管线性调频,最大频偏,整个发射机的频率稳定度由该级决定。

(2)缓冲隔离级:将振荡级与功放级隔离,以减小功放级对振荡级的影响。

因为功放级输出信号较大,当其工作状态发生变化时(如谐振阻抗变化),会影响振荡器的频率稳定度,使波形产生失真或减小振荡器的输出电压。

小功率调频发射机的设计与制作.

小功率调频发射机的设计与制作.

小功率调频发射机的设计和制作小功率调频发射机的设计与制作一、设计任务与要求1、主要技术指标:1、中心频率:2、频率稳定度3、最大频偏4、输出功率5、电源电压二、原理及图1、小功率调频发射机原理:拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。

单元电路级数尽可能少,以减小级间的相互感应、干扰和自激。

在实际应用中,很多都是采用调频方式,与调幅相比较,调频系统有很多的优点,调频比调幅抗干扰能力强,频带宽,功率利用率大等。

调频可以有两种实现方法,一是直接调频,就是用调制信号直接控制振荡器的频率,使其按调制信号的规律线性变化。

另一种就是间接调频,先对调制信号进行积分,再对载波进行相位调制。

两种调频电路性能上的一个重大差别是受到调频特性非线性限制的参数不同,间接调频电路提供的最大频偏较小,而直接调频可以得到比较大的频偏。

所以,通常小功率发射机采用直接调频方式,它的组成框图如图1所示。

小功率调频发射机的设计和制作图1 调频发射机组成其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免末级功放的工作状态变化而直接影响振荡级的频率稳定度;功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。

(1)振荡级振荡电路主要是产生频率稳定且中心频率符合指标要求的正弦波信号,目前应用较为广泛的是三点式振荡电路和差分对管振荡电路。

三点式振荡电路又可分为电感和电容三点式振荡电路,由于是固定的中心频率,因而采用频率稳定度较高的克拉拨振荡电路来作振荡级。

(2)缓冲级因为本次实验对该级有一定的增益要求,而中心频率是固定的,因此用LC并联回路作负载的小信号谐振放大器电路。

缓冲放大级采用谐振放大,L2和C10谐振在振荡载波频率上。

若通频带太窄或出现自激则可在L2两端并联上适当电阻以降低回路Q值。

小功率调频发射机设计报告

小功率调频发射机设计报告

专业:通信工程学号:AP0605413 姓名:李任荣一、前言这个学期我学习了高频电子线路,为了学以致用,做了一个小功率单管调频发射机。

在制作发射机的过程中,我对调频、调幅发射方面的知识又有了更深的理解!二、调频发射机电路原理图这个单管调频发射机电路的关键元件是发射三极管,可选用9018、8050、C1970等。

品名极性管脚功能参数9018 NPN EBC 高频放大30V 50MA 0.4W 1GHZ8050 NPN EBC 高频放大40V 1.5A 1W 100MHZC3355 NPN 21F 高频放大20V 0.1A 0.6W 6500MHZC1970 NPN 28 手机发射40V 0.6A PQ=1.3W/175MHZD40C NPN ECB 对讲机用40V 0.5A 40W 75MHZ(达林顿) 本电路采用易购且便宜的三极管8050,供电为3---6V的电池,其中L1、L2采用φ0.31mm的漆包线在φ3.5mm左右的圆棒上单层平绕5匝及10匝,C3选用5~25pF的瓷介或涤纶可调电容。

三、PCB图的设计四、调试本发射机的调试很简单,无需专用的仪器也能达到较好的效果,只需配合普通的FM收音机即可,打开电源开关,电源指示灯亮,调节线圈L1的电感和电容C3,来达到收发频率的一致,对着话筒说话,在收音机这端就可以听到说话的声音。

采用普通三极管8050,工作电流有60~80mA,用3V电池供电,我调试的发射距离大约50~70米,频率为78MHz,用我的收音机刚好能收到。

其实可以调节C3的电容量和L1,使本机工作频率落在88~108MHz范围,由于时间的关系,要复习考试,就没有再调试了。

最初尝试采用过9018,但工作电流更小,发射距离也更短,只有20到30米。

如果用功率稍大的三极管,发射距离会很理想,例如可以采用D40、D50、2N3866等,工作电流为60~80mA。

但以上三极管难以购到,一般需网购,且价格较高。

小功率调频发射机设计

小功率调频发射机设计

课程名称通信电子线路课程设计课题名称小功率调频发射机设计专业XXXXXXXXXXXXXXX班级 XXXXX XXX学号200713020123姓名 XXX XXXX指导教师XXXXXXX2010年1月7日XXXX学院课程设计任务书课程名称通信电子线路课程设计题目小功率调频发射机设计专业班级电子信息工程0781学生姓名XXXXXX学号200713020123指导老师XXXX审批任务书下达日期:2010年12月26日星期一设计完成日期:2011 年1月7 日星期五率目录一、调频发射机及其主要技术指标 (6)1.1发射机的组成方框图 (6)1.2主要技术指标 (6)二、单元电路设计与调试 (7)2.1 LC正弦波振荡器 (7)2.2单元电路设计 (8)2.2.1 LC调频振荡级 (8)2.2.2电路原理分析 (8)2.2.3 变容二极管的Cj-v 特性曲线 (9)2.2.4 缓冲隔离级 (11)2.2.5 高频功率放大级 (12)三. 参数计算及分析 (14)3.1LC调频振荡器 (14)3.2高频功率放大器 (15)四、总原理图及元器件清单 (20)4.1总原理图 (20)4.2元件清单 (21)五、总结与体会 (22)一、调频发射机及其主要技术指标1.1 发射机的组成方框图拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。

单元电路级数尽可能少,以减少级间的相互感应、干扰和自激。

由于本题要求的发射功率PA 不大,工作中心频率f也不高,因此晶体管的参量影响及电路的分布参数的影响不会很大,整机电路可以设计得简单些,组成框图如图1所示,各组成部分的作用是:图1 发射机组成方框图1.2 主要技术指标●发射功率一般是指发射机输送到天线上的功率。

●工作频率或波段发射机的工作频率应根据调制方式,在国家或有关部门所规定的范围内选取。

● 总效率 发射机发射的总功率 与其消耗的总功率P’C 之比,称为发射机的总效率 。

小功率调频发射机的设计与制作.

小功率调频发射机的设计与制作.

小功率调频发射机的设计和制作小功率调频发射机的设计与制作一、设计任务与要求1、主要技术指标:1、中心频率:2、频率稳定度3、最大频偏4、输出功率5、电源电压二、原理及图1、小功率调频发射机原理:拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。

单元电路级数尽可能少,以减小级间的相互感应、干扰和自激。

在实际应用中,很多都是采用调频方式,与调幅相比较,调频系统有很多的优点,调频比调幅抗干扰能力强,频带宽,功率利用率大等。

调频可以有两种实现方法,一是直接调频,就是用调制信号直接控制振荡器的频率,使其按调制信号的规律线性变化。

另一种就是间接调频,先对调制信号进行积分,再对载波进行相位调制。

两种调频电路性能上的一个重大差别是受到调频特性非线性限制的参数不同,间接调频电路提供的最大频偏较小,而直接调频可以得到比较大的频偏。

所以,通常小功率发射机采用直接调频方式,它的组成框图如图1所示。

小功率调频发射机的设计和制作图1 调频发射机组成其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免末级功放的工作状态变化而直接影响振荡级的频率稳定度;功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。

(1)振荡级振荡电路主要是产生频率稳定且中心频率符合指标要求的正弦波信号,目前应用较为广泛的是三点式振荡电路和差分对管振荡电路。

三点式振荡电路又可分为电感和电容三点式振荡电路,由于是固定的中心频率,因而采用频率稳定度较高的克拉拨振荡电路来作振荡级。

(2)缓冲级因为本次实验对该级有一定的增益要求,而中心频率是固定的,因此用LC并联回路作负载的小信号谐振放大器电路。

缓冲放大级采用谐振放大,L2和C10谐振在振荡载波频率上。

若通频带太窄或出现自激则可在L2两端并联上适当电阻以降低回路Q值。

小功率调频发射机

小功率调频发射机

简易调频发射机设计报告一、设计目标设计并制作一个简易的调频发射机,能将声音信号通过调频发射机发射到发到40-60M 远的收音机上。

通过实验,可以更好地巩固和加深对小功率调频发射机工作原理和非线性电子路 的进一步理解。

学会基本的实验技能,提高运用理论知识解决实际问题的能力。

二、电路选择及电路原理分析在满足要求的前提下,应力求电路简单、性能稳定可靠。

单元电路级数尽可能少,以减小级间的相互感应、干扰和自激。

所以本次设计的发射机的电路的组成框图如下所示话筒1.调频振荡级 由于是固定的中心频率,振荡级可考虑采用电容三点式振荡电路。

2.功放输出级为了获得较大的功率增益和较高的集电极效率,该级可采用共发射极电路,且工作在丙类状态,输出回路用来实现阻抗匹配并进行滤波。

功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。

原理分析:C2电容隔直流耦合低频声音信号作用,C3是旁路电容,R1、R3、R5起偏置效应。

驻极体麦克风把声音信号转换成电信号,然后经C2大电容隔直耦合到调频振荡电路。

振荡回路采用电容三点式震荡电路。

用来产生频率为70MHz~110MHZ 的高频振荡信号,由于整个发射机的频率稳定度由它决定,因此要求主振级有较高的频率稳定度,其输出波形失真要小。

由于集电极和基极的极间电容C ′是随着外加电压的变化而变化的,因此该电路可以实现小范围的调频振荡。

振荡信号通过耦合电感把声音信号耦合到第二级谐振功率放大器上。

L3和C8组成选频网络滤除干扰信号,三极管起放大信号的作用。

最后,通过发射电路把信号发射出去。

三、电容、电感的选择计算1.电感计算空心线圈电感量计算公式:L=(0.01*D*N*N)/(l/D+0.44)线圈电感量 L单位: 微亨线圈直径 D单位: cm线圈匝数 N单位: 匝线圈长度 l单位: cm经测量线圈的参数如下:线圈直径为0.3cm,线圈匝数为8,线圈长度为0.6cm。

代入计算公式可得L=0.078uH2.电容计算根据C9018数据手册可得基极和集电极的极间电容为16PF可的振荡电路的交流通路如下图所示:C=C4+C‵+C5*C6/(C5+C6).经过计算可得C=38.3PF四、电路图五、调试过程杨毅生 110700645电路的调试顺序先分级调单元电路的静态工作点,测量其性能参数;然后在逐级进行联调,直到整机调试;最后进行整机技术指标测试。

高频电子线路课程设计小功率调频发射机的设计与实现

高频电子线路课程设计小功率调频发射机的设计与实现

小功率调频发射机的设计与实现目录一、摘要二、设计目的三、设计要求四、给定条件五、设计框图六、元器件值七、工作原理八、调试过程九、验证过程十、课设总结十一、附录摘要小功率调频发射机的原理组成框图:只有当发射机的天线长度与发射频率的波长可比拟时,天线才能有效地把载波发射出去。

波长与频率的关系为λ= c/f, 式中,c为电磁波传播速度,,c=3*108m/s 。

音频的范围一般为10Hz~10kHz,对应的波长为30,000Km~ 30Km。

调频振荡级信号还需放大到一定的功率,功放级一般输出较大,当其工作状态发生变化,会影响振荡频率的稳定性,会使波形产生失真,或减小振荡器的输出。

为减少级间影响,应插入缓冲隔离级。

功率激励的作用:(1)提高发射频率,(2)提高发射机的稳定性,(3)提高调制灵敏度。

为避免一级功放增益太大而产生自激。

加一级功率放大器为末级功放提供激励信号,也称推动级。

在功率激励后还应加一级倍频,使负载(天线)上获得满足要求的功率。

设计目的通过具体的电路设计和调试安装实践,进一步加深对基础电路,高频电路的了解,理解所学的专业知识,提高动手能力,提高解决实际问题的综合能力,培养创新能力。

设计要求1.理解并掌握本课程设计所涉及的知识;2.熟悉工程设计方法;3.设计并理解调频发射机的调频和发射过程;4.掌握高频电路的调试方法;5.连接本系统硬件电路;6.完成本系统的调试和测试。

给定条件1、发射功率为100mW,负载电阻51欧姆。

2、工作中心频率5MHz,最大频偏kHz∆f。

=10η。

3、总效率%50>4、在实现工作中心频率5MHz调频发射机的基础上,设计完成工作中心频率5MHz调频发射机。

系统框图元器件值三极管:3DG100 1个;3DG130 3个;电感:10μH色环电感1个47μH电感3个;电容(单位F):20p 33p 100p 330p 510p 2000p 5100p0.01μ×6 0.022μ0.047μ 4.7μ电阻(单位欧姆):8.2k ×3 28k 2k 1k ×2 150k 20k 10k ×2 3k 360 5 51 20工作原理f=5MHz的高频振荡信号。

小功率调频发射机的设计 (1)

小功率调频发射机的设计 (1)

小功率调频发射机的设计主要内容、基本要求、主要参考资料等1、主要内容利用所学的高频电路知识,设计一个小功率调频发射机。

通过在电路设计、安装和调试中发现问题、解决问题,加深对高频电子线路课程理论知识的理解,提高电路设计及电子实践能力。

2、基本要求设计一个小功率调频发射机,主要技术指标为:(1) 载波中心频率06.5MHzf=;(2) 发射功率100mWAP>;(3) 负载电阻75LR=Ω;(4) 调制灵敏度25kHz/VfS≥;3、主要参考资料[1] 阳昌汉. 高频电子线路. 哈尔滨:高等教育出版社,2006.[2] 张肃文,陆兆雄. 高频电子线路(第三版). 北京:高等教育出版社,1993.[3] 谢自美. 电子线路设计·实验·测试. 武汉:华中科技大学出版社,2000.[4] 高吉祥. 电子技术基础实验与课程设计. 北京:电子工业出版社,2002.完成期限2月28日-3月4日指导教师专业负责人2011 年 6 月25 日一、电路原理1.电路原理及用途制定小功率调频发射机方框图的要求是,在满足技术指标要求的前提下,应该尽量要求电路简单、性能稳定并可靠。

单元电路级数尽可能少,以减小级间的相互感应、干扰和自激。

在实际应用中,很多都是采用调频方式,与调幅相比较,调频系统有很多的优点,调频比调幅抗干扰能力强,频带宽,功率利用率大等。

调频可以有两种实现方法,一是直接调频,就是用调制信号直接控制振荡器的频率,使其按调制信号的规律线性变化。

令一种就是间接调频,先对调制信号进行积分,再对载波进行相位调制。

两种调频电路性能上的一个重大差别是受到调频特性非线性限制的参数不同,间接调频电路提供的最大频偏较小,而直接调频可以得到比较大的频偏,通常小功率发射机采用直接调频方式,它的框图如下所示:振荡电路的功能是在没有外加输入信号的条件下,电路自动将直流电源提供的能量转换为具有一定频率、一定波形和一定振幅的交变振荡信号输出。

小功率调频发射电路

小功率调频发射电路

本文介绍的小功率调频发射电路,由于使用了专用的发射管,调制度深,不产生幅度调制,失真小,发送距离远,工作稳定。

电路简单易制,只要焊接无误即可工作,电路原理见图1所示。

图1电路中,由专用发射管T2和其外围件组成一频率在88~108MHz范围内的高频振荡器,驻极体话筒拾取的音频信号先经T1进行放大,放大后的低频信号再对高频载波进行调制。

如断开驻极话筒M,在输入端接放音机输出就能很好地传送音乐信号。

需要说明的是射频发射专用管T2,其型号是FF501,采用标准的T0-92封装(像9000系列三极管一样),外形及引脚排列如图2所示,其ICM为45mA,fT大于1.3GHz,VCEO为13V。

专用管的优点就是一致性好,射频输出功率较大,电路容易调整,FF501完全可工作在更高的频段,读者可尝试将发射管用于其它电路的高频发射实验。

电路中的L2用∮1.0mm的漆包线在∮5.1mm的钻头上绕5匝脱胎拉长至0.8cm,C3~C8可用高频瓷介电容,天线最好用1.2米的拉杆,并垂直放立。

天线一定要架好后再上电。

电路的工作电流约25±5mA。

如发射频率不在88~108MHz范围内,可适当调整谐振线圈L2的长度。

电路装调好后,用FM段调频收音机作接收,有效传送半径可达500m。

新颖的调频接收机本文介绍的调频接收机利用超再生调频接收原理,因采用了高增益微型集成电路,故电路简单新颖。

接收效果达到一般调频接收机的水平,同时克服了超再生接收机选择性差、噪声大等缺点,又保持了灵敏度高、耗电少、线路简单和成本低(元件费用不足5元)等优点。

适合电子爱好者制作。

该机的电路原理图如图所示。

由超再生调频接收、FM-AM变换部分、调幅检波及低放电路组成。

调频波的超再生接收,实际上就是将调频波转换成调幅波,同时对调幅波进行包络检波以得到低频信号。

图中的三极管VTl及外围元件组成典型的超再生调频接收电路,并将调频波信号转换成调幅信号以及进行包络检波输出音频信号。

【毕业设计】小功率FM发射机电路的设计

【毕业设计】小功率FM发射机电路的设计
4.2.2 方案二变容二极管间接调频电路 ....................................... 18
4.3 所选变容二极管直接调频电路参数的估算 .............................. 19
5 高频功率放大器 .......................................... 21
6.1液晶显示控制电路 ......................................................................... 23
6.2实验整机电路图及相关程序 .......................................................... 24
小功率FM发射机电路的设计 - I -
小功率FM调频发射机电路的设计
摘要 1933年世界上第一台发射机诞生。美国发明家阿姆斯特朗发明了
短波FM收音机。1939年,FM发射机的发明者阿姆斯特朗在美国建
立了第一个FM广播的发射站。同年,调幅收音机开始在美国出售。从
Armstrong invented the short-wave (FM) radio. 1939, the inventor of FM
transmitters Armstrong of the United States established the first FM radio
1.2调频发射机性能指标及设计要求 .................................................... 3
1.3调频发射机基本原理方框图 ............................................................ 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息职业技术学院毕业设计说明书(论文)设计(论文)题目: 小功率调频发射机电路的设计专业: 通信技术班级:学号:姓名:指导教师:二ΟΟ八年十二月三十日息职业技术学院毕业设计(论文)任务书备注:任务书由指导教师填写,一式二份。

其中学生一份,指导教师一份。

目录摘要 0第1章绪论 (1)第2章方案设计 (2)方案比较与论证 (2)方案选择 (2)第3章单元电路设计 (4)功率激励与末级功放电路设计 (4)末级功放电路设计 (4)激励级宽带功放电路设计 (7)缓冲隔离级电路设计 (9)LC调频振荡器设计 (11)间接调频电路设计 (11)LC振荡器的设计 (13)总结 (15)致谢 (16)参考文献 (17)附录1 总电路原理图 (18)附录2 元器件明细表 (19)摘要在无线电通讯和广播中,需要传送由语言、音乐、文字、图像等转换成的电信号。

由于这些信号频率比较低,根据电磁理论,低频信号不能直接以电磁波的形式有效地从天线上发射出去。

因此,在发送端须采用调制的方式,将低频信号加到高频信号之上,然后将这种带有低频信号的高频信号发射出去,在接收端则把带有这种低频信号的高频信号接收下来,经过频率变换和相应的解调方式"检出"原来的低频信号,从而达到通讯和广播的目的。

本设计针对小功率调频发射机进行设计,它主要有调频振荡、缓冲隔离、功率激励和末级功放各部分电路组成。

最主要将调制信号进行调制后,振荡信号随着调制信号的变化而产生变化,振荡级将产生5MHz的工作频率,功率激励即对电压进行放大,末级功放将工作在丙类状态ηA>50%,最后将对信号由天线发射出去。

关键词发射机;调频;无线话筒第1章绪论无线电技术诞生以来,信息传输和信息处理始终是其主要任务。

要将无线电信号有效地发射出去,天线的尺寸必须和电信号的波长为同一数量级,为了有效地进行传输。

必须将携带信息的低频电信号调制到几十MHz至几百MHz以上的高频振荡信号上,再经天线发送出去,调频是信号发射必不可少的一个环节。

调频发射机目前处于快速发展之中,在很多领域都有了很广泛的应用,可以用于演讲、教学、玩具、防盗监控等诸多领域。

低频小功率调频发射机是将待传送的音频信号通过一定的方式调制到高频载波信号上,放大到额定的功率,然后利用天线以电磁波的方式发射出去,覆盖一定的范围。

随着器件技术的发展,调频发射机的体积越来越趋于微型化,工作电压越来越低,信号覆盖的范围越来越广。

就目前接、发射技术来说,调频发射因为起得天独厚的性能优势,在接收机技术上可以有广阔的发展前景是因为发送信号的频率比较高,那么如何能够最大限度的减少干扰,如何把这种信号很好的解出来,这成了调频技术的一种考验。

本文主要就是研究利用频率调制技术调制高频信号,并把它发送出去。

第2章方案设计方案比较与论证无线调频话筒的设计中在LC振荡调频电路中其采用的调频方法有两种:一种是直接调频;另一种是间接调频。

方案一:直接调频。

这种方法一般采用调制电压直接控制振荡器的振荡频率,振荡频率f(t)按调制电压规律变化。

在此设计的电路中被控制的是LC振荡器,则只需要控制振荡回路的某个元件(L或C),使其参数随调制电压变化,就可以达到直接调频的目的。

此种方法电路简单、性能良好,是目前广泛采用的调频电路之一。

但这种方法的缺点是频率稳定度差,在许多场合须对载频采取稳频措施或者对晶体振荡器进行直接调频。

方案二:间接调频。

这种方法是将调制信号积分,然后对载波进行调相,间接调频时,调制器与振荡器是分开的,因此对振荡器影响小,其频率稳定度高。

在设计中若载频不稳,则有可能使调频信号的频谱落到接收机通带外,因此对于调频电路不仅要满足一定频偏要求,而且振荡频率必须保持足够高的频率稳定度。

方案选择本设计采用的是间接调频,这样易于保持中心频率的稳定度,虽然间接调频不易获得最大频偏但是在设计中采用的是三级单回路变容管调相电路,这样既可以保持中心频率又可以获得最大频偏。

由于本设计要求的发射功率P A不大,工作中心频率f0也不高,因此,晶体管的参量影响及电路的分布参数的影响不会很大,整机电路设计的框图如图2-1所示。

各组成部分的功能如下:1.LC调频振荡器:产生频率f0=5MHz的高频振荡信号,变容二极管线性调频,最大频偏Δf m=10kHz,整个发射机的频率稳定度由该级决定。

2.缓冲隔离级:将振荡级与功放级隔离,以减小功放级对振荡级的影响。

因为功放级输出信号较大,当其工作状态发生变化时(如谐振阻抗变化),会影响振荡器的频率稳定度,使波形产生失真或减小振荡器的输出电压。

整机设计时,为减小级间相互影响,通常在中间插入缓冲隔离级,缓冲隔离级电路采用射极跟随器电路。

3.功率激励级:为末级功放提供激励功率,如果发射功率不大,且振荡级的输出能够满足末级功放的输入要求,功率激励级可以省去。

4.末级功放:将前级送来的信号进行功率放大,使负载(天线)上获得满足要求的发射功率。

如果要求整机效率较高应采用丙类功率放大器,若整机效率要求不高如ηA<50%波形失真要求较小时可以采用甲类功率放大器,但是本题要求故ηA>50%选用丙类功率放大器较好。

第3章 单元电路设计功率激励与末级功放电路设计发射机的输出应具有一定的功率才能将信号发射出去,但是功率增益又不可能集中在末级功放,否则电路性能不稳,容易产生自激,因此要根据发射机的各组成部分的作用,适当合理的分配功率增益。

本设计中,功率增益的具体分配如图2-1所示。

如果调频振荡器的输出比较稳定,又具有一定的功率,则功率激励级和末级功放的功率增益可适当小些。

功率激励级一般采用高频宽带放大器,末级功放可采用丙类谐振功率放大器,缓冲级可以不分配功率。

功率激励与末级功放电路如图3-1所示。

L5v末级功放电路设计1.基本关系式末级功放采用丙类功率放大器,其电路原理如图3-1所示。

丙类功率放大器的基极偏置电压-V BE 是利用发射机电流的分量I eo 在射极电阻R 21上产生的压降来提供的,故称为自给偏压电路。

当放大器的输入信号Vi 为正弦波时,集电极的输出电流i C 为余弦脉冲波。

利用谐振回路LC 的选频作用可输出基波谐振电压u C 、电流i C1。

(1)集电极基波电压的振幅P cm cm R I U 1=式中,I cm 1为集电极基波电流的振幅;R P 为集电极负载阻抗。

(2)输出功率P O()P cm cm cm R U I U Po 2/21== (3-1)(3)直流功率P Vco cc V I V P =(4)集电极耗散功率P TPo P P V T -=(5)集电极的效率ηV P Po /=η(6)集电极电流分解系数()θα()max /cm cmn n i I =θα(7)导通角θbmBB on U V U -=θcos (θ一般取oo 8060-)2.确定丙类放大器的工作状态为了获得较高的效率η和最大的输出功率P o ,选丙类放大器的工作状态为临界状态,οθ70=,功放管为3DA1。

3DA1的参数如表3-1所示。

表3-1 3DA1参数表(1)最佳匹配负载R P =Ω()Ω=⨯-=-=25.1105.025.1122)(22Po V V R CES cc P由P o ==U cm 2/(2R P )可得: 集电极最大输出电压U cm =。

(2)集电极基波电流振幅:I cm1=集电极电流最大值I cm =I cm1/α1(700)==。

(3)集电极电流直流分量I co =I cm ×α0(700)=×=,电源供给的直流功率Pv =V cc ×I co =。

(4)集电极的耗散功率P T =Pv -P o ==(小于P CM =1W) (5)总效率η=Po /Pv =500/=%输入功率P i =25mW ,若设本级功率增益Ap =13dB(20倍),则输入功率Pi =P o /Ap =25mW(6)基极余弦脉冲电流的最大值I bm (设晶体管3DA1的β=10) I bm =I cm /β=基极基波电流的振幅I bm 1=I bm α1(700)=×= 基极电流直流分量I b0=I bm α0(700)=×= 基极输入电压的振幅U bm =2Pi /I bm1= 丙类功放的输入阻抗()()()Ω=⨯-=-=8644.070cos 125cos 1obb r Zθαθ 3.计算谐振回路及耦合回路的参数(1)输出变压器线圈匝数比N 5/N 3(解决最佳匹配负载问题)68.011051235====P L cmL O R R U R P N N 取N 5=2,N 3=3。

(2)谐振回路电容C 20=100PF 谐振回路电感L())(H C L μπ101010010514.321f 211262020≈⨯⨯⨯⨯⨯==-(3)输出变压器初级线圈总匝数比N =N 3+N 4高频变压器及高频电感的磁芯应采用镍锌(NXO)铁氧体,而不能采用硅钢铁芯,因其在高频工作时铁损耗过大。

NXO-100环形铁氧体作高频变压器磁芯时,工作频率可达十几兆赫兹。

若采用外径×内径×高度=Φ10m m ×Φ6mm ×Φ5mm 的NXO-100环来绕制输出耦合变压器,由公式(3-2)所示:{}{}{}H N cml cm A L MH μμπ322/1042-⨯= (3-2)式中,μ=100H/m 为磁导率;N 为变压器初级线圈匝数;A=25mm 2为磁芯截面积;l =25mm 为平均磁路长度。

计算得N =8,则N 4=5或Oe R LW N N L⨯=05,则 9225110528.650≈⨯⨯⨯⨯=⨯⨯=N Oe R LW N LO e 取值2~10,上述公式(3-2)取2。

需要指出的是,变压器的匝数N 3、N 4、N 5的计算值只能作为参考值,由于分布参数的影响,与设计值可能相差较大。

为调整方便,通常采用磁芯位置可调节的高频变压器。

4.基极偏置电路发射极电阻R 21,由公式R 21=20Ω,bmon U V U BB-=θcos 可得:οθ70cos 3.57.0cos ⨯-=⨯-=bm on BB U U VV R I V co BB 1.121-=⨯-= (3-3)R 21=Ω,由公式(3-3)取标称值高频旁路电容C 18=,电容C 20=μF 5.元件清单R 21=20Ω C 18= C 20=100pF L ≈10μH N 3=5,N 4=3,N 5=2 三极管为3DA1。

激励级宽带功放电路设计利用宽带变压器作耦合回路的功率放大器称为宽带功率放大器,常见宽带变压器有用高频磁心绕制的高频变压器和传输线变压器。

相关文档
最新文档