变频器在风机水泵类负载的节能分析

合集下载

为什么风机水泵类使用变频效果好

为什么风机水泵类使用变频效果好

为什么风机水泵类负载使用变频器节能效果好?
根据流体力学的基本定律可知:风机水泵类负载是典型的平方转距负载,其主要特点是:转速n与转矩T以及负载功率P具有如下关系:T∝n2,P∝n3。

即转矩与转速平方成正比,功率与转速立方成正比。

通常风机水泵类负载多是根据满负荷工作需用量来选型,实际应用中大部分时间并非工作于满负荷状态,所以,只要平均转速稍微下降一点,负载功率就下降得很快,从而达到节能效果。

但采用电机直接起动方式时,由于转速无法调节,常用挡风板、阀门来调节风量或流量,这样不仅造成能源的浪费而且由于过大的起动电流造成电网冲击和设备的震动及水锤现象。

采用变频器调速时,可以根据实际工艺需要方便地控制速度。

例如:当电机转速为额定转速的80%时,负载功率为额定功率的(80%)的三次方,即50%左右。

这样可见,转速下降二成,节能达四成多。

同时,可以方便地实现闭环恒压控制,节能效率将进一步提高。

使用变频器避免了起动时对电网的冲击,降低设备故障率,消除震动和水锤现象,延长设备使用寿命,同时也降低了对电网的容量要求和无功损耗。

变频器在锅炉风机、水泵上的应用及节能分析

变频器在锅炉风机、水泵上的应用及节能分析
图 1 风机节 电原理
H 一 2 H : 2H — T , D HH 的面积 即是节 能值 。 2 Q X T Q ( z H )图 B 2 T
再如流量变至 Q 若仍 以额定转速运行 , 3 所需功率 Q 。浪 3 H, X
费能量 为 F H H 。 C . T
图 1中, 曲线( ) 风机在恒定 转速 n 下的风压一风量 1为 l (卜 ) }一Q 特性 , 曲线( ) 2 为管 网风 阻特性 ( 风门全开 ) 。假设 风 机工作在 A点效率最 高 , 时风压为 H , 此 2风量 为 Q , 轴功率 N 与 Q、 2 。 .H 的乘积 成正 比, 图中可用 面积 .-O 。 在 4I Q 表示 。 a ̄
益 十分 明显 。
2 应 用 实例 及 节 能 分 析
的方法相当于增加管 网阻力 , 使管 网阻力特 性变到 曲线 () 3, 系统 由原来 的工况点 A变 到新 的工况 点 B运行 。从 图中看 出 , 压反而增加 , 功率与 面积 B Q 成正 比。显然 , 风 轴 H0 2 轴
量, 其节能效果非常明显。

霞 蔡 小平
张维 清
目 , 前 国内外许多 电力拖动场合 已将矢量控 制的变频器 广泛应用于通用机 械 、 纺织、 印染 、 造纸 、 、 轧钢 化工等行业 中 交流电动机 的无级 调速 , 不仅 自动调速精 度越 来越 高 , 而且 取得了明显 的节能 效 果。风机 、 水泵类 负 载为平 方 转矩 负 载 , 制要求简单 , 变频 器价格 也较低 , 控 相应 但其节 能效果却
( 流量 Q 。从 图 2可知 : ) 当流量 Q 降至 Q 若不改变 水泵转 。 2 速, 扬程将升 至 B工作点 , 其功率可 用 H 2 2 Q 来计 算 , X 对应 面积 B 2Q 。原 A工 作点功率 Q ' HO 2 1 HI X 图上面积 .-O 。 4I Q , a ̄ 两者所耗功率变化不大 , 如果降低转 速至 () 2 即可节能 Q 2 X

浅谈风机水泵自控系统变频节能改造

浅谈风机水泵自控系统变频节能改造

浅谈风机水泵自控系统变频节能改造【摘要】风机水泵自控系统变频节能改造是针对传统系统的能耗高、效率低等问题进行改进的一种技术方案。

本文首先从背景介绍入手,探讨了传统系统存在的问题。

然后介绍了变频节能技术的原理及其在节能改造中的应用。

接着提出了改造方案,并分析了实施效果和技术难点。

实施效果方面,通过数值数据展示了改造后的节能效果。

技术难点方面,重点探讨了在实施过程中可能遇到的挑战和解决方案。

结论部分总结了本文讨论的主要内容,强调了节能效果显著,推广应用前景广阔。

最后指出了该技术的重要性,并展望了未来的发展方向。

【关键词】风机,水泵,自控系统,变频,节能改造,引言,背景介绍,变频节能技术原理,改造方案,实施效果,技术难点,节能效果显著,推广应用前景,总结1. 引言1.1 引言风机水泵自控系统变频节能改造是当前工业领域中的一项重要技术革新,通过引入变频节能技术,可以有效地提高设备的运行效率,降低能耗,实现节能减排的目的。

随着我国工业化进程的加快,能源消耗量逐渐增大,能源资源的紧缺和环境污染等问题也日益突出,因此加强节能减排工作,实现能源的有效利用已成为当前重要的任务。

风机水泵系统在工业生产中广泛应用,传统风机水泵系统运行时常常以全速运行,无法根据实际需求合理调节运行状态,造成能源的浪费。

而通过引入变频技术,可以根据实际负荷需求来调节设备的运行速度,实现精确控制,达到节能减排的效果。

对风机水泵自控系统进行变频节能改造具有重要的实际意义和推广价值。

本文将从背景介绍、变频节能技术原理、改造方案、实施效果和技术难点等方面进行探讨,以期为风机水泵自控系统的节能改造提供一定的参考和借鉴。

部分结束。

2. 正文2.1 背景介绍风机水泵系统在工业生产中广泛应用,其耗电量通常很大,而且运行效率低下。

为了改善系统的运行效率和降低能耗,风机水泵自控系统变频节能改造逐渐成为一种流行的解决方案。

变频节能技术能够根据实际负荷的需求自动调节电机的转速,从而降低系统运行时的能耗。

变频技术在风机、泵类负载节能中的应用

变频技术在风机、泵类负载节能中的应用

变频技术在风机、泵类负载节能中的应用摘要:本文通过变频调速在风机、水泵类设备上的应用,阐述了风机、水泵变频调速的节能原理。

介绍了风机、水泵负载对变频器的性能要求。

关键词:变频器;风机、水泵;节能;0.前言我国的电动机用电量占全国发电量的60%~70%,风机、水泵设备年耗电量占全国电力消耗的1/3。

造成这种状况的主要原因是:风机、水泵等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输出功率大量的能源消耗在挡板、阀门地截流过程中。

由于风机、水泵类大多为平方转矩负载,轴功率与转速成立方关系,所以当风机、水泵转速下降时,消耗的功率也大大下降,因此节能潜力非常大,最有效的节能措施就是采用变频调速器来调节流量、风量,应用变频器节电率为20%~50%,而且通常在设计中,用户水泵电机设计的容量比实际需要高出很多,存在“大马拉小车”的现象,效率低下,造成电能的大量浪费。

因此推广交流变频调速装置效益显著。

1.变频调速节能原理1.1变频节能由流体力学可知,P(功率)=Q(流量)×H(压力),流量Q与转速N的一次方成正比,压力H与转速N的平方成正比,功率P与转速N的立方成正比,如果风机、水泵的效率一定,当要求调节流量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。

即水泵电机的耗电功率与转速近似成立方比的关系。

例如:一台水泵电机功率为55KW,当转速下降到原转速的4/5时,其耗电量为28.16KW,省电48.8%,当转速下降到原转速的1/2时,其耗电量为6.875KW,省电87.5%。

2.2 功率因数补偿节能无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,由公式P=S×COSФ,Q=S×SINФ,其中S-视在功率,P-有功功率,Q-无功功率,COSФ-功率因数,可知COSФ越大,有功功率P越大,普通水泵电机的功率因数在0.6-0.7之间,使用变频调速装置后,由于变频器内部滤波电容的作用,COSФ≈1,从而减少了无功损耗,增加了电网的有功功率。

altivar 38 风机泵类专用变频器应用

altivar 38 风机泵类专用变频器应用

Building a New Electric WorldAltivar 38风机泵类专用变频器应用及节能分析前言风机水泵类负载是典型的变转距负载转距或风压与转速平方成正比故在低速运行时通常风机水泵类负载多是根据满负荷工作需用量来选型当采用电机直接方式常用挡风板这样不仅造成能源的浪费而且由于过大的启动电流造成电网冲击和设备的震动和水锤现象泵类负载是一种理想的控制方法理论上其消耗的功率为额定功率的3¶øÇÒÒ»°ã±äƵÆ÷¶¼ÄÚÖÃPI 功能节能效率将进一步提高避免了启动时对电网的冲击消除震动和水锤现象同时也降低了对电网的容量要求和无功损耗风机的挡板控制与变频调速电机以定速运转根据挡板在风道中的安装位置不同一般地说控制效果好与挡板控制相比如图所示出口挡板控制与变频调速入口挡板控制与变频调速泵采用阀门调节与变频调速阀门调节与变频调速关系示意如图泵类负载采用变频调速可以取得非常好的节能效果阀门调节与变频调速ATV38变频器特点介绍Altivar 38是一种专门用于风机泵类负载的三相异步电动机变频器功率范围0.75 kW至315 kWͨ·çÒÔ¼°¿ÕÆøµ÷½Ú(HVAC)方面的现代化应用场合同时提高了用户的舒适程度在变频器的最初设计中就已经考虑了电磁兼容性的要求滤波器和电抗器内置在设备中或作为选件提供Ø节能Ø使用速度检测自动捕捉旋转负载(速度跟随)Ø根据速度调整电流限制Ø快/ 慢带有预置PI 给定Ø运行时间记录Ø电机降噪l保护功能Ø 4 个逻辑输入 2 个模拟输入和1 个模拟输出Ø电气参数显示及运行指示Ø变频器中标准配置一个符合Modbus协议的RS485多点串口连接一台PC机n选件l PowerSuite调试软件l I/O扩展卡l应用卡多电机功能METASYS N2Fipio Modbus PlusProfibus DP CANopen LonWorks Gateway节能计算软件Eco8软件介绍而专门开发的节能计算及选型软件可以方便地选择变频器并计算出节能效果首先输入项目信息项目名称等等输入电机额定电压软件即可自动计算出选用变频器的型号当地电价即可计算出节电量和收回投资的时间方便用户选型和投资成本管理ATV38典型应用实例实例1±äƵÆ÷Ñ¡ÓÃA TV38HC10N4Xl中心空调风机约127000 kWh/yearl投资回收期某电厂锅炉风机和水泵l电厂锅炉风机变频器选用ATV38HC23N4X±äƵÆ÷Ñ¡ÓÃATV38HC19N4X75KW两台l节能约24 个月实例3空压机锅炉冷却塔l冷却塔风机年运行时间4,000小时节能电机总容量300KW½ÚÄܵç»ú×ÜÈÝÁ¿90KW½ÚÄÜ。

风机变频

风机变频

风机、水泵变频调速节能分析来源:希望森兰科技股份有限公司发布时间:2005-03-15 点击次数:671 能源是国家重要的物质基础,能源的供需矛盾已成为制约我国社会主义经济建设的主要因素之一。

在能源问题上国务院提出“节约与开发并重”的方针,就是依靠技术进步,把节约能源以解决能源问题作为我国重要的技术经济政策。

据不完全统计,全国风机、水泵、压缩机就有1500万台电动机,用电量占全国总发电量的40~50%,这些电动机大多在低的电能利用率下运行,只要将这些电动机电能利用率提高10~15%,全年可节电300亿kW以上。

根据火电设计规程SDJ-79规定,燃煤锅炉的送、引风机的风量裕度分别为5%和5%~10%,风压裕度分别为10%和10%~15%。

设计过程中很难计算管网的阻力、并考虑到长期运行过程中发生的各种问题,通常总是把系统的最大风量和风压裕度作为选型的依据,但风机的型号和系列是有限的,往往选取不到合适的风机型号时就往上靠,裕度大于20~30%比较常见。

因此这些风机运行时,只有靠调节风门或风道挡板的开度来满足生产工艺对风量的要求。

风机和水泵的机械特性均为平方转矩特性,水泵运行时,靠阀门的开度调节流量来满足供水要求,工况与风机相似,靠调节风门、风道档板或阀门的开度来调节风机风量,水泵流量的方法、称为节流调节,在节流调节过程中,风机或水泵固有特性不变、仅仅靠关小风门、挡板或阀门的开度,人为地增加管路的阻力,由此增大管路系统的损失,不利于风机,水泵的节能运行。

采用调速控制装置,通过改变风机水泵转速,从而改变风机风量,水泵流量以适应生产工艺的需要,这种调节方式称为风机水泵的调速控制。

风机、水泵以调速控制方式运行能耗最省,综合效益最高。

交流电机的调速方式有多种、变频调速是高效的最佳调速方案,它可以实现,风机水泵的无级调速,并可方便地组成闭环控制系统、实现恒压或恒流量控制。

一、风机水泵变频调速的节电原理:如图示为离心风机水泵的风压、(水压)H-风量(流量)Q曲线特性图:n1-代表风机水泵在额定转速运行时的特性;n2-代表风机水泵降速运行在n2转速时的特性;R1-代表风机水泵管路阻力最小时的阻力特性;R2-代表风机水泵管路阻力增大到某一数组时的阻力特性。

举例说明离心式风机与水泵采用变频调速节能的原理

举例说明离心式风机与水泵采用变频调速节能的原理

举例说明离心式风机与水泵采用变频调速节能的原理在各种工业用风机、水泵中,如锅炉鼓、引风机、深井、离心泵等,大部分是额定功率运行,而它们的能耗都与机组的转速有关。

通常在工业生产、产品加工制造业中风机设备主要用于锅炉燃烧系统、烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。

风机流量的设计均以最大风量需求来设计,其调整方式采用调节风门、挡板开度的大小、回流、启停电机等方式控制,无法形成闭环控制,也很少考虑省电。

这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失消耗掉了。

在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。

从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。

同样,离心式水泵在我国当前的工业生产和人民日常生活中起到很大的作用,水泵使用三相异步电动机进行拖动,水泵流量的设计同样为最大流量,压力的调控方式只能通过控制阀门的大小、电机的启停等方法。

这种人为增加管阻的调节方式虽然满足了生产生活所需的对流量的控制,但是浪费了大量的电能,不是一种经济的运行方式。

电气控制采用直接或Y-△启动,不能改变风机和水泵的转速,无法具有软启动的功能,机械冲击大,传动系统寿命短,震动及噪声大,功率因数较低等是其主要难点。

为解决这些难题,相关科研技术人员根据生产需要对风机和水泵等装置的转速进行控制和调节以适应工艺要求和运行工况,在满足生产需求的基础上又节约了能源。

所以,变频调速对生产生活具有十分重要的意义,这也就意味着我们有必要了解风机和水泵等装置采用变频调速节能的原理。

为了对变频调速节能原理有更清晰、更深入的理解,我们可以先从变频器的工作原理出发。

变频器电路(见下图)的基本工作原理为:三相交流电源经二极管整流桥输出恒定的直流电压,由六组大功率晶体管组成逆变器,利用其开关功能,由高频脉宽调制(PWM)驱动器按一定规律输出脉冲信号,控制晶体管的基极,使晶体管输出一组等幅而不等宽的矩形脉冲波形,其幅值为逆变器直流侧电压Vd而宽度则按正弦规律变化,这一组脉冲可以用正弦波来等效,此脉冲电压用来驱动电机运转,通过控制PWM驱动器输出波形的幅值和频率,即可改变晶体管输出波形的频率和电压,达到变频调速的目的。

简述泵与风机变频运行的节能分析

简述泵与风机变频运行的节能分析

1前 言
通过 式( 1 ) 可知变 频器 是通 过改变 电源 频率睐 改 变 电动机转 速 的。 可通过 降低转速 达到节 能的 目的 。 这里 必须 指 出, 变频器 的投资 很 昂贵 , 投资 必须 审核
变频 器 以取得 经济 效益
近一 段时 期 , 随着环 保 成本的投 入增 加和 煤炭 资源的 日益消 耗 , 节 能降耗 已经成 为火 电厂降低成 本 , 保 持盈 利的重 要手段 之一 。 在 日常生产 中 , 降低厂 用 电是 控制成 本 的主要途 径 , 而 电厂 中各种 泵和 风机 则是最 主要 的耗 电设备 , 并 且这 些设备 往往 是长 期连 续运 行和 常常处 于低 负荷 及变 负荷运 行状 态 , 运 行 工况 点偏 离高 效 点 , 运行 效 率降 低 ,大量 的能 源在 终端 利 用 中被 白 白地 浪 费 掉。 因此 , 对 电厂泵 和风 机进行 节 能研 究与 改造 具有 重要 的现 实意 义 。 2泵和 风 机变 频调 节 的节 能原 理 改变 泵 和风机 转速 可 以改变泵 的性 能 曲线, 在管路 曲线 保持 不变情 况下 , 使 工作点 改变 , 这 种调节 方 式称为 变速 调节 。 如图l 所示 , 当泵和 风机 的转速升
了厂 用 电 。
4 结束 语

毽 l

ቤተ መጻሕፍቲ ባይዱ
次 风机变 频 改造 还具有 一 下优 点 :
( 1 ) { 殳 备运 行和 维护费 用下 降 : 采用调 速 后 , 由于 通过调 节 电机转 速来 实现 节能 , 在负荷 低时 , 电机 、 风机 的转速也 降低 , 设备 的轴承等 磨损 也减轻 , 维护周 期 加长 , 设备 运行 寿命 延 长。 同时也 降 低了风 机 的噪音 。 ( 2 ) 可对 电机 实现软启 动 : 启 动 电流不超过额 定 电流 的 1 . 2 倍, 电机 的使用 寿 命 增长 。 同时减 少了 由于启 动时 的机械 冲击 对轴 承 、 阀 门、 管道 等 造成 的损坏 。

变频器在泵类负载中的应用分析

变频器在泵类负载中的应用分析
择。
4) 可以实现电动机的高速运行。 5) 在变频器容量允许的情况下, 一台变频器 可以 带多台电动机, 而且电动机的容量可以不一 致。 ) 6 采用工频直接启动异步电动机, 启动初始 电流达到额定电流5 一 倍,如果采用低频启动, 6 则可以把启动电流限制到1. 5 一 倍。 2
2 泵的特性分析
泵的 流量特性随泵的 种类而异, 一般来说, 泵 的特性与其阻力矩的平方成正比。泵的运行点由特 性曲线和阻力曲 线的 交点确定的。当 泵采用恒速运 行和阀门控制时, 减少流量就需要调整阀门大 为了 小, 那么由于阻力增大, 则扬程增大, 流量减小。 那么当采用变频器控制泵的转速时, 如需要降 低流量, 只要降低泵的 转速就可以 达到减少流量的
目的。
1 变频器的特点
自2 世纪6 年代中 0 0 期. 普通晶闸管、 小功率 晶体管的实用化, 使变频调速开始成为交流调速的 主流, 由于其具有众多的优点, 使其在工业系 统的 应用日 益广泛。 其主要特点如下。 ) 1 应用变频器调速, 可以改变笼形异步电动 机的频率和电压,实现调速运行。 ) 2 采用变频启动或停车可以根据负载的运行 恰当的设定加、 减速时间, 实现软启动或软停车。
第2 卷 增刊 0
2朋 7 年 10 月
中 国修 船
CHINA SHIPREP 内 IR
Vo Z l O
l s
o d . 2 以】 7
变频 器在 泵 类负载 中的应 用分 析
唐立 国
( 海洋 石油工 程股份有限公司设计公司, 天津 30 风) ( 52 摘 在工业系 要: 统中, 许多泵类负 载仍在由工 频电源 供电, 在能源 价格日 益提高的 今天, 运 行成本很高。而随着半导体技术的成熟, 变频器 在工业系 统中 的应用日 益广泛,文章提出了 采用 变 频器来驱动大功率的泵类负载, 通过比较发现,可以节省大量能源, 并使电动机获得了 较好的

变频器在水泵上的使用及节能分析

变频器在水泵上的使用及节能分析
Zabio Y] hne gnun ugiyg i y Yau n
I 一
变频器在 水泵上 的使用及节能 分析
孙 鹏 宇
( 宁省 葫芦 岛兴 城双 兴 供热 有 限公 司 , 宁 葫 芦 岛 150 ) 辽 辽 2 10 摘 要 : 过 介绍 泵 类 负载 的特 性 , 对 工频 运 行 时 由阀 门控 制 调节 流量 和 变 频运 行 时 由变频 器 调 节流 量 的 能量 消 耗进 行 对 比, 通 并 从
的 流 量 控 制 方 法 , 种 是 通 过 控 制 泵 出 口 的 阀 门来 调 节 , 一 变 频 器 也 被 广 泛 应 用 。 一 另
种是通过变频器控制泵 的转速 来调节 。 本文对这两种不 同的水 2 泵 类 负载 的 工 作 特 性 及 2种 调 节 流 量 的 方 法 泵 流 量 控 制 方 法 进 行 了分 析 , 为 二 者 都 能 达 到 工 业 运 行 的 要 认 在 当今工业企业 中, 生产 设备 的传动 用电机大部分 是交流 求 , 其 在 能 量 消 耗 方 面 有 所 区 别 , 根 据 不 同情 况 来 选 择 设 但 应 异 步 电动 机 。 笔 者 所 在 的单 位 , 热 单 位 耗 电量 约 占企 业 全 部 供 备、 确定运 行方式 , 而在满 足运 行要求 的前提 下实现 节 能降 从 电耗 的 8 %左 右 , 风 机 和 泵 类 负 载 安 装 时 企 业 还 处 于 发 展 初 5 而 耗 , 高企业竞争力 。 提 期 , 力 有 较 大 的余 量 , 此 这 类 负 载 使 用 时 能 源 利 用 率 和 功 电 因 1 变 频 器 的 发 展 及 行 业 应 用 率因数都 比较低 , 在 己严重制约着 企业经济效益 的提高 。当 现 近年来 , 随着 电力 电子技术 、 微机技 术及 自动控制 技术 的 前, 风机和 泵类 负载 的节 电问题对 企业的生存发展 已变得越来 迅速发展 , 电气系统 的传 动技术也面 临着一场新 的工业革命 ,

利用变频技术对给水泵电机的节能改造及综合效益分析

利用变频技术对给水泵电机的节能改造及综合效益分析

利用变频技术对给水泵电机的节能改造及综合效益分析随着节能环保意识的不断增强,对于水泵电机的节能改造越来越受到关注。

变频技术作为一种高效节能的控制手段,被广泛应用于给水泵电机的节能改造中。

本文将从变频技术的原理及应用、给水泵电机的节能改造方法、节能效益分析几个方面对给水泵电机的节能改造及综合效益进行探讨。

一、变频技术原理及应用变频技术是通过改变电机的供电频率来控制电机的转速,从而实现精确的控制和节能降耗的一种技术。

变频器作为变频技术的核心设备,通过改变输入电压的频率和幅度来调节电机的输出转速,实现能源的有效控制。

在给水泵电机的应用中,通过安装变频器控制给水泵电机的转速,可以实现流量的精确调节和节能降耗的目的。

由于水泵在工作过程中通常存在负载波动和流量变化的情况,传统的固定速率供电方式将使电机的能耗过高,浪费大量的能源。

而通过变频技术,可以根据实际需求实时调节给水泵的转速,使其在不同负载情况下达到最佳运行效果,提高系统的能效。

二、给水泵电机的节能改造方法1.安装变频器:将变频器安装在给水泵电机的供电线路上,通过改变电机的供电频率来实现对电机转速的精确控制。

2.设置参数:根据实际需求和给水泵电机的特性,对变频器进行参数设置,如最大转速、最小转速、流量曲线等。

3.控制策略选择:根据给水泵电机的实际工况,选择合适的控制策略,如恒差压控制、恒流控制等。

4.运行监测与调试:安装好变频器后,进行运行监测和调试,通过监测参数的变化来控制给水泵电机的工作状态,并进行相应的调整。

三、节能效益分析变频技术对给水泵电机的节能改造可以带来显著的节能效益和经济效益。

1.提高能效:通过变频技术控制给水泵电机的转速,可以使其在实际工况中保持最佳的能效,降低电机的无功耗和机械损耗,提高系统的效率。

2.节约能源:传统的固定速率供电方式会使给水泵电机在不同负载情况下效率低下,浪费大量的能源。

而变频技术可以根据实际需求实时调节给水泵的转速,使其在不同负载情况下达到最佳运行效果,节约能源。

为什么要使用变频器

为什么要使用变频器

为什么要使用变频器
变频调速已被公认为是最理想、最有发展前途的调速方式之一,采用通用变频器构成变频调速传动系统的主要目的,一是为了满足提高劳动生产率、改善产品质量、提高设备自动化程度、提高生活质量及改善生活环境等要求;二是为了节约能源、降低生产成本。

1、变频调速的节能
由于采用变频调速后,风机、泵类负载的节能效果最明显,节电率可达到20%~60%,这是因为风机水泵的耗用功率与转速的三次方成比例,当用户需要的平均流量较小时,风机、水泵的转速较低,其节能效果也是十分可观的。

而传统的挡板和阀门进行流量调节时,耗用功率变化不大。

由于这类负载很多,约占交流电动机总容量的20%~30%,它们的节能就具有非常重要的意义。

2、软启动
工频状况下马达采用的是星三角降压延时启动,此时电流是电机额定电流的47倍,若多台大功率的电机同时启动,将对电网造成很大冲击。

采用变
频器后,马达只需在额定电流下就可启动,电流平滑无冲击,减少了启动电流对马达和电网的冲击,延长了电机的使用寿命。

3、减少无功功率
无功功率不但增加线损和设备的发热,更主要的是因无功功率因素的降低导致电网有功功率的降低。

而使用变频器调节后由于变频器内滤波电容的使用,使得功率因素接近为1,增大了电网的有功功率。

从而节省了无功功率消
耗的能量。

4、方便控制,使控制系统简单化
1.适应性强,不易受电压波动影响,可适应电压±20%的变化;
2.调速效率高,可达95%以上;。

风机水泵压缩机变频调速控制节能与应用(含工频节流功率计算公式)

风机水泵压缩机变频调速控制节能与应用(含工频节流功率计算公式)

风机水泵负载变频调速节能原理相似定律:两台风机或水泵流动相似,在任一对应点上的统计和尺寸成比例,比值成相等,各对应角、叶片数相等,排挤系数、各种效率相等。

流量按照相似定律,由连续运动方程流量公式:φπηη⨯⨯⨯⨯⨯=⨯⨯=d D A vm vm vv v q流速公式: 60π⨯⨯=n D v m 式中:qv——体积流量,s m3;ηv——容积效率,实际容积效率约为0.95;A ——有效断面积(与轴面速度vm垂直的断面积),m²;D ——叶轮直径,m ; n ——叶片转速,r/mi n ; b ——叶片宽度,m ;vm——圆周速度,m/s ;φ——排挤系数,表示叶片厚度使有效面积减少的程度,约为0.75~0.95;按照电机学的基本原理,交流异步电动机转速公式: p f s n ⨯⨯-=60)1( 式中: s ——滑差; P ——电机极对数; f ——电机运行频率。

流量、转速和频率关系式:φππφππηη⨯⨯⨯⨯⨯⨯⨯⨯-⨯=⨯⨯⨯⨯⨯⨯⨯=⇒d D p f s D d D n D v v v q 6060)1(60f n q v∞∞⇒ 可见流量和转速的一次方成正比,和频率的一次方成正比。

扬程按照流体力学定律,扬程公式:²21v m H ⨯⨯=ρ扬程、转速和频率关系式:²²21216060)1(6022f n H H p f s D n D ∞∞⇒⨯⨯=⨯⨯=⇒⎪⎭⎫⎝⎛⨯⨯⨯-⨯⎪⎭⎫⎝⎛⨯⨯ππρρ 可见扬程和转速的二次方成正比,和频率的二次方成正比。

式中:H ——水泵或风机的扬程,m ;功率风机水泵的有效功率:每秒钟流体经风机水泵获得的能量。

水泵:H g q Pve⨯⨯⨯=ρ或 风机:P qP ve⨯=⎪⎭⎫ ⎝⎛⨯⨯⨯-⨯⎪⎭⎫⎝⎛⨯⨯⇒⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯-⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=6060)1(6022216060)1(2160πηπηρφππρρφππρp f s D n D P d D p fs D g d D n D g vv e fnPe33∞∞⇒可见有效功率和转速的三次方成正比,和频率的三次方成正比。

浅谈变频器在各类负载应用中的节能问题

浅谈变频器在各类负载应用中的节能问题

则随着负载速度的增高而线形增加 ,传送带 、搅
拌 机 、挤 压 机 和机 械 设 备 的进 给 机 构 等摩 擦 类 负
载以及起重机 、提升机 、电梯等重力负载 ,都属
收稿 日 期 :2 0 1 0 — 0 4 — 2 1 ;修订 日期 :2 0 1 3 — 0 4 — 0 9
T M /
LI Xi a o -h u a
( S h a n t o u L u c k y f i l m L i mi t e d C o mp a n y ,S h a n t o u 5 1 5 0 6 4 ,C h i n a )
Ab s t r ac t :Ex a mp l e a n a l y s i s s h o we d t h a t r a t e d p o we r r e q u i r e d b y t h e l o a d p o we r wa s f a r l e s s t h a n t h e e l e c t r i c mo t o r t r a n s d u c e r i n d i f f e r e n t
率 与 转 速 的三 次 方成 正 比 。各种 风 机 、水 泵 和 油
1 变 频 器 在 不 同 负载 应 用 中存 在 的 “ 大 马 拉
小车” 问题 的分析和 改进方法
1 . 1 负载 的 类型
泵 ,都 属于 典型 的二 次方律 负 载 。
1 . 2“ 大 马拉 小车 ” 的定义及 界 定
在这 类负载 中 ,负载转 矩 孔与转速 r t 无关 ,
任何 转 速 下 n总保 持 恒 定 或 基本 恒 定 ,负 载功 率
时 ,随着负荷率 的减小 ,效率将 急剧下降r - 1 。因 此 界 定 拖 动 系 统 处 于 大 马 拉 小 车状 态 的标 志

风机泵类负载及变频器参数

风机泵类负载及变频器参数

风机泵类负载及变频器参数风机,泵类属于平方转矩负载,即负载的转矩与转速的平方成正比。

对于风机类负载,要调节加减速时间,对于水泵类负载,要设置“积分停车”防止水锤现象发生。

这里涉及两个问题:(1)负载类型;(2)变频器参数对负载类型的设置。

首先,我们来看负载类型。

恒转矩调速是指负载转矩保持不变,但对转速有不同的要求;恒功率调速是指负载功率保持不变,但对转速有不同的要求.这与电机的额定输出功率和转矩无关,只是要用负载的转矩和功率来选择电动机和变频器.恒转矩负载的特点是负载转矩与转速无关,任何转速下转矩总保持恒定或基本恒定。

应用的场合比如传送带、搅拌机,挤压机等摩擦类负载以及吊车、提升机等位能负载。

恒功率负载的特点是比如机床主轴和轧机、造纸机、塑料薄膜生产线中的卷取机、开卷机等要求的转矩,大体与转速成反比,这就是所谓的恒功率负载。

负载的恒功率性质应该是就一定的速度变化范围而言的。

当速度很低时,受机械强度的限制,转矩不可能无限增大,在低速下转变为恒转矩性质。

负载的恒功率区和恒转矩区对传动方案的选择有影响,电动机在恒磁通调速时,最大容许输出转矩不变,属于恒转矩调速;而在弱磁调速时,最大容许输出转矩与速度成反比,属于恒功率调速。

如果电动机的恒转矩和恒功率调速的范围与负载的恒转矩和恒功率范围相一致时,即所谓"匹配"的情况下,电动机的容量和变频器的容量均最小。

这一点从直流电机特性来理解更容易。

除了上述两类负载一般还有风机、泵类负载,他的特点是转矩和速度的2次方成正比。

随着转速的减小,转矩按转速的2次方减小。

这种负载所需的功率与速度的3次方成正比。

关于变频器参数设置,以下转自Baidu知道:一加减速时间加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。

通常用频率设定信号上升、下降来确定加减速时间。

在电动机加速时须限制频率设定的上升率以防止过电流(升速时过电流当负载的惯性较大,而升速时间又设定得太短时,意味着在升速过程中,变频器的工作效率上升太快,电动机的同步转速迅速上升,而电动机转子的转速因负载惯性较大而跟不上去,结果是升速电流太大。

变频器在水泵系统中的应用

变频器在水泵系统中的应用

变频器在水泵系统中的应用变频器是一种用于控制马达转速的电子装置,在水泵系统中有广泛的应用。

本文将重点介绍变频器在水泵系统中的应用,包括其原理、优势以及适用场景。

同时,本文将分析变频器在水泵系统中的效果,并对未来的发展进行展望。

一、原理变频器是通过改变交流电频率来调整马达转速的装置。

具体而言,变频器通过将交流电转换为直流电,然后再将其转换回交流电,并可根据需要改变输出交流电的频率,从而控制马达的转速。

这种频率调节的能力使得变频器成为水泵系统的理想控制设备。

二、优势1. 节能高效:变频器可以根据实际需求自动调整水泵的转速,从而降低能耗。

在低负荷运行时,变频器能够将水泵的转速降低,节省能源。

相比之下,传统的水泵驱动方式往往只有两种转速选择,无法实现节能效果。

2. 平稳运行:变频器能够实现平稳加速和减速,避免了水泵启动和停止时的冲击,延长了设备的使用寿命。

3. 精确控制:变频器具有精确的转速控制功能,能够根据不同的工艺要求,将水泵转速调节到最佳状态,提高系统的运行效率。

4. 减少水击:水击是由于管路系统中的压力变化引起的水流冲击。

使用变频器能够控制马达启动和停止的速度,降低水击的风险。

三、适用场景变频器在水泵系统中广泛应用于以下场景:1. 极端条件:对于一些特殊工况,如恶劣环境、高温或低温条件下的水泵运行,传统的启停方式可能会导致设备受损。

而变频器能够实现平滑启停,在极端条件下更加可靠。

2. 变动负载:某些工业生产过程中,水泵负载可能会随着生产变动而有所调整。

采用变频器可以根据实时需求调整马达转速,保持水泵系统的高效运行。

3. 多泵系统:在某些应用中,多个水泵需要同时工作以满足需求。

变频器可以在不同水泵间实现联动控制,使得水泵系统协调工作,提高整体性能。

4. 高要求工艺:在一些对水流控制要求高的工艺过程中,变频器能够根据实际需求调整马达转速,确保流量和压力的精确控制。

四、效果与展望变频器在水泵系统中的应用已经取得了显著的效果。

高压变频技术在风机泵类应用中的节能分析

高压变频技术在风机泵类应用中的节能分析
X I ai xi n A H - a g
( h a g a h n Co l i eGr u S u n y s a 5 0, i a S u n y s a a n o p, h a g a h n 1 1 M 5 0 Chn )
Abs r c : ep p re p u d a i rn il ffe u n y c n r l n p l a in i a sa d p mp . t a t Th a e x o n sb scp icp eo rq e c o to d a pi to n fn n u s a c
平 均 6 计 ) 5 :
( 2 k -2 o W ×6 ) 4 :1 4 2o W 2k 5 ×2 h 8 8度
2 节能对比分析
根据 流体力 学知 识 , 机和泵 类负 载特性 如下 : 风
每 天 可实现节 电量 ( 电率 按 7 计 ) 节 5 :
14 8 8度 ×7 % 一1 8 5 3 4度
降低 。 据 多年 的变频改 造 丰富经 验 , 根 实际风 机或水 泵
系 统 节 电 率 根 据 实 际 运 行 工 况 一 般 可 达 到 3 ~ O
8 %( 理 图如图 1所示 ) O 原 。
2 2 引风 机节 能计算 : .
采 用变 频后 每 日节 电量 ( 采用 变 频 后 电机 负荷 按
改 造 前 风机 的 额定 转 速 Ⅳ 为 9 2p 现在 风 机 9 rm, 的 正 常转 速 Ⅳ 7 0p 即为 额 定 转 速 的 7 0 9 2 为 4 rm 起 动 电流大 , 械 冲击 、 机 电气保 护 特性 差等缺 点 , 不仅 影响设 备使 用寿命 , 而且 当负载故 障 时
效率 下降 等 因素 的影 响 , 即便 如此 , 电效果 还是 比较 节

变频器在风机、水泵中的节能应用

变频器在风机、水泵中的节能应用

变频器在风机、水泵中的节能应用摘要:由风机、水泵类负载节能,来阐述变频器是控制风机、水泵实现节能最佳方式,对提高自动化程度,减少人为因素的影响进行较详细分析,通过实例计算来证明在理论上是正确的,虽然初期一次性投资比较大,但从长远上来看在经济上是值的。

关键词:风机;水泵;节能;功率因数;变频器前言风机、水泵作为工业和生活中的通用机械有应用量大、应用面广的特点,其配套电机量也是巨大的,有资料统计,风机、水泵的耗电量占全国总发电量的20%以上,由于容量和工艺原因,大多数的风机、水泵类负载存在着不同程度上的电能浪费,在提倡节约能源的今天,减少浪费,节能问题的研究也迫在眉睫,变频控制是目前最好方法。

1.风机、水泵负载节能原理传统风机、水泵流量的设计均以最大需求来设计,其调整方式采用挡板、风门、回流、起停电机等方式控制,无法形成闭环回路控制,也较不考虑省电的观念,但实际使用中流量随着各种因素而变化,往往比最大流量小的多,要减少流量时,通常情况下只能调节档板和阀门的开度,阀门控制法的实质是通过改变管网阻力大小来改变流量,而这种控制方式当所需流量减小时,压力反而会增加,故轴功率的降低有限,此时,过剩的风机、水泵功率将导致压力增加造成很大的能量损耗。

由流体力学原理可知:流量与转速的一次方成正比,压力与转速的平方成正比,功率与转速的三次方成正比,如果水泵效率一定,当流量下降时转速成比例下降,而此时对轴输出功率p成立方关系下降;风机、水泵变频节能控制可在保持阀门、挡板开度不变的前提下,通过改变风机的转速来调节流量,其实质是通过减少流体动力来节电。

这种控制方式可从根本上消除风机、水泵设备,由于选型或负荷变化普遍存在的“大马拉小车”的动力浪费现象,消除了挡板截流阻力,使风机、水泵始终运行在最佳工作状态。

2.风机、水泵变频控制特点2.1异步电动机原理n=60f/p(1-s),可知变频调速是风机、水泵调速最佳方法,风机、水泵电机直接启动或Y/D启动,启动电流为其额定电流的4~7倍;这样会对电机设备和供电电网造成严重的冲击,而且还会对电网容量要求过高,启动时产生的电流和震动时对挡板和阀门损害极大,对设备、管路的使用寿命极为不利。

高压变频器在风机、水泵节能改造的应用

高压变频器在风机、水泵节能改造的应用

高压变频器在风机、水泵节能改造的项目2011 年5月24 日目录一、概述二、采取的措施三、产生的效益四、结论一、概述目前,随着企业竞争的日益加剧,生产成本的高低决定了企业在市场竞争的地位,在生产中很大一部分花在能耗上,降低生产过程中的电能消耗就可以有效的降低成本。

生产过程中,风机被大量的采用于工艺流程上,而风机负载耗电量较大,起动电流较高,同时用阀门、挡风板等装置来调节风量,在风道系统设计时,为满足生产环境的最大要求,必须留有余量,因此风机的风量和压力往往偏大,功率的偏大设计必然造成能量的浪费。

很多的风机有30-70%的能量是消耗在调节阀的压降上的,不仅造成电能的浪费,工作效率低,而且开动阀门时,还发出啸声和振动,经常发生事故。

该方法是以增加风阻、牺牲风机的效率来达到要求的,损耗严重。

如果利用变频调速技术改变设备的运行速度,以调节风量的大小,可以既满足生产要求,又达到节约电能,同时减少因调节挡板而造成挡板和管道的磨损,能取得明显的节能效果。

随着电力电子技术及电子技术的发展,变频技术日趋成熟,风压调节已普遍摒弃靠调整配套的风门开度的手段,改而采用变速的电气传动调节,变频调速已成为风机、泵类节能降耗的最佳、首选的电气传动方案。

二、采取的措施在选矿厂现有设备不变的情况下,采用高压变频改造项目主要涉及到两个方面;1、主厂房的高压风机,原设计共计六台,三用三备。

每台功率是355KW,10KV 供电。

2、水尾加压泵站的水泵,原设计每个加压泵站两用一备,四个加压泵站共计12 台电机,其中四台备用电机。

其中l#加压泵站有400Kw/10Kv 电机三台,2#加压泵站和4#加压泵站有355Kw/10Kv电机各三台,3#加压泵站有电机250Kw/lOKV三台。

主厂房的高压风机可以采够三台高压变频器,运行方式是一拖二运行,在原有设备的基础上进行改造,不用从新设计配电线路。

一用一备回路图水尾加压泵站每一个泵站采购两台高压变频器,可以使用二拖三运行,对原有配线略有改动,就可以完成,施工简单。

几种典型负载(风机、水泵)的节电率计算方法word精品文档6页

几种典型负载(风机、水泵)的节电率计算方法word精品文档6页

几种典型负载的节电率计算方法发布时间:2008-10-24 访问次数:(1)各种风机、泵类因为p∝n的三次方,节电效果显著,应首先应用变频器,具体值见表1。

表1 应用变频器节电效果计算时可用第 1 页式中p%——实际消耗功率百分值;s——实际转速百分值;k——系数,k=0.0001。

节电率n%=1-p%举例,转速n为90%时,相应频率值为45hz,则p%=0.0001×(90)3=73%。

所以n%=1 -73%=27%。

一般风机、泵类节电率在30%以上。

(2)空压机、挤出机、搅拌机因为p∝n,所以节电率与允许减速范围成正比,n%=n%。

(3)波动负载如破碎机、粉碎机、冲床、落料机、剪切机等9这种负载具有周期波动性,且波动功率较大,控制方式以闭环为好,相对节电率也大些,功率波动负载如图所示。

第 2 页(4)阶梯负载如间歇工作有储气罐的空压机、定容积水箱、水池、水塔等,工作时间t1是满负载ph,一定压力后自动卸载,电动机空载po时间为t1,采用降速降流量,用适当延长工作时间t1、缩短空载时间t2的方法来实现节电。

经实际运行,约有15%~20%的节电率。

而且t2<t1,一般t2=1/3~1-4/t1。

间歇工作负载的功率变化情况(po≠0)如图所示。

第 3 页(5)间歇负载如高位水箱、水池、水塔等。

工作时间t1为满负载,不工作时间为t2,且t2≥t1,现采用降速降流量,延长工作时间t1,缩短不工作时间t2,这样改变后节电效果也明显,约有20%~30%的节电率。

间歇工作负载的功率变化情况(po=0)如图所示。

第 4 页(6)人为的负载转移来实现节电这种情况往往发生在中央空调系统的冷却泵、冷冻泵或其他同类地方。

平常开一台泵,电动机处于满负载或超负载,而且压力、流量也无富余度,使用变频器后没办法实现节电。

但各用泵较多,一般是1:1(五星级宾馆大都如此),这时只有采用人为的负载转移方法来实现节电,见表2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Time % 70% 20% 10%
Power Used 15.12% 10.24% 8.57%
Total Power Used
33.93%
Rockwell Automation Hengsheng Internal Traing
变频调速水泵的轴功率计算式2
轴功率 = 额定功 ×( 实际转速N2 )3× 泵效率
HP2
率HP1
额定转速N1
Rockwell Automation Hengsheng Internal Train7g
例程计算
有一台水泵,其额定功率是30KW,额定输出流量 为300GPM,额定转速是2950转,求出在输出250GPM 时,使用变频调节比使用阀门调节,每年节省的电 费。(假如按这个流量每年运行2000小时,泵的效率 为0.75,每度电价格为0.8元。) 阀门控制: 轴功率:30 ×0.75=22.5KW 每年消耗轴功率为:22.5 ×2000=45,000KWH 每年投入电费:45,000 ×0.8=36,000元
80% Load
95% Load
10% of Time on 60% Load 20% of Time on 80% Load 70% of Time on 95% Load
Load % 60% 80% 95%
HP% =(Load% )3 21.60% 51.20% 85.74%
Time % 10% 20% 70%
Flow Head Input Power
Rockwell Automation Hengsheng Internal Train2g
泵系统工作特性曲线
100 % 扬程
% 流量 100
100 % 功率
% 流量 100 80%
Rockwell Automation Hengsheng Internal Train3g
To Process Valve
To Process
40
20 0
20 40 60 80 100120140160 % 流量
PFrePoercodecbseasscsk Feedback
120
120
100
100
80
% 扬程
60
40
% 80
Input Power
60
40
20
20
0 20 40 60 80 100120140160 % 流量
Power Used 2.16% 10.24% 60.02%
Total Power Used
72.42%
60% Load
70% of Time on 60% Load 20% of Time on 80% Load 10% of Time on 95% Load
Load % 60% 80% 95%
HP% =(Load% )3 21.60% 51.20% 85.74%
变频调速泵系统的工作特性曲线
100 % 扬程
% 流量 100
100 % 扬程
51.2%
% 流量 100 80%
Rockwell Automation Hengsheng Internal Train4g
截流控制 vs 变频控制
120 100 % 80 扬程 60
截流变控频制控制
Fan/Pump Fan/Pump
Rockwell Automation Hengsheng Internal Train8g
例程计算2
变频控制: 轴功率:30 ×(250/300)^ 3× 0.75=10.85KW 每年消耗轴功率为:10.85 ×2000=21,700KWH 每年投入电费:21,700 ×0.8=17,360元 结论: 每年在此流量工作时节省的电费: 36,000-17,360=18,640元
变频器在水泵风机类负载的节能分析
Rockwell Automation Hengsheng Internal Traing
电机转速与流量、压力、耗能的关系
流量 压力 耗能
Q1
N1
=
Q2
N2
电机转速
H1
= H2
100%
N1 2
N2
50%
P1
= P2
N1 3 N2
0% 0%
50% %RPM
100%
Centrifugal Pump/Fan Chart
在恒压供水系统、污水处理厂或相似的系统中 使用变频器应具有很好的推广价值!
Rockwell Automation Hengsheng Internal Tra1in1g
风门控制 VS 变频控制
1:风门控制
2:变频器控制
▪ 例:风机的风量控制方式
电源
变频器
送风
送风机
热交换器 空调鼓风机
冷水 空气
风机,水泵的 所需功率与电 机运转速度的 3次方成正比
P正比N3
Rockwell Automation Hengsheng Internal Traing
风门控制 VS 变频控制
▪ 例:用15KW的电机 (电费0.7元/kWh)
①风门控制 15kW X0.9 X0.7元 X24hr X365日 ≒83,000元
风门控制(出口侧)
②变频器控制 15kW X0.3 X0.7元 X24hr X365日
0 20 40 60 80 100120140160 % 流量
Rockwell Automation Hengsheng Internal Train5g
变频调速水泵的轴功率计算式1
实际流量
× 扬程 ×
液体 比重
轴功率 =
3960 × 泵的效率
Rockwell Automation Hengsheng Interna费用
Rockwell Automation Hengsheng Internal Traing
影响节能效果的主要因素
例1
负荷变化运行图
▪Cas负e 2荷变化幅度 ▪ 低负荷运行时间
60% Load
80% Load
负荷
例2
节能空间 Case 1
时间 95% Load
泵类负载和风机负载都属于 二次方律,所以节能效果相同
Rockwell Automation Hengsheng Internal Train9g
除节能外其他特点
一、有效的消除水锤,保证了系统安全可靠的工作 潜水泵起动时的水锤现象往往容易造成管道松动或破裂甚至损坏 原始方案:电机起动/停止时需开启/关闭阀门来减小水锤的影响 特点: 工作强度大
消 费
节能部分
≒28,000元
电力
变频器控制
风量
Rockwell Automation Hengsheng Internal Traing
风门控制 VS 变频控制
▪ 例:用15KW的电机 (电费0.7元/kWh)
①风门控制 15kW X0.9 X0.7元 X24hr X365日 ≒83,000元 ②变频器控制 15kW X0.3 X0.7元 X24hr X365日 ≒28,000元
难以满足工艺的需要
变频调速方案:根据工艺的需要,使电机软启/软停,消除水锤 特点: 有效消除水锤
降低机械冲击 显著的节电效果 降低电动机的老化
Rockwell Automation Hengsheng Internal Tra1in0g
除节能外其他特点
二、很方便的构建自动控制系统 特点:
免去了许多繁琐的人工操作,消除了许多不安全隐患因素 并使系统始终处于一种节能状态下运行 合理地轮换使用电机延长了设备的使用寿命(如一拖四) 更好的适应了生产需要 方便地与其他控制系统或设备实现闭环自动控制(如恒压供水) 提高了控制精度 提高了产品质量
相关文档
最新文档