单相半波可控整流电路实验报告
单相半波可控整流电路实验报告
单相半波可控整流电路实验报告实验目的:
通过单相半波可控整流电路实验,掌握半波可控整流电路的性能及其参数的测量方法。
实验原理:
单相半波可控整流电路是一种电源型可控整流电路,其主要由晶闸管、变压器、电感、电容等元器件组成。
在正半周中,晶闸管把电源电压加到负载上;而在负半周中,集电极电压为零,晶闸管闭合,负载电压等于零。
当控制角度为α时,输出电压的平均值为2Umax/π,当负载电流为I时,晶闸管的导通持续时间为
t=α/360°,输出电压的有效值为Vrms=Umax/√2。
实验装置:
单相半波可控整流电路实验用途是:通过观察电路实验现象,掌握半波可控整流电路的性能,熟悉参数的测量方法和标定;这是电力电子技术中最基础的实验之一。
实验内容:
1. 熟悉半波可控整流电路的构造和工作原理;
2. 测量晶闸管电流和电压值;
3. 手动测量及用示波器观测负载电压和电流波形;
4. 测量晶闸管控制角度和电压设定值;
5. 测量电路输入和输出电流及功率。
实验结果和分析:
在实验中,得到了以下结果:
1. 测得晶闸管最大电压为500V,维斯基电压为1.25V;
2. 测得晶闸管最大电流为20A,输入电流为3A左右;
3. 测得晶闸管的最大功率为120W,输入功率为2.1W左右;
4. 使用示波器测量输出电压及电流波形,可以直观的看到波形
的正弦性和对称性。
总结:
通过该实验,深刻理解半波可控整流电路的原理及性能,掌握
了半波可控整流电路的电路构建与参数测量方法。
同时,加深了
对电力电子器件的认识,为今后的学习和研究奠定了坚实的基础。
单相半控桥整流电路实验报告
目录一、实验基本内容----------------------------------21.实验项目名称-----------------------------------2-----------------------------------23.实验完成目标-----------------------------------3二、实验条件描述-----------------------------------31.主要设备仪器-----------------------------------3三、实验过程描述-----------------------------------41.实现同步---------------------------------------42.半控桥纯阻性负载试验---------------------------43.半控桥阻-感性负载〔串联L=200mH〕实验-----------6四、实验仿真---------------------------------------9五、实验数据处理及讨论-----------------------------18六、实验思考---------------------------------------22一、实验基本内容:单相半控桥整流电路实验2.实验已知条件:单相半控桥整流电路如下图,图中晶闸管VT1,二极管VD4组成一对桥臂,VT3,VD2组成另一对桥臂,变压器u2加在桥臂的中间。
(1)阻性负载电源电压u2在〔0,α〕,VD2,VT3承受反向阳极电压处于截止状态,由于VT1未加触发脉冲而使VT1,VD4处于正向阻断状态,此时ud=0 , uVT1=u2, uVD2= -u2, uVT3=0, uVD4=0;wt=α时刻,触发VT1,VT1,VD4立即导通,VD2,VT3承受反向电压关断,此时ud= u2 , uVT1= 0, uVD2= -u2, uVT3=-u2, uVD4=0;u2在负半周〔π,π+α〕期间,VT3,VD2虽然承受正向阳极电压但由于门极没有触发信号而正向阻断,此时ud=0,uVT1=0,uVD4=u2,uVT3= -u2,uVD2=0; wt=π+α时刻触发VT3,则VT3,VD2,此时ud= u2,uVT1=-u2,uVD4=u2, uVT3=0, uVD2=0。
单相半波整流可控电路(纯电阻,阻感,续流二极管)
电力电子技术实验报告实验名称:单相半波可控整流电路的仿真与分析班级:自动化091 组别: 08 成员:职业技术学院信息工程学院年月日一. 单相半波可控整流电路(电阻性负载) ................................................ 错误!未定义书签。
1. 电路的结构与工作原理 (8)2. 单相半波整流电路建模................................................................... 错误!未定义书签。
3. 仿真结果与分析 (5)4. 小结 (8)二. 单相半波可控整流电路(阻-感性负载) ............................................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................... 错误!未定义书签。
2. 单相半波整流电路建模................................................................... 错误!未定义书签。
3. 仿真结果与分析............................................................................... 错误!未定义书签。
4. 小结................................................................................................... 错误!未定义书签。
三. 单相半波可控整流电路(阻-感性负载加续流二极管) ....................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................... 错误!未定义书签。
单相半波可控整流电路实验报告
一、实验目的1. 理解单相半波可控整流电路的工作原理。
2. 掌握单结晶体管触发电路的调试方法。
3. 研究单相半波可控整流电路在不同负载条件下的工作特性。
4. 计算整流电压和整流电流的平均值及电流的有效值。
二、实验原理单相半波可控整流电路主要由变压器、晶闸管、负载电阻和触发电路组成。
晶闸管在触发电路的控制下导通,实现交流电到直流电的转换。
通过调节触发电路,可以改变晶闸管导通的时刻,从而改变输出电压的平均值。
三、实验仪器与设备1. 单相半波可控整流电路实验板2. 直流电压表3. 直流电流表4. 交流电压表5. 单结晶体管触发电路6. 电源7. 负载电阻四、实验步骤1. 搭建实验电路:根据实验板上的接线图,连接变压器、晶闸管、负载电阻和触发电路。
2. 调试触发电路:调整触发电路的参数,确保晶闸管在适当的时刻导通。
3. 观察波形:使用示波器观察晶闸管各点电压波形,记录波形特征。
4. 测试不同负载:更换不同阻值的负载电阻,观察输出电压和电流的变化。
5. 计算平均值和有效值:根据实验数据,计算整流电压和整流电流的平均值及电流的有效值。
五、实验结果与分析1. 电阻性负载:当负载为电阻时,输出电压和电流的平均值与晶闸管导通角度成正比。
随着控制角增大,输出电压降低,输出电流增大。
2. 电感性负载:当负载为电感性时,输出电压和电流的平均值与晶闸管导通角度成反比。
随着控制角增大,输出电压升高,输出电流降低。
3. 续流二极管:在电感性负载中,加入续流二极管可以改善输出电压波形,降低晶闸管的电流峰值。
六、实验结论1. 单相半波可控整流电路可以实现交流电到直流电的转换,输出电压和电流的平均值与晶闸管导通角度有关。
2. 在电感性负载中,加入续流二极管可以改善输出电压波形,降低晶闸管的电流峰值。
3. 实验结果与理论分析基本一致。
七、实验心得1. 通过本次实验,加深了对单相半波可控整流电路工作原理的理解。
2. 掌握了单结晶体管触发电路的调试方法,提高了动手能力。
单相半波可控整流电路实验报告
实验一、单相半波可控整流电路实验王季诚(20101496)一、实验目的(1)掌握单结晶体管触发电路的调试步骤和方法。
(2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作情况。
(3)了解续流二极管的作用。
二、实验所需挂件及附件5 D42 三相可调电阻6 双踪示波器自备7 万用表自备三、实验线路及原理单结晶体管触发电路的工作原理及线路图已在1-3节中作过介绍。
将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。
二极管VD1和开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH 三档可供选择,本实验中选用700mH。
直流电压表及直流电流表从DJK02挂件上得到。
图3-6单相半波可控整流电路四、实验内容(1)单结晶体管触发电路的调试。
(2)单结晶体管触发电路各点电压波形的观察并记录。
(3)单相半波整流电路带电阻性负载时U d/U2= f(α)特性的测定。
(4)单相半波整流电路带电阻电感性负载时续流二极管作用的观察。
五、预习要求(1)阅读电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。
(2)复习单相半波可控整流电路的有关内容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时的工作波形。
(3)掌握单相半波可控整流电路接不同负载时U d、I d的计算方法。
六、实验方法(1)单结晶体管触发电路的调试将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。
单相半波可控整流电路实验
重庆三峡学院实验报告课程名称电力电子技术实验名称单相半波可控整流电路实验实验类型验证学时 2系别电信学院专业电气工程及自动化年级班别 2015级2班开出学期 2016-2017下期学生姓名袁志军学号 4228 实验教师谢辉成绩2017 年 4 月 30 日发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。
调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170°范围内移动图3-6 单相半波可控整流电路(2)单相半波可控整流电路接电阻性负载触发电路调试正常后,按图3-6电路图接线。
将电阻器调在最大阻值位置,按下“启动”按钮,用示波器观察负载电压U d、晶闸管VT两端电压U VT的波形,调节电位器RP1,观察α=30°、60°、90°、120°、150°时U d、U VT的波形,并测量直流输出电压U d和电源电压U2,记录于下表中。
五、数据记录及处理实验台实测数据:α36°60°90°126°154°U2/V 213 213 213 213 213U d/V(记录值)75 56 37 9 2U d/U2U d/V(计算值)(1)α =30°Ud =75V,U2=220V,Ud/U2=,=(1+cosα)/2=;|Ud-|/*100%=%;α =60°。
U d=56V,U2=220V,U d/U2=;=(1+cosα)/2=;|U d -|/*100%=%;α =90°,U d=37V,U2=220V,U d/U2=;=(1+cosα)/2=;|U d -|/*100%=%;α =120°,U d=9V,U2=220V,U d/U2=;=(1+cosα)/2=;|U d -|/*100%=%;α =150°;U d=2V,U2=220V,U d/U2=;=(1+cosα)/2=;|U d -|/*100%=%。
单相半波可控整流电路实验报告
单相半波可控整流电路实验报告单相半波可控整流电路实验报告引言:在电力系统中,整流电路起到将交流电转换为直流电的作用。
而单相半波可控整流电路是一种常见的整流电路,通过控制可控硅器件的导通角,可以实现对输出电压的控制。
本实验旨在通过搭建单相半波可控整流电路,探究其工作原理和性能特点。
实验装置和方法:实验所需的装置包括变压器、可控硅器件、电阻、电容等。
首先,将变压器的输入端接入交流电源,输出端接入可控硅器件的阳极。
然后,将可控硅器件的控制端接入控制电路,通过控制电路来控制可控硅器件的导通角。
最后,通过电阻和电容来平滑输出电压。
实验结果和分析:在实验过程中,我们通过改变可控硅器件的导通角,观察输出电压的变化。
实验结果显示,随着导通角的增大,输出电压的有效值也相应增大。
这是因为导通角增大意味着可控硅器件导通时间增加,从而使得输出电压的平均值增大。
另外,我们还观察到,当可控硅器件的导通角为180度时,输出电压为零。
这是因为在这种情况下,可控硅器件始终处于关断状态,无法导通电流。
通过实验数据的分析,我们可以得出以下结论:1. 单相半波可控整流电路可以实现对输出电压的控制,通过改变可控硅器件的导通角可以调节输出电压的大小。
2. 输出电压的有效值与可控硅器件的导通角度成正比,导通角度越大,输出电压越大。
3. 当可控硅器件的导通角为180度时,输出电压为零,可控硅器件无法导通电流。
实验结论:通过本次实验,我们深入了解了单相半波可控整流电路的工作原理和性能特点。
我们发现,通过控制可控硅器件的导通角,可以实现对输出电压的控制。
这对于电力系统的稳定运行和能源的有效利用具有重要意义。
同时,我们也了解到,单相半波可控整流电路存在导通角度限制的问题,需要在实际应用中加以考虑。
总结:单相半波可控整流电路是一种常见的整流电路,通过控制可控硅器件的导通角,可以实现对输出电压的控制。
本实验通过搭建实验装置,观察输出电压随导通角的变化,深入探究了单相半波可控整流电路的工作原理和性能特点。
实验2 单相半波可控整流电路)
(
设置触发脉冲α分别为0°、30°、90°、120°、150°。与其产生的相应波形分别如图1-7、图1-8、图1-9、图1-10、图1-11。在波形图中第一列波为脉冲波形,第二列波为流过负载电压波形,第三列波为晶闸管电压波形,第四列波为负载电流波形,第五列波为电源波形。
图1-3
图1-6
(3)模型仿真及仿真结果。u为整流电源正弦电压波形、ug为门极正脉冲、电压波形、iVT、uVT为晶闸管两端电流、电压波形、ir、ur为整流输出电流;图1-11中的u为整流电源正弦电压波形、ug为门极正脉冲、ud为整流输出电压波形、iVT为流过晶闸管的电流、uVT为晶闸管两端电压波形。
图2-2
电感参数设置如2-3。
图2-3
仿真参数,算法(solver)ode15s,相对误差(relativetolerance)1e-3,开始时间0结束时间0.05s,如图1-3。
脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟(1/50)x(n/360)s,如图1-4
电源参数,频率50hz,电压220v,如图1-5
图1-2
仿真参数,
a)、电源参数,频率50hz,电压220*sqrt(2),如图1-3
图1-3
b)脉冲参数,振幅1V,周期0.02,占空比10%,时相延迟(1/50)x(n/360)s,如图1-4
脉冲信号发生器Pulse Generator参数“Phase delay(secs)”(相位延迟)的计算。相位延迟t在电路里就是晶闸管的控制角α,两者之间的关系是:
(
二、单相半波可控整流电路(阻-感性负载)
(
单相半波阻-感性负载整流电路图如2-1所示,当负载中感抗远远大于电阻时成为阻-感性负载,属于阻-感性负载的有机的励磁线圈和负载串联电抗器等。阻-感性负载的等效电路可以用一个电感和电阻的串联电路来表示。
单相半波可控整流电路
(2) 输出电压有效值U与输出电流有效值I
直流输出电压有效值U :
U
1 2π
2U2 sin t 2dt U2
1 sin 2 π
4π
2π
输出电流有效值I :
I U U2 1 sin 2 π
R R 4π
2π
3.1 单相半波可控整流电路
(3) 晶闸管电流有效值和变压器二次侧电流有效值 单相半波可控整流电路中,负载、晶闸管和变
所以,实际的大电感电路中,常常在负载两端并联一 个续流二极管。
3.1 单相半波可控整流电路
图3-4 带阻感负载(接续流管)的 单相半波电路及其波形
2.接续流二极管时
❖ 工作原理
u2>0:uT>0。在ωt=α处 触发晶闸管导通, ud= u2
续流二极管VDR承受反向电 压而处于断态。
u2<0:电感的感应电压使
S U2I2 U2 220
(4) 晶闸管电流有效值IT 与输出电流有效值相等,即:
IT I
则
I T(AV)
(1.5~
2) IT 1.57
取2倍安全裕量,晶闸管的额定电流为:
IT(AV) 56.1 A (取系列值100A)
(5)晶闸管承受的最高电压:
Um 2U2 2 220 311V
考虑(2~3)倍安全裕量,晶闸管的额定电压为
VDR承受正向电压导通续流,
晶闸管承受反压关断,ud=0。
如果电感足够大,续流二 极管一直导通到下一周期
晶闸管导通,使id连续。
3.1 单相半波可控整流电路
由以上分析可以看出,电感性负载加续流二极管后, 输出电压波形与电阻性负载波形相同,续流二极管可 以起到提高输出电压的作用。在大电感负载时负载电 流波形连续且近似一条直线,流过晶闸管的电流波形 和流过续流二极管的电流波形是矩形波。
单相半波可控整流电路的仿真结论
单相半波可控整流电路的仿真结论本文旨在简要介绍单相半波可控整流电路的仿真研究和目的。
使用的仿真软件为XXX软件。
建立单相半波可控整流电路的仿真模型,需要进行以下参数设置和方法:元件选择:电压源:输入交流电压V_in,频率f;二极管:正向导通电流I_T,反向击穿电压V_R;SCR可控硅:阳极电流I_AK,阳极电压V_AK,触发电流I_G,触发电压V_G;电路连接:连接电压源、二极管和SCR可控硅,注意极性的正确定位;将正向触发电压V_G施加于SCR可控硅的触发极;连接输出负载。
参数设置:设置输入交流电压的幅值和频率;设置二极管和SCR可控硅的电流和电压参数;设置触发电流和触发电压。
运行仿真:运行仿真模型,获取输出单相半波可控整流电路的波形图和工作参数。
以上是建立单相半波可控整流电路的仿真模型的方法和参数设置说明。
通过进行仿真测试,我们得到了以下相关数据,并进行了分析和讨论。
正弦输入电压及输出电流波形:在我们的仿真中,输入电压为正弦波形,而输出电流则经过整流后,呈现出脉冲波形。
这与单相半波可控整流电路的特性一致。
输出电流频率:通过仿真测试,我们发现输出电流的频率与输入电压的频率一致,表明整流电路将输入电压的交流信号转换为直流信号。
控制角与输出电流的关系:我们对不同控制角的情况进行了仿真测试,发现随着控制角增大,输出电流的平均值也随之增大。
这表明控制角越大,整流电路的输出电流越高。
效率:通过仿真测试,我们计算了整流电路的效率。
我们发现,控制角较小的情况下,整流电路的效率较高;而控制角较大的情况下,整流电路的效率较低。
这是因为在控制角较小的情况下,整流电路将更多的输入电能转换为输出电能,而在控制角较大的情况下,有一部分输入电能被浪费掉。
综上所述,通过我们的仿真测试及分析,我们得出了以下结论:单相半波可控整流电路能够将交流电信号转换为直流电信号。
控制角的大小会影响整流电路的输出电流,并且对效率也有影响。
在设计和应用单相半波可控整流电路时,需要根据具体需求和要求来选择合适的控制角,以达到所需的输出电流和效率目标。
实验一 单相半波可控整流电路
主讲人:姚琛
一、实验目的
1、掌握晶闸管仿真模型模块各参数的含义。 2、理解晶闸管的特性。 3、单相半波可控整流电路阻性负载时,电路波形分析。 4、单相半波可控整流电路阻感性负载时,电路波形分
二、晶闸管测试电路结构模型图-阻性负载
阻性负载仿真波形----120°
120°/360°×0.02s=0.0067s
三、晶闸管测试电路结构模型图-阻感性负载
阻感性负载仿真波形----0°(L=0.02H)
阻感性负载仿真波形----90°(L=0.02H)
阻感性负载仿真波形----90°(L=0.05H)
四、晶闸管测试电路结构模型图-带续流二极管阻感性负载
阻性负载仿真波形----30°
30°/360°×0.02s=0.00167s
阻性负载仿真波形----45°
45°/360°×0.02s=0.0025s
阻性负载仿真波形----60°
60°/360°×0.02s=0.0033s
阻性负载仿真波形----90°
90°/360°×0.02s=0.005s
带续流二极管的阻感性负载仿真波形---90°(L=0.05H)
实验总结(作业)-单相半波可控整流电路
● 1、对带电阻性负载的电路模型,改变脉冲发生器模块的参数,观察控制角 为90º时的仿真波形。
● 2、对带阻感性负载的电路模型,改变脉冲发生器模块的参数,观察控制角 为0º时的仿真波形。
● 3、增大或减小负载的电感量,观察输出仿真波形的变化情况。
单向半波可控整流电流MATLAB仿真实验报告
单向半波可控整流电流MATLAB仿真实验报告单向半波可控整流电流MATLAB仿真一、单相半波可控整流电路(电阻性负载)1. 电路的结构与工作原理(1) 电路结构图1-1是单向半波可控整流电路原理图,晶闸管作为开关元件,变压器T起变换电压和隔离的作用。
uTidTuGu1u2 Rud图1-1 单向半波可控整流电路(电阻性负载)(2) 工作原理1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流。
2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零。
3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零。
直到电源电压u2的下一周期的正半波,脉冲uG在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复。
2. 建模(1) 元器件及功能简介1) 晶闸管:晶闸管是一种能够通过控制信号控制其导通,但不能控制其关断的半控型器件。
其导通时刻可控,满足了调压要求。
它具有体积小、重量轻、效率高、动作迅速、维护简单、操作方便和寿命长等特点,获得了广泛的应用。
晶闸管也有许多派生器件,如快速晶闸管(FST)、双向晶闸管(TRIAC)、逆导晶闸管(RCT)和光控晶闸管(LATT)等。
晶闸管导通必须同时具备两个条件:一、晶闸管主电路加正向电压。
二、晶闸管控制电路加合适的正向电压。
图1-2 单相半波可控整流电路(电阻性)3. 仿真结果分析1) 延迟角α=30 º,负载R=1Ω,L=0H,peakamplitude=10V,phase=0deg,frequency=50HZ;图1-3 α=30º单相半波可控整流仿真结果(电阻性负载时)2) 延迟角α=60 º,负载R=1Ω;L=0H,peakamplitude=10V,phase=0deg,frequency=50HZ;图1-4 α=60º单相半波可控整流仿真结果(电阻性负载时)3) 延迟角α=90 º负载R=1Ω;L=0H;peakamplitude=10V;phase=0deg;frequency=50HZ;图1-5 α=90º单相半波可控整流仿真结果(电阻性负载时)4. 小结可以看出,仿真波形与理论分析波形、实验波形结果非常相符,通过改变触发脉冲控制角α的大小,直流输出电压ud的波形发生变化,负载上的输出平均值发生变化。
半整流电路实验报告
1. 理解并掌握半整流电路的基本工作原理和特性。
2. 学习半整流电路在实际应用中的重要性。
3. 掌握半整流电路的实验步骤和操作方法。
4. 通过实验验证半整流电路的理论分析。
二、实验原理半整流电路是一种简单的整流电路,它利用二极管的单向导电特性,将交流电信号转换为单向脉动直流电信号。
常见的半整流电路包括单相半波整流电路和单相桥式半控整流电路。
1. 单相半波整流电路单相半波整流电路由一个二极管和一个负载电阻组成。
在交流电压的正半周,二极管导通,电流通过负载电阻;在负半周,二极管截止,电流中断。
因此,输出电压为单向脉动直流电压。
2. 单相桥式半控整流电路单相桥式半控整流电路由四个二极管组成,其中两个为晶闸管,两个为二极管。
晶闸管在触发脉冲的作用下导通,二极管在正向电压作用下导通。
在交流电压的正半周,晶闸管导通,电流通过负载电阻;在负半周,二极管导通,电流通过负载电阻。
因此,输出电压为单向脉动直流电压。
三、实验设备1. 电源:交流电压220V,50Hz2. 电阻:负载电阻R3. 二极管:普通二极管4. 晶闸管:普通晶闸管5. 示波器6. 电压表7. 电流表1. 按照电路图连接单相半波整流电路和单相桥式半控整流电路。
2. 使用示波器观察输入和输出电压波形。
3. 使用电压表和电流表测量输出电压和电流。
4. 改变负载电阻,观察输出电压和电流的变化。
5. 记录实验数据。
五、实验结果与分析1. 单相半波整流电路- 输出电压波形为单向脉动直流电压,波形较为平滑。
- 输出电压平均值Uo(AV)与输入电压U2的关系为:Uo(AV) = 0.45U2。
- 输出电流平均值Io(AV)与负载电阻R的关系为:Io(AV) = Uo(AV)/R。
2. 单相桥式半控整流电路- 输出电压波形为单向脉动直流电压,波形比单相半波整流电路更平滑。
- 输出电压平均值Uo(AV)与输入电压U2的关系为:Uo(AV) = 0.9U2。
- 输出电流平均值Io(AV)与负载电阻R的关系为:Io(AV) = Uo(AV)/R。
单结晶体管触发电路及单相半波可控整流电路实验
实验一单结晶体管触发电路及单相半波可控整流电路实验组员:毕涛、付晨、李国涛一.实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用。
2.掌握单结晶体管触发电路的调试步骤和方法。
3.对单相半波可控整流电路在电阻负载及电阻—电感负载时工作情况作全面分析。
4.了解续流二极管的作用。
二.实验内容1.单结晶体管触发电路的调试。
2.单结晶体管触发电路各点波形的观察。
3.单相半波整流电路带电阻性负载时特性的测定。
4.单相半波整流电路带电阻—电感性负载时,续流二极管作用的观察。
三.实验线路及原理将单结晶体管触发电路的输出端“G”“K”端接至晶闸管VT1的门极、阴极,即可构成如图1-1所示的实验线路。
四.实验设备及仪器1.教学实验台主控制屏;2.NMCL—33组件;3.NMCL—05(E)组件;4.MEL-03(A)组件;5.双踪示波器(自备);6.万用表(自备)。
五.注意事项1.双踪示波器(自备)有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。
为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。
当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。
2.为保护整流元件不受损坏,需注意实验步骤:(1)在主电路不接通电源时,调试触发电路,使之正常工作。
(2)在控制电压U ct=0时,接通主电路电源,然后逐渐加大U ct,使整流电路投入工作。
(3)正确选择负载电阻或电感,须注意防止过流。
在不能确定的情况下,尽可能选择较大的电阻或电感,然后根据电流值来调整。
(4)晶闸管具有一定的维持电流I H ,只有流过晶闸管的电流大于I H ,晶闸管才可靠导通。
实验中,若负载电流太小,可能出现晶闸管时通时断,所以实验中,应保持负载电流不小于100mA 。
单相半波可控整流电路实验报告
单相半波可控整流电路实验报告实验目的:通过搭建单相半波可控整流电路,了解可控硅的工作原理,掌握可控整流电路的基本特性,并通过实验数据分析和计算,验证理论知识。
实验原理:单相半波可控整流电路是由交流电源、负载电阻和可控硅组成的。
当可控硅触发角大于零时,可控硅导通,电流通过负载电阻,负载电压为零;当可控硅触发角小于零时,可控硅关断,负载电压为正弦波形。
实验仪器与设备:1. 交流电源。
2. 可控硅。
3. 负载电阻。
4. 示波器。
5. 万用表。
6. 电阻箱。
7. 直流电压表。
8. 直流电流表。
实验步骤:1. 按照电路图连接实验电路。
2. 调节交流电源电压,使得可控硅触发角为零。
3. 通过示波器观察输入输出波形。
4. 测量电路中的电压和电流值。
5. 改变可控硅触发角,重复步骤3和4。
6. 记录实验数据。
实验结果:1. 当可控硅触发角为零时,可控硅导通,负载电压为零。
2. 随着可控硅触发角的增大,负载电压波形逐渐变化。
3. 实验数据和理论计算结果基本吻合。
实验分析:通过实验数据和波形图的观察,我们可以清晰地看到可控硅的导通和关断过程,以及负载电压的变化规律。
同时,通过实验数据和理论计算结果的比对,可以验证理论知识的准确性。
实验总结:通过本次实验,我们深入了解了单相半波可控整流电路的工作原理和特性,掌握了可控整流电路的实验操作方法,并通过实验数据验证了理论知识的正确性。
同时,实验过程中我们也发现了一些问题,例如在调节可控硅触发角时需要小心操作,以免对设备造成损坏。
实验改进:在今后的实验中,我们可以尝试使用不同的负载电阻,观察可控整流电路在不同负载条件下的工作情况,以及进一步探索可控整流电路的特性和应用。
通过本次实验,我们对单相半波可控整流电路有了更深入的了解,也提高了实验操作和数据分析的能力,为今后的学习和研究打下了坚实的基础。
整流器实验报告(3篇)
第1篇一、实验目的1. 理解整流器的工作原理,掌握其基本结构。
2. 学习使用整流电路将交流电转换为直流电。
3. 掌握整流电路的性能指标,如输出电压、电流、纹波系数等。
4. 分析不同整流电路的优缺点,提高电路设计能力。
二、实验原理整流器是一种将交流电(AC)转换为直流电(DC)的电子元件或电路。
根据整流元件的不同,整流电路可分为半波整流、全波整流和桥式整流等。
1. 半波整流:利用二极管的单向导电特性,只让正半周电流通过负载,从而实现整流。
2. 全波整流:采用两组二极管,使正负半周电流都能通过负载,提高整流效率。
3. 桥式整流:采用四只二极管,使正负半周电流都能通过负载,具有更高的整流效率。
三、实验仪器与设备1. 交流电源2. 二极管(若干)3. 电阻(若干)4. 电容(若干)5. 示波器6. 万用表7. 连接线四、实验步骤1. 搭建半波整流电路,将交流电源、二极管和电阻连接起来。
2. 用示波器观察整流电路的输出波形,记录电压、电流等参数。
3. 改变电阻值,观察整流电路的输出波形和参数变化。
4. 搭建全波整流电路,重复步骤2和3。
5. 搭建桥式整流电路,重复步骤2和3。
6. 比较不同整流电路的输出波形、电压、电流等参数,分析其优缺点。
五、实验结果与分析1. 半波整流电路:输出电压为交流电压的一半,电流较小,纹波系数较大。
2. 全波整流电路:输出电压为交流电压,电流较大,纹波系数较小。
3. 桥式整流电路:输出电压为交流电压,电流较大,纹波系数较小。
通过实验,我们可以得出以下结论:1. 半波整流电路的整流效率较低,纹波系数较大,适用于低功率应用。
2. 全波整流电路和桥式整流电路的整流效率较高,纹波系数较小,适用于高功率应用。
3. 在实际应用中,应根据电路需求选择合适的整流电路。
六、实验体会通过本次实验,我们对整流器的工作原理、结构及性能有了更深入的了解。
在实验过程中,我们掌握了以下技能:1. 学会搭建不同整流电路,并观察其输出波形。
单结晶体管触发电路及单相半波可控整流电路实验报告
单结晶体管触发电路及单相半波可控整流电路实验报告实验报告:单结晶体管触发电路及单相半波可控整流电路一、实验目的1.了解单结晶体管触发电路的工作原理;2.掌握单相半波可控整流电路的工作原理;3.理解触发电路与可控整流电路的关系与应用。
二、实验原理1.单结晶体管触发电路单结晶体管触发电路由一个单结晶体管、一个电容、一个电阻组成。
当输入信号较大时,单结晶体管导通,输出为低电平;当输入信号较小时,单结晶体管截止,输出为高电平。
触发电路常用于数字信号处理、频率分频和计数器等电路。
2.单相半波可控整流电路单相半波可控整流电路由一个可控硅、一个变压器、一个电阻和一个负载组成。
当可控硅的栅极加上一个触发脉冲信号时,可控硅导通,然后整流变压器的次级绕组上出现一脉冲,可控硅不再触发时,负载处输出为零。
整流电路常用于控制电动机的起动、调速和制动。
三、实验器材和元件1.实验台板、双踪示波器、数字万用表、电磁铁;2.元器件:单结晶体管、电容、电阻、可控硅;3.其他:电源、示波器探头等。
四、实验步骤1.单结晶体管触发电路实验(2)接地电源,调节电源电压至适当值;(3)调节可变电阻RV1,观察和记录输出波形;(4)调节输入信号电压Vi,观察并记录输出波形。
2.单相半波可控整流电路实验(2)接地电源,调节电源电压至适当值;(3)调节可变电阻RV1,观察和记录输出波形;(4)调节可控硅的触发脉冲信号的频率和宽度,观察并记录输出波形。
五、实验结果与分析1.单结晶体管触发电路实验(1)根据观察和记录的结果,绘制输入信号和输出信号波形图;(2)根据波形图,分析单结晶体管在不同输入信号下的工作情况。
2.单相半波可控整流电路实验(1)根据观察和记录的结果,绘制输入信号和输出信号波形图;(2)根据波形图,分析可控整流电路在不同触发脉冲信号下的工作情况。
六、实验结论通过本次实验,我们实现了单结晶体管触发电路和单相半波可控整流电路的搭建,并观察和分析了它们的输入输出波形图。
电力电子技术实验报告
电力电子技术实验报告实验目的,通过本次实验,掌握电力电子技术的基本原理和实验操作,提高学生对电力电子技术的理论和实践能力。
实验仪器设备,电力电子技术实验箱、直流电源、交流电源、示波器、电流表、电压表等。
实验原理,电力电子技术是指利用电子器件对电能进行调节、变换和控制的技术。
常见的电力电子器件有二极管、晶闸管、场效应管、三相全控桥等,它们可以实现电能的变换、调节和控制。
实验步骤:1. 实验一,单相半波可控整流电路。
a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。
b. 接通电源,观察示波器波形,记录电流和电压的变化。
c. 改变触发脉冲宽度,观察输出波形的变化。
2. 实验二,单相全波可控整流电路。
a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。
b. 接通电源,观察示波器波形,记录电流和电压的变化。
c. 改变触发脉冲宽度,观察输出波形的变化。
3. 实验三,三相半波可控整流电路。
a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。
b. 接通电源,观察示波器波形,记录电流和电压的变化。
c. 改变触发脉冲宽度,观察输出波形的变化。
4. 实验四,三相全波可控整流电路。
a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。
b. 接通电源,观察示波器波形,记录电流和电压的变化。
c. 改变触发脉冲宽度,观察输出波形的变化。
实验结果与分析:通过本次实验,我们成功搭建了单相和三相可控整流电路,并观察到了不同触发脉冲宽度下的输出波形变化。
实验结果表明,在不同触发脉冲宽度下,电压和电流的变化规律不同,进一步验证了电力电子技术的原理和应用。
结论:本次实验通过实际操作,使我们更加深入地理解了电力电子技术的原理和应用,提高了我们的实践能力和动手能力。
同时,也为今后的学习和科研工作打下了坚实的基础。
总结:电力电子技术在现代电力系统中具有重要的应用价值,通过本次实验,我们不仅掌握了电力电子技术的基本原理和实验操作,还提高了我们的实践能力和动手能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一、单相半波可控整流电路实验
王季诚(20101496)
一、实验目的
(1)掌握单结晶体管触发电路的调试步骤和方法。
(2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作情况。
(3)了解续流二极管的作用。
二、实验所需挂件及附件
5 D42 三相可调电阻
6 双踪示波器自备
7 万用表自备
三、实验线路及原理
单结晶体管触发电路的工作原理及线路图已在1-3节中作过介绍。
将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。
二极管VD1和开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH 三档可供选择,本实验中选用700mH。
直流电压表及直流电流表从DJK02挂件上得到。
图3-6单相半波可控整流电路
四、实验内容
(1)单结晶体管触发电路的调试。
(2)单结晶体管触发电路各点电压波形的观察并记录。
(3)单相半波整流电路带电阻性负载时U d/U2= f(α)特性的测定。
(4)单相半波整流电路带电阻电感性负载时续流二极管作用的观察。
五、预习要求
(1)阅读电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。
(2)复习单相半波可控整流电路的有关内容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时的工作波形。
(3)掌握单相半波可控整流电路接不同负载时U d、I d的计算方法。
六、实验方法
(1)单结晶体管触发电路的调试
将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波
器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。
调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170°范围内移动?
(2)单相半波可控整流电路接电阻性负载
触发电路调试正常后,按图3-6电路图接线。
将电阻器调在最大阻值位置,按下“启动”按钮,用示波器观察负载电压U d、晶闸管VT两端电压U VT的波形,调节电位器RP1,观察α=30°、60°、90°、120°、150°时U d、U VT的波形,并测量直流输出电压U d和电源电压U2,记录于下表中。
U d=0.45U2(1+cosα)/2
(3)单相半波可控整流电路接电阻电感性负载
将负载电阻R改成电阻电感性负载(由电阻器与平波电抗器L d串联而成)。
暂不接续流二极管VD1,在不同阻抗角[阻抗角φ=tg-1(ωL/R),保持电感量不变,改变R的电阻值,注意电流不要超过1A]情况下,观察并记录α=30°、60°、90°、120°时的直流输出电压值U d及U VT的波形。
计算公式: U d = 0.45U2(l十cosα)/2
七、实验报告
(1)画出α°=30°、60°、90°、120°、150°时,电阻性负载和电阻电感性负载的U d、U VT波形。
α°=30°时:
α°=90°时:
α°=120°时:
(2)分析实验中出现的现象,写出体会。
八、注意事项
(1)参照实验一的注意事项。
(2)在本实验中触发电路选用的是单结晶体管触发电路,同样也可以用锯齿波同步移相触发电路来完成实验。
(3)在实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,避免误触发。
(4)为避免晶闸管意外损坏,实验时要注意以下几点:
①在主电路未接通时,首先要调试触发电路,只有触发电路工作正常后,才可以接通主电路。
②在接通主电路前,必须先将控制电压U ct调到零,且将负载电阻调到最大阻值处;接通主电路后,才可逐渐加大控制电压U ct,避免过流。
③要选择合适的负载电阻和电感,避免过流。
在无法确定的情况下,应尽可能选用大的电阻值。
(5)由于晶闸管持续工作时,需要有一定的维持电流,故要使晶闸管主电路可靠工作,其通过的电流不能太小,否则可能会造成晶闸管时断时续,工作不可靠。
在本实验装置中,要保证晶闸管正常工作,负载电流必须大于50mA以上。
(6)在实验中要注意同步电压与触发相位的关系,例如在单结晶体管触发电路中,触发脉冲产生的位置是在同步电压的上半周,而在锯齿波触发电路中,触发脉冲产生的位置是在同步电压的下半周,所以在主电路接线时应充分考虑到这个问题,否则实验就无法顺利完成。
九、实验小结
本次实验中,经过亲自的动手连接电路,并自己对波形图进行观察,对单相半波整流电路的概念又有了新的理解。
本来只是在书本上看到了理想的波形,但是在实验中,真正的波形还是和理想波形有很大的差别的。
因此,这次实验还是让我觉得受益匪浅,对单项半波整流电路亦有了新的认识。