2014年高考数学二轮复习精品资料-高效整合篇专题09 排列组合、二项式定理(理)(教学案)
高考数学二轮复习教案排列组合二项式定理
高考数学二轮复习教案——排列组合二项式定理一、知识结构:二、基础知识回顾 1.排列与组合⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关.⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题. ⑶ 排列与组合的主要公式 1排列数公式:)1()1()!(!+-⋅⋅⋅-=-=m n n n m n n A mn (m ≤n )A n n =n! =n (n ―1)(n ―2) ·…·2·1. 2组合数公式:12)1()1()1()!(!!⨯⨯⋅⋅⋅⨯-⨯+-⋅⋅⋅-=-=m m m n n n m n m n C mn (m ≤n ).排列组合 二项式定理 两个计数原理排列组合排列概念排列数公式组合概念组合数公式 组合数性质应用通项公式二项式定理二项式系数性质应用3组合数性质:1m n n m n C C -=(m ≤n ). 2nn n n n n C C C C 2210=+⋅⋅⋅+++ 31314202-=⋅⋅⋅++=⋅⋅⋅++n n n n n n C C C C C2二项式定理 ⑴ 二项式定理(a +b )n =C 0n a n +C 1n a n —1b+…+C r n a n —r b r +…+C n n b n ,其中各项系数就是组合数C r n ,展开式共有n+1项,第r+1项是T r+1 =C r n an —r b r . ⑵ 二项展开式的通项公式二项展开式的第r+1项T r+1=C r n an —r b r (r=0,1,…n)叫做二项展开式的通项公式。
⑶ 二项式系数的性质1在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, 即C r n = C rn n - (r=0,1,2,…,n ).2若n 是偶数,则中间项(第12+n 项)的二项公式系数最大,其值为C 2nn;若n 是奇数,则中间两项(第21+n 项和第23+n 项)的二项式系数相等,并且最大,其值为C 21-n n = C 21+n n .3所有二项式系数和等于2n ,即C 0n +C 1n +C 2n +…+C n n =2n .4奇数项的二项式系数和等于偶数项的二项式系数和,即C 0n +C 2n +…=C 1n +C 3n +…=2n ―1. (4) 如果事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k次的概率是p n (k ) = C k n p k (1―p )n ―k . 实际上,它就是二项式[(1―p )+p]n 的展开式的第k+1项.(5)独立重复试验与二项分布1.一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;2.二项分布的概念:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1)(012)k kn k nP X k C p p k n -==-=,,,,,.此时称随机变量X 服从二项分布,记作~()X B n p ,,并称p 为成功概率.三、方法总结1.排列组合应用题的处理方法和策略⑴ 使用分类计数原理还是分步计数原理要根据我们完成某件事情时采取的方式而定,分类来完成这件事情时用分类计数原理,分步骤来完成这件事情时用分步计数原理.怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给事件,而“分步骤”必须把各步骤均完成才能完成所给事情.所以准确理解两个原理的关键在于明确:分类计数原理强调完成一件事情的几类办法互不干扰,彼此之间交集为空集,并集为全集,不论哪一类办法中的哪一种方法都能单独完成事件;分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成事件,步与步之间互不影响,即前一步用什么方法不影响后一步采取什么方法.⑵ 排列与组合定义相近,它们的区别在于是否与顺序有关.⑶ 复杂的排列问题常常通过试验、画简图、小数字简化等手段使问题直观化,从而寻求解题途径,由于结果的正确性难以直接检验,因而常需要用不同的方法求解来获得检验. ⑷ 按元素的性质进行分类、按事件发生的连续过程分步,是处理组合问题的基本思想方法,要注意题设中“至少”“至多”等限制词的意义.⑸ 处理排列组合的综合性问题,一般思想方法是先选元素(组合),后排列,按元素的性质“分类”和按事件发生的连续过程“分步”,始终是处理排列、组合问题的基本方法和原理,通过解题训练要注意积累分类和分步的基本技能.⑹在解决排列组合综合性问题时,必须深刻理解排列与组合的概念,能够熟练确定——问题是排列问题还是组合问题,牢记排列数、组合数计算公式与组合数性质.容易产生的错误是重复和遗漏计数.常见的解题策略有以下几种:1特殊元素优先安排的策略;2合理分类与准确分步的策略;3排列、组合混合问题先选后排的策略;4正难则反、等价转化的策略;5相邻问题捆绑处理的策略;⑥不相邻问题插空处理的策略;⑦定序问题除法处理的策略;⑧分排问题直排处理的策略;⑨“小集团”排列问题中先整体后局部的策略;⑩构造模型的策略.2.二项定理问题的处理方法和技巧⑴运用二项式定理一定要牢记通项T r+1=C ra n—rb r,注意(a +b)n与(b+a)n虽然相n同,但具体到它们展开式的某一项时是不相同的,我们一定要注意顺序问题.另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r,而后者是字母外n的部分.⑵对于二项式系数问题,应注意以下几点:1求二项式所有项的系数和,可采用“特殊值取代法”,通常令字母变量的值为1;2关于组合恒等式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法;3证明不等式时,应注意运用放缩法.⑶求二项展开式中指定的项,通常是先根据已知条件求r,再求T r+1,有时还需先求n,再求r,才能求出T r+1.⑷有些三项展开式问题可以变形为二项式问题加以解决;有时也可以通过组合解决,但要注意分类清楚,不重不漏.⑸对于二项式系数问题,首先要熟记二项式系数的性质,其次要掌握赋值法,赋值法是解决二项式系数问题的一个重要手段.⑹近似计算要首先观察精确度,然后选取展开式中若干项.⑺用二项式定理证明整除问题,一般将被除式变为有关除式的二项式的形式再展开,常采用“配凑法”“消去法”配合整除的有关知识来解决.四、2009高考预测高考中,本节的内容还是一个重点考查的内容,因为这部分内容与实际生活联系比较大,随着新课改的深入,高考将越来越重视这部分的内容,排列、组合都将是重点考查内容,排列组合的知识在高考中经常以选择题或填空题的形式出现,难度属中等。
高考二轮数学人教版课件:第1部分 第5讲 排列、组合、二项式定理(理)
书,则此时,共有 C13种分法,因此共有 C13A22+C13=9(种),故选 B.
第一部分 方法篇•素养形成(文理)
高考二轮总复习 • 数学
返回导航
6.(2020·恩施质检)将4位女生和4位男生分为两组参加不同的两 个兴趣小组,一组3个男生1个女生,余下的组成另外一组,则不同的 选法共有__3_2__种(用数字填写答案).
高考二轮总复习 • 数学
返回导航
3.(2020·山西四校联考)高三要安排毕业晚会的4个音乐节目,2
个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则
不同排法的种数是
A.1 800
B.3 600
C.4 320
(B ) D.5 040
【解析】 先排除舞蹈节目以外的 5 个节目,共 A55种,再把 2 个舞 蹈节目插在 6 个空位中,有 A26种,所以共有 A55A26=3 600(种).
第一部分 方法篇•素养形成(文理)
高考二轮总复习 • 数学
返回导航
1.求二项式与代数式积的展开式特定项系数问题的关键 一是将二项式看作一个整体,利用分配律整理所给式子;二是利 用二项展开式的通项公式,求特定项,特定项的系数即为所要求的系 数.
第一部分 方法篇•素养形成(文理)
高考二轮总复习 • 数学
第一部分 方法篇•素养形成(文理)
高考二轮总复习 • 数学
返回导航
2.当 n 是偶数时,中间一项(第n2+1 项)的二项式系数最大,最大值
为
Cn2;当
2
n
是奇数时,中间两项(第n+2 1项和第n+2 3项)的二项式系数相
等,且同时取得最大值,最大值为
C 或 n-1 2
n+1
高三数学 知识点精析精练24 排列、组合与二项式定理
2014高三数学知识点精析精练24:排列、组合与二项式定理【复习要点】排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题.解决这类问题通常有三种途径:(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.前两种方式叫直接解法,后一种方式叫间接解法.在求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答.解排列与组合应用题常用的方法有:直接计算法与间接计算法;分类法与分步法;元素分析法和位置分析法;插空法和捆绑法等八种.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想. 【例题】【例1】 四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_________.解法一:分两步:先将四名优等生分成2,1,1三组,共有C 24种;而后,对三组学生安排三所学校,即进行全排列,有A 33种.依乘法原理,共有N =C 2433A =36(种).解法二:分两步:从每个学校至少有一名学生,每人进一所学校,共有A 34种;而后,再将剩余的一名学生送到三所学校中的一所学校,有3种.值得注意的是:同在一所学校的两名学生是不考虑进入的前后顺序的.因此,共有N =21A 34·3=36(种). 答案:36【例2】 有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9,将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?解:(间接法):任取三张卡片可以组成不同三位数C 35·23·A 33(个),其中0在百位的有C 24·22·A 22 (个),这是不合题意的,故共有不同三位数:C 35·23·A 33-C 24·22·A 22=432(个).【例3】 在∠AOB 的OA 边上取m 个点,在OB 边上取n 个点(均除O 点外),连同O 点共m +n +1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )1212111121212121211211C C C D.C C C C C C C.C C C C .C B C C C A.C nm n m n m mn nm m n n m m n n m +++++++++解法一:第一类办法:从OA 边上(不包括O )中任取一点与从OB 边上(不包括O )中任取两点,可构造一个三角形,有C 1m C 2n 个;第二类办法:从OA 边上(不包括O )中任取两点与OB 边上(不包括O )中任取一点,与O 点可构造一个三角形,有C 2m C 1n 个;第三类办法:从OA 边上(不包括O )任取一点与OB 边上(不包括O )中任取一点,与O 点可构造一个三角形,有C 1m C 1n 个.由加法原理共有N =C 1m C 2n +C 2m C 1n +C 1m C 1n 个三角形.解法二:从m +n +1中任取三点共有C 31++n m 个,其中三点均在射线OA (包括O 点),有C 31+m 个,三点均在射线OB (包括O 点),有C 31+n 个.所以,个数为N =C 31++n m -C 31+m -C 31+n 个.答案:C【例4】 函数为实数并且是常数a x xax f ()()(9+=)(1)已知)(x f 的展开式中3x 的系数为49,求常数.a (2)是否存在a 的值,使x 在定义域中取任意值时,27)(≥x f 恒成立?如存在,求出a 的值,如不存在,说明理由.解(1)T r+1=C 9239999)()(---=rrr r r r xa C x xa 由3923=-r解得8=r498989=-a C 41=∴a(2)),0()()(9+∞∈∴+=x x xax f 要使(27)9≥+x xa只需313≥+x xa10当0>a 时,设x xa x g +=)(32212)2(021)(a x x axx g ==+-='--∴20当0=a 时,不成立 30当1-<a 时,不成立 故当27)(94≥≥x f a 时 另解法 34322)(a x x x a x x a x g ≥++=+= 只需94,343313≥≥⋅a a即 【例5】 五人站成一列,重新站队时,各人都不站在原来的位置上,有多少种站法? 解:设原来站在第i 个位置的人是i a (i=1,2,3,4,5)。
2014高考数学查缺补漏集中营 排列、组合、二项式定理、概1
2014高考数学查缺补漏集中营:排列组合二项式定理和概率一、知识整合 二、考试要求:1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 5.了解随机事件的发生存在着规律性和随机事件概率的意义. 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.8.会计算事件在n 次独立重复试验中恰好发生k 次的概率. Ⅰ、随机事件的概率例1某商业银行为储户提供的密码有0,1,2,…,9中的6个数字组成. (1)某人随意按下6个数字,按对自己的储蓄卡的密码的概率是多少?(2)某人忘记了自己储蓄卡的第6位数字,随意按下一个数字进行试验,按对自己的密码的概率是多少?解 (1)储蓄卡上的数字是可以重复的,每一个6位密码上的每一个数字都有0,1,2,…,9这10种,正确的结果有1种,其概率为6101,随意按下6个数字相当于随意按下610个,随意按下6个数字相当于随意按下610个密码之一,其概率是6101.(2)以该人记忆自己的储蓄卡上的密码在前5个正确的前提下,随意按下一个数字,等可能性的结果为0,1,2,…,9这10种,正确的结果有1种,其概率为101.例2一个口袋内有m 个白球和n 个黑球,从中任取3个球,这3个球恰好是2白1黑的概率是多少?(用组合数表示)解 设事件I 是“从m 个白球和n 个黑球中任选3个球”,要对应集合I1,事件A 是“从m 个白球中任选2个球,从n 个黑球中任选一个球”,本题是等可能性事件问题,且Card(I1)=123)(,n m nm C C A Card C ⋅=+,于是P(A)=3121)()(n m nm C C C I Card A Card +⋅=. Ⅱ、互斥事件有一个发生的概率例3在20件产品中有15件正品,5件次品,从中任取3件,求: (1)恰有1件次品的概率;(2)至少有1件次品的概率. 解 (1)从20件产品中任取3件的取法有320C ,其中恰有1件次品的取法为15215C C 。
专题排列组合、二项式定理
专题排列组合、二项式定理【2014年高考试题】1.[2014·福建卷] 用a代表红球,b代表蓝球,c代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是() A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)1.A[解析] 从5个无区别的红球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+a+a2+a3+a4+a5;从5个无区别的蓝球中取出若干个球,由所有的蓝球都取出或都不取出,得其所有取法为1+b5;从5个有区别的黑球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+C15c+C25c2+C35c3+C45c4+C55c5=(1+c)5,根据分步乘法计数原理得,适合要求的所有取法是(1+a+a2+a3+a4+a5)(1+b5)(1+c)5.2.[2014·北京卷] 把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C 不相邻,则不同的摆法有________种.2.36[解析] A33A22A13=6×2×3=36.3.[2014·广东卷] 设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为() A.60 B.90 C.120 D.1303.D[解析] 本题考查排列组合等知识,考查的是用排列组合思想去解决问题,主要根据范围利用分类讨论思想求解.由“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”考虑x1,x2,x3,x4,x5的可能取值,设集合M={0},N={-1,1}.当x1,x2,x3,x4,x5中有2个取值为0时,另外3个从N中取,共有C25×23种方法;当x1,x2,x3,x4,x5中有3个取值为0时,另外2个从N中取,共有C35×22种方法;当x1,x2,x3,x4,x5中有4个取值为0时,另外1个从N中取,共有C45×2种方法.故总共有C25×23+C35×22+C45×2=130种方法,即满足题意的元素个数为130.4.[2014·广东卷] 从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中A.144 B.120 C.72 D.245.D [解析] 这是一个元素不相邻问题,采用插空法,A 33C 34=24. 6.[2014·全国卷] 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种6.C [解析] 由题意,从6名男医生中选2名,5名女医生中选1名组成一个医疗小组,不同的选法共有C 26C 15=75(种).7.[2014·四川卷] 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种7.B [解析] 当甲在最左端时,有A 55=120(种)排法;当甲不在最左端时,乙必须在最左端,且甲也不在最右端,有A 11A 14A 44=4×24=96(种)排法,共计120+96=216(种)排法.故选B. 8.[2014·浙江卷] 在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)8.60 [解析] 分两种情况:一种是有一人获得两张奖券,一人获得一张奖券,有C 23A 24=36种;另一种是三人各获得一张奖券,有A 34=24种.故共有60种获奖情况. 9.[2014·重庆卷] 某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .1689.B [解析] 分两步进行:(1)先将3个歌舞进行全排,其排法有A 33种;(2)将小品与相声插入将歌舞分开,若两歌舞之间只有一个其他节目,其插法有2A 33种.若两歌舞之间有两个其他节目时插法有C 12A 22A 22种.所以由计数原理可得节目的排法共有A 33(2A 33+C 12A 22A 22)=120(种).10.[2014·安徽卷] 设a ≠0,n 是大于1的自然数,⎝⎛⎭⎫1+xa n的展开式为a 0+a 1x +a 2x 2+…+a n x n .若点A i (i ,a i )(i =0,1,2)的位置如图1-3所示,则a =________.11.[2014·湖北卷] 若二项式⎝⎛⎭⎫2x +a x 7的展开式中1x3的系数是84,则实数a =( )12.[2014·湖南卷] ⎝⎛⎭⎫12x -2y 的展开式中x 2y 3的系数是( )A .-20B .-514.[2014·新课标全国卷Ⅰ] (x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案)14.-20 [解析] (x +y )8的展开式中xy 7的系数为C 78=8,x 2y 6的系数为C 68=28,故(x -y )(x+y )8的展开式中x 2y 8的系数为8-28=-20. 15. [2014·新课标全国卷Ⅱ] (x +a )10的展开式中,x 7的系数为15,则a =________.(用数⎭⎫2+b32217.[2014·四川卷] 在x (1+x )6的展开式中,含x 3项的系数为( )A .30B .20C .15D .1017.C [解析] x (1+x )6的展开式中x 3项的系数与(1+x )6的展开式中x 2项的系数相同,故其系数为C 26=15. 18..[2014·浙江卷] 在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A .45B .60C .120D .21018.C [解析] 含x m y n 项的系数为f (m ,n )=C m 6C n 4,故原式=C 36C 04+C 26C 14+C 16C 24+C 06C 34=120,故选C.19.[2014·安徽卷] 从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对19.C[解析] 方法一(直接法):在上底面中选B1D1,四个侧面中的面对角线都与它成60°,共8对,同样A1C1对应的对角线也有8对,同理下底面也有16对,共有32对.左右侧面与前后侧面中共有16对面对角线所成的角为60°,故所有符合条件的共有48对.方法二(间接法):正方体的12条面对角线中,任意两条垂直、平行或所成的角为60°,所以所成角为60°的面对角线共有C212-6-12=48.【2013年高考试题】1.(2013四川,8,5分)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga-lg b的不同值的个数是()A.9B.10C.18D.201.答案C2.(2013山东,10,5分)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.2792.答案B3.(2013福建,5,5分)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.103.答案B4.(2013重庆,13,5分)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).9.答案5905.(2013北京,12,5分)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张.如果分给同一人的2张参观券连号,那么不同的分法种数是.10.答案966.(2013浙江,14,4分)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种(用数字作答).11.答案4801.(2013课标全国Ⅰ,9,5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=()A.5B.6C.7D.81.答案B2.(2013江西,5,5分)展开式中的常数项为()A.80B.-80C.40D.-402.答案C3.(2013辽宁,7,5分)使(n∈N+)的展开式中含有常数项的最小的n为()A.4B.5C.6D.73.答案B4.(2013课标全国Ⅱ,5,5分)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.-4B.-3C.-2D.-14.答案D5.(2013安徽,11,5分)若的展开式中x4的系数为7,则实数a=.9.答案6.(2013四川,11,5分)二项式(x+y)5的展开式中,含x2y3的项的系数是.(用数字作答) 10.答案107.(2013浙江,11,4分)设二项式的展开式中常数项为A,则A= .11.答案 -108.(2013天津,10,5分)的二项展开式中的常数项为 .12.答案 15【2012年高考试题】1.【2012高考真题重庆理4】821⎪⎪⎭⎫ ⎝⎛+x x 的展开式中常数项为A.1635 B.835 C.435D.1052.【2012高考真题浙江理6】若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A.60种B.63种C.65种D.66种3.【2012高考真题新课标理2】将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) ()A 12种 ()B 10种 ()C 9种 ()D 8种【答案】A【解析】先安排老师有222=A 种方法,在安排学生有624=C ,所以共有12种安排方案,选A.4.【2012高考真题四川理1】7(1)x +的展开式中2x 的系数是( ) A 、42 B 、35 C 、28 D 、21 【答案】D【解析】由二项式定理得252237121T C x x ==gg ,所以2x 的系数为21,选D. 5.【2012高考真题四川理11】方程22ay b x c =+中的,,{3,2,0,1,2,3}a b c ∈--,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( ) A 、60条 B 、62条 C 、71条 D 、80条6.【2012高考真题陕西理8】两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( ) A. 10种 B.15种 C. 20种 D. 30种7.【2012高考真题山东理11】现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为(A )232 (B)252 (C)472 (D)484 【答案】C【解析】若没有红色卡,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有64141414=⨯⨯C C C 种,若2色相同,则有14414241223=C C C C ;若红色卡片有1张,则剩余2张若不同色,有19214142314=⨯⨯⨯C C C C 种,如同色则有72242314=C C C ,所以共有4727219214464=+++,故选C 。
届高考数学(理科)二轮复习专题 排列组合与二项式定理(人教A版)PPT课件
第18讲 │ 要点热点探究
► 探究点二 排列与组合
例 2 在送医下乡活动中,某医院安排 3 名男医生和 2 名女医生到三所乡医 院工作,每所医院至少安排一名医生,且女医生不安排在同一乡医院工作,则 不同的分配方法总数为( )
A.78 B.114 C.108 D.120 【分析】 先分组后分配,然后减去两名女医生在一个医院的情况. B 【解析】 五人分组有(1,1,3),(1,2,2)两种分组方案,方法数是C15CA1422C33+ C15AC2224C22=25,故分配方案的总数是 25A33=150 种.当仅仅两名女医生一组时, 分组数是 C13,当两名女医生中还有一名男医生时,分组方法也是 C13,故两名女 医生在一个医院的分配方案是 6A33=36.符合要求的分配方法总数是 150-36= 114. 【点评】 在分配问题中如果待分配的元素数目多余分配的位置数目,就要先分 组然后再进行分配.
n∈N,且 m≤n);Cmn+1=Cmn +Cmn -1(m,n∈N,且 m≤n).
2
第18讲 │ 主干知识整合
4.二项式定理 (a+b)n 展开式共有 n+1 项,其中 r+1 项 Tr+1=Crnan-rbr. 5.二项式系数的性质 二项式系数是指 C0n,C1n,…,Cnn这 n+1 个组合数. 二项式系数具有如下几个性质: (1)对称性、等距性、单调性、最值性; (2)Crr+Crr+1+Crr+2+…+Crn=Crn++11; C0n+C1n+C2n+…+Crn+…+Cnn=2n; C1n+C3n+C5n+…=C0n+C2n+C4n+…=2n-1; C1n+2C2n+3C3n+…+nCnn=n·2n-1 等.
8
第18讲 │ 要点热点探究
(1)某考生打算从 7 所重点大学中选 3 所填在第一档次的三个志 愿栏内,其中 A 校定为第一志愿;再从 5 所一般大学中选 3 所填在 第二档次的三个志愿栏内,其中 B、C 两校必选,且 B 在 C 前,问 此考生共有________种不同的填表方法.
2014高考数学查缺补漏集中营排列、组合、二项式定理与概率
2014高考数学查缺补漏集中营:排列、组合、二项式定理与概率一、选择题(每小题5分,共25分)1.某同学忘记了自己的QQ 号,但记得QQ 号是由一个2,一个5,两个8组成的四位数,于是用这四个数随意排成一个四位数,输入电脑尝试,那么他找到自己的QQ 号最多尝试次数为( ).A .6B .12C .18D .242.在⎝⎛⎭⎪⎫2x 2-1x 5的二项展开式中,x 的系数为( ).A .10B .-10C .40D .-403.如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为( ).A .64B .72 C.84 D .964.如图,已知函数y =sin x ,x ∈[-π,π]与x 轴围成的区域记为M (图中阴影部分),若随机向圆O :x 2+y 2=π2内投入一米粒,则该米粒落在区域M 内的概率是( ).A.4π2B.4π3C.2π2 D.2π3 5.盒子中装有形状、大小完全相同的3个红球和2个白球,从中随机取出一个记下颜色后放回,当红球取到2次时停止取球.那么取球次数恰为3次的概率是( ). A.18125 B.36125 C.44125D.81125二、填空题(每小题5分,共15分)6.学校要安排4名学生在周六、周日参加社会实践活动,每天至少1人,则学生甲被安排在周六的不同排法的种数为________(用数字作答).7.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为________. 8.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示). 三、解答题(本题共3小题,共35分)9.(11分)已知(1+2x )n的展开式中,某一项的系数是它前一项系数的2倍,而又等于它后一项系数的56.求展开式中所有项的系数之和及所有项的二项式系数之和.10.(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.11.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人.现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取4名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工人的概率; (3)求抽取的4名工人中恰有2名男工人的概率.参考答案1.B [C 24A 22=6×2=12.]2.D [因为二项式⎝ ⎛⎭⎪⎫2x 2-1x 5展开式的第r +1项为T r +1=C r 5(2x 2)5-r ⎝ ⎛⎭⎪⎫-1x r =C r 5·25-r ×(-1)r x10-3r,当r =3时,含有x ,其系数为C 35·22×(-1)3=-40.]3.C [将四种颜色编号为①②③④,A 有4种涂法,设涂①,B 有3种涂法,设涂②.下面分三类:若C 涂①,则D 可涂②③④,共3种涂法; 若C 涂③,则D 可涂②④,共2种涂法; 若C 涂④,则D 可涂②③,共2种涂法. 于是不同的涂法种数为4×3×(3+2+2)=84.]4.C [S M =2⎠⎛0πsin x d x =2,S O =π·π2=π3,所以该米粒落在区域M 内的概率是S M S O =2π3=2π2.]5.B [从5个球中随机取出一个球放回,连续取3次的所有取法有5×5×5=125种,有两次取红球的所有取法有3A 12·A 23=36种.所以概率为36125.]6.解析 本题考查排列组合知识,由题意知:A 13·A 22+1=7.答案 77.解析 令x =0得,a 0=1.令x =1,则(1+m )6=a 0+a 1+a 2+…+a 6=64,∴m +1=±2, ∴m =1或-3. 答案 1或-38.解析 根据条件求出基本事件的个数,再利用古典概型的概率计算公式求解.因为每人都从三个项目中选择两个,有(C 23)3种选法,其中“有且仅有两人选择的项目完全相同”的基本事件有C 23C 13C 12个,故所求概率为C 23C 13C 12C 233=23.答案 239.解 根据题意,设该项为第r +1项,则有⎩⎪⎨⎪⎧C r n 2r =2C r -1n 2r -1,C r n 2r =56C r +1n 2r +1,即⎩⎪⎨⎪⎧C r n =C r -1n ,C r n =53C r +1n ,亦即⎩⎪⎨⎪⎧n =2r -1,n !rn -r =53×n !r +1n -r -1,解得⎩⎪⎨⎪⎧r =4,n =7.令x =1得展开式中所有项的系数和为(1+2)7=37=2 187. 所有项的二项式系数和为27=128.10.解 (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的球的编号之和不大于4的事件共有1和2,1和3两个.因此所求事件的概率P =26=13.(2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n)有:(1,1),(1,2),(1, 3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个. 又满足条件n ≥m +2的事件为(1,3),(1,4),(2,4),共3个,所以满足条件n ≥m +2的事件的概率为P 1=316.故满足条件n <m +2的事件的概率为1-P 1=1-316=1316.11.解 (1)由于甲、乙两组各有10名工人,根据分层抽样原理,要从甲、乙两组中共抽取4名工人进行技术考核,则从每组各抽取2名工人.(2)记A 表示事件:从甲组抽取的工人中恰有1名女工人,则P(A)=C 14C 16C 210=815.(3)A i 表示事件:从甲组抽取的2名工人中恰有i 名男工人,i =0,1,2. B j 表示事件:从乙组抽取的2名工人中恰有j 名男工人,j =0,1,2. B 表示事件:抽取的4名工人中恰有2名男工人. A i 与B j 独立,i ,j =0,1,2,且B =A 0·B 2+A 1·B 1+A 2·B 0. 故P(B)=P(A 0·B 2+A 1·B 1+A 2·B 0)=P(A 0)·P(B 2)+P(A 1)·P(B 1)+P(A 2)·P(B 0)=C 24C 210·C 24C 210+C 14C 16C 210·C 16C 14C 210+C 26C 210·C 26C 210=3175.。
14年高考 数学复习 知识点归纳 9排列、组合、二项式、概率 (2)
九、排列、组合、二项式、概率:一、分类计数原理和分步计数原理:分类计数原理:如果完成某事有几种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。
分步计数原理:如果完成某事,必须分成几个步骤,每个步骤都有不同的方法,而—个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。
区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。
二、排列与组合:(1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n个元素的问题;区别:前者有顺序,后者无顺序。
(2)排列数、组合数:排列数的公式:)()!(!)1()2)(1(n m m n n m n n n n A m n≤-=+---= 注意:①全排列:!n A n n=; ②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①1-=m m nA A (将从n 个不同的元素中取出)(n m m ≤个元素,分两步完成:第一步从n 个元素中选出1个排在指定的一个位置上;第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)②m m m A mA A 1-+=(将从n 个不同的元素中取出)(n m m ≤个元素,分两类完成:第一类:m 个元素中含有a ,分两步完成:第一步将a 排在某一位置上,有m 不同的方法。
第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)即有11--m n mA 种不同的方法。
第二类:m 个元素中不含有a ,从1-n 个元素中取出m 个元素排在m 个位置上,有m n A 1-种方法。
【备战2014】高考数学 高频考点归类分析 排列组合、二项式定理(真题为例)
高频考点排列组合、二项式定理一、分类计数原理的应用:典型例题:例1. (2012年市理5分)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数.其中奇数的个数为【】A. 24B. 18C. 12D. 6【答案】B。
【考点】排列组合问题。
【解析】由于题目要求是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇。
如果是第一种奇偶奇的情况,可以从个位开始分析(3 种情况),之后十位(2 种情况),最后百位(2 种情况),共12 种;如果是第二种情况偶奇奇:个位(3 种情况),十位(2 种情况),百位(不能是O ,一种倩况),共6 种。
因此总共有12 + 6 = 18 种情况。
故选B。
例2. (2012年某某省理5分)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为【】()A1或3()B1或4()C2或3()D2或4【答案】D。
【考点】排列组合。
【解析】∵261315132C-=-=,∴在6位同学的两两交换中少2种情况。
不妨设甲、乙、丙、丁、戍、己6人①设仅有甲与乙,丙没交换纪念品,则甲收到3份纪念品,乙、丙收到4份纪念品,丁、戍、己收到5份纪念品,此时收到4份纪念品的同学人数为2人;②设仅有甲与乙,丙与丁没交换纪念品,则甲、乙、丙、丁收到4份纪念品,戍、己收到5份纪念品,此时收到4份纪念品的同学人数为4人。
故选D。
例3. (2012年某某省理5分)现有16X不同的卡片,其中红色、黄色、蓝色、绿色卡片各4X,从中任取3X,要求这些卡片不能是同一种颜色,且红色卡片至多1X,不同取法的种数为【】A 232B 252C 472D 484【答案】C。
【考点】排列组合的应用。
【解析】3321164412161514416725608846C C 7C 2C ⨯⨯--=--=-=。
【数学课件】排列、组合、二项式定理复习
一、主要知识点
1、分类计数原理与分步计数原理
2、排列与组合 (1)排列数公式
Anm n(n 1)(n 2)(n m 1) (m n)
Anm
(n
ቤተ መጻሕፍቲ ባይዱ
n! m)!
Ann n! n(n 1)(n 2)2 1
排列、组合、二项式定理复习
(2)组合数公式
排列、组合、二项式定理复习
例6、有6个坐标连成一排,3个人就座,恰有 2个空位相邻的排法种数是______
例7、一个城市的街道如图所示,某人要
从A点走到B点(只能向右或向上走),
共有多少种不同的走法?
B
A
排列、组合、二项式定理复习 例8、求下列各式的展开式中 x5 的系数 (1)(1+x)2(1-x)5 (2)(1+2x- 3x2)5
二、典型例题 例1、从4名男同学和6名女同学中选出7人排 成一排,
(1)如果要选出3名男同学和4名女同学,共 有多少种不同排法?
(2)在(1)题中若4名女同学必须排在一起, 共有多少种不同排法?
(3)在(1)题中若3名男同学必须必须不相 邻,共有多少种不同排法?
排列、组合、二项式定理复习
例2、7位同学排成一排,要求A、B、C三人 从左到右顺序一定,共有多少种不同排法?
好好学习,天天向上。 2、教育人就是要形成人的性格。——欧文
3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种
最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身
2014届高三二轮专题突破-排列与组合、二项式定理
第1讲排列与组合、二项式定理【高考考情解读】 1.高考中对两个计数原理、排列、组合的考查以基本概念、基本方法(如“在”“不在”问题、相邻问题、相间问题)为主,主要涉及数字问题、样品问题、几何问题、涂色问题、选取问题等;对二项式定理的考查,主要是利用通项求展开式的特定项,利用二项式定理展开式的性质求有关系数问题.主要考查分类与整合思想、转化与化归思想、补集思想和逻辑思维能力.2.排列、组合、两个计数原理往往通过实际问题进行综合考查,一般以选择题、填空题形式出现,难度中等,还经常与概率问题相结合,出现在解答题的第一或第二个小题中,难度也为中等;对于二项式定理的考查,主要出现在选择题或填空题中,难度为易或中等.1.分类加法计数原理和分步乘法计数原理如果每种方法都能将规定的事件完成,则要用分类加法计数原理将方法种数相加;如果需要通过若干步才能将规定的事件完成,则要用分步乘法计数原理将各步的方法种数相乘.2.排列与组合(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从n个不同元素中取出m个元素的排列数公式是A m n=n(n-1)(n-2)…(n-m+1)或写成A m n=n!(n-m)!.(2)组合:从n个不同元素中,任取m(m≤n)个元素组成一组,叫做从n个不同元素中取出m个元素的一个组合.从n个不同元素中取出m个元素的组合数公式是C m n=n(n-1)(n-2)…(n-m+1)m!或写成C m n=n!m!(n-m)!.(3)组合数的性质①C m n=C n-mn;②C m n +1=C m n +C m -1n. 3.二项式定理(1)定理:(a +b )n =C 0n a n b 0+C 1n a n -1b +C 2n a n -2b 2+…+C r n a n -r b r +…+C n n a 0b n (r =0,1,2,…,n ).(2)二项展开式的通项T r +1=C r n a n -r b r ,r =0,1,2,…,n ,其中C r n 叫做二项式系数.(3)二项式系数的性质①对称性:与首末两端“等距离”两项的二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,…,C k n =C n -k n ,….②最大值:当n 为偶数时,中间的一项的二项式系数C n2n 取得最大值;当n 为奇数时,中间的两项的二项式系数C n -12n ,C n +12n 相等,且同时取得最大值.③各二项式系数的和a .C 0n +C 1n +C 2n +…+C k n +…+C n n =2n;b .C 0n +C 2n +…+C 2r n +…=C 1n +C 3n +…+C 2r +1n+… =12·2n =2n -1.考点一 两个计数原理例1 (1)(2013·山东)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .279(2)如果一个三位正整数“a 1a 2a 3”满足a 1<a 2且a 3<a 2,则称这样的三位数为凸数(如120,343,275),那么所有凸数的个数为( )A .240B .204C .729D .920本题主要考查分类加法计数原理与分步乘法计数原理的简单应用,解题的关键是合理分类,正确分步. 答案 (1)B (2)A解析 (1)无重复的三位数有:A 39+A 12A 29=648个.则有重复数字的三位数有:900-648=252个. (2)分8类,当中间数为2时,有1×2=2种; 当中间数为3时,有2×3=6种; 当中间数为4时,有3×4=12种;当中间数为5时,有4×5=20种;当中间数为6时,有5×6=30种;当中间数为7时,有6×7=42种;当中间数为8时,有7×8=56种;当中间数为9时,有8×9=72种.故共有2+6+12+20+30+42+56+72=240种.(1)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类加法计数原理.(2)对于复杂的两个原理综合使用的问题,可恰当列出示意图或表格,使问题形象化、直观化.(1)在航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,则实验顺序的编排方法共有() A.24种B.48种C.96种D.144种(2)如果把个位数是1,且恰有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的重复数字的四位数中,“好数”共有________个.答案(1)C(2)12解析(1)首先安排A有2种方法;第二步在剩余的5个位置选取相邻的两个排B,C,有4种排法,而B,C位置互换有2种方法;第三步安排剩余的3个程序,有A33种排法,共有2×4×2×A33=96种.(2)当相同的数字不是1时,有C13个;当相同的数字是1时,共有C13C13个,由分类加法计数原理知共有“好数”C13+C13C13=12个.考点二排列与组合例2(1)(2013·重庆)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________.(用数字作答)(2)(2013·浙江)将A、B、C、D、E、F六个字母排成一排,且A、B均在C的同侧,则不同的排法共有________种.(用数字作答)答案(1)590(2)480解析(1)分三类:①选1名骨科医生,则有C13(C14C35+C24C25+C34C15)=360(种).②选2名骨科医生,则有C23(C14C25+C24C15)=210(种);③选3名骨科医生,则有C33C14C15=20(种).∴骨科、脑外科和内科医生都至少有1人的选派方法种数是360+210+20=590.(2)分类讨论:A 、B 都在C 的左侧,且按C 的左侧分别有两个、三个、四个、五个字母这4类计算,再考虑右侧情况.所以共有:2(A 22·A 33+C 13A 33·A 22+C 23A 44+A 55)=480.求解排列、组合问题的思路:排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘.具体地说,解排列、组合的应用题,通常有以下途径:(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素. (2)以位置为主体,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列或组合数.(1)(2012·山东)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A .232B .252C .472D .484(2)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有( )A .36种B .42种C .48种D .54种答案 (1)C (2)B解析 (1)利用分类加法计数原理和组合的概念求解.分两类:第一类,含有1张红色卡片,共有不同的取法C 14C 212=264(种); 第二类,不含有红色卡片,共有不同的取法C 312-3C 34=220-12=208(种).由分类加法计数原理知不同的取法有264+208=472(种).(2)分两类,第一类:甲排在第一位时,丙排在最后一位,中间4个节目无限制条件,有A 44种排法;第二类:甲排在第二位时,从甲、乙、丙之外的3个节目中选1个节目排在第一位有C 13种排法,其他3个节目有A 33种排法,故有C 13A 33种排法.依分类加法计数原理,知共有A 44+C 13A 33=42(种)编排方案.考点三 二项式定理 例3 (1)(2013·辽宁)使⎝⎛⎭⎫3x +1x x n(n ∈N +)的展开式中含有常数项的最小的n 为 ( )A .4B .5C .6D .7(2)若(1-2x )2 013=a 0+a 1x +…+a 2 013x 2 013(x ∈R ),则a 12+a 222+…+a 2 01322 013的值为( )A .2B .0C .-1D .-2答案 (1)B (2)C解析 (1)展开式的通项公式T r +1=C r n(3x )n -r ⎝⎛⎭⎫1x x r, ∴T r +1=3n -r C r n xn -52r ,r =0,1,2,…,n . 令n -52r =0,n =52r ,故最小正整数n =5.(2)(1-2x )2 013=a 0+a 1x +…+a 2 013x 2 013,令x =12,则⎝⎛⎭⎫1-2×12 2 013=a 0+a 12+a 222+…+a 2 01322 013=0,其中a 0=1,所以a 12+a 222+…+a 2 01322 013=-1.(1)在应用通项公式时,要注意以下几点:①它表示二项展开式的任意项,只要n 与r 确定,该项就随之确定; ②T r +1是展开式中的第r +1项,而不是第r 项;③公式中,a ,b 的指数和为n 且a ,b 不能随便颠倒位置; ④对二项式(a -b )n 展开式的通项公式要特别注意符号问题.(2)在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法.(1)⎝⎛⎭⎪⎫x +13x 2n的展开式的第6项的二项式系数最大,则其常数项为( )A .120B .252C .210D .45(2)若(1+x )(2-x )2 011=a 0+a 1x +a 2x 2+…+a 2 011x 2 011+a 2 012x 2 012,则a 2+a 4+…+a 2 010+a 2 012等于( )A .2-22 011B .2-22 012C .1-22 011D .1-22 012答案 (1)C (2)C解析 (1)根据二项式系数的性质,得2n =10,故二项式⎝⎛⎭⎪⎫x +13x 2n的展开式的通项公式是T r +1=C r 10(x )10-r·⎝ ⎛⎭⎪⎫13x r =C r 10x 5-r 2-r 3,根据题意5-r 2-r3=0,解得r =6,故所求的常数项等于C 610=C 410=210.(2)采用赋值法,令x =1,得a 0+a 1+a 2+…+a 2 011+a 2 012=2,令x =-1,得a 0-a 1+a 2-…-a 2 011+a 2 012=0,把两式相加,得2(a 0+a 2+…+a 2 012)=2,所以a 0+a 2+…+a 2 012=1,又令x =0,得a 0=22 011,所以a 2+a 4+…+a 2 010+a 2 012=1-22 011.故选C.1.排列、组合应用题的解题策略(1)在解决具体问题时,首先必须弄清楚是“分类”还是“分步”,接着还要搞清楚“分类”或者“分步”的具体标准是什么.(2)区分某一问题是排列问题还是组合问题,关键看选出的元素与顺序是否有关.若交换某两个元素的位置对结果产生影响,则是排列问题;若交换任意两个元素的位置对结果没有影响,则是组合问题.也就是说排列问题与选取元素的顺序有关,组合问题与选取元素的顺序无关.(3)排列、组合综合应用问题的常见解法:①特殊元素(特殊位置)优先安排法;②合理分类与准确分步;③排列、组合混合问题先选后排法;④相邻问题捆绑法;⑤不相邻问题插空法;⑥定序问题倍缩法;⑦多排问题一排法;⑧“小集团”问题先整体后局部法;⑨构造模型法;⑩正难则反、等价转化法.2.二项式定理是一个恒等式,对待恒等式通常有两种思路一是利用恒等定理(两个多项式恒等,则对应项系数相等);二是赋值.这两种思路相结合可以使得二项展开式的系数问题迎刃而解.另外,通项公式主要用于求二项式的指数,求满足条件的项或系数,求展开式的某一项或系数,在运用公式时要注意以下几点:(1)C r n a n-r b r是第r+1项,而不是第r项.(2)运用通项公式T r+1=C r n a n-r b r解题,一般都需先转化为方程(组)求出n、r,然后代入通项公式求解.(3)求展开式的特殊项,通常都是由题意列方程求出r,再求出所需的某项;有时需先求n,计算时要注意n和r的取值范围及它们之间的大小关系.1.有A、B、C、D、E五位学生参加网页设计比赛,决出了第一到第五的名次.A、B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名.请你分析一下,这五位学生的名次排列的种数为() A.6 B.18 C.20 D.24答案 B解析由题意知,名次排列的种数为C13A33=18.2.如图所示,在A、B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A、B之间电路不通,则焊接点脱落的不同情况有() A.9种B.11种C.13种D.15种答案 C解析按照焊接点脱落的个数进行分类.若脱落1个,有(1),(4),共2种;若脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种;若脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种;若脱落4个,有(1,2,3,4),共1种.综上共有2+6+4+1=13种焊接点脱落的情况.3.在(1-x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n-3=0,则自然数n的值是() A.7 B.8 C.9 D.10答案 B解析易知a2=C2n,a n-3=(-1)n-3C n-3n=(-1)n-3C3n,∵2a2+a n-3=0,∴2C2n+(-1)n-3C3n=0,将各选项逐一代入检验可知n=8满足上式,选B.4.在(1+x)2-(1+3x)4的展开式中,x的系数等于________.(用数字作答)答案-3解析因为(1+x)2的展开式中x的系数为1,(1+3x)4的展开式中x的系数为C34=4,所以在(1+x)2-(1+3x)4的展开式中,x的系数等于-3.(推荐时间:45分钟)一、选择题1.(2012·重庆)(1-3x)5的展开式中x3的系数为() A.-270 B.-90 C.90 D.270答案 A解析(1-3x)5的展开式通项为T r+1=C r5(-3)r x r(0≤r≤5,r∈N),当r=3时,该项为T4=C35(-3)3x3=-270x3,故可得x3的系数为-270.2.(2013·课标全国Ⅱ)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a等于() A.-4 B.-3 C.-2 D.-1答案 D解析(1+ax)(1+x)5中含x2的项为:(C25+C15a)x2,即C25+C15a=5,a=-1.3. 如图所示,使电路接通,开关不同的开闭方式有( )A .11种B .20种C .21种D .12种答案 C解析 当第一组开关有一个接通时,电路接通为C 12(C 13+C 23+C 33)=14种方式;当第一组有两个接通时,电路接通有C 22(C 13+C 23+C 33)=7种方式.所以共有14+7=21种方式,故选C.4. 高三某班6名同学站成一排照相,同学甲、乙不能相邻,并且甲在乙的右边,则不同的排法种数共有 ( )A .120B .240C .360D .480答案 B解析 先将其他4名同学排好有A 44种方法,然后将甲、乙两名同学插空,又甲、乙两人顺序一定且不相邻,有C 25种方法,所以共有A 44·C 25=240种排法. 5. 某中学从4名男生和3名女生中推荐4人参加某高校自主招生考试,若这4人中必须既有男生又有女生,则不同的选法共有 ( )A .140种B .120种C .35种D .34种答案 D解析 从7人中选4人共有C 47=35种方法,又4名全是男生的选法有C 44=1种.故选4人既有男生又有女生的选法种数为35-1=34.6. 若(1+2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 0+a 1+a 3+a 5的值为( )A .122B .123C .243D .244答案 B解析 在已知等式中分别取x =0、x =1与x =-1,得a 0=1,a 0+a 1+a 2+a 3+a 4+a 5=35,a 0-a 1+a 2-a 3+a 4-a 5=-1,因此有2(a 1+a 3+a 5)=35+1=244,a 1+a 3+a 5=122,a 0+a 1+a 3+a 5=123,故选B.7. 在二项式(x 2-1x)n 的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为( )A .32B .-32C .0D .1答案 C解析 依题意得所有二项式系数的和为2n =32,解得n =5. 因此,该二项展开式中的各项系数的和等于(12-11)5=0,选C.8. (2012·湖北)设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a 的值为( )A .0B .1C .11D .12答案 D解析 化51为52-1,用二项式定理展开.512 012+a =(52-1)2 012+a =C 02 012522 012-C 12 012522 011+…+C 2 0112 012×52×(-1)2 011+C 2 0122 012×(-1)2 012+a . 因为52能被13整除,所以只需C 2 0122 012×(-1)2 012+a 能被13整除, 即a +1能被13整除,所以a =12.9. (2012·大纲全国)将字母a ,a ,b ,b ,c ,c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有 ( )A .12种B .18种C .24种D .36种答案 A解析 先排第一列,因为每列的字母互不相同,因此共有A 33种不同的排法. 再排第二列,其中第二列第一行的字母共有A 12种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A 33·A 12·1=12(种)不同的排列方法. 10.某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有 ( )A .504种B .960种C .1 008种D .1 108种答案 C解析 由题意得不同的安排方案共有A 22(A 66-2A 55+A 44)=1 008(种).二、填空题11.(2013·安徽)若⎝⎛⎭⎪⎫x +a 3x 8的展开式中,x 4的系数为7,则实数a =________. 答案 12解析 T r +1=C r 8x 8-r⎝ ⎛⎭⎪⎫a 3x r =a r C r 8x 8-43r ,由8-43r =4得r =3,由已知条件a 3C 38=7,则a 3=18,a =12.12.(2013·北京)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.答案 96解析 将5张参观券分成4堆,有2个联号有4种分法,每种分法再分给4人,各有A 44种分法,∴不同的分法种类共有4A 44=96.13.(2012·浙江)若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________. 答案 10解析 方法一 将f (x )=x 5进行转化,利用二项式定理求解. f (x )=x 5=(1+x -1)5,它的通项为T r +1=C r 5(1+x )5-r ·(-1)r , T 3=C 25(1+x )3(-1)2=10(1+x )3,∴a 3=10.方法二 不妨设1+x =t ,则x =t -1, 因此有(t -1)5=a 0+a 1t +a 2t 2+a 3t 3+a 4t 4+a 5t 5,则a 3=C 25(-1)2=10.14.某班级有一个7人小组,现任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案的种数为________. 答案 70解析 分两步:第一步先选3个人即C 37=7×6×53×2×1=35. 第二步3个人相互调整座位,有2种方法.∴35×2=70.15.某工厂将甲、乙等五名新招聘员工分配到三个不同的车间,每个车间至少分配一名员工,且甲、乙两名员工必须分到同一个车间,则不同分法的种数为________. 答案 36解析 若甲、乙分到的车间不再分人,则分法有C 13×A 22×C 13=18种;若甲、乙分到的车间再分一人,则分法有3×A 22×C 13=18种.所以满足题意的分法共有18+18=36种. 16.将9个相同的小球放入3个不同的盒子,要求每个盒子中至少有1个小球,且每个盒子中的小球个数都不同,则共有不同放法________种. 答案 18解析 对这3个盒子中所放的小球的个数情况进行分类计数:第一类,这3个盒子中所放的小球的个数是1,2,6,此类放法有A 33=6种;第二类,这3个盒子中所放的小球的个数是1,3,5,此类放法有A 33=6种;第三类,这3个盒子中所放的小球的个数是2,3,4,此类放法有A 33=6种.因此满足题意的放法共有6+6+6=18种.17.在⎝⎛⎭⎪⎫x +13x 24的展开式中,x 的幂指数是整数的项共有________项.答案 5解析 T r +1=C r 24(x 12)24-r (x -13)r =C r 24x 12-5r 6(0≤r ≤24) ∴r 可取值为0,6,12,18,24,∴符合要求的项共有5项.18.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴全运会的四个不同场馆服务,不同的分配方案有________种.(用数字作答)答案 1 080解析 先将6位志愿者分组,共有C 26·C 24A 22种方法;再把各组分到不同场馆,共有A 44种方法.由乘法原理知,不同的分配方案共有C 26·C 24A 22·A 44=1 080(种).。
2014年全国各地高考试题分类汇编(理数)9----排列组合与二项式定理(全Word,精心排版)
2014年全国各地高考试题分类汇编(理数)排列组合与二项式定理(2014安徽理数)13.设0a ≠,n 是大于1的自然数,1nx a ⎛⎫+ ⎪⎝⎭展开式为2012n n a a x a x a x ++++….若点()i i A i a ,,()012i =,,的位置如图所示,则a = .【解析】根据题意知01a =,13a =,24a =,结合二项式定理得1221C 31C 4n n a a ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,即8133n an a ⎧-=⎪⎨⎪=⎩,解得3a =.(2014北京理数)13.把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有_____种.【解析】记5件产品为A ,B ,C ,D ,E ,将A ,B 相邻视为一个元素,先与D ,E 排列,有2323A A 种方法;再将C 插入,仅有3个空位可选,共有23123326336A A C =⨯⨯=种不同的摆法. (2014大纲理数)5.有6名男医生,5名女医生,从中选出2名男医生,1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种【解析】从6名男医生中选出2名有种选法,从5名女医生中选出1名有15C 种选法,由分步乘法计数原理得不同得选法共有2165C C 75⋅=种.故选C .(2014大纲理数)13.8⎛⎫的展开式中22x y 的系数为 .【解析】()81633822188C 1C rrr r r rr r T x y ---+⎛⎫⎛=⋅⋅=-⋅⋅⋅ ⎝,令163223822rr -⎧=⎪⎪⎨-⎪=⎪⎩得4r =.所以展开式中22x y 的系数为()4481C 70-⋅=.(2014福建理数)10.用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由()()b a ++11的展开式ab b a +++1表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,而“ab ”用表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )A .()()()555432111c b a a a a a +++++++ B .()()()554325111c b b b b b a +++++++C .()()()554325111c b b b b b a +++++++ D .()()()543255111c c c c c b a +++++++【解析】从5个有区别的黑球取k 个的方法数为5C k ,故可用()51c +展开式中k c 的系数表示.又所有的蓝球都取或都不取用51b +表示.再由乘法原理知,符合题意的取法可由()()()555432111c b a a a aa +++++++表示.故选A .(2014湖北理数)2.若二项式72a x x ⎛⎫+ ⎪⎝⎭的展开式中31x 的系数是84,则实数a =( )A .2BC .1D 【解析】()77177271C 22C rrr r r r r r a T x a x x --+-⎛⎫=⋅⋅=⋅ ⎪⎝⎭.令273r -=,则5r =.由25572C 84a ⋅=得1a =,故选C . (2014湖南理数)4.5122x y ⎛⎫- ⎪⎝⎭的展开式中23x y 的系数是( )A .20-B .5-C .5D .20【解析】展开式的通项为()()52551551C 212C 2kkkk k k kk k T x y x y ---+⎛⎫=⋅-=-⋅⋅ ⎪⎝⎭,令52k -=,得3k =.则展开式中的系数()32353512C 20⨯--⋅=-,故选A .(2014辽宁理数)6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )A .144B .120C .72D .24【解析】先把三把椅子隔开摆好,它们之间和两端有4个位置,再把三人带椅子插放在四个位置,共有3424A =种放法,故选D .(2014山东理数)14.若46b ax x ⎛⎫+ ⎪⎝⎭的展开式中3x 项的系数为20,则22a b +的最小值为 .【解析】()626123166C C rrrr r r r r b T axa b x x ---+⎛⎫== ⎪⎝⎭,令1233r -=,则3r =.所以3336C 20a b =,即1ab =.所以2222a b ab +=…,即22a b +的最小值为2.(2014四川理数)2.在()61x x +的展开式中,含3x 项的系数为( ) A .30 B .20 C .15 D .10【解析】在()61x +的展开式中,含2x 的项为22236C 15T x x =⋅=,故含3x 的项的系数为15.故选C(2014四川理数)6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) A .192种 B .216种 C .240种 D .288种【解析】若最左端排甲,其他位置共有55A 120=种排法;若最左端排乙,最右端共有4种排法,其余4个位置有44A 24=种排法,所以共有120424216+⨯=种排法.故选B(2014新课标1理数)13.8()()x y x y -+的展开式中72y x 的系数为 .(用数字填写答案) 【解析】由二项展开公式可知,含27x y的项可表示为7762688x C xyy C x y ⋅-⋅,故()()8x y x y -+的展开试中27x y 的系数为7612888882820C C C C -=-=-=-.(2014新课标2理数)13.()10x a +的展开式中,7x 的系数为15,则a = .(用数字填写答案)【解析】10110C r r r r T x a -+=,令107r -=,得3r =,所以3310C 15a =,即3109815321a ⨯⨯=⨯⨯,所以318a =,所以12a =. (2014浙江理数)5.在()()6411x y ++展开式中,记m nx y 项系数为(),f m n ,则()()()()3,02,11,20,3f f f f +++=( )A .45B .60C .120D .210【解析】在()61x +的展开式中,m x 的系数为6C m,在()41y +的展开式中,n y 的系数为4C n ,故()64,C C m n f m n =⋅. 从而()363,0C 20f ==,()21642,1C C 60f =⋅=,()12641,2C C 36f =⋅=,()340,3C 4f ==,故选C .(2014浙江理数)14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答). 【解析】不同的获奖情况可分为以下两类:(1)有一个人获得两张有奖奖券,另外还有一个人获得一张有奖奖券,有2234C A 36=种获奖情况.(2)有三个人各获得一张有奖奖券,有34A 24=种获奖情况.故不同的获奖情况有362460+=种. (2014重庆理数)9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .168 【解析】先不考虑小品类节目是否相邻,保证歌舞类节目不相邻的排法共有3334A A 144⋅=种,再剔除小品内节目的相邻的情况,共有322322A A A 24⋅⋅=种,于是符合题意得排法共有14424120-=种.故选B .。
高三数学第二轮专题复习系列(10)--排列、组合、二项式定理和概率统计
高三数学第二轮专题复习系列(10)--排列、组合、二项式定理和概率统计一、知识要点二、高考要求1、掌握分类计数原理与分步计数原理、并能用它分析和解决一些简单的应用问题。
2、理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3、理解组合的意义,掌握组合数计算公式和组合数性质,并能用它们解决一些简单的应用问题。
4、掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5、了解随机事件的发生存在着规律性和随机事件概率的意义。
6、了解等可能事件的概率的意义,并会用排列组合的基本公式计算一些等可能性事件的概率。
7、了解互斥事件的相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8、会计算事件在n次独立重复试验中恰好发生k次的概率。
9、了解随机变量、离散型随机变量、连续型随机变量的意义,会求某些简单的离散型随机变量的分布列。
10、了解离散型随机变量的期望、方差的意义,会根据离散型随机变量的分布列求期望与方差。
11、了解连续型随机变量的概率密度的意义。
12、会用简单随机抽样,系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。
13、会用2S*与2S去估计总体方差2δ,会用S*与S去估计总体标准δ。
14、会用样本频率分布去估计总体分布。
了解线性回归的方法和简单应用。
三、热点分析排列与组合是高中数学中从内容到方法都比较独特的一个组成部分,是进一步学习概率论的基础知识,该部分内容,不论其思想方法和解题都有特殊性,概念性强,抽象性强,思维方法新颖,解题过程极易犯“重复”或“遗漏”的错误,并且结果数目较大,无法一一检验,因此给考生带来一定困难。
解决问题的关键是加深对概念的理解,掌握知识的内在联系和区别,科学周全的思考、分析问题。
二项式定理是进一步学习概率论和数理统计的基础知识,把握二项展开式及其通项公式的相互联系和应用是重点。
概率则是概率论入门,目前的概率知识只是为进一步学习概率和统计打好基础,做好铺垫。
高考数学(理)二轮复习精品资料-高效整合篇专题09 排列组合、二项式定理(预测)原卷版Word版无答案[ 高考
(一) 选择题(12*5=60分)1.【吉林省白山市第一中学2014届高三8月摸底考试】现有12件商品摆放在货架上,摆成上层4件下层8件,现要从下层8件中取2件调整到上层,若其他商品的相对顺序不变,则不同调整方法的种数是( )A .420B .560C .840D .201602.【2013·深圳模拟】设a 1,a 2,…,a n 是1,2,…,n 的一个排列,把排在a i 的左边且比a i 小的数的个数称为a i 的顺序数(i =1,2,…,n ),如在排列6,4,5,3,2,1中,5的顺序数为1,3的顺序数为0.则在1至8这八个数字构成的全排列中,同时满足8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数为 ( )A .48B .96C .144D .1923.【山西省山大附中2014届高三9月月考】1031⎪⎪⎭⎫ ⎝⎛+x x (*∈N n )展开式中只有第6项系数最大,则其常数项为( ) A. 120 B. 210 C. 252D. 456.【2014届广东高三六校第一次联考】记集合{0,1,2,3,4,5,6,7,8,9}T =,|10101010{4433221aa a a +++ }4,3,2,1,=∈i T a i ,将M 中的元素按从大到小排列,则第2013个数是( )C.23410101010+++ D. 43210101010+++ 7.【广东省广州市“十校”2013-2014学年度高三第一次联考】设三位数abc n =,若以c b a ,,为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( ) A.45个 B.1个 C.165个 D.216个8.【吉林市普通中学2013-2014学年度高中毕业班摸底测试】某学校周五安排有语文、数学、英语、物理、化学、体育六节课,要求体育不排在第一节课,数学不排在第四节课,则这天课表的不同排法种数为( ) A.600B.288C.480D.5049.【湖北省襄樊五中高三年级调研测试】用1,2,3这三个数字组成四位数,规定这三个数字必须都使用,但相同的数字不能相邻,以这样的方式组成的四位数共有( )A .9个B .18个C .12个D .36个12.【湖北省荆州中学2014届高三年级第一次质量检测】将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两个端点异色,若只有5种颜色可供使用,则不同的染色方法总数有 ( )A.240种B.300种C.360种D.420种 (二) 填空题(4*5=20分)13. 【2013年北京卷】将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是 . 14.【浙江省温州市十校联合体2014届高三10月测试】已知231(1)()()nx x x n N x*+++∈的展开式中没有常数项,且28n ≤≤,则n = .16.【浙江省温州八校2014届高三10月期初联考】设常数R ∈a ,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则___a = .(三) 解答题(10+5*12=70分)18.已知(n x +的展开式中前三项的系数成等差数列.(1)求n 的值;(2)求展开式中系数最大的项.素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数.20.已知10件不同的产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第十次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少? 21.已知函数9)()(x xax f +=(a 为实数且是常数) (1)已知)(x f 的展开式中3x 的系数为49,求a 的值; (2)是否存在a 的值,使x 在定义域中取任意值时27)(≥x f 恒成立?若存在,求出a 的值,若不存在,请说明理由. 22.设2002002210200)14(x a x a x a a x ++++=- ,求:(1)展开式中二项式系数之和; (2)展开式中各项系数之和;(3)||||||||200210a a a a ++++ ; (4)展开式中所有偶数项系数之和; (5)展开式中所有奇数项系数之和.。
2014高三数学知识点精要21:排列、组合和二项式定理
2014高三数学知识点精要211.两个原理.(1)分类计数原理和分步计数原理是排列组合的基础和核心,既可用来推导排列数、组合数公式,也可用来直接解题。
它们的共同点都是把一个事件分成若干个分事件来进行计算。
只不过利用分类计算原理时,每一种方法都可能独立完成事件;如需连续若干步才能完成的则是分步。
利用分类计数原理,重在分“类”,类与类之间具有独立性和并列性;利用分步计数原理,重在分步;步与步之间具有相依性和连续性。
比较复杂的问题,常先分类再分步,分类相加,分步相乘. (2)一个模型: 影射B A f →:个数若A 有年n 个元素,B 有m 个元素,则从A 到B 能建立nm 个不同的影射①n 件不同物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种) ②四人去争夺三项冠军,有多少种方法?③从集合A={1,2,3}到集合B={3,4}的映射f 中满足条件f (3)=3的影射个数是多少? ④求一个正整数的约数的个数 (3)含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n =.如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n . 2.排列数m nA 中1,n m n m ≥≥∈N 、、组合数mn C 中,1,0,n m n m n m ≥≥≥∈、N . (1)排列数公式!(1)(2)(1)()()!m n n A n n n n m m n n m =---+=≤-;!(1)(2)21n nA n n n n ==--⋅。
如(1)1!+2!+3!+…+n !(*4,n n N ≥∈)的个位数字为 (答:3); (2)满足2886xx A A -<的x = (答:8)(2)组合数公式()(1)(1)!()(1)21!!m m n n m m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-;规定01!=,01n C =.如已知16mn mnm n C C A +++=,求 n ,m 的值(答:m =n =2)(3)排列数、组合数的性质: ①mn m nn C C -=;②111mm m nn n C C C ---=+;从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有m n C )根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有Cm n 种,依分类原理有m n m n m n C C C 11+-=+.③11kk n n kC nC --=;111111+++=+k n k n C n C k④1121++++=++++r n r n r r r r r rC C C C C ;⑤!(1)!!n n n n ⋅=+-;⑥11(1)!!(1)!n n n n =-++. (4)常用的证明组合等式方法. ① 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-)n.n!=(n+1)!-n!② 导数法. ③ 数学归纳法. ④倒序求和法. 1321232-=++++n nn n n n n nC C C C一般地:已知等差数列{a n }的首项a 1,公差为d ,a 1C 0n+a 2C 1n+a 3C 2n+…+a n +1C nn=(2a 1+nd )·2n -1.⑤ 递推法(即用m n m nmn C CC 11+-=+递推)如:413353433+=+++n n C C C C C .⑥ 构造二项式. 如:nn n n n n C C C C 222120)()()(=+++证明:这里构造二项式nn n x x x 2)1()1()1(+=++其中n x 的系数,左边为22110nn n n n n n n n n n n C C C C C C C C ⋅++⋅+⋅+⋅-- ,22120)()()(n n n n C C C +++= 而右边nn C 2=. 更一般地:rnm r n m n r m n r m C C C C C C C +-=+++01103.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.如(1)将5封信投入3个邮筒,不同的投法共有 种(答:53);(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有 种(答:70);(3)从集合{}1,2,3和{}1,4,5,6中各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是___(答:23);(4)72的正约数(包括1和72)共有 个(答:12);(5)A ∠的一边AB 上有4个点,另一边AC 上有5个点,连同A ∠的顶点共10个点,以这些点为顶点,可以构成_____个三角形(答:90);(6)用六种不同颜色把右图中A 、B 、C 、D 四块区域分开,允许同一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有 种不同涂法(答:480);(7)同室4人各写1张贺年卡,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有 种(答:9);(8)f 是集合{},,Ma b c =到集合{}1,0,1N =-的映射,且()()f a f b +()f c =,则不同的映射共有 个(答:7);(9)满足}4,3,2,1{=C B A 的集合A 、B 、C 共有 组(答:47)3.解排列组合问题的方法有:一般先选再排,即先组合再排列,先分再排。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高效整合篇】一.考场传真1.【2012年辽宁卷】一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A.3×3!B.3×(3!)3C.(3!)4D. 9!2.【2013年浙江卷】将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答).3.【2013年重庆卷】从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答).4.【2013年新课标(I )】设m 为正整数,m y x 2)(+展开式的二项式系数的最大值为a ,12)(++m y x 展开式的二项式系数的最大值为b ,若b a 713=,则m =( )A.5B.6错误!未找到引用源。
C.7D.85.【江西师大附中高三年级2013-2014开学考试】25(ax x+的展开式中各项系数的和为243,则该展开式中常数项为______.6.【2013年陕西理】设函数61,00.,(),x x f x x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当0x >时, [()]f f x 表达式的展开式中常数项为 ( )A.-20B. 20C. -15D. 15二.高考研究1.考纲要求(1)分类加法计数原理、分步乘法计数原理①理解分类加法计数原理和分步乘法计数原理;②会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.(2)排列与组合①理解排列、组合的概念.②能利用计数原理推导排列数公式、组合数公式.③能解决简单的实际问题.(3)二项式定理①能用计数原理证明二项式定理.②会用二项式定理解决与二项展开式有关的简单问题.2.命题规律(1)排列、组合与二项式定理每年交替考查,主要以选择、填空的形式出现,试题难度中等或偏易.(2)排列、组合试题具有一定的灵活性和综合性,常与实际相结合,转化为基本的排列组合模型解决问题,需用到分类讨论思想,转化思想.(3)与二项式定理有关的问题比较简单,但非二项问题也是今后高考的一个热点,解决此类问题的策略是转化思想.一.基础知识整合1.应用两个计数原理解题的方法(1)在应用分类计数原理和分步计数原理时,一般先分类再分步,每一步当中又可能用到分类计数原理.(2)对于复杂的两个原理综合使用的问题,可恰当列出示意图或表格,使问题形象化、直观化.2.排列、组合数公式及相关性质(3)排列数与组合数的性质排列:11-++=m n m n m n mA A A ;组合:11-++=m n m n m n C C C (,,*)≤∈m n m n N , =k n kC 11k n nC --.3.二项式定理及性质(1)二项式定理:()011222n n n n r n r r n n n n a b C a C a b C a b C a b ---+=++++()n n n C b n N +++∈.其中通项()+-+∈∈≤≤=N n N r n r b a C T r r n r n r ,,01 .(2)二项式系数的性质①m n n m n C C -=; ②n n n n n n C C C C 2210=++++ ; ③131202-=⋅⋅⋅++=⋅⋅⋅++n n n n n C C C C ; ④增减性与最大值:当12n r +≤时,二项式系数C r n 的值逐渐增大,当12n r +≥时,C r n 的值逐渐减小,且在中间取得最大值.当n 为偶数时,中间一项(第2n +1项)的二项式系数2nn C 取得最大值.当n 为奇数时,中间两项(第21+n 和21+n +1项)的二项式系数1122n n n n C C -+=相等并同时取最大值.二.高频考点突破考点1 分类计数原理与分步计数原理【例1】【2012年北京卷理】从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( ) A. 24 B. 18 C. 12 D. 6【规律方法】高考计数原理可能单独考查,也可能与排列、组合问等题综合考查,要注意加乘明确:分类相加,分步相乘.“分类”就是对于较复杂的应用题中的元素往往分成互斥的几类,然后逐类解决;“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列组合问题,然后逐步解决.【举一反三】【安徽省望江四中2014届高三上学期第一次月考】一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有( )A .12种B .15种C .17种D .19种考点2 排列、组合及性质【例2】【河南鹤壁市第二次质检】化简:1n C +22n C +33n C +…+n n n C = .【规律方法】通过观察式子的结构,利用排列数和组合数的相关性质及二项式系数的相关性质以含有排列、组合数结构的代数式进行化简,有时需要拆分、拼凑项来进行结构重组.【举一反三】【河北唐山市摸底考试】化简:121393n n n n n C C C ++++= .考点3 排列、组合的应用【例3】【浙江温州市十校联合体2014届高三上学期期初联考】将四个相同的红球和四个相同的黑球排成一排,然后从左至右依次给它们赋以编号l ,2,…,8.则红球的编号之和小于黑球编号之和的排法有 种.【规律方法】1.解答排列组合应用题要从“分析”“分辨”“分类”“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有无限制等;(3)“分类”就是对于较复杂的应用题中的元素往往分成互斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列组合问题,然后逐步解决.2.解决排列组合问题的13个策略.(1)特殊元素、特殊位置优先法;(2)相邻问题捆绑法;(3)不相邻(相间)问题插空法;(4)多排问题单排法; (5)多元问题分类法;(6)有序分配问题分步法;(7)交叉问题集合法;(8)至少或至多问题间接法;(9)选排问题先选后排法;(10)局部与整体问题排除法;(11)复杂问题转化法;(12)定序问题倍缩法;(13)相同元素分组可采用隔板法.3.对解组合问题,应注意以下四点:(1)对“组合数”恰当的分类计算,是解组合题的常用方法;(2)是用“直接法”还是“间接法”解组合题,其原则是“正难则反”;(3)设计“分组方案”是解组合题的关键所在;(4)分组问题:要注意区分是平均分组还是非平均分组,平均分成n 组问题别忘除以n !.【举一反三】【浙江省嘉兴一中2014届高三上学期入学摸底数学(理)】用0,1,2,3,4,5这六个数字,可以组成 个没有重复数字且能被5整除的五位数(结果用数值表示).考点4 二项式定理及应用【例4】【2013年新课标Ⅱ理】已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =( )A.-4B.-3C.-2D.-1【规律方法】应用通项公式要注意六点(1)它表示二项展开式的任意项,只要n 与r 确定,该项就随之确定;(2)T r +1是展开式中的第r +1项,而不是第r 项;(3)公式中a ,b 的指数和为n ,且a ,b 不能随便颠倒位置;(4)要将通项中的系数和字母分离开,以便于解决问题;(5)对二项式(a -b )n 展开式的通项公式要特别注意符号问题;(6)分清项的系数与二项式系数,但当二项式的两个项的系数都为1时,系数就是二项式系数.【举一反三】【山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考】已知n x )21(-展开式中,奇数项的二项式系数之和为64,则)1()21(x x n +-展开式中含2x 项的系数为( ) A. 71 B. 70 C.21 D. 49考点5 赋值法在二项式定理中的应用【例5】【改编题】若2014201422102014)21(x a x a x a a x ++++=- )(R x ∈,则20142014221222a a a +++ 的值为 ( ) A .2 B .0 C .-1 D .-2【规律方法】二项式定理是一个恒等式,使用时有两种思路:一是利用恒等定理(两个多项式恒等,则对应项系数分别相等);二是赋值.二项式定理结合“恒等”与“赋值”两条思路可以使很多求二项展开式的系数的问题迎刃而解.赋值法是处理组合数问题、系数问题的最有效的经典方法,一般对任意A x ∈,某式子恒成立,则对A 中的特殊值,该式子一定成立,特殊值x 如何选取视具体情况决定,灵活性较强,一般取1,1,0-=x 居多.若2012()...,n n n ax b a a x a x a x +=++++则设()()=+n f x ax b .有:①0(0);a f = ②012...(1);n a a a a f ++++=③0123...(1)(1);n n a a a a a f -+-++-=- ④0246(1)(1)...;2f f a a a a +-++++= ⑤1357(1)(1) (2)f f a a a a --++++= 【举一反三】 【中原名校联盟2013-2014学年高三上期第一次摸底考试】已知(1)x ++2(1)x ++3(1)x ++…+(1)n x +=0a +1a x +21a x +…+n n a x ,且0a +1a +2a +…+n a =126,则n 的值为______________.考点6 二项式定理与其他知识交汇【例6】【广东省广州市执信、广雅、六中2014届高三10月三校联考】设()6212f x x x ⎛⎫+ ⎪⎝⎭是展开式的中间项,若()f x mx ≤在区间2⎣上恒成立,则实数m 的取值范围是______.【规律方法】二项式定理内容的考查常出现二项式内容与其它知识的交汇、整合,这是命题的一个创新方向.如二项式定理与函数、数列、复数,不等式等其他知识点综合成题时,对其他模块的知识点要能熟练运用.【举一反三】【安徽省六校教育研究会2014届高三素质测试理】已知()|2||4|f x x x =++-的最小值为n ,则二项式1()n x x -展开式中2x 项的系数为 .三.错混辨析1.确定分类的标准出错和特殊情况考虑不全出错【例1】【2013沈阳模拟】如图所示,在排成4×4方阵的16个点中,中心位置4个点在某圆内,其余12个点在圆外.从16个点中任选3点,作为三角形的顶点,其中至少有一个顶3点共线.但其中任意3点至少有1点在圆内,这样的4点有6种;还有就是只有3点共线,2.排列、组合问题中盲目列举导致重复或遗漏出错【例2】 【2013年四川卷】从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为,a b ,共可得到lg lg a b 的不同值的个数是( )A.9B.10C.18D.203.二项式定理与其他知识交汇时求解出错【例3】二项式*)()2(N n x n∈-的展开式中的所有项的系数的绝对值之和是a ,所有项的二项式系数之和是b ,则ba ab +的最小值为( ) A. 615 B.37 C.613 D.21.某人设计了一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD (边长为3个单位)的顶点A 处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i (i =1,2,…,6),则棋子就按逆时针方向行走i 个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A 处的所有不同走法共有( )A .22种B .24种C .25种D .36种(4,3),(5,2),(6,1),6种情况;若a =6,则b +c =6,只能是(1,5),(2,4),(3,3),(4,2),(5,1),2.【安徽省六校教育研究会2014届高三素质测试】某动点在平面直角坐标系第一象限的整点上运动(含,x y 正半轴上的整点),其运动规律为(,)(1,1)m n m n →++或(,)(1,1)m n m n →+-.若该动点从原点出发,经过6步运动到()6,2点,则有( )种不同的运动轨迹.A .15B .14C . 9D .103.【安徽省池州一中2014届高三第一次月考】已知30sin a xdx π=⎰,则71x x ax ⎛⎫+ ⎪⎝⎭的展开式中的常数项是 (用数字作答).4.【2012届四川自贡高三一诊】设[]x 表示不超过x 的最大整数(如5[2]2,[]14==),对于给定的*n N ∈,定义(1)([]1)3,[1,),[,3)(1)([]1)2x n n n n x C x x x x x x --+=∈+∞∈--+则当时,函数8x C 的值域是( ) A .16[,28]3 B .16[,56)3 C .1628(4,](,28]33⋃ D .28(4,)[28,56)3⋃。