微分几何(第三版)梅向明黄敬之编[]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 曲线论 §2 向量函数

5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r

= 0 。

分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e 为单位向量函数,)(t λ为数量函数,那么)(t r

具有固定方向的充要条件是)(t e 具有固定方向,即)(t e 为常向量,(因为)(t e

的长度固定)。

证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r 具有固定方向,则)(t e

为常向量,那么

)('t r =)('t λe ,所以 r ×'r

=λ'λ(e ×e )=0 。

反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r ×'r =2

λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。当)(t λ= 0时,)(t r

=0 可与任意方向平行;当λ

≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e

2)=2'e ,(因为e

具有固定长, e ·'e = 0) ,所以 'e =0 ,即e

为常向量。所以,)(t r 具有固

定方向。

6.向量函数)(t r

平行于固定平面的充要条件是(r

'r ''r

)=0 。

分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n

,使)(t r

·n

= 0 ,所以我们要寻求这个向量n 及n 与'r ,''r

的关系。

证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向量,且)(t r ·n

= 0 。两次求微商得'r ·n

= 0 ,''r ·n = 0 ,即向量r ,'r ,''r 垂直于同一非零向量n

,因而共面,即(r 'r ''r )=0 。

反之, 若(r 'r ''r )=0,则有r ×'r =0 或r ×'r ≠0 。若r ×'r =0

,由上题知)(t r 具有固定方向,自然平行于

一固定平面,若r ×'

r

≠0 ,则存在数量函数)(t λ、)(t μ,使''r

= r λ+μ'r ①

令n =r ×'r

,则n

0 ,且)(t r ⊥)(t n 。对n =r ×'r 求微商并将①式代入得'n =r ×''r =μ(r ×'r

)=μn ,

于是n ×'n

=0

,由上题知n

有固定方向,而)(t r

⊥n ,即)(t r

平行于固定平面。

§3 曲线的概念

1. 求圆柱螺线x =t cos ,y =t sin ,z =t 在(1,0,0)的切线和法平面。 解 令t cos =1,t sin =0,

t =0

t =0, 'r

(0)={ -t sin ,t cos ,1}|0=t ={0,1,1},曲线在(0,1,1)的切线为

1

101z

y x ==- ,法平面为 y + z = 0 。

2. 求三次曲线},,{3

2ct bt at r =

在点0t 的切线和法平面。

解 }3,2,{)('2

000ct bt a t r = ,切线为2

3

0020032ct ct z bt bt y a at x -=-=-, 法平面为 0)(3)(2)(3

0202000=-+-+-ct z ct bt y bt at x a 。

3. 证明圆柱螺线r ={ a θcos ,a θsin ,θb } (+∞∞- θ)的切线和z 轴作固定角。

证明 'r = {-a θsin ,a θcos ,b

},设切线与z 轴夹角为ϕ,则ϕcos =22||||'b

a b

e r k r +=⋅

为常数,故ϕ为定角

(其中k

为z 轴的单位向量)。

4. 求悬链线r ={t ,a t

a cosh }(-∞∞ t )从t =0起计算的弧长。

'r

=

{1,a t

sinh },|'r

| =a

t

2sinh

1+ = a t

cosh , s=

a t

t

a t a dt sinh cosh 0

=⎰

9.求曲线2

2

3

2,3a xz y a x ==在平面3a

y

=

与y = 9a 之间的弧长。

解 曲线的向量表示为r =}2,3,{2

2

3x

a a x x ,曲面与两平面3a y = 与y = 9a 的交点分别为x=a 与x=3a , 'r =}2,,1{2222x a a x -,|'r |=44

4441x

a a x ++=22222x a a x +,所求弧长为a dx x a a x s a a 9)2(22322

=+=⎰ 。

10. 将圆柱螺线r ={a t cos ,a t sin ,b t }化为自然参数表示。

解 'r = { -a t sin ,a t cos ,b },s = t b a dt r t 2

20

|'|+=⎰ ,所以2

2

b

a s t +=

代入原方程得 r ={a cos

2

2

b

a s +, a sin

2

2

b

a s +,

2

2

b

a bs +}

11.求用极坐标方程)(θρρ=给出的曲线的弧长表达式。 解 由θθρcos )(=x ,θθρsin )(=y 知

'r

={)('θρθcos -θθρsin )(,)('θρθsin +θ

θρcos )(},|

'r | =

)(')(2

2

θρθρ+,从0θ到θ的曲线的弧长是s=⎰

θθ0

)(')(22θρθρ+d θ 。

§4 空间曲线

1.求圆柱螺线x =a t cos ,y =a t sin ,z = b t 在任意点的密切平面的方程。 解

'r ={ -a t sin ,a t cos ,b },''r

={-a t cos ,- a t sin ,0 }

相关文档
最新文档