基础承台土坡稳定性计算书

合集下载

土坡稳定和土压力计算

土坡稳定和土压力计算

渗透力为体积力

Fs
Tf T

[ cos i
w
sin( )] tan
w
J
sin i
cos( )
T
W
N
分析:1.当渗流顺坡时 =
i sin
Fs Tf T Tf [ cos i
w
sin( 0 )] tan
P sin( ) P
2
w tan w
2


1 2
与干坡相比降低了一半多
二、粘性土土坡稳定性分析 1.瑞典圆弧法 2.瑞典条分法

二、粘性土土坡稳定性分析

1.瑞典圆弧法(Swedish circle method) 基本假定:均质粘性土坡滑动时,滑动面近似为 圆弧形状,假定滑动面以上的土体为刚体,假定 属于平面应变问题
a
a
Pa
1 2
H
2
tan ( 45
2
0


2
)
1 2
H K a
2
Pa 1 2
1 2
( H z 0 )( HK
2
a
2c 2c
Ka )
2
H K a 2 cH
Ka

外 力

滑动方向

3
1
1
1

ph
45
0


2
被动土压力计算原理

2 ) 2 c tan( 45
Preventing a house from moving with the unstable material

土坡稳定性计算计算书

土坡稳定性计算计算书

土坡稳定性计算书本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。

计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。

本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。

一、参数信息:条分方法:瑞典条分法;条分块数:50;考虑地下水位影响;基坑外侧水位到坑顶的距离(m):4.000;基坑内侧水位到坑顶的距离(m):20.500;放坡参数:序号放坡高度(m) 放坡宽度(m) 平台宽度(m)1 4.00 4.00 1.002 4.00 4.00 1.003 4.00 4.00 1.004 4.00 4.00 1.005 4.00 4.00 1.00荷载参数:序号类型面荷载q(kPa) 基坑边线距离b1(m) 宽度b(m)1 满布 3.00 -- --土层参数:根据土坡极限平衡稳定进行计算。

自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。

将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着:1、土条自重,2、作用于土条弧面上的法向反力,3、作用于土条圆弧面上的切向阻力。

将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.3的要求。

三、计算公式:Fs =∑{cili+[(γh1i+γ'h2i)bi+qbi]cosθitanφi}/∑[(γh1i+γ'h2i)bi+qbi]sinθi式子中:Fs--土坡稳定安全系数;ci--土层的粘聚力;li--第i条土条的圆弧长度;γ --土层的计算重度;θi--第i条土中线处法线与铅直线的夹角;φi--土层的内摩擦角;bi--第i条土的宽度;hi--第i条土的平均高度;h1i--第i条土水位以上的高度;h2i--第i条土水位以下的高度;γ' --第i条土的平均重度的浮重度;q --第i条土条土上的均布荷载;其中,根据几何关系,求得hi为:hi =(r2-[(i-0.5)×bi-l]2)1/2-[r+l-(i-0.5)×bi]tanα式子中:r --土坡滑动圆弧的半径;l--坡角距圆心垂线与坡角地坪线交点长度;α --土坡与水平面的夹角;h1i的计算公式h1i =hw-{(r-hi/cosθi)×cosθi-[rsin(β+α)-H]}当h1i≥ hi时,取h1i= hi;当h1i≤0时,取h1i= 0;h2i的计算公式:h2i = hi-h1i;hw--土坡外地下水位深度;li的几何关系为:li ={arccos[((i-1)×bi-l)/r]-arccos[(i×bi-l)/r]×2×r×π}/360θi =90-arccos[((i-0.5)×bi-l)/r]四、计算安全系数:将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数Fs:------------------------------------------------------------------------------------计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第1步 1.930 32.494 1.320 5.953 6.098示意图如下:计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第2步 1.751 31.359 3.601 11.772 12.310 示意图如下:计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第3步 1.688 30.045 6.166 17.553 18.605 示意图如下:计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第4步 1.644 29.624 8.640 23.388 24.933 示意图如下:计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第5步 1.585 30.765 10.453 29.634 31.424 示意图如下:--------------------------------------------------------------------------------------计算结论如下:第 1 步开挖内部整体稳定性安全系数 Fs= 1.930>1.30 满足要求! [标高-4.000 m]第 2 步开挖内部整体稳定性安全系数 Fs= 1.751>1.30 满足要求! [标高-8.000 m]第 3 步开挖内部整体稳定性安全系数 Fs= 1.688>1.30 满足要求! [标高-12.000 m]第 4 步开挖内部整体稳定性安全系数 Fs= 1.644>1.30 满足要求! [标高-16.000 m]第 5 步开挖内部整体稳定性安全系数 Fs= 1.585>1.30 满足要求! [标高-20.000 m]。

土坡稳定性计算

土坡稳定性计算

土坡稳定性计算书计算依据:1、《建筑基坑支护技术规程》JGJ120-20122、《建筑施工计算手册》江正荣编著3、《实用土木工程手册》第三版杨文渊编著4、《施工现场设施安全设计计算手册》谢建民编著5、《地基与基础》第三版计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。

本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。

一、参数信息:基本参数:放坡参数:序号 放坡高度L(m) 放坡宽度W(m) 平台宽度B(m) 1 3.5 2.25 0.75 2431.5荷载参数:土层参数:1 填土 3.5 19.8 7.4 20.4 8 202 粘性土 3.5 20 16.3 45.8 21 233 粘性土 3.6 20.3 17.4 64.1 23 23二、计算原理:根据土坡极限平衡稳定进行计算。

自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。

将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着:1、土条自重,2、作用于土条弧面上的法向反力,3、作用于土条圆弧面上的切向阻力。

将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.35的要求。

圆弧滑动法示意图三、计算公式:K sj=∑{c i l i+[ΔG i b i+qb i]co sθi tanφi}/∑[ΔG i b i+qb i]sinθi式子中:K sj --第j个圆弧滑动体的抗滑力矩与滑动力矩的比值;c i --土层的粘聚力;l i--第i条土条的圆弧长度;ΔG i-第i土条的自重;θi --第i条土中线处法线与铅直线的夹角;φi --土层的内摩擦角;b i --第i条土的宽度;h i --第i条土的平均高度;q --第i条土条土上的均布荷载;四、计算安全系数:将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数K sjmin:------------------------------------------------------------------------------------计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第1步 1.820 29.190 0.775 5.746 5.798示意图如下:计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第2步 1.504 33.548 1.699 11.450 11.575示意图如下:--------------------------------------------------------------------------------------计算结论如下:第1 步开挖内部整体稳定性安全系数K sjmin= 1.820>1.350 满足要求! [标高-4.000 m]第2 步开挖内部整体稳定性安全系数K sjmin= 1.504>1.350 满足要求! [标高-7.500 m]。

边坡稳定计算报告书

边坡稳定计算报告书

边坡稳定计算报告书
工程编号:
计算:
校核:
审定:
工程条件
1.1 工程基本信息
滑动面形状:圆滑
计算采用方法:简单条分法
土层指标采用:总应力法
不考虑地震
安全等级:二级
计算控制参数:
自动搜索最危险滑动面计算:
根据圆心范围进行计算,搜索步长,半径步长(m)=1,圆心步长(m)=2 1.2 土层参数
土层物理参数
节点几何信息
边坡节点(注:按照顺时针编号)
区域(注:按照逆时针编号)
考虑水位参数,水位线起点X(m)=0,Y(m)=-12),其它点如下(相对坐标)
1.3 荷载参数
竖向均布力
计算结果
按照指定圆心范围计算结果(系数已考虑安全等级)
圆心x(m)圆心
y(m)
半径
R(m)
滑动力
(kN/m)
滑动力矩
(kN·m/m)
抗滑力
(kN/m)
抗滑力矩
(kN·m/m)
抗力
系数
γR
8.8420.06632.551978.964405.252748.0389434.84 1.389文本仅供参考,感谢下载!。

土坡稳定性分析计算方法

土坡稳定性分析计算方法

第五章 土压力和土坡稳定(7学时)内容提要1.挡土墙的土压力 2.朗肯土压力理论 3.库仑土压力理论 4.挡土结构设计简介 5. 土坡的稳定性分析能力培养要求1.用朗肯理论计算均质土的主动土压力与被动土压力。

2.用朗肯理论计算常见情况下的主动土压力。

3.用库仑理论计算土的主动与被动土压力。

4.会分析挡土墙的稳定性,简单挡土结构设计。

5.无粘性土坡的稳定分析。

6.用条分法对粘性土土坡进行的稳定分析。

7.会分析土坡失稳的原因,提出合理的措施。

教学形式教师主讲、课堂讨论、学生讲评、提问答疑、习题分析等第一节 挡土墙的土压力教学目标1.掌握三种土压力的概念。

2.掌握静止土压力计算。

教学内容设计及安排 【基本内容】一、挡土墙的位移与土体的状态 土压力的类型土压力(kN/m )⎪⎩⎪⎨⎧→⇒→⇒→⇒如桥墩墙推土被动土压力如一般的重力式挡土墙土推墙主动土压力如地下室侧墙墙不动静止土压力p a E E E 01.静止土压力——挡土墙在土压力作用下不发生任何变形和位移(移动或转动)墙后填土处于弹性平衡状态,作用在挡土墙背的土压力。

2.主动土压力——挡土墙在土压力作用下离开土体向前位移时,土压力随之减少。

当位移至一定数值时,墙后土体达到主动极限平衡状态。

此时,作用在墙背的土压力称为主动土压力。

3.被动土压力——挡土墙在外力作用下推挤土体向后位移时,作用在墙上的土压力随之增加。

当位移至一定数值时,墙后土体达到被动极限平衡状态。

此时,作用在墙上的土压力称为被动土压力。

【讨论】△a<<△p , E a <E 0<<E p二、土压力的计算简化处理——作用在挡土结构物背面上的静止土压力可视为天然土层自重应力的水平分量。

如图所示,在墙后填土体中任意深度z处取一微小单元体,作用于单元体水平面上的应力为γz ,则该点的静止土压力,即侧压力强度为:p 0=K 0γz (kPa ) K 0——土的侧压力系数,即静止土压力系数:静止土压力系数的确定方法⎪⎩⎪⎨⎧'采用经验值—较适合于砂土—-=采用经验公式:—较可靠—测定通过侧限条件下的试验ϕsin 10K由上式可知,静止土压力沿墙高为三角形分布,如图所示,取单位墙长计算,则作用在墙上的静止土压力为(由土压力强度沿墙高积分得到)E 0=0221K h γ(kN/m )——静止土压力分布图面积如图所示土压力作用点——距墙底h/3处(可用静力等效原理求得)静止土压力的应用⎪⎪⎪⎩⎪⎪⎪⎨⎧隧道涵洞侧墙底版连成整体)水闸、船闸边墙(与闸拱座(没有位移)岩基上的挡土墙地下室外墙【讨论】如果墙后有均布荷载q ,怎样求静止土压力?第二节 朗肯土压力理论教学目标掌握朗肯土压力理论的原理与假定,并能计算各种情况下的主动、被动土压力。

土坡稳定计算

土坡稳定计算

度2.125121410Hh h 2211=⨯+⨯=⋅ψ+⋅ψ=ψ32211m/KN 16.18518.18418Hh h =⨯+⨯=⋅γ+⋅γ=γ土 坡 稳 定 计 算 书一. 计算参数由于地质资料无填土的力学参数,所以填土的力学参数(C 、ψ、 γ )根据以往经验取。

土钉间排距S v 、S h 为1.2m 。

填土:C 1=10Kpa ψ1=10度 h 1=4m γ1=18KN/m 3粉质粘土:C 2=26Kpa ψ2=21度 h 2=1m γ2=18.8KN/m 3C 、ψ、γ值取各土层的参数C i 、ψi 、γI 按其厚度h I 加权的平均值。

二. 局部稳定验算1.土钉抗拉断裂极限状态验算施工荷载:q=10KN/m 2 p=γ·z ·K a -2C ·K a +q=18.16×5×0.651-2×13.2×0.651 +10 =47.81KN/m 2p=p(H-0.95)2H =47.81×(5-0.95)2×5=19.36KN/m 2Kpa2.135126410Hh C h C C 2211=⨯+⨯=⋅+⋅=5.142.12.136.1915cos 101.380310S S p cos f A 3hv y >=⨯⨯︒⨯⨯⨯=⋅⋅α⋅⋅-满足要求 2.注浆钉包裹体锚固极限状态验算 界面粘结强度根据经验取τ=40Kpa破裂面以外土钉有效粘结强度L a 经计算为L a =6.38m 钉孔周长D 为:D=πd=3.14×0.1=0.314满足要求 三. 整体稳定验算 1.抗滑动验算把被土钉加固的原位土体视为刚性的重力式挡土墙,墙高取H=5m ,墙厚B=1112α=1112×9×cos15°=8.0m=(8×1.2×5×18.16+8×1.2×10)tg12.2+13.2×8×1.2 =334.5KN抗滑动安全系数K H =F t E a =334.5116.16>1.5 满足要求 2.抗倾覆稳定验算=(5×8×1.2×18.16+10×8×1.2)×825.17.22.12.136.1915cos 38.6314.040S S p cos L D P T hv a i >=⨯⨯︒⨯⨯⨯=⋅⋅α⋅⋅⋅τ=vv v t S B C tg )q S B H S S B (F ⋅⋅+ψ⋅⋅=γ⋅⋅⋅⋅=KN16.1162.1536.19S H p E v a =⨯⨯=⋅⋅=2B )S B q S B H (M v v G ⋅⋅⋅+γ⋅⋅⋅==3870KN ·m抗倾覆安全系数K 。

边坡桩基础稳定性计算书

边坡桩基础稳定性计算书

边坡桩基础稳定性计算书计算依据:1、《建筑基坑支护技术规程》JGJ120-2012一、参数信息1.基坑基本参数土类型粘性土厚度h(m) 9.1 重度γ(kN/m^3)22 浮重度γmi(kN/m^3) 8 粘聚力C(kPa) 48 内摩擦角φ(°)18 土类型粘性土厚度h(m) 10 重度γ(kN/m^3)22 浮重度γmi(kN/m^3) 11 粘聚力C(kPa) 48 内摩擦角φ(°)183.荷载参数边坡桩基稳定性二、桩侧土压力计算1、水平荷载(1)、主动土压力系数:K a1=tan2(45°- φ1/2)= tan2(45-18/2)=0.528;K a2=tan2(45°- φ2/2)= tan2(45-18/2)=0.528;K a3=tan2(45°- φ3/2)= tan2(45-18/2)=0.528;K a4=tan2(45°- φ4/2)= tan2(45-18/2)=0.528;K a5=tan2(45°- φ5/2)= tan2(45-18/2)=0.528;(2)、土压力、地下水以及地面附加荷载产生的水平荷载:第1层土:0 ~ 1米;(未与桩接触)第2层土:1 ~ 5米;H2' = ∑γi h i/γ2' = 22/8 = 2.75;σa2上= [γ2'H2'+P1+P2a2/(a2+2l2)]K a2-2c2K a20.5= [8×2.75+10+2.5]×0.528-2×48×0.5280.5 = -51.537kN/m;σa2下= [γ2'H2'+P1+P2a2/(a2+2l2)]K a2-2c2K a20.5+γ2'h2K a2+γw h2' = [8×2.75+10+2.5]×0.528-2×48×0.5280.5+8×4×0.528+10×4 = 5.355kN/m;第3层土:5 ~ 9.1米;H3' = ∑γi h i/γ3' = 54/8 = 6.75;σa3上= [γ3'H3'+P1]K a3-2c3K a30.5+γw h2' = [8×6.75+10]×0.528-2×48×0.5280.5+10×4 = 4.035kN/m;σa3下= [γ3'H3'+P1]K a3-2c3K a30.5+γ3'h3K a3+γw h3' = [8×6.75+10]×0.528-2×48×0.5280.5+8×4.1×0.528+10×8.1 = 62.349kN/m;第4层土:9.1 ~ 16.06米;H4' = ∑γi h i/γ4' = 86.8/11 = 7.891;σa4上= [γ4'H4'+P1]K a4-2c4K a40.5+γw h3' = [11×7.891+10]×0.528-2×48×0.5280.5+10×8.1 = 62.349kN/m;σa4下= [γ4'H4'+P1]K a4-2c4K a40.5+γ4'h4K a4+γw h4' = [11×7.891+10]×0.528-2×48×0.5280.5+11×6.96×0.528+10×15.06 = 172.362kN/m;第5层土:16.06 ~ 19.1米;H5' = ∑γi h i/γ5' = 163.36/11 = 14.851;σa5上= [γ5'H5'+P1]K a5-2c5K a50.5+γw h4' = [11×14.851+10]×0.528-2×48×0.5280.5+10×15.06 = 172.362kN/m;σa5下= [γ5'H5'+P1]K a5-2c5K a50.5+γ5'h5K a5+γw h5' = [11×14.851+10]×0.528-2×48×0.5280.5+11×3.04×0.528+10×18.1 = 220.414kN/m;(3)、水平荷载:临界深度:Z0=(σa2下×h2)/(σa2上+ σa2下)=(5.355×4)/(51.537+5.355)=0.376m;第1层土:E a1=0kN/m;第2层土:E a2=0.5×Z0×σa2下=0.5×0.376×5.355=1.008kN/m;作用位置:h a2=Z0/3+∑h i=0.376/3+14.1=14.225m;第3层土:E a3=h3×(σa3上+σa3下)/2=4.1×(4.035+62.349)/2=136.088kN/m;作用位置:h a3=h3(2σa3上+σa3下)/(3σa3上+3σa3 )+∑h i=4.1×(2×4.035+62.349)/(3×4.035+3×62.349)+10=11.45m;下第4层土:E a4=h4×(σa4上+σa4下)/2=6.96×(62.349+172.362)/2=816.796kN/m;作用位置:h a4=h4(2σa4上+σa4下)/(3σa4上+3σa4)+∑h i=6.96×(2×62.349+172.362)/(3×62.349+3×172.362)+3.04=5.976m;下第5层土:E a5=h5×(σa5上+σa5下)/2=3.04×(172.362+220.414)/2=597.02kN/m;作用位置:h a5=h5(2σa5上+σa5下)/(3σa5上+3σa5)+∑h i=3.04×(2×172.362+220.414)/(3×172.362+3×220.414)+0=1.458m;下土压力合力:E a= ΣE ai= 1.008+136.088+816.796+597.02=1550.913kN/m;合力作用点:h a= Σh i E ai/E a=(1.008×14.225+136.088×11.45+816.796×5.976+597.02×1.458)/1550.913=4.723m;2、水平抗力计算(1)、被动土压力系数:K p1=tan2(45°+ φ1/2)= tan2(45+18/2)=1.894;K p2=tan2(45°+ φ2/2)= tan2(45+18/2)=1.894;K p3=tan2(45°+ φ3/2)= tan2(45+18/2)=1.894;K p4=tan2(45°+ φ4/2)= tan2(45+18/2)=1.894;(2)、土压力、地下水产生的水平荷载:第1层土:4.86 ~ 5.86米;σp1上= 2c1K p10.5 = 2×48×1.8940.5 = 132.133kN/m;σp1下= γ1h1K p1+2c1K p10.5 = 22×1×1.894+2×48×1.8940.5 = 173.81kN/m;第2层土:5.86 ~ 9.1米;H2' = ∑γi h i/γ2' = 22/8 = 2.75;σa2上= γ2'H2'K p2+2c2K p20.5 = 8×2.75×1.894+2×48×1.8940.5 = 173.81kN/m;σa2下= γ2'H2'K p2+2c2K p20.5+γ2'h2K p2+γw h2' = 8×2.75×1.894+2×48×1.8940.5+8×3.24×1.894+10×3.24 = 255.314kN/m;第3层土:9.1 ~ 16.06米;H3' = ∑γi h i/γ3' = 47.92/11 = 4.356;σp3上= γ3'H3'K p3+2c3K p30.5+γw h2' = 11×4.356×1.894+2×48×1.8940.5+10×3.24 = 255.314kN/m;σp3下= γ3'H3'K p3+2c3K p30.5+γ3'h3K p3+γw h3' = 11×4.356×1.894+2×48×1.8940.5+11×6.96×1.894+10×10.2 = 469.951kN/m;第4层土:16.06 ~ 19.1米;H4' = ∑γi h i/γ4' = 124.48/11 = 11.316;σp4上= γ4'H4'K p4+2c4K p40.5+γw h3' = 11×11.316×1.894+2×48×1.8940.5+10×10.2 = 469.951kN/m;σp4下= γ4'H4'K p4+2c4K p40.5+γ4'h4K p4+γw h4' = 11×11.316×1.894+2×48×1.8940.5+11×3.04×1.894+10×13.24 = 563.701kN/m;(3)、水平荷载:第1层土:E p1=h1×(σp1上+σp1下)/2=1×(132.133+173.81)/2=152.971kN/m;作用位置:h p1=h1(2σp1上+σp1下)/(3σp1上+3σp1 )+∑h i=1×(2×132.133+173.81)/(3×132.133+3×173.81)+13.24=13.717m;下第2层土:E p2=h2×(σp2上+σp2下)/2=3.24×(173.81+255.314)/2=695.18kN/m;作用位置:h p2=h2(2σp2上+σp2下)/(3σp2上+3σp2)+∑h i=3.24×(2×173.81+255.314)/(3×173.81+3×255.314)+10=11.517m;下第3层土:E p3=h3×(σp3上+σp3下)/2=6.96×(255.314+469.951)/2=2523.921kN/m;作用位置:h p3=h3(2σp3上+σp3下)/(3σp3上+3σp3)+∑h i=6.96×(2×255.314+469.951)/(3×255.314+3×469.951)+3.04=6.177m;下第4层土:E p4=h4×(σp4上+σp4下)/2=3.04×(469.951+563.701)/2=1571.15kN/m;作用位置:h p4=h4(2σp4上+σp4下)/(3σp4上+3σp4)+∑h i=3.04×(2×469.951+563.701)/(3×469.951+3×563.701)+0=1.474m;下土压力合力:E p= ΣE pi= 152.971+695.18+2523.921+1571.15=4943.223kN/m;合力作用点:h p= Σh i E pi/E p= (152.971×13.717+695.18×11.517+2523.921×6.177+1571.15×1.474)/4943.223=5.666m;三、桩侧弯矩计算1.主动土压力对桩底的弯矩M1 = 0.7×0.8×1550.913×4.723 = 4101.657kN·m;2.被动土压力对桩底的弯矩M2 = 0.8×4943.223×5.666 = 22408.411kN·m;3.支撑对桩底弯矩M3 = 0kN·m;四、基础稳定性计算M3+M2≥K(M+M1)0+22408.411=22408.411kN·m ≥ 1.2×(1059.56+4101.657)=6193.46kN·m;塔吊稳定性满足要求!。

土体稳定性计算书

土体稳定性计算书

关于土体的稳定性计算书A-N1,A-S1,A-S2,B-S2,B-N,C-S户型。

根据地质勘察报告及设计放坡要求,施工中预留1000mm工作面,并按照1:0.75放坡,这样A-N1户型,A-S1户型,A-S2户型,B-S2户型,B-N 户型,C-S户型中B轴-C轴与1轴-7轴间的土需要全部挖出,我单位采用基坑大开挖,分层开挖,首先大开挖至设计最浅标高上留300mm厚土,第二次挖至设计基底标高预留200mm人工清土。

现将放坡及预留工作面之后的土体放稳定性的计算过程阐述一下,一下以A-N1户型为例进行计算。

(下图为A-N1户型基础的一部分)根据地质勘查报告得知本工程的土体为粘质粉土,内摩擦角为18.3。

粘土的稳定性分析,均质粘土发生滑坡时,其滑动面形状大多数为一近似圆弧面的曲面(如下图所示)在进行理论分析采用圆弧面计算,粘性土的稳定性分析的常用方法有条分法和稳定数法。

条分法是一种试算法,其计算方法比较简单合理,在工程中应用广泛,如下为计算书部分:(1.)按比例绘制剖面图:(2.)任意选一点O为圆心,以OA为半径(R)作圆弧ab,ab即为滑圆弧面。

(3.)将滑动面以上土体竖直分成宽度相等的若干土条并编号,编号时可以圆心O的铅垂线为0条,图中向右为正,向左为负。

为使计算方便,可取各分条宽度为b=R/10,则sina1=0.1,sina2=0.2,sinAi=0.1i。

cosa1=根号(1-a2*ai)=0.995,cosa2=0.980,这样可以减少大量的三角函数计算。

(4.)计算作用在ef上的剪切力和抗剪力Si,土条自重Gi和荷载Qi 在滑动面ef上的法向反力Ni和切向反力Ti分别为:Ni=(Gi+Qi)*cosaiTi=(Gi+Qi)*sinai抗剪力Si为:Si=CiTi+(Ci+Qi)* cosai*tanφi(注:φ为摩擦角)(5.)计算安全稳定系数K的值(沿整个滑动面上的抗剪力与剪切力之比)K=S/K=∑[cili+(Gi+Qi)* cosai*tanφi]/ ∑(Gi+Qi)*sinai 简化为:K=∑tanφi/∑tanai<0由于向左边为负值,条形基础放坡及独立基础放坡,以致两边放坡有交叉点,如下简图所示,则向右部分的正值几乎没有,得知K的值小于0且小于1。

土坡稳定性计算实例

土坡稳定性计算实例

土坡稳定性计算书本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。

计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。

本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。

一、参数信息:条分方法:瑞典条分法;条分块数:50;考虑地下水位影响;基坑外侧水位到坑顶的距离(m):2.000;基坑内侧水位到坑顶的距离(m):4.500;放坡参数:序号放坡高度(m) 放坡宽度(m) 平台宽度(m)1 2.20 1.20 0.802 2.30 1.00 1.00荷载参数:序号类型面荷载q(kPa) 基坑边线距离b1(m) 宽度b0(m)1 局布 3.00 1 1土层参数:二、计算原理:根据土坡极限平衡稳定进行计算。

自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。

将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着:1、土条自重,2、作用于土条弧面上的法向反力,3、作用于土条圆弧面上的切向阻力。

将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.3的要求。

三、计算公式:F s=∑{c i l i+[(γh1i+γ'h2i)b i+qb i]cosθi tanφi}/∑[(γh1i+γ'h2i)b i+qb i]sinθi式子中:F s --土坡稳定安全系数;c i --土层的粘聚力;l i--第i条土条的圆弧长度;γ --土层的计算重度;θi --第i条土中线处法线与铅直线的夹角;φi --土层的内摩擦角;b i --第i条土的宽度;h i --第i条土的平均高度;h1i --第i条土水位以上的高度;h2i --第i条土水位以下的高度;γ' --第i条土的平均重度的浮重度;q --第i条土条土上的均布荷载;其中,根据几何关系,求得h i为:h i=(r2-[(i-0.5)×b i-l0]2)1/2-[r+l0-(i-0.5)×b i]tanα式子中:r --土坡滑动圆弧的半径;l0 --坡角距圆心垂线与坡角地坪线交点长度;α --土坡与水平面的夹角;h1i的计算公式h1i=h w-{(r-h i/cosθi)×cosθi-[rsin(β+α)-H]}当h1i≥ h i时,取h1i = h i;当h1i≤0时,取h1i = 0;h2i的计算公式:h2i = h i-h1i;h w --土坡外地下水位深度;l i的几何关系为:l i={arccos[((i-1)×b i-l0)/r]-arccos[(i×b i-l0)/r]×2×r×π}/360θi=90-arccos[((i-0.5)×b i-l0)/r]四、计算安全系数:将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数Fs:------------------------------------------------------------------------------------计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m)第1步 1.571 84.935 -351.284 191.238399.965示意图如下:计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m)第2步 2.765 30.495 0.561 6.516 6.541 示意图如下:--------------------------------------------------------------------------------------计算结论如下:第1 步开挖内部整体稳定性安全系数Fs= 1.571>1.30 满足要求! [标高-2.300 m]第2 步开挖内部整体稳定性安全系数Fs= 2.765>1.30 满足要求! [标高-4.500 m]。

(完整版)土坡稳定性计算.doc

(完整版)土坡稳定性计算.doc

第九章土坡稳定分析土坡就是具有倾斜坡面的土体。

土坡有天然土坡,也有人工土坡。

天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。

本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。

第一节概述学习土坡的类型及常见的滑坡现象。

一、无粘性土坡稳定分析学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。

要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。

二、粘性土坡的稳定分析学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。

要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。

三、边坡稳定分析的总应力法和有效应力法学习稳定渗流期、施工期、地震期边坡稳定分析方法。

四、土坡稳定分析讨论学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。

第二节基本概念与基本原理一、基本概念1.天然土坡 (naturalsoilslope) :由长期自然地质营力作用形成的土坡,称为天然土坡。

2.人工土坡 (artificialsoilslope) :人工挖方或填方形成的土坡,称为人工土坡。

3.滑坡 (landslide) :土坡中一部分土体对另一部分土体产生相对位移,以至丧失原有稳定性的现象。

4.圆弧滑动法(circleslipmethod) :在工程设计中常假定土坡滑动面为圆弧面,建立这一假定的稳定分析方法,称为圆弧滑动法。

它是极限平衡法的一种常用分析方法。

二、基本规律与基本原理(一)土坡失稳原因分析土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。

1.产生滑动的内部因素主要有:(1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。

土坡稳定性分析计算

土坡稳定性分析计算

确定最危险滑动面圆心的方法
费伦纽斯法 泰勒分析法
费伦纽斯法
当土的内摩擦角φ=0时,土坡的最危险圆弧滑动面通过坡 脚,然后由坡角β或坡度1:n查下表可得出角β1以及β2 。过 坡脚B和坡顶C分别作与坡面和水平面夹角为β1、β2的线BD和 CD,得交点D即为最危险滑动圆弧圆心(见后图)。
土坡边坡比 1:0.58 1:1 1:1.5 1:2 1:3 1:4 1:5
费伦纽斯法
泰勒分析法
泰勒经过大量计算分析后提出:
? 当φ>3°时,滑动面为坡脚圆,其最危险 滑动面圆心的位置,可根据φ及β角值, 从后图的曲线查得θ和α值,作图求得。
? 当φ=0°,且β>53°时,滑动面也是坡脚
圆,其最危险滑动面圆心位置,同样可以
从后图的θ和α值,作图求得。
泰勒分析法
泰勒分析法
圆弧滑动面分析方法
? 整体稳定分析法:主要适用于均质简单土 坡,即土坡上下两个面是水平且坡面为平 面。
? 条分法:适用于非均质土坡、土坡外形复 杂、土坡部分在水下等情况。
瑞典条分法基本原理
条分法就是将圆弧滑 动体分成若干竖直的土条 , 计算各土条对圆弧圆心 O 的抗滑力矩与滑动力矩, 由抗滑力矩与滑动力矩之 比(稳定安全系数 )来判别 土坡的稳定性。这时需要 选择多个滑动圆心,分别 计算相应的安全系数,其 中最小的安全系数对应的 滑动面为最危险的滑动圆。
φ值越大,圆心越向外移。 计算时从 D点 向外延伸取几个试算圆心 O1,O2…,分别求得 其相应的滑动稳定安全系数 K1,K2…,绘出 K值 曲线可得到最小安全系数值 Kmin,其相应圆心 Om即为最危险滑动面的圆心。
费伦纽斯法
费伦纽斯法
实际上土坡的最危险滑动面圆心位 置有时并不一定在ED的延长线上,而可 能在其左右附近,因此圆心Om可能并不 是最危险滑动面的圆心,这时可以通过 Om点作DE线的垂线FG,在FG上取几个试 算滑动面的圆心O1′,O2′…,求得其相应 的滑动稳定安全系数K1′,K2′…,绘得K′ 值曲线,相应于K′min值的圆心O才是最危 险滑动面的圆心。

43小区土坡稳定性计算计算书

43小区土坡稳定性计算计算书

土坡稳定性计算书43小区1#2#7#住宅楼;总建筑面积:44253平方米;总工期:639天;施工单位:石河子天筑高层公司。

1#住宅楼属于框架剪力墙结构;地上十八跃十九层;地下一层,层高为3.9m;建筑高度:59.75m;2#、7#住宅楼属于框架结构;地上六层;地下二层,层高为3.9m;建筑高度:17.6m;标准层层高:3.0m ;本工程由石河子成渝房地产开发有限责任公司投资建设,乌鲁木齐新华筑建筑设计院设计,新疆水利水电勘察设计研究院勘察,石河子天一监理公司监理,石河子天筑高层公司组织施工;由张帆担任项目经理,高建华担任技术负责人。

本工程最大挖深为4.8m,按5.0m计算。

本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社;《实用土木工程手册》第三版杨文渊编著人民教同出版社;《地基与基础》第三版中国建筑工业出版社;《土力学》;水利水电勘察设计院提供的勘察报告等相关文献进行编制。

计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。

本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。

一、参数信息:条分方法:瑞典条分法;条分块数:14;不考虑地下水位影响;放坡参数:序号放坡高度(m) 放坡宽度(m) 平台宽度(m)1 3.50 1.75 0.012 1.50 0.75 0.01荷载参数:序号类型面荷载q(kPa) 基坑边线距离b0(m) 宽度b1(m)1 满布 10.00 -- --土层参数:序号土名称土厚度坑壁土的重度γ坑壁土的内摩擦角φ内聚力C 饱容重(m) (kN/m3) (°) (kPa) (kN/m3)1 粉土 1.50 18.10 28.00 13.60 22.002 卵石 3.50 20.20 40.00 6.001.00二、计算原理:根据土坡极限平衡稳定进行计算。

沟槽土坡稳定性计算计算书

沟槽土坡稳定性计算计算书

土坡稳定性计算书计算依据:1、《建筑基坑支护技术规程》JGJ120-20122、《建筑施工计算手册》江正荣编著3、《实用土木工程手册》第三版杨文渊编著4、《施工现场设施安全设计计算手册》谢建民编著5、《地基与基础》第三版计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。

本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。

一、参数信息:基本参数:放坡参数:荷载参数:土层参数:二、计算原理:根据土坡极限平衡稳定进行计算。

自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。

将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着:1、土条自重,2、作用于土条弧面上的法向反力,3、作用于土条圆弧面上的切向阻力。

将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.3的要求。

圆弧滑动法示意图三、计算公式:K sj=∑{c i l i+[ΔG i b i+qb i]cosθi tanφi}/∑[ΔG i b i+qb i]sinθi式子中:K sj --第j个圆弧滑动体的抗滑力矩与滑动力矩的比值;c i --土层的粘聚力;l i--第i条土条的圆弧长度;ΔG i-第i土条的自重;θi --第i条土中线处法线与铅直线的夹角;φi --土层的内摩擦角;b i --第i条土的宽度;h i --第i条土的平均高度;q --第i条土条土上的均布荷载;四、计算安全系数:将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数K sjmin:------------------------------------------------------------------------------------计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第1步 2.457 29.482 -1.605 8.089 8.247示意图如下:--------------------------------------------------------------------------------------计算结论如下:第 1 步开挖内部整体稳定性安全系数 K sjmin= 2.457>1.300 满足要求! [标高-5.300 m]。

m土坡稳定性计算计算书

m土坡稳定性计算计算书

m土坡稳定性计算计算书公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]6-7m土坡稳定性计算书本计算书参照《建筑施工计算手册》江正荣编着中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编着人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。

计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。

本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。

一、参数信息:条分方法:瑞典条分法;条分块数:50;不考虑地下水位影响;放坡参数:序号放坡高度(m) 放坡宽度(m) 平台宽度(m)12荷载参数:序号类型面荷载q(kPa) 基坑边线距离b1(m) 宽度b(m)1 满布 -- --土层参数:极限摩擦阻力(kPa)15饱和重度γ(kN/m3)sat序号2土名称中风化岩土厚度(m)土的重度γ(kN/m3)22土的内摩擦角φ(°)45粘聚力C(kPa)30(kN/m3)22极限摩擦阻力(kPa)60饱和重度γsat根据土坡极限平衡稳定进行计算。

自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。

将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着:1、土条自重,2、作用于土条弧面上的法向反力,3、作用于土条圆弧面上的切向阻力。

将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥的要求。

三、计算公式:Fs =∑{cili+[(γh1i+γ'h2i)bi+qbi]cosθitanφi}/∑[(γh1i+γ'h2i )bi+qbi]sinθi 式子中:Fs--土坡稳定安全系数;ci--土层的粘聚力;li--第i条土条的圆弧长度;γ --土层的计算重度;θi--第i条土中线处法线与铅直线的夹角;φi--土层的内摩擦角;bi--第i条土的宽度;hi--第i条土的平均高度;h1i--第i条土水位以上的高度;h2i--第i条土水位以下的高度;γ' --第i条土的平均重度的浮重度;q --第i条土条土上的均布荷载;其中,根据几何关系,求得hi为:hi =(r2-[×bi-l]2)1/2-[r+l-×bi]tanα式子中:r --土坡滑动圆弧的半径;l 0 --坡角距圆心垂线与坡角地坪线交点长度; α --土坡与水平面的夹角; h 1i 的计算公式h 1i =h w -{(r-h i /cos θi )×cos θi -[rsin(β+α)-H]} 当h 1i ≥ h i 时,取h 1i = h i ; 当h 1i ≤0时,取h 1i = 0; h 2i 的计算公式:h 2i = h i -h 1i ; h w --土坡外地下水位深度; l i 的几何关系为:l i ={arccos[((i-1)×b i -l 0)/r]-arccos[(i ×b i -l 0)/r]×2×r ×π}/360 θi =90-arccos[(×b i -l 0)/r] 四、计算安全系数:将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数Fs :------------------------------------------------------------------------------------计算步数 安全系数 滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m)第1步 示意图如下:计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m)第2步示意图如下:--------------------------------------------------------------------------------------计算结论如下:第 1 步开挖内部整体稳定性安全系数 Fs= > 满足要求! [标高 m]第 2 步开挖内部整体稳定性安全系数 Fs= > 满足要求! [标高 m]。

边坡整体稳定性验算书

边坡整体稳定性验算书

验算条件说明一、边坡段选取1、因Ⅰ-Ⅱ和Ⅱ-Ⅲ段边坡为顺向坡---斜向破,经顺层清方后,边坡的可能破坏模式为边坡沿着强风化与中风化界面滑动,经验算边坡为稳定边坡(详见地勘报告),不再验算。

2、Ⅲ-Ⅳ段边坡为切向坡,边坡的可能破坏模式为边坡沿岩层面(视倾角31°)产生滑移破坏。

经验算边坡为不稳定边坡(详见地勘报告),在此对原设计作支护后的整体稳定性验算。

二、参数选取说明1、对于Ⅰ-Ⅱ、Ⅱ-Ⅲ和Ⅲ-Ⅳ段边坡破坏模式为边坡沿着强风化与中风化界面滑动时,选取强风化泥岩指标验算,即强风化泥岩:f a=200kPa;γ=21.30kN/m3;c k=80kPa,φk =20°;2、对于Ⅲ-Ⅳ段边坡破坏模式为边坡沿岩层层面滑动时,选取软弱结构面(泥岩层面)指标验算,即软弱结构面:c k=25kPa ,φk =13°。

3、边坡岩体重度选取粉质粘土、强风化泥岩和中风化泥岩的加权平均重度γ=24.1 kN/m3。

4、边坡支护高度为边坡开挖面高度51米,本次边坡验算高度取至坡顶滑体影响区域拉断处。

三、Ⅲ-Ⅳ段边坡支护后稳定性验算计算书计算说明:计算软件为理正6.5版,采用规范《建筑边坡工程技术规范》(GB50330-2013)----------------------------------------------------------------------------计算项目: 平塘加油站C断面(Ⅲ-Ⅳ段)边坡支护后稳定性验算----------------------------------------------------------------------------[ 计算简图 ]----------------------------------------------------------------------------------- [ 计算条件 ]----------------------------------------------------------------------------------- [ 基本参数 ]计算方法:极限平衡法(建坡规范附录A.0.2)计算目标:计算安全系数边坡高度: 60.000(m)结构面倾角: 31.0(°)结构面内摩擦角: 13.0(°)结构面粘聚力: 25.0(kPa)水平外荷载Px(kN): 0.0(kN/m)竖向外荷载Py(kN): 0.0(kN/m)[ 坡线参数 ]坡线段数 13序号水平投影(m) 竖向投影(m) 倾角(°)1 10.000 10.000 45.02 2.000 0.000 0.03 10.000 10.000 45.04 2.000 0.000 0.05 10.000 10.000 45.06 2.000 0.000 0.07 10.000 10.000 45.08 2.000 0.000 0.09 10.000 10.000 45.010 6.450 3.160 26.111 22.760 4.960 12.312 4.970 0.188 2.213 13.730 1.692 7.0[ 岩层参数 ]层数 1序号控制点Y坐标容重锚杆和岩石粘结强度(m) (kN/m3) frb(kPa)1 0.000 24.1 480.0[ 锚杆(索)控制参数 ]锚杆杆体抗拉安全系数: 2.20钢筋与锚固体抗拔安全系数: 2.60交互锚杆钢筋的抗拉强度:是[ 锚杆(索)参数 ]钢筋类型对应关系:d-HPB300,D-HRB335,E-HRB400,F-RRB400,G-HRB500,P-HRBF335,Q-HRBF400,R-HRBF500 锚杆(索)道数 23序号支护类型水平间距竖向间距入射角锚固体直径自由段长度锚固段长度配筋锚筋fy 钢筋与砂浆(m) (m) (°) (mm) (m) (m) (MPa) fb(kPa)1 锚杆 4.000 10.700 20.0 110 0.000 8.000 1F32 480.0 3400.02 锚杆 4.000 2.828 20.0 110 0.000 8.000 1F32 480.0 3400.03 锚杆 4.000 2.828 20.0 110 0.000 8.000 1F32 480.0 3400.04 锚杆 4.000 2.828 20.0 110 0.000 8.000 1F32 480.0 3400.05 锚索 4.000 1.515 18.0 130 8.000 10.000 6s15.2 480.0 3400.06 锚索 4.000 2.828 18.0 130 7.000 10.000 6s15.2 480.0 3400.07 锚索 4.000 2.828 18.0 130 6.000 10.000 6s15.2 480.0 3400.08 锚索 4.000 2.828 18.0 130 5.000 10.000 6s15.2 480.0 3400.09 锚杆 3.000 1.510 20.0 110 0.000 8.000 1F32 480.0 3400.010 锚杆 3.000 2.121 20.0 110 0.000 8.000 1F32 480.0 3400.011 锚杆 3.000 2.121 20.0 110 0.000 8.000 1F32 480.0 3400.012 锚杆 3.000 2.121 20.0 110 0.000 8.000 1F32 480.0 3400.013 锚杆 3.000 2.121 20.0 110 0.000 8.000 1F32 480.0 3400.014 锚索 3.000 1.516 18.0 130 9.000 10.000 6s15.2 480.0 3400.015 锚索 3.000 2.121 18.0 130 8.000 10.000 6s15.2 480.0 3400.016 锚索 3.000 2.121 18.0 130 7.000 10.000 6s15.2 480.0 3400.017 锚索 3.000 2.121 18.0 130 6.000 10.000 6s15.2 480.0 3400.018 锚索 3.000 2.121 18.0 130 5.000 10.000 6s15.2 480.0 3400.019 锚杆 3.000 1.515 20.0 110 0.000 8.000 1F32 480.0 3400.020 锚杆 3.000 2.121 20.0 110 0.000 8.000 1F32 480.0 3400.021 锚杆 3.000 2.121 20.0 110 0.000 8.000 1F32 480.0 3400.022 锚杆 3.000 2.121 20.0 110 0.000 8.000 1F32 480.0 3400.023 锚杆 3.000 2.121 20.0 110 0.000 8.000 1F32 480.0 3400.0----------------------------------------------------------------------[ 计算结果 ]----------------------------------------------------------------------岩体重量: 19147.7(kN)水平外荷载: 0.0(kN)竖向外荷载: 0.0(kN)侧面裂隙水压力: 0.0(kN)底面裂隙水压力: 0.0(kN)第1道锚杆(索)的抗力: 0.0(kN)第2道锚杆(索)的抗力: 0.0(kN)第3道锚杆(索)的抗力: 0.0(kN)第4道锚杆(索)的抗力: 0.0(kN)第5道锚杆(索)的抗力: 80.7(kN)第6道锚杆(索)的抗力: 86.0(kN)第7道锚杆(索)的抗力: 91.3(kN)第8道锚杆(索)的抗力: 96.6(kN)第9道锚杆(索)的抗力: 0.0(kN)第10道锚杆(索)的抗力: 0.0(kN)第11道锚杆(索)的抗力: 0.0(kN)第12道锚杆(索)的抗力: 11.7(kN)第13道锚杆(索)的抗力: 31.6(kN)第14道锚杆(索)的抗力: 251.3(kN)第15道锚杆(索)的抗力: 251.3(kN)第16道锚杆(索)的抗力: 251.3(kN)第17道锚杆(索)的抗力: 251.3(kN)第18道锚杆(索)的抗力: 251.3(kN)第19道锚杆(索)的抗力: 83.0(kN)第20道锚杆(索)的抗力: 102.9(kN)第21道锚杆(索)的抗力: 122.7(kN)第22道锚杆(索)的抗力: 142.6(kN)第23道锚杆(索)的抗力: 162.5(kN)结构面上正压力: 18139.3(kN)总下滑力: 8391.3(kN)总抗滑力: 7054.6(kN)安全系数: 0.841加长未进入滑体的锚杆(索)----------------------------------------------------------------------------------- 计算项目: 平塘加油站C断面(Ⅲ-Ⅳ段)边坡支护后稳定性验算----------------------------------------------------------------------------------- [ 计算简图 ]----------------------------------------------------------------------[ 计算条件 ]----------------------------------------------------------------------[ 基本参数 ]计算方法:极限平衡法(建坡规范附录A.0.2)计算目标:计算安全系数边坡高度: 60.000(m)结构面倾角: 31.0(°)结构面内摩擦角: 13.0(°)结构面粘聚力: 25.0(kPa)水平外荷载Px(kN): 0.0(kN/m)竖向外荷载Py(kN): 0.0(kN/m)[ 坡线参数 ]坡线段数 13序号水平投影(m) 竖向投影(m) 倾角(°)1 10.000 10.000 45.02 2.000 0.000 0.03 10.000 10.000 45.04 2.000 0.000 0.05 10.000 10.000 45.06 2.000 0.000 0.07 10.000 10.000 45.08 2.000 0.000 0.09 10.000 10.000 45.010 6.450 3.160 26.111 22.760 4.960 12.312 4.970 0.188 2.213 13.730 1.692 7.0[ 岩层参数 ]层数 1序号控制点Y坐标容重锚杆和岩石粘结强度(m) (kN/m3) frb(kPa)1 0.000 24.1 480.0[ 锚杆(索)控制参数 ]锚杆杆体抗拉安全系数: 2.20钢筋与锚固体抗拔安全系数: 2.60交互锚杆钢筋的抗拉强度:是[ 锚杆(索)参数 ]钢筋类型对应关系:d-HPB300,D-HRB335,E-HRB400,F-RRB400,G-HRB500,P-HRBF335,Q-HRBF400,R-HRBF500锚杆(索)道数 23序号支护类型水平间距竖向间距入射角锚固体直径自由段长度锚固段长度配筋锚筋fy 钢筋与砂浆(m) (m) (°) (mm) (m) (m) (MPa) fb(kPa)1 锚杆 4.000 10.700 20.0 110 0.000 26.000 1F32 480.0 3400.02 锚杆 4.000 2.828 20.0 110 0.000 25.000 1F32 480.0 3400.03 锚杆 4.000 2.828 20.0 110 0.000 24.000 1F32 480.03400.04 锚杆 4.000 2.828 20.0 110 0.000 23.000 1F32 480.0 3400.05 锚索 4.000 1.515 18.0 130 14.000 10.000 6s15.2 480.0 3400.06 锚索 4.000 2.828 18.0 130 13.000 10.000 6s15.2 480.0 3400.07 锚索 4.000 2.828 18.0 130 12.000 10.000 6s15.2 480.0 3400.08 锚索 4.000 2.828 18.0 130 11.000 10.000 6s15.2 480.0 3400.09 锚杆 3.000 1.510 20.0 110 0.000 20.000 1F32 480.0 3400.010 锚杆 3.000 2.121 20.0 110 0.000 19.000 1F32 480.0 3400.011 锚杆 3.000 2.121 20.0 110 0.000 18.000 1F32 480.0 3400.012 锚杆 3.000 2.121 20.0 110 0.000 17.000 1F32 480.0 3400.013 锚杆 3.000 2.121 20.0 110 0.000 16.000 1F32 480.0 3400.014 锚索 3.000 1.516 18.0 130 9.000 10.000 6s15.2 480.0 3400.015 锚索 3.000 2.121 18.0 130 8.000 10.000 6s15.2 480.0 3400.016 锚索 3.000 2.121 18.0 130 7.000 10.000 6s15.2 480.0 3400.017 锚索 3.000 2.121 18.0 130 6.000 10.000 6s15.2 480.0 3400.018 锚索 3.000 2.121 18.0 130 5.000 10.000 6s15.2 480.0 3400.019 锚杆 3.000 1.515 20.0 110 0.000 8.000 1F32 480.0 3400.020 锚杆 3.000 2.121 20.0 110 0.000 8.000 1F32 480.0 3400.021 锚杆 3.000 2.121 20.0 110 0.000 8.000 1F32 480.0 3400.022 锚杆 3.000 2.121 20.0 110 0.000 8.000 1F32 480.0 3400.023 锚杆 3.000 2.121 20.0 110 0.000 8.000 1F32 480.0 3400.0----------------------------------------------------------------------[ 计算结果 ]----------------------------------------------------------------------岩体重量: 19147.7(kN)水平外荷载: 0.0(kN)竖向外荷载: 0.0(kN)侧面裂隙水压力: 0.0(kN)底面裂隙水压力: 0.0(kN)第1道锚杆(索)的抗力: 153.1(kN)第2道锚杆(索)的抗力: 157.0(kN)第3道锚杆(索)的抗力: 160.9(kN)第4道锚杆(索)的抗力: 164.8(kN)第5道锚杆(索)的抗力: 188.5(kN)第6道锚杆(索)的抗力: 188.5(kN)第7道锚杆(索)的抗力: 188.5(kN)第8道锚杆(索)的抗力: 188.5(kN)第9道锚杆(索)的抗力: 207.3(kN)第10道锚杆(索)的抗力: 205.9(kN)第11道锚杆(索)的抗力: 204.5(kN)第12道锚杆(索)的抗力: 203.1(kN)第13道锚杆(索)的抗力: 201.7(kN)第14道锚杆(索)的抗力: 251.3(kN)第15道锚杆(索)的抗力: 251.3(kN)第16道锚杆(索)的抗力: 251.3(kN)第17道锚杆(索)的抗力: 251.3(kN)第18道锚杆(索)的抗力: 251.3(kN)第19道锚杆(索)的抗力: 83.0(kN)第20道锚杆(索)的抗力: 102.9(kN)第21道锚杆(索)的抗力: 122.7(kN)第22道锚杆(索)的抗力: 142.6(kN)第23道锚杆(索)的抗力: 162.5(kN)结构面上正压力: 19696.0(kN)总下滑力: 7112.8(kN)总抗滑力: 7414.0(kN)安全系数: 1.042。

现浇箱梁扩大基础及边坡稳定性计算

现浇箱梁扩大基础及边坡稳定性计算

现浇箱梁扩大基础及边坡稳定性计算上部荷载:N=2600KN 地基承载力:f=110KPa埋置深度:d=2m 地基土及基础平均重度:△=20KN/m则基础底面积:AN/(f-△d)=2600/(110-202)=37.14m2根据万能杆件支架及箱梁横向尺寸,取扩大基础尺寸为:aad=6.56.51.5m2、大堤边坡稳定性计算边坡高度:11.5m 扩大基础宽:6.5m基础距边坡边缘:1m 坡脚至坡顶水平距离:28m基础承受上部荷载:N=2600KN内摩擦角:=100 粘聚力:c=15KPa 2. 1 本计算采用圆弧法分析大堤边坡稳定性。

取滑动圆弧下端通过坡脚A点,上端通过支架扩大基础边缘,半径R 为40m,圆心为O。

2.2 取土条宽度b=R/10=4m。

2.3 土条编号:作圆心O的铅垂线OO,铅垂线处为0条,依次向上编号为1、2、3,4,5,6,7,向下编号为-1、-2。

2.4 计算圆弧AB的弧长l:设AB弦长为L,则有:sin/2=L/2R=(11.52+362)1/2/(240)=0.472375所以: =56.3810l=56.3813.1440/180=39.34m2. 5 上部荷载分布:上部荷载2600KN,分布在6.5m宽扩大基础的6、7两个土条上,这里近似取每个土条上承受1300KN。

扩大基础长为6.5m,边坡稳定计算取1m长,则作用在6、7两个土条上的计算上部荷载为200KN。

2.6 边坡各土条切向力与摩阻力列表计算如下:编号土条重量Qi=hi/KN sini 切向力/(KN)Ti=Qisin cosi 法向力(KN)Ni=Qicosi tg 摩阻力(KN)Nitg 总的粘聚力(KN)Cl-2 190.37=7.0 -0.2 -1.4 0.980 6.86 0.1763 1.21 1539.34=590.1-1 191.76=33.4 -0.1 -3.34 0.995 33.233 5.861 195.00=95.0 0.1 9.5 0.995 94.525 16.662 196.08=115.5 0.2 23.1 0.980 113.19 19.963 196.68=126.9 0.3 38.07 0.954 121.063 21.344 196.82=129.6 0.4 51.84 0.917 118.843 20.955 196.17=117.2 0.5 58.6 0.866 101.495 17.896 193.87+200=273.5 0.6 164.1 0.800 218.800 38.577 191.28+200=224.3 0.7 157.01 0.714 160.150 28.23合计497.48 170.672.7 边坡稳定安全系数计算K=MR/MT =R(Nitg+cl)/(RTi)=(170.67+590.1)/497.48=1.53(安全)注:1、本计算未考虑大堤护坡的有利因素。

毕肖普法计算土坡稳定系数课件

毕肖普法计算土坡稳定系数课件

式(7.5.1)若以有效应力表示,则土条滑动面上的抗剪力为
T i fili cili N i tani (7.5.1)
Ks
Ks
T i fili cli N i tan ,代入上式得
Ks Ks
Ks
N i
1 mi
Wi
X i
uibi
cli Ks
s in i
mi
cosi
tan K
s
sin
i
整个滑动土体对圆心求力矩平衡:此时相邻土条之间侧壁作用力的力矩将互 相低消,而各土条滑面上的法向力的作用线通过圆心。
xi R sini
T i fili cli N i tan
Wi xi T iR 0
Ks Ks
Ks
N i
1 mi
Wi
X i
uibi
cli Ks
s in i
WiR sini

s
如此反复迭代,直至前后两次的Ks非常接近为止。通常只要迭代3-4次就可满足工程精度要求。
注意:
N i
1 mi
Wi
X i
uibi
cli Ks
s in i
(1) 对于为θi负值的那些土条,要注意会不会使 mi 趋近于
零。如果是这样,简化毕肖普条分法就不能使用,因为此时
Ni 会趋于无限大,这显然是不合理的。当任一土条的 mi 小于或等于0.2时,计算就会产生较大的误差,此时最好采用
(若令Xi 0, 所产生的误差仅为1%)
计算时:
(1)首先假定Ks
1 ,按式(7.6.4):mi
cosi
tan K
s
sin
i
,计算mi;
(2)按式(7.6.7):Ks
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土坡稳定性计算书
计算依据:
1、《建筑基坑支护技术规程》JGJ120-2012
2、《建筑施工计算手册》江正荣编著
3、《实用土木工程手册》第三版杨文渊编著
4、《施工现场设施安全设计计算手册》谢建民编著
5、《地基与基础》第三版
计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。

本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。

一、参数信息:
基本参数:
根据土坡极限平衡稳定进行计算。

自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。

将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着:
1、土条自重,
2、作用于土条弧面上的法向反力,
3、作用于土条圆弧面上的切向阻力。

将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.3的要求。

圆弧滑动法示意图
三、计算公式:
K sj=∑{c i l i+[ΔG i b i+qb i]cosθi tanφi}/∑[ΔG i b i+qb i]sinθi
式子中:
K sj --第j个圆弧滑动体的抗滑力矩与滑动力矩的比值;
c i --土层的粘聚力;
l i--第i条土条的圆弧长度;
ΔG i-第i土条的自重;
θi --第i条土中线处法线与铅直线的夹角;
φi --土层的内摩擦角;
b i --第i条土的宽度;
h i --第i条土的平均高度;
q --第i条土条土上的均布荷载;
四、计算安全系数:
将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数K sjmin:------------------------------------------------------------------------------------
计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径
R(m)
第1步 1.475 29.604 -0.256 8.122 8.126
示意图如下:
--------------------------------------------------------------------------------------
计算结论如下:
第1 步开挖内部整体稳定性安全系数K sjmin= 1.475>1.300 满足要求! [标高-5.500 m]。

相关文档
最新文档