第十章 (三)工艺计算-全塔物料衡算及操作线方程

合集下载

化工原理-复习

化工原理-复习

第1章 蒸馏符号:1.英文字母:D ——塔顶产品(馏出液)流量,kmol/h L ——塔内下降的液体流量,kmol/h V ——上升蒸气的流量,kmol/h 2.上标:°——纯态* ——平衡状态 '——提馏段一、 概述1. 易挥发组分(轻组分):沸点低的组分难挥发组分(重组分):沸点高的组分 2. 传质过程(分离操作):物质在相间的转移过程。

3. 蒸馏:将液体混合物部分气化利用各组分挥发度不同的特性达到分离的目的。

分类:(1)操作流程:①间歇蒸馏 ②连续蒸馏 (2)蒸馏方式:①简单蒸馏②平衡蒸馏(闪蒸) ③精馏:(有回流)较难分离 ④特殊精馏:很难分离(3)操作压力:①常压蒸馏②减压蒸馏:Ⅰ、沸点较高 Ⅱ、热敏性混合物 ③加压蒸馏:常压下的气态混合物(4)组分的数目:①两组分精馏②多组分精馏:工业生产中最为常见二、 两组分溶液的气液平衡(一) 两组分理想物系的气液平衡1. 相律(1) 平衡物系中的自由度数、相数及独立组分数间的关系。

(2) F=C-φ+2(2:外界只有温度&压力2个条件可影响物系的平衡状态) 2. 两组分理想物系的气液平衡函数关系(气液相组成与平衡温度间的关系) 理想物系:①液相为理想溶液。

②气相为理想气体。

(1) 用饱和蒸气压&相平衡常数表示的气液平衡关系 1) 拉乌尔定律理想溶液上方的平衡分压:p A =p A °x Ap B =p B °x B =p B °(1-x A ) 溶液沸腾时:p=p A +p B联立:x A =p-p B °p A °-p B ° →泡点方程:气液平衡下液相组成与平衡温度间的关系x B =1-x A}较易分离或分离要求不高}原理、计算无本质区别2) 道尔顿分压定律(外压不太高时,平衡的气相可视为理想气体) y A =p Apy A =p A °p x A →露点方程:气液平衡时气相组成与平衡温度间的关系 y B =1-y A(2) 用相对挥发度表示的气液平衡关系 1) 挥发度υ(与温度有关):υA =p Ax AυB =p Bx B理想溶液:υA =p A °;υB =p B °2) 相对挥发度α(溶液中易挥发组分的挥发度与难挥发组分的挥发度之比):α=υA υB = p Ax A p Bx B若操作压力不高,气相遵循道尔顿分压定律:α= py A x Apy B x B=y A x B y B x A=y A (1-x A )x A (1-y A ) →y A =αx A 1+(α-1)x A理想溶液:α=p A °p B °3) y=αx1+(α-1)x若α>1,α愈大,挥发度差异愈大,分离愈易。

化工原理-精馏过程的物料

化工原理-精馏过程的物料

加料板
L' IL'
(6)式变为:
FI F V IV LI L VIV LI L
V V IV FI F L LIL 将(5)式代入 F L LIV FI F L LIL FIV L LIV FI F L LIL F IV IF L LIV IL
令 q IV IF L L
V 1 qF V y L qF Lx Fx f
q 1Fy qFx Fx f
∴ y q x xf
q 1 q 1
q 1y qx x f
(13)
此式即为加料板的操作线方程,也叫q线方程,
它表示在加料板的上升蒸气组成和回流液组成之间的 关系。即y与x的关系。
6、提馏段操作线方程的另一种形式
R 1
精馏段操作线。
2、q线
y q x xf q 1 q 1
若x=xf 时,
y
q
q
1
x
f
xf q 1
xf
在y-x图上,q线通过对角线上y = x = xf一点,
q
斜率为 q 1 的直线,料液的进料状况不同, q线的斜率不同。
冷料
y
饱液
气液混合

-+ +-
饱气
x
过热
xf
14、进料热状况
进料状况 q值
(3)、各组分的气化潜热接近相等。
2、精馏段操作线方程
精馏段的作用:利用回流把上升蒸气中的重组分逐 步冷凝下来,同时把回流液中的轻组分气化,从而在 塔顶得到比较纯的轻组分。
精馏段的操作线方程 可以根据物料衡算导 出。按下图圈定的范 围(n+1板以上)作
物料衡算:
V
L
D

化工原理吸收塔的计算

化工原理吸收塔的计算

填料层高度=传质单元高度×传质单元数
(1)传质单元数(以NOG为例)
•定义:NOG
Y1 dY Y2 Y Y *
气相总传质单元数
NOG

Y1 dY Y2 Y Y *

Y1 Y2 (Y Y *)m
气相组成变化 平均传质推动力
• 传质单元数的意义:
反映了取得一定吸收效果的难易程度。
当所要求的(Y1-Y2)为一定值时,平均吸收推动力(YY*)m越大,NOG就越小,所需的填料层高度就越小。
(2)传质单元高度
•定义:
H OG

G Kya
气相总传质单元高度,m。
•传质单元高度的意义:
完成一个传质单元分离效果所需的填料层高度,
反映了吸收设备效能的高低。
•传质单元高度影响因素:
填料性能、流动状况
四、吸收塔的操作计算 1.吸收过程的强化
Y1
Y*1
Y2
T △Y2
Y*2
O X2
B △Y1
X1
吸收推动力 NA 吸收阻力
目标:提高吸收过程的推动力; 降低吸收过程的阻力。
从L、G、m、X2、Y1、Y2着手。
其它因素: 1)降低吸收剂入口温度; 2)提高吸收的压力; 3)提高流体流动的湍动程度; 4)改善填料的性能。
Y1 dY Y2 Y
NOG

Y1 Y1
Y2 Y2
ln
Y1 Y2
X1
NOG

Y1 Y2 Ym
Ym (Y1 Y2)/ ln Y1 / Y2
注意: •平均推动力法适用于平衡线为直线,逆流、并流 吸收皆可。 •平衡线与操作线平行时,
Ym Y1 Y2 X m X1 X 2

化工吸收塔的物料衡算与操作线方程PPT课件

化工吸收塔的物料衡算与操作线方程PPT课件

2020/7/17
18
二、吸收剂用量的确定
Y1 液气比
B
L/V
(
L V
)
min
B*
最小 液气比
2020/7/17
VL(1.1~2.0)(VL)min
19
最小液气比的求法
图解法 •正常的平衡线
2020/7/17
20
(VL)min
Y1Y2 X1* X2
LminV
Y1 Y2 X1* X2
•平衡线为上凸形时
pi Ci
气相主体
传质方向 液相主体
相 总
pi

质 推
p


液相分传 质推动力
气相分传 质推动力
CL
G
L
z
距离
O
c ci c c
双膜模型
NA
pA pAi 1
cAi cA 1
pA
1
p
A
c
A
1
cA
kG2020/7/17kL
KG
KL
传质推动力的图示
增加气相分压或减小溶质在液相中的浓度
5
2. 关 于 传 质 阻 力
2020/7/17
24
X 2/17 0.0212 100/18
或根据平衡数据求平均值
m Y * 0.01604 0.757 X 0.0212
平衡关 :Y系 0.7为 5X7 2)最小吸收剂用量:
Lmin
V
Y1 Y2
Y1 m
X
2
2020/7/17
25
X 2/17 0.0212 100/18
V YL1 X V1Y LX
B
2020/7/17

填料吸收塔的操作及吸收传质系数的测定解读

填料吸收塔的操作及吸收传质系数的测定解读

实验装置流程示意图
流程简介:
由空气压缩机1提供的空气,经压力定值器2 定值为2×104Pa,并经转子流量计4计量后,进 入内盛丙酮的丙酮汽化器5,产生丙酮和空气的 混合气,混合气从输气管道由塔底进入填料吸收 塔7,在塔内同自塔顶喷下的水逆流接触,被吸 收掉其中大部分丙酮后,从塔顶部气体出口9排 出。由恒压高位槽 13 底部流出的吸收剂(水), 经转子流量计 15 计量,流经电加热器 16 ,由塔 顶喷入吸收塔,吸收了空气中的丙酮后,由塔底 经液封装置11排入吸收液贮罐。
实验步骤(2)



6、调节空气流量计调节流量为400L/h,液体流 量为3L/h,注意稳定塔内压力,空压机压力及 保持塔底液位高度60%。 7、用气相色谱分析混合气中丙酮的进口浓度。 当平行实验误差小于5%时,即认为实验条件已 基本稳定。 8、在稳定操作条件下测定气体的进口、出口浓 度。并随时记录气体、塔顶和塔底的温度。
式中:G---气相流量(kmol/h); Y1、Y2---气相进、出塔浓度。
(2)气相平均推动力
可取塔底与塔顶推动力的对数平均值,

Y1 Y2 Ym ln(Y1 Y2 )
Y1 Y1 Y1* Y1 mX1
Y2 Y2 Y2* Y2 mX2
(3)气相总体积传质系数
吸收剂进口浓度对吸收的影响
调节吸收剂进口浓度X A,2是控制 和调节吸收效果的又一重要手段。 吸收剂进口浓度X A,2 降低,液相进口 处的推动力增大,全塔平均推动力 也会随之增大,这有利于吸收过程 吸收率的提高。
吸收剂入口温度对吸收的影响
吸收剂入口温度对吸收过程影响 也很大,这也是控制和调节吸收操作 的一个重要因素。降低吸收剂的温度, 使气体的溶解度增大,相平衡常数减 小,平衡线下移,平均推动力增大, 使吸收效果变好。

第十章 (三)工艺计算-全塔物料衡算及操作线方程

第十章 (三)工艺计算-全塔物料衡算及操作线方程

2. 恒摩尔流—— L1 L2
L1 L2
恒摩尔流成立的条件:
Ln L L Lm
V1 V2 V1 V2
Vn V V Vm
①两组分的摩尔潜热相等; ②汽液接触时因温度不同而交换的显热可以忽略;
③保温良好,塔的热损失可以忽略不计。
第四节 双组分连续精馏塔的计算 四、进料热状况[121]
过冷液相
F L V F
饱和液相 (泡点)
L V
汽液混合
F L
V
饱和汽相 (露点)
F L
过热汽相
F L V
V
L’
V’
L’
V’
L’
V’
L’
V’
L’
V’
L L F V V
L L F L L L F V V V F V V
第四节 双组分连续精馏塔的计算
二、精馏计算的两个基本假设[120]
物系 乙醇 水 质量潜热 kJ/kg 854 2260 分子量 kg/kmol 46 18 摩尔潜热 kJ/kmol 39284 40680

甲苯
394
363
78
92
30732
33396
乙醇—水、苯—甲苯物系可近似为恒摩尔流物系。
第十章 蒸 馏
已知苯—甲苯物系:xF =0.25, xD =0.98, xW =0.085, a =2.47, R =5, q =1,塔顶为全凝器,泡点回流。 求:精馏段及提馏段操作线方程。
精馏段操作线方程为:
提馏段操作线方程为:
y 0.8333x 0.1633 y 1.737 x 0.0626
第四节 双组分连续精馏塔的计算 四、进料热状况[126]

化工原理 吸收(或解析)塔计算

化工原理 吸收(或解析)塔计算

NOG仅与气体的进出口浓度、相平衡关系有关,与塔的结构、 操作条件(G、L)无关,反映分离任务的难易程度。
(2)传质单元高度
H

OG
K
G y a
kmol 单位: m2 • s m
kmol m3 • s
HOG与操作条件G、L、物系的性质、填料几何特性有关,是吸收 设备性能高低的反映。其值由实验确定,一般为0.15~1.5米。
y4
•B
y3
E3
yN1
y2
y1 A
E1
E2
x0 x1
x2
x3
解析法求理论板数
x0
y1
平衡线方程:y=mx
y1
操作线方程:y=y1+L/G(x-x0)
由第一板下的截面到塔顶作物料衡算:
y2
y1
L G
x1
x0
y1 mx1
y2
y1
L G
y1 m
x0
(1
A) y1
Amx0
1
2
x1 y2
x2 y3
xN 2 y N 1
N 11 A A1
N-1
N xN 1 y N
yN 1
xN
y2
x2
吸收
y1
x1
y1
解吸
y2
六、塔板数
• 板式塔与填料塔的区别在于组成沿塔高是阶跃 式而不是连续变化的。
x0
y1
1
x1 y2
2
x2 y3
xN 2 y N 1
N-1
yN
N xN 1
xN
理论板:气液两相在塔板上充分接触, 传质、传热达平衡。
相平衡关系:yn f (xn )

(化工原理)全塔物料衡算

(化工原理)全塔物料衡算

应用场景
全塔物料衡算广泛应用于石油化工、化肥生产、精细化工等领域。它可以用于设计新装置、改进现有装置、检 测问题和优化生产过程。
挑战和解决方案
全塔物料衡算面临的挑战包括复杂的装置结构、不确定的物料性质、实测数据的不准确等。解决这些挑战需要 依靠先进的模拟软件、准确的实验数据和经验丰富的工程师团队。
基本原理
全塔物料衡算基于物质守恒原理和能量守恒原理。它通过计算物料的输入量、 输出量和转化量来确保物料在整个装置中的平衡。
计算方法和公式
全塔物料衡算使用一系列数学模型和方程式来计算物料的流动和转化。这包括质量守恒方程、能量守恒方程、 质量传递方程等。具体的计算方法要根据装置的特点和具体情况而定。
全塔物料衡算
在化工过程中,全塔物料衡算是一项重要的工作。它帮助我们了解和掌握装 置中物料的流动情况,从而确保装置的正常运行和高效生产。
背景和重要性
全塔物料衡算是为了解决化工装置中的物料平衡问题而进行的计算过程。它 对于确保装置的稳定性、安全性和经济性非常重要。
定义和目的
全塔物料衡算是指对化工装置中各个部分的物料流动进行精确计算和分析的过程。其目的是确定物料的流量、 浓度和温度分布,以及检测潜在的问题和改进的可能性。
案例分析和实解释
通过实际案例分析和实例解释,我们可以更好地理解全塔物料衡算的实际应用。这些案例可以涉及不同装置的 物料衡算、问题的诊断和解决、生产工艺的改进等方面。

一,吸收塔的物料衡算和操作线方程

一,吸收塔的物料衡算和操作线方程

第三节 吸收过程的计算一、吸收塔的物料衡算和操作线方程设:稳定流动V —惰性气体的摩尔流量。

kmol/hL —吸收剂的摩尔流量。

kmol/hY 1、X 1—塔底气液组成;Y 2、X 2—塔顶气液组成;1.全塔物料衡算(逆流)气相:Y 1 ↘Y 2 ;吸收质减少量:V (Y 1 -Y 2)。

液相:X 2↗X 1; 吸收质增加量:L (X 1- X 2)。

G A —单位时间内气相向液相转移的吸收质的量kmolA/h ;出塔液组成: 2211)(X Y Y LV X +-= 吸收过程中常以吸收率φ作为分离指标,既气相中被吸收的溶质占气相中原有溶质的百分数。

1211211)(Y Y Y VY Y Y V VY G A -=-==φ 练习题:一填料吸收塔,用来从空气和丙酮蒸气组成的混合气中吸收丙酮,用水作吸收剂。

已知混合气中丙酮蒸气的体积分数为6%,所处理的混合气中空气量为1400m 3/h,操作温度293K ,操作压强101.3kp ,要求丙酮的吸收率达到98%,若吸收剂用量为154kol/h ,求:出塔液的浓度。

(X A )2.操作线方程与操作线在 m —n 截面与塔底截面之间作组分A 的衡算气相:Y 1 ↘Y ;吸收质减少量:V (Y 1 -Y )。

液相:X ↗X 1; 吸收质增加量:L (X 1- X )。

AG X X L Y Y V =-=-)()(2121)1(12φ-=Y Y即: ——吸收操作线方程(逆流) 在m —n 截面与塔顶截面之间作组分A 的衡算得: 操作线意义:塔内任一截面处的气相浓度Y 与液相浓度X 之间的变化关系。

操作线为过B (X 1、Y 1)点,斜率为L/V 的一条直线。

又:XX Y Y X X Y Y V L --=--=112121 操作线过塔底B (X 1、Y 1)及塔顶A (X 2、Y 2)点,斜率为L/V 。

塔底B (X 1、Y 1)→浓端;塔顶A (X 2、Y 2)→稀端L/V ——液气比。

填料吸收塔的操作及吸收传质系数的测定

填料吸收塔的操作及吸收传质系数的测定

实验基本原理
1.气液相平衡关系 2.吸收速率方程式 3.全塔物料衡算和操作线方程 4.填料吸收塔的操作和调节
1.气液相平衡关系
大多数气体物质A溶解形成稀溶液时,稀溶液 上方溶质A的平衡分压p*A与其在溶液中的摩尔分数 xA成正比: p*A=ExA
这就是亨利定律。式中E为亨利系数(kPa)。 若气相组成也用平衡摩尔分数y*表示,则上式 可写为: y*=ExA/p总 令m=E/p总,则y*=mxA
吸收剂进口浓度对吸收的影响
调节吸收剂进口浓度X A,2是控制 和调节吸收效果的又一重要手段。 吸收剂进口浓度X A,2 降低,液相进口 处的推动力增大,全塔平均推动力 也会随之增大,这有利于吸收过程 吸收率的提高。
吸收剂入口温度对吸收的影响
吸收剂入口温度对吸收过程影响 也很大,这也是控制和调节吸收操作 的一个重要因素。降低吸收剂的温度, 使气体的溶解度增大,相平衡常数减 小,平衡线下移,平均推动力增大, 使吸收效果变好。
4.作 KY,a ~ L 和 ~ L 关系图。
YA,1 YA,2 100%
YA,1
Ym

Y1 Y2 ln(Y1 Y2 )
Y1 Y1 Y1* Y1 mX 1 Y2 Y2 Y2* Y2 mX 2
K y,a

NA V填 Ym
式中:m---相平衡常数,量纲为1。
吸收过程中,由于溶液和气体的总量在不断变化,
使得吸收过程的计算比较复杂。为了简便起见,工程计
算中采用在吸收过程中数量不变的气体(如空气)和纯
吸收剂为基准,用物质的量之比(也称为比摩尔分数)
来表示气相和液相中吸收质A的含量,并分别用YA和XA表 示。平衡时,其关系式为:

化工原理理论塔板计算

化工原理理论塔板计算

精馏过程的物料衡算和塔板数的计算一、理论塔板连续精馏计算的主要对象是精馏塔的理论塔板数。

所谓的理论塔板是指气液在塔板上充分接触,有足够长的时间进行传热传质,当气体离开塔板上升时与离开塔板下降的液体已达平衡,这样的塔板称为理论塔板。

实际上,由于塔板上气液接触的时间及面积均有限,因而任何形式的塔板上气液两相都难以达到平衡状态,也就是说理论塔板是不存在的,它仅是一种理想的板,是用来衡量实际分离效率的依据和标准。

通常在设计中先求出按生产要求所需的理论塔板数N T然后用塔板效率η予以校正,即可求得精馏设备中的实际塔板数N P二、计算的前提由于精馏过程是涉及传热、传质的复杂过程,影响因素众多。

为处理问题的方便作如下假设,这些就是计算的前提条件。

(1)塔身对外界是绝热的,即没有热损失。

(2)回流液由塔顶全凝器供给,其组成与塔顶产品相同。

(3)塔内上升蒸气由再沸器加热馏残液使之部分气化送入塔内而得到。

(4)恒摩尔气化在精馏操作时,在精馏段内,每层塔板上升的蒸气的摩尔流量都是相等的,提馏段内也是如此,即:精馏段:V1 = V2 = …………=Vn= Vmol/s(下标为塔板序号,下同)提馏段:V′n+1 =V′n+2 =…………=V′m= V′mol/s但Vn不一定与V′m相等,这取决于进料状态。

(5)恒摩尔溢流(或称为恒摩尔冷凝)精馏操作时,在精馏段内每层塔板下降的液体的摩尔流量都是相等的,提馏段也是如此,即:L1 = L2=…………= L n = L mol/sL′n+1= L′n+2=………… = L′m= L′ mol/s但L不一定与L′相等,这也取决于进料的状态。

(6)塔内各塔板均为理论塔板。

三、物料衡算和操作线方程1、全塔物料衡算图4-10 全塔物料衡算示意图如图4-10所示,设入塔进料流量为F,轻组分含量为x F,塔顶产量流量为D,轻组分含量为x D,塔底产品流量为W,轻组分含量为x w,流量单位均为mol/s,含量均为摩尔分率。

化工原理课程设计——精馏塔

化工原理课程设计——精馏塔

(二)
塔板的类型与选择
塔板是板式塔的主要构件,分为错流式塔板和逆流式塔板两类,工业应用以错 流式塔板为主,常用的错流式塔板主要有下列几种。
1. 泡罩塔板
泡罩塔板是工业上应用最早的塔板,其主要元件为升气管及泡罩。泡罩安装 在升气管的顶部,分圆形和条形两种,国内应用较多的是圆形泡罩。泡罩尺寸分 为ϕ80 mm、ϕ100 mm、ϕ150mm三种,可根据塔径的大小选择。通常塔径小于 1 OOO mm,选用ϕ80 mm的泡罩;塔径大于 2 000 mm,选用ϕ150 mm的泡罩。 泡罩塔板的主要优点是操作弹性较大,液气比范围大,不易堵塞,适于处理各 种物料,操作稳定可靠。其缺点是结构复杂,造价高; 板上液层厚, 塔板压降大, 生产能力及板效率较低。近年来,泡罩塔板已逐渐被筛板、浮阀塔板所取代。在 设计中除特殊需要(如分离粘度大、易结焦等物系)外一般不宜选用。
σ,m
N m
双组分混合液体的表面张力 σm 可按下式计算
m
式中
x x
A B A A B
B


m
-混合液体的平均表面张力 ,
A

B
-纯组分 A,B 的表面张力
xA,xB-A,B 组分的摩尔分率 4、氯苯的汽化潜热 常压沸点下的汽化潜热为 35.3×103kJ/kmol 纯组分的汽化潜热与温度的关系可用下式计算:
纯组分在任何温度下得密度可由下式计算: 苯 ρA=912-1.187t 氯苯 ρB=1127-1.111t 3、组分的表面张力 σ 温度,℃ 80 苯 氯苯 21.2 26.1 85 20.6 25.7 110 17.3 22.7 115 16.8 22.2 120 16.3 21.6 131 15.3 20.4 式中 t 为温度,℃

精选精馏过程的物料衡算与操作线方程论述

精选精馏过程的物料衡算与操作线方程论述
故提馏段操作线通常按以下方法作出(两点式)
先确定提馏段操作线与对角线的交点c,再找出提馏段操作线与精馏段操作线的交点d,直线cd即为提馏段操作线。
两操作线的交点可由联解两操作线方程而得,亦可由精馏操作线与q线的交点确定。
五、理论塔板数的确定
1、 理论板的假定
所谓理论板是指离开该板的汽液两相互成平衡,塔板上各处的液相组成均匀一致的理想化塔板。
计算前提:双组分溶液为理想溶液,即汽液平衡关系可用下式表示:
对于连续精馏塔,从塔顶最上一层塔板(序号为1)上升的蒸汽经全凝器全部冷凝成饱和温度下的液体,因此馏出液和回流液的组成均为y1,即:
y1=xD
根据理论板的概念,自第一层板下降的液相组成x1与y1互成平衡,由相平衡方程得:
式中:V——精馏段上升蒸汽的摩尔流量,kmol/h; V’——提馏段上升蒸汽的摩尔流量,kmol/h。
(2)恒摩尔溢流
恒摩尔溢流是指在精馏塔内,从精馏段或提馏段每层塔板下降的液相摩尔流量分别相等,但两段下降的液相摩尔流量不一定相等。
精馏段内,每层塔板下降的液体摩尔流量都相等,即:
其前提条件是汽液两相皆充分混合、各自组成均匀、塔板上不存在传热、传质过程的阻力。
理论板层数的确定是精馏计算的主要内容之一,它是确定精馏塔有效高度的关键。计算理论板层数通常层采用逐板计算法和图解法。
有关理论塔板的两点说明
(1)实际上,由于塔板上汽液间的接触面积和接触时间是有限的,在任何形式的塔板上,汽液两相都难以达到平衡状态,除非接触时间无限长,因而理论板是不存在的。
解得: F=788.6kmol/h(进料量) W=608.6kmol/h(釜液量)
(2)据 R=L/D
故回流比为:

物料衡算和操作线方程

物料衡算和操作线方程
5-2 物料衡算和操作线方程
一、全塔物料衡算 F=D+W FxF DxD WxW
D

Dx D FxF
100%
W
W (1 xD ) 100% F(1 xF )
二、精馏段操作线方程
总物料衡算 V=L+D

易挥发组分衡算 Vyn+1=Lxn+DxD ②
①代入② 令 R L
D
回流比
三、q 线方程(进料方程)
Vy=Lx+DxD ① V'y=L'x-WxW ②
进料板连接着精馏段与提 馏段,因此组成相同,下 标省略!
① - ②:
1.0
(V'-V)y=(L'-L)x-(DxD+WxW)
q=1 q>1
a
0<q<1
(q-1)F y=q F x-F xF
y q x xF q 1 q 1 ——q线方程
L
D
yn1 L D xn L D xD
yn1

R R
1
xn

R
1
1
xD
精馏段操作线方程
V, y1
L, xD 1 2
3
n
L, xn
n+1 V, yn+1
D, xD
精馏段操作线方程式表示在一定条件下,精馏段内任意一块
板(第n板)下降的液相组成xn与其相邻的下一块板(第n+1
板)上升的气相组成yn+1
IL≈IL'
代入②式并 与①联立
V,IV
L,IL
V’, IV’ L’, IL’
(V-V') IV =F IF-(L'-L) IL

3物料衡算 吸收剂 化工原理

3物料衡算 吸收剂 化工原理

§2.4.4 低浓气体吸收时填料层高度
一.填料层高度的一般计算式
单位时间内:
Y2 Y X X2
气相中溶质 A 的减少量 = 液相中溶质 A 的增加量 = 从气相到液相的传质量
Z
dh
填料层所具有的有效传 质面积 引入 a 填料体积
X+dX Y+dY
VdY LdX
N AdA N A (adh)
Y1
V X Y Y2 X 2 L
S Y Y2 Y2
V Y mX b m Y Y2 mX 2 b L
mV 脱吸因数,无因次 S L
L A 吸收因数,无因次 mV
Y
N OG
*
S Y Y2 Y2
S
或:
若平衡关系可用亨利定律来表示 :
• 如果平衡曲线呈现如下图
二、适宜的液气比
在吸收任务一定的情况下,吸收剂用量越小, 溶剂的消耗、输送及回收等操作费用减少,但吸 收过程的推动力减小,所需的填料层高度及塔高 增大,设备费用增加。 可见,吸收剂用量的大小,应从设备费用与操 作费用两方面综合考虑,选择适宜的液气比,使 两种费用之和最小。根据生产实践经验,一般情 况下取吸收剂用量为最小用量的1.1~2.0倍是比较 适宜的,即:
§2.4 吸收塔的计算
§2.4.1吸收塔的物料衡算与操作线方程 一、物料衡算
V (Y1 Y2 ) L( X1 X 2 )
图中 V——单位时间通过吸收塔的惰性气体量, kmol(B)/s; L——单位时间通过吸收塔的溶剂量, kmol(S)/s; Y1、Y2——进塔、出塔气体中溶质组分 的摩尔比,kmol(A)/kmol(B) ; X1、X2——出塔、进塔液体中溶质组分 的摩尔比,kmol(A)/kmol(S)。

(完整版)化工原理基本知识点

(完整版)化工原理基本知识点

第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。

(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。

表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==g液体的粘度随温度升高而减小,气体粘度随温度升高而增大。

三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。

111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。

四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g :动压头(速度头) ;p gρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。

(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。

圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。

吸收塔物料衡算与操作线关系

吸收塔物料衡算与操作线关系

V, Y2
V, Y
L, X V, Y1
GA V (Y1 Y2 ) L( X1 X2 )
进塔气量 V 和组成 Y1 是吸收任务规定的,进塔吸收剂温度和组成 X2 一般由工艺条件所确定,出塔气体组成 Y2 则由任务给定的吸收率
Φ求出
Y2 Y1(1)
L, X1
物料衡算
二、操作线方程
L, X2
V, Y2
➢ 在气、液两相进、出塔浓度相同的情况下,逆流操作的平均推动力大 于并流,从提高吸收传质速率出发,逆流优于并流。
➢ 工业吸收一般多采用逆流。 ➢ 与并流相比,逆流操作时上升的气体将对借重力往下流动的液体产生
曳力,阻碍液体向下流动,因而限制了吸收塔所允许的液体流率和气 体流率,这是逆流操作不利的一面。
二、操作线方程
B Y1
T Y2
X2
X1
结论:
➢ B ---塔底,浓端 T ---塔顶,稀端
➢ 吸收操作线位于平衡线上方
➢ 操作线离平衡线越远 ,传质推动力
(Y-Y*)越大。
➢ 操作线上任一点与平衡线间的垂直距离 (Y-Y*) 为塔内该截面上以气相为基准的吸收 传质推动力;与平衡线的水平距离 (X*-X) 为 该截面上以液相为基准的吸收传质推动力。
V, Y
L, X V, Y1
L, X1
逆流操作线方程
若取填料层任一截面与塔的塔底端面之间的填料层为物料衡 算的范围,则所得溶质 A 的物料衡算式为
VY LX1 VY1 LX
Y
L V
X
Y1
L V
X
1
同理,若在任一截面与塔顶端面间作溶质A的物料衡算,有
Y
L V
X
Y2
L V
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 提馏段操作线方程 斜率为液汽比
m m+1
ym+1
xm
WxW WxW L L 1 xm ym xm V V L W L W
W、xW
过(xW,xW)点
第四节 双组分连续精馏塔的计算 三、操作线方程[120]

提馏段的操作分析

做提馏段物料平衡:
L ' V ' W ; L ' L RD; V ' V 1 q F
第四节 双组分连续精馏塔的计算
一、全塔物料衡算[118]
由全塔物料衡算式可知,xF一定时:
①如xD、xW即产品质量已规定,产品的采出率D/F、 W/F也随之确定而不能自由选择; ②在规定分离要求时,应使DxD≤FxF,或D/F≤xF/xD。 若D/F取得过大,即使精馏塔有足够的分离能力,塔顶仍
不可能获得高纯度的产品,因其组成必须满足:
L L F L L L F V V V F V V
HF HL
q 1
L L V V F
H F HV
H L H F HV
L L V V F H F HV
0 q 1 进料中的液相分率
q0
q0
【例题】——操作线方程

精馏段的操作分析

做精馏段物料平衡:
Vyn1 Lxn DxD

V L D; V R 1 D; L RD
推导出精馏段操作线方程:
L D yn 1 xn xD V V
xD R yn1 xn R 1 R 1
第四节 双组分连续精馏塔的计算 三、操作线方程[120]
第四节 双组分连续精馏塔的计算 四、进料热状况[121]
过冷液相
F L V F
饱和液相 (泡点)
L V
汽液混合
F L
V
饱和汽相 (露点)
F L
过热汽相
F L V
V
L’
V’
L’
V’
L’
V’
L’
V’
L’
V’
L L F V V
L L F L L L F V V V F V V
Lo R D
第四节 双组分连续精馏塔的计算 三、操作线方程[120]
1. 精馏段操作线方程 过(xD,xD)点
y1 1 n n+1 yn
L R D
D、 xD
x1
yn1
L Dx R x xn D xn D V V R 1 R 1
yn+1 xn

斜率为液汽比
第四节 双组分连续精馏塔的计算 三、操作线方程[120]

假定相邻塔板温度变化不大,故可认为HV’~HV, 籍此可以推导出进料的热状态参数q的定义。
第四节 双组分连续精馏塔的计算 四、进料热状况[122]
L L H V H F q F HV H L 1kmol原料变成饱和蒸汽所需热量 原料的千摩尔汽化热
L L qF V V (1 q) F
V ' ym1 WxW L ' xm

推导出提馏段操作线方程:
L' W ym1 ' xm ' xW L W L W
第十章 蒸 馏
第一节 概述
第二节 双组分溶液的汽液相平衡 第三节 精馏原理
第四节 双组分连续精馏塔的计算
一、全塔物料衡算 二、精馏计算的两个基本假设 三、操作线方程 四、进料热状况
2. 恒摩尔流—— L1 L2
L1 L2
恒摩尔流成立的条件:
Ln L L Lm
V1 V2 V1 V2
Vn V V Vm
①两组分的摩尔潜热相等; ②汽液接触时因温度不同而交换的显热可以忽略;
③保温良好,塔的热损失可以忽略不计。
第四节 双组分连续精馏塔的计算

常规的精馏计算的任务及其相关数据

计算任务

精馏塔的计算:主要涉及两个方面:

设计型计算:新精馏装置的设计
核算型计算:现有装置的操作分析

计算内容,也涉及两方面:

工艺条件

设备结构
蒸馏塔的设计步骤
第四节 双组分连续精馏塔的计算
设计型计算的内容: 1. 确定产品的流量和组成;
第一节 概述
第二节 双组分溶液的汽液相平衡
第三节 精馏原理 第四节 双组分连续精馏塔的计算 一、全塔物料衡算 二、精馏计算的两个基本假设 三、操作线方程
第四节 双组分连续精馏塔的计算 三、操作线方程[120]

精馏段的分析与图解

求解方法

物料平衡 热平衡 相平衡

回流比定义

精馏段操作线方程
已知苯—甲苯物系:xF =0.25, xD =0.98, xW =0.085, a =2.47, R =5, q =1,塔顶为全凝器,泡点回流。 求:精馏段及提馏段操作线方程。
精馏段操作线方程为:
提馏段操作线方程为:
y 0.8333x 0.1633 y 1.737 x 0.0626
第四节 双组分连续精馏塔的计算 四、进料热状况[126]
第十章 蒸 馏
第一节 概述 第二节 二元溶液的汽液相平衡 第三节 精馏原理 第四节 二元连续精馏塔的计算(重点)
第五节 特殊蒸馏
第六节 多元蒸馏
【提问】
相平衡、简单蒸馏与平衡蒸馏
1.某二元混合物,其中A为易挥发组分,液相组成xA=0.4时,相应的 泡点为 t1;汽相组成yA=0.4时,相应的露点温度为t2。则t1与 t2的大 小关系为______。 2.有A、B两组分组成理想汽液平衡体系。已知A在液相中的摩尔分 率xA=0.9,相对挥发度数据aBA=3,据此请断定气相中低沸点组分 的摩尔分率为______。 A. 0.75 B. 0.65 C. 0.45 D. 0.25
L L V V F
L L V V F
第四节 双组分连续精馏塔的计算 四、进料热状况[121]

进料热状态参数q

进料热状态描述

分别做进料板的物料平衡和热平衡方程:
V L ' F V ' L VH V L ' h L ' Fh F V ' H V ' Lh L
3.已知某二元物系采用平衡蒸馏及简单蒸馏进行分离。两种方式控制 液体温度相同,试比较馏出液的组成和数量。
xD,简单 ____ xD,平衡
D简单 ____ D平衡
第十章 蒸 馏
第一节 概述 第二节 二元溶液的汽液相平衡 第三节 精馏原理 第四节 二元连续精馏塔的计算(重点)
第五节 特殊蒸馏
第六节 多元蒸馏
L RD V ( R 1) D
第四节 双组分连续精馏塔的计算 四、进料热状况[270]
过冷液相
L F V F
饱和液相 (泡点)
L V
汽液混合
L F V F
饱和汽相 (露点)
L V
过热汽相
L F V
L’
V’
L’
V’
L’
V’
L’
V’
L’
V’
L L F V V
HF HL
q 1
xF xD D F
第十章 蒸 馏
第一节 概述
第二节 双组分溶液的汽液相平衡
第三节 精馏原理 第四节 双组分连续精馏塔的计算 一、全塔物料衡算 二、精馏计算的两个基本假设
第四节 双组分连续精馏塔的计算
二、精馏计算的两个基本假设[119]
1. 理 论 板——离开塔板的汽液两相传质与传热均达平衡。
1.0
p=const
饱和液相 q>1 q = 1 过冷液相
y
汽液混合 0<q<1
q 线方程:
饱和汽相 q=0 q<0 过热汽相
q xF y x q 1 q 1
精馏段与提馏段操 作线交点轨迹方程
xF
X 1.0
0
第四节 双组分连续精馏塔的计算 四、进料热状况[126]
q线方程的物理意义: 1、进料热状态方程。 2 、进料处的操作线方程,是精馏段操作线、提馏段操 作线交点的轨迹,三线交于一点。 由两操作线合并得出q线方程: Vy=Lx+DxD, V’y=L’x-WxW 相减可得
2. 选定操作压力和进料热状态;
3. 计算精馏塔的塔板层数和加料板位置; 4. 选择塔板类型,确定塔高、塔径、塔板结构尺寸; 5. 计算冷凝器、再沸器的热负荷,并确定设备的类型和尺寸。
第十章 蒸 馏
第一节 概述
第二节 双组分溶液的汽液相平衡
第三节 精馏原理 第四节 双组分连续精馏塔的计算 一、全塔物料衡算
y
Dx WxW L L' q 1 x D x xF V V ' V V ' q 1 q 1
3、q线与相平衡线的交点是最小回流比对应的(xe,ye)
本次课内容及要求
第五节 双组分连续精馏塔的计算 一、全塔物料衡算
二、精馏计算的两个基本假设
三、操作线方程 四、进料热状况 自学:【例10-10】 【例10-11】 作业: P182—3,P183—8 预习: 理论板数的计算[124]
第四节 双组分连续精馏塔的计算
二、精馏计算的两个基本假设[120]
物系 乙醇 水 质量潜热 kJ/kg 854 2260 分子量 kg/kmol 46 18 摩尔潜热 kJ/kmol 39284 4068
92
30732
33396
乙醇—水、苯—甲苯物系可近似为恒摩尔流物系。
相关文档
最新文档