一元二次方程及其解法
解一元二次方程五种方法
解一元二次方程五种方法解一元二次方程五种方法解一元二次方程是初中数学中的基础知识,也是高中数学中的重要内容,掌握多种解法对于提高数学能力和解题能力有着重要作用。
下面介绍五种解一元二次方程的方法。
方法一:配方法(也称为配方根公式)配方法是一种常见的解一元二次方程的方法,它的步骤如下:1. 根据二次项系数、一次项系数和常数项分离出完全平方项;2. 将方程化为完全平方形式,即形如(x + a) = b;3. 对方程两边取平方根,得到x的两个解:x = -a ± b。
方法二:公式法公式法是解一元二次方程的常用方法之一,它的公式为:x = (-b ±√(b-4ac)) / 2a其中a、b、c分别为一次项系数、二次项系数和常数项。
方法三:图像法图像法是一种直观的解题方法,它的步骤如下:1. 将方程化为标准形式:ax+bx+c=0;2. 将方程左侧变形为y=ax+bx+c的二次函数的图像;3. 通过观察二次函数的图像,得到x的解。
方法四:因式分解法如果一元二次方程的左侧可以因式分解,那么可以使用因式分解法解题。
例如:x+5x+6=0,可以因式分解为(x+2)(x+3)=0。
因此,x的解为x=-2或x=-3。
方法五:完全平方公式完全平方公式是解一元二次方程的一种简便方法,它的步骤如下:1. 根据二次项系数、一次项系数和常数项计算出Δ=b-4ac;2. 如果Δ是完全平方数,那么方程的解为x=(-b±√Δ)/2a。
以上是解一元二次方程的五种方法,希望对大家有所帮助。
掌握多种解题方法可以提高数学思维和解题能力,也可以在考试中提高解题速度和准确性。
一元二次方程的解法
一元二次方程的解法一般解法1.配方法(可解全部一元二次方程)如:解方程:x^2+2x-3=0解:把常数项移项得:x^2+2x=3等式两边同时加1(构成完全平方式)得:x^2+2x+1=4因式分解得:(x+1)^2=4解得:x1=-3,x2=1用配方法解一元二次方程小口诀二次系数化为一常数要往右边移一次系数一半方两边加上最相当2.公式法(可解全部一元二次方程)首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根1.当Δ=b^2-4ac<0时x无实数根(初中)2.当Δ=b^2-4ac=0时x有两个相同的实数根即x1=x23.当Δ=b^2-4ac>0时x有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a来求得方程的根3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。
如:解方程:x^2+2x+1=0解:利用完全平方公式因式分解得:(x+1﹚^2=0解得:x1=x2=-14.直接开平方法(可解部分一元二次方程)5.代数法(可解全部一元二次方程)ax^2+bx+c=0同时除以a,可变为x^2+bx/a+c/a=0设:x=y-b/2方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为(y^2+b^2/4-by)除以(by-b^2/2)+c=0再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
1、直接开平方法直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)^2;=n (n≥0)的方程,其解为x=±√n+m .例(3x+1)^2;=7 解:(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7 2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax^2+bx=-c 将二次项系数化为1:x^2+b/ax=- c/a 方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2; 方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式)例x^2-4x-12=0 (x-2)^2-4-12=0 (x-2)^2=16 x-2=±4 x=6或-2 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b^2;-4ac的值,当b^2;-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b^2;-4ac)]/(2a) , (b^2;-4ac≥0)就可得到方程的根。
(完整版)一元二次方程归纳总结
一元二次方程归纳总结1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。
2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法) ①2(0)xa a =≥解为:x = ②2()(0)x a b b +=≥解为:x a += ③2()(0)ax b c c +=≥解为:ax b += ④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,22b x a-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240bac ∆=-<时,右端是负数.因此,方程没有实根。
注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。
备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:20 (0)ax bx c a ++=≠,并确定出a 、b 、c②求出24bac ∆=-,并判断方程解的情况。
③代公式:1,2x =3、一元二次方程的根与系数的关系法1:一元二次方程20 (0)axbx c a ++=≠的两个根为:1222b b x x a a-+-==所以:12bx x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ,那么:1212,b cx x x x a a+=-=法2:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么2120()()0ax bx c a x x x x ++=⇔--= 两边同时除于a ,展开后可得:2212120()0b c x x x x x x x x a a++=⇔-++= 12b x x a ⇒+=-;12cx x a •=法3:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩①-②得:12bx x a+=-(余下略) 常用变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,22111212121222212()4x x x x x x x x x x x x x x ++-+==等 练习:【练习1】若12,x x 是方程2220070xx +-=的两个根,试求下列各式的值:(1)2212x x +;(2)1211x x +;(3)12(5)(5)x x --;(4)12||x x -.【练习2】已知关于x 的方程221(1)104xk x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.【练习3】已知12,x x 是一元二次方程24410kxkx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在, 请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 4、应用题(1)平均增长率的问题:(1)n a x b += 其中:a 为基数,x 为增长率,n 表示连续增长的次数,①②b 表示增长后的数量。
解一元二次方程的三种基本方法
解一元二次方程的三种基本方法解一元二次方程的三种基本方法一元二次方程是数学中的基础概念之一,它的解法有很多种。
在这里,我们将介绍三种基本的解法。
一、配方法(1)将方程写成“完全平方”的形式。
例如,对于方程x²+6x–16=0,将右边的常数项移到左边,变为x²+6x=16,然后再将6x一分为二,得到x²+3x+3x=16,继续变形,即可让其成为完全平方。
(2)设定新的变量,使其成为一个完全平方。
例如,对于x²+6x–16=0,令y=x+3,代入原方程,得到y²–9+6y–16=0,简化后得到y²+6y–25=0,再将其变形成完全平方,可得(y+3)²=34,解得y= ± √34–3,代入y=x+3得到x=-3±√34。
二、公式法在公式法中,我们将方程ax²+bx+c=0写成:x=[–b±√(b²–4ac)]/2a,即可求得方程的两个根。
例如,对于方程x²+6x–16=0,可将a=1,b=6,c=–16带入公式中,计算得到x=-3±√34。
三、图像法对于一元二次方程y=ax²+b x+c,我们可以将其用一条二次函数的图像表示出来,相交坐标轴的两个点就是其解。
例如,对于方程x²+6x–16=0,我们可以作出相应的二次函数的图像,其中一条相交坐标轴的边界为x=-4和x=–2,因此可以解得方程的两个根为x=-4和x=-2。
总结以上三种方法都可以用来解一元二次方程。
配方法被广泛地应用于题目的解答中,因为它在操作方式上比较简单,尤其是在遇到较为复杂的方程式时有很好的实际应用。
公式法是一种少有的利用抽象公式的方法,尤其是在解有较大常数的一元二次方程时,可以简化计算。
图像法则不太常用,但在一些情况下,例如探究关于两个变量的函数的等高线时,它是非常实用的。
一元二次方程的解法
一元二次方程的解法一元二次方程的解法一、知识要点:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基础,应引起同学们的重视。
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
二、方法、例题精讲:1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m± .例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2方程左边成为一个完全平方式:(x+ )2=当b2-4ac≥0时,x+ =±∴x=(这就是求根公式)例2.用配方法解方程3x2-4x-2=0解:将常数项移到方程右边3x2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2= .3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
(完整版)一元二次方程的解法大全
一元二次方程的解法大全【直接开平方法解一元二次方程】=0(a≠0),把方程ax2+c例:用直接开平方法解方程:1.9x2-25=0;;2.(3x+2)2-4=04.(2x+3)2=3(4x+3).解:1.9x2-25=0259x2=2.(3x+2)2-4=0(3x+2)2=43x+2=±22±23x=-4.(2x+3)2=3(4x+3)4x2+12x+9=12x+94x2=0∴x1=x=0.【配方法解一元二次方程】将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除+以二次项系数,使二次项系数为1,如x21.x2-4x-3=0; 2.6x2+x=35;3.4x2+4x+1=7; 4.2x2-3x-3=0.解:1.x2-4x-3=0x2-4x=3x2-4x+4=3+47(x-2)2=3.4x2+4x+1=7一元二次方程ax2+bx+c=0(a广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c 的值代入两根公式中直接解出,所以把这种方法=0(a≠0)的求根公式。
例:用公式法解一元二次方程:2.2x2+7x-4=0;.4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x)2.2x2+7x-4=0∵a=2,b=7,c=-4.81b2-4ac=72-4×2×(-4)=49+32=4.x2-a(3x-2a+b)-b2=0(a-2b≥0)x2-3ax+2a2-ab-b2=0∵a=1,b=-3a,c=2a2-ab-b2b2-4ac=(-3a)2-4×1×(2a2+ab-b2)=9a2-8a2-4ab+4b2=a2-4ab+4b2=(a-2b)22b≥0)时,得当(a-【不完全的一元二次方程的解法】在不完全的一元二次方程中,一次项与常数至少缺一项。
即b与c至少一个等于零,这类项方程从形式与解法上比一般一元二次方程要简单,因此要研究这类方程最简捷的解法,从规律上看有两种方法:一是因式分解,二是直接开平方法:例:解下列一元二次方法:.3.(m2+1)x2=0;其中m2+1>0,x2=0.∴ x1=x2=0.4.16x2-25=06x2=25。
一元二次方程定义及其解法(配方法)
一元二次方程定义及其解法(配方法) 一元二次方程的定义及其解法(配方法)一、目标导航1.掌握一元二次方程的定义及a、b、c的含义;2.掌握配方法解一元二次方程的方法。
二、教学重难点重点:1.掌握一元二次方程的定义及a、b、c的含义;2.掌握配方法解一元二次方程的方法。
难点:配方法解一元二次方程。
三、走进教材知识点一:一元二次方程的定义1.一元二次方程的定义:方程两边都是整式,只含有一个未知数,并且未知数的最高次数为2的方程叫做一元二次方程。
2.一元二次方程的一般形式:ax^2+bx+c=0(其中a≠0),其中ax^2叫做二次项,a叫做二次项系数,bx叫做一次项,b叫做一次项系数,c叫做常数项。
举例:x^2+2x-3=0.3.一元二次方程的解:能使一元二次方程的左右两边相等的未知数的值叫做一元二次方程的解,一元二次方程的解也可以叫做一元二次方程的根。
自主练:下列方程中,是一元二次方程的有。
(填序号)①x=5;②x+y-3=0;③3x^2+2x-5x-3=0;④x(x+5)=x-2x^2;⑤2x^2-5x+8=0;⑥4x^2-2y^2=0.知识点二:配方法解一元二次方程1.解一元二次方程的思路:降次,即把二次降为一次,把一元二次方程转化为一元一次方程,化未知为已知,化繁为简,这是转化思想的体现。
2.配方法:利用配方法将一个一元二次方程的左边配成完全平方形式,而右边是一个非负数,即把一个方程转化成(x+n)^2=p(p≥0)的形式,这样解方程的方法叫做配方法。
3.配方法具体操作:1)对于一个二次三项式,当二次项系数为1时,配上一次项系数一半的平方就可以将其配成一个完全平方式,举例:解方程x^2+2x-3=0.2)当二次项系数不为1时,首先把二次项系数化为1,方程两边除以二次项系数,然后再利用(1)的步骤完成配方。
举例:解方程2x^2+2x-3=0.4.(x+n)^2=p(p≥0)的解法:对于方程(x+n)^2=p(p≥0),它的左边是一个完全平方式,右边是非负数,利用平方根的定义,可以将这个方程进行降次,降为两个一元一次方程,即x+n=√p和x+n=-√p,解两个一元一次方程即可。
一元二次方程的解法求根公式
一元二次方程的解法求根公式一元二次方程求根公式是奥朗德-费马定理:一、定义:1、令一元二次方程ax²+bx+c=0,其中a≠0;2、则此方程的根为:二、定理:x=(-b±√(b²-4ac))/(2a)三、证明:A.左端的a、b、c可以用任意实数进行替换:ax²+bx+c=0B.用公式求根:设此方程的根分别为:x₁理为X1和x₂,令x₁和x₂分别代入一元二次方程,则ax²+bx+c=ax₁²+bx₁+c=ax₂²+bx₂+c=0C.合并项:根据基本思想,设分子和分母都不等于零,则分子式与分母式分别等于零,可得:ax₁x₂ + bx₁ + bx₂ + c = 0ax₁ + ax₂ + b = 0D. 分别令等号两边各项等于零:由上式可知,方程的解法为:x₁x₂=-c/a (1)x₁+x₂=-b/a (2)E. 由(1)和(2)式相减:x₁-x₂= (b²-4ac)/(2a)F. 将此式两边同乘以数a:a(x₁-x₂)= (b²-4ac)G.令上式两边各项等于零,可得:a(x₁+x₂)= -b (3)H.将 (1)和(3)式代入:x₁(x₂+b/a)= -c/aI. 令等号两边各项相除:x₁= (-b±√(b²-4ac))/(2a)J. 令等号右边各项相除:x₂= (-b±√(b²-4ac))/(2a)K. 则该一元二次方程的解法为:x=(-b±√(b²-4ac))/(2a)四、总结:由上述证明,一元二次方程的求根公式便是奥朗德 - 费马定理:x=(-b±√(b²-4ac))/(2a)。
一元2次方程4种解法
一元2次方程4种解法
标题:四种解法揭示一元二次方程的奥秘
引言:一元二次方程是数学中的重要概念,它可以用来解决很多实际问题。
本文将介绍四种不同的解法,帮助读者更好地理解和应用一元二次方程。
第一种解法:因式分解法
当一元二次方程可以被因式分解为两个一次因子时,我们可以通过将方程两边因式分解后,令每个因子等于零来求解方程。
这种解法适用于一元二次方程的解为整数或分数的情况。
第二种解法:配方法
对于一元二次方程,如果无法直接因式分解,我们可以采用配方法。
通过将方程两边用合适的常数进行配方,将方程转化为完全平方的形式,从而求解方程。
这种解法适用于无理数根的情况。
第三种解法:求根公式法
一元二次方程的求根公式是解决方程的重要工具。
该公式是通过将方程转化为标准形式后,利用公式计算出方程的根。
这种解法适用于无法通过因式分解或配方法求解的复杂方程。
第四种解法:图像法
通过绘制一元二次方程的图像,我们可以直观地看出方程的解。
根据图像的形状和位置,我们可以判断方程有几个解,以及解的范围。
这种解法适用于对方程的整体特征有较好了解的情况。
结论:通过以上四种解法,我们可以更全面地理解和应用一元二次方程。
无论是因式分解法、配方法、求根公式法还是图像法,都可以帮助我们解决不同类型的一元二次方程。
掌握这些解法,可以提高我们解决实际问题的能力,并在数学学习中更加得心应手。
解一元二次方程及不等式的解法
解一元二次方程解法一元二次方程:因式分解法;公式法移项:使方程右边为0因式分解:将方程左边因式分解;方法:一提,二套,三十字,四分组由A∙B=0,那么A=0或B=0,解两个一元一次方程2、公式法将方程化为一般式写出a、b、c求出acb42-,假设<0,那么无实数解假设>0,那么代入公式求解解以下方程:1、)4(5)4(2+=+xx2、xx4)1(2=+3、22)21()3(xx-=+4、31022=-xx5、〔x+5〕2=16 6、2〔2x-1〕-x〔1-2x〕=07、x2 =64 8、5x2 -52=0 9、8〔3 -x〕2–72=010、3x(x+2)=5(x+2) 11、〔1-3y〕2+2〔3y-1〕=0 12、x2+ 2x + 3=013、x2+ 6x-5=0 14、x2-4x+ 3=0 15、x2-2x-1 =0 16、2x2+3x+1=0 17、3x2+2x-1 =0 18、5x2-3x+2 =0 19、7x2-4x-3 =0 20、-x2-x+12 =0 21、x2-6x+9 =0 22、22-=-23、x2-2x-4=0 24、x2-3=4xx x(32)(23)25、3x 2+8 x-3=0 26、(3x+2)(x+3)=x+1427、(x+1)(x+8)=-12 28、2(x-3) 2=x 2-929、-3x 2+22x-24=0 30、〔2x-1〕2 +3〔2x-1〕+2=0 31、2x 2-9x+8=0 32、3〔x-5〕2=x(5-x)33、(x+2) 2=8x 34、(x-2) 2=(2x+3)235、2t t-+=4410 x x+=36、2720()()239、()2231210x --= 40、2223650x x -+=41、()()2116x x ---= 42、()()323212x x -+= 44、22510x x +-=45、 46、21302x x ++=、二.利用因式分解法解以下方程(x -2) 2=(2x-3)2042=-x x 3(1)33x x x +=+x 23 ()()0165852=+---x x三.利用开平方法解以下方程1)12(12=-y 24)23(四.利用配方法解以下方程25220x x -+=012632=--x x7x=4x 2+2 01072=+-x x五.利用公式法解以下方程-3x 2+22x -24=0 2x 〔x -3〕=x -3. 3x 2+5(2x+1)=0六.选用适当的方法解以下方程(x +1) 2-3 (x +1)+2=022(21)9(3)x x +=-2230x x --=21302x x ++=4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x 〔x +1〕-5x =0. 3x (x -3) =2(x -1) (x +1).0862=+-x x 01522=--x x 0151122=++x x02532=-+x x 2082=-x x 02522=++x x39922=--x x一元二次不等式及其解法知识点一:一元二次不等式的定义(标准式)任意的一元二次不等式,总可以化为一般形式:或.知识点二:一般的一元二次不等式的解法一元二次不等式或的解集可以联系二次函数的图象,图象在轴上方局部对应的横坐标值的集合为不等式的解集,图象在轴下方局部对应的横坐标值的集合为不等式的解集.设一元二次方程的两根为且,,那么相应的不等式的解集的各种情况如下表:二次函数〔〕的图象有两相异实根有两相等实根无实根知识点三:解一元二次不等式的步骤〔1〕先看二次项系数是否为正,假设为负,那么将二次项系数化为正数;〔2〕写出相应的方程,计算判别式:①时,求出两根,且〔注意灵活运用因式分解和配方法〕;②时,求根; ③时,方程无解〔3〕根据不等式,写出解集.规律方法指导1.解一元二次不等式首先要看二次项系数a 是否为正;假设为负,那么将其变为正数; 2.假设相应方程有实数根,求根时注意灵活运用因式分解和配方法;3.写不等式的解集时首先应判断两根的大小,假设不能判断两根的大小应分类讨论;4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等 式的解集与其系数之间的关系;5.假设所给不等式最高项系数含有字母,还需要讨论最高项的系数 例1.解以下一元二次不等式 〔1〕; 〔2〕; 〔3〕〔1〕解:因为所以方程的两个实数根为:,函数的简图为:因而不等式的解集是.(1)练习: 解以下不等式 ;;02732<+-x x ;0262≤+--x x ;01442<++x x ; 0532>+-x x862-=+x x 021152=++x x 02732=+-x x062=--x x 01522=--x x ; 01662=++x x ;08232≥+--x x ; 0542≥+-x x ;31≥-x x;0652≤--x x 01272<++x x 0652>++x x0672≥+-x x 0122<--x x 0122>-+x x2230x x --+≥0262≤+--x x 0532>+-x x0142562≤++x x 0941202≤+-x x (2)(3)6x x +-<。
一元二次方程的四种解法
一元二次方程的解法(1) 一元二次方程的概念一、考点、热点回顾1、一元二次方程必须同时满足的三个条件:⑴⑵⑶2、一元二次方程的一般形式:二、典型例题例1:判断下列方程是否为一元二次方程:® x2+x = \ ®x~ = 1 ®x2 -2x + 3y = 0 @x2 - 3 = (x-l)(x-4)⑤ax2+bx + c = 0 ®mx2 =0 (m是不为零常数)例2:—元二次方程的二次项系数、一次项系数和常数项.(l)x2-l Ox-900 = 0 (2)5x2 +10—2.2 = 0⑶ 2X2-15=0 (4)X2 + 3x = 0(5) (x + 2)2 =3 (6) (x + 3)(x-3) = 0例3:当加 _______ 时,关于x的方程(m+2) x s +3mx+l=0是一元二次方程。
三、课堂练习1、下列方程中,关于x的一元二次方程是()A.3(X +1)2=2(X+1)B; +丄一 2 = 0xT yC.ax2 + 加 + <? = 0D.x1 + 2x = x,-12、用换元法解方程(X2+X):+(X:+X)=6时,如果设x'+x = y,那么原方程可变形为()A、y:+y—6=0B、y2—y—6 = 01 / 15C、y:—y+6 = 0D、y'+y+6 = 03、已知两数的积是12,这两数的平方和是25,以这两数为根的一元二次方程是4、已知关于x的一元二次方程十一伙+ l)x_6 = 0的一个根是2,求k的值.四、课后练习1•将方程3乂(乂_1) = 5(乂+ 2)化成一元二次方程的一般形式,得____ ;其中二次项系数是_ ; 一次项系数是 __________ ;常数项是_________ .2.方程伙-4),+5x + 2& + 3 = 0是一元二次方程,则£就满足的条件是____________ .3.已知m是方程x'-x-2二0的一个根,则代数式mJn二 __________4.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为wm,则乳满足的方程是( )(A) x2+130A--1400 = 0 (B) x2 +65x-35O = O(C) x2 -130x-1400 = 0 (D) x2 -65x-350 = 05.关于x的方程(加-3),+心+加=0,在什么条件下是一元二次方程?在什么条件下是一元一次方程?(2) 一直接开方法一、考点、热点回顾1、了解形如x2=a(a>0)或(x+h)= k(k^0)的一元二次方程的解法一一直接开平方法小结:如果一个一元二次方程具有(x + /»)2=n(n>0)的形式,那么就可以用直接开平方法求解。
一元二次方程及其解法
第2课时 一元二次方程及其解法一·基本概念理解1 一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
2、一元二次方程的解法(1)、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b 〈0时,方程没有实数根.(2)、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(3)、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b a ac b b x公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c(4)、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(5)、韦达定理若1x ,2x 是一元二次方程的一般形式:)0(02≠=++a c bx ax 的两个实数根,则a b x x -=+21,ac x x =21。
一元二次方程4种解法
一元二次方程4种解法
一元二次方程的4种解法是:一般式、工具方法、因式分解法和
求根公式法。
一、一般式:
一般式又称“把头挑出来法”或“十字相乘法”。
在这种方法中,首先把一元二次方程化为化简的一般式,如ax^2+bx+c=0,然后分别根
据a, b, c 的意义,将系数和常数参数代入系数表中,仿照公式的形
式完成无穷多种可能的解答,最后通过对称性和排除法的方法排除不
符合要求的解,从而得出结论。
二、工具方法:
工具方法就是联立矩阵等数学工具,来快速解决一元二次方程,
尤其是在涉及数量较大的情况下,使用矩阵来解决更加有利。
只要建
立好系数矩阵,就可以根据其特点,按照一定步骤,使用乘法、加法、分解等技巧,求得矩阵解,从而获得满足一元二次方程的解。
三、因式分解法:
因式分解法是把原方程转换成两个一元一次方程的形式,然后分
别求解,最后将解代入原方程,检验是否仍然满足原方程。
首先,将
原方程化成两个一元一次方程的形式,例如:ax^2+bx+c=0,我们把它
化为 (ax+m)(ax+n)=0,其中m和n分别是ax+m=0及ax+n=0的解。
然后,我们可以把m和n代入到原方程中,检验是否是原方程的解,即
看是否能使原方程成立。
四、求根公式法:
求根公式法是根据一元二次方程的特征,用公式求解一元二次方
程解。
一元二次方程有两个解,因此也有对应的两个求根公式,即复
根公式:x_1=(-b+sqrt(b^2-4ac))/(2a)和x_2=(-b-sqrt(b^2-
4ac))/(2a)。
通过将常数值代入到公式,就可以求出一元二次方程的解。
一元二次方程的6种解法
一元二次方程的6种解法
一元二次方程的6种解法如下:
1、因式分解法:将一元二次方程化成 ax^2+bx+c=0 的形式,先将两边同乘以a后,即a(x^2+ b/ax + c/a),然后将此形式拆解为(x+())(x+(/))的形式,得到两个一元一次方程,求出x的值,即可求出原方程的解。
2、公式法:用公式法求解一元二次方程,即通过求解公式:x=(-
b±√(b^2-4ac))/2a来求解,此公式中,b和c为方程的系数,a为系数前的系数。
3、图像法:使用图像法求解一元二次方程,即作出ax^2+bx+c=0方程图象,然后根据图象上的交点判断出方程的解。
4、判别式法:此法根据一元二次方程的判别式来求解,即当判别式b^2-4ac>0时,方程有两个不等实根;当判别式b^2-4ac=0时,方程有一个实根;当判别式b^2-4ac<0时,方程没有实根。
5、求根公式法:此法可以用来求解一元二次方程的实根,即用求根公式x1=(-b+ √(b2- 4ac))÷2a和x2=(-b-√(b2- 4ac))÷2a,其中,b 为系数前的系数,a和c分别为方程的系数。
6、特殊值法:此法适用于一元二次方程中特殊的系数或解。
如当
a=0,系数b和c任意时,可将该方程化为一元一次方程,求解即可;当a=b=0时,可直接算出方程的解。
一元二次方程的解法
一元二次方程的解法汇总1.直接开方法解一元二次方程(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:(点击图片可放大阅览)要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤:①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、用直接开平方法解一元二次方程(点击图片可放大阅览)【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.举一反三:(点击图片可放大阅览)类型二、因式分解法解一元二次方程(点击图片可放大阅览)【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太烦琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:【变式】方程(x-1)(x+2)=2(x+2)的根是________.【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.∴ x1=-2 x2=3.(点击图片可放大阅览)【总结升华】如果把视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x、y 的值,然后计算,但实际上如果把看成一个整体,那么原方程便可化简求解。
一元二次方程的基本概念与常见求解方法
一元二次方程的基本概念与常见求解方法知识点睛一元二次方程的定义只含有一个未知数,并且未知数的最高次数是 2,最高次数的项系数不为 0 的整式方程叫做一元二次方程.一元二次方程的一般形式2(0)0ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项.(1)要判断一个方程是否是一元二次方程,必须符合以下四个标准:一元二次方程是整式方程,即方程的两边都是关于未知数的整式.一元二次方程是一元方程,即方程中只含有一个未知数.一元二次方程是二次方程,也就是方程中未知数的最高次数是2.一元二次方程最高次数的项系数不为0.(2)任何一个关于x 的一元二次方程经过整理都可以化为一般式2(0)0ax bx c a ++=≠. 要特别注意对于关于 x 的方程2(0)0ax bx c a ++=≠.当0a ≠时,方程是一元二次方程;当00a b =≠且时,方程是一元一次方程. (3)关于x 的一元二次方程2(0)0ax bx c a ++=≠的项与各项的系数.ax 2 为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.一元二次方程的解法(1)直接开平方法:适用于解形如 (ax +b )2 = ()00a c ≠, 的一元二次方程. (2)配方法:解形如2 )00(ax bx c a ++=≠的一元二次方程,运用配方法解一元二次方程的一般步骤是:① 二次项系数化为1.② 常数项右移.③ 配方 (两边同时加上一次项系数一半的平方).④ 化成 (x +m )2 = n 的形式.⑤ 若0n ≥,直接开平方得出方程的解。
(3)公式法:设一元二次方程为2 )00(ax bx c a ++=≠,其根的判别式为:2124b ac x x ∆=-,, 是方程的两根,则:1. ∆ > 0 ⇔ 方程 2)00(ax bx c a ++=≠有两个不相等的实数根 x = 2. ∆ = 0 ⇔ 方程 2 )00(ax bx c a ++=≠有两个相等的实数根 122b x x a==-; 3. ∆ < 0 ⇔ 方程2 )00(ax bx c a ++=≠ 没有实数根.运用公式法解一元二次方程的一般步骤是:① 把方程化为一般形式.② 确定 a 、b 、c 的值.③ 计算24b ac -的值.④ 若 240b ac -≥,则代入公式求方程的根.⑤ 若240b ac -<,则方程无实数根.(4)因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式.因式分解法的一般步骤:① 将方程化为一元二次方程的一般形式;② 把方程的左边分解为两个一次因式的积;③ 令每一个因式分别为零,得到两个一元一次方程;④ 解出这两个一元一次方程得到原方程的解. 一元二次方程解法的灵活运用直接开平方法,公式法,配方法,因式分解法.在具体解题时,应当根据题目的特点选择适当的解法.(1)直接开平方法:用于缺少一次项以及形如 ax 2 = b 或 (x +a )2 = b (0)b ≥ 或 (ax +b )2 =(cx +d )2 的方程,能利用平方根的意义得到方程的解.(2)配方法:配方法是解一元二次方程的基本方法,而公式是由配方法演绎得到的.把一元二次方程的一般形式 ax 2 +bx +c = 0(a 、b 、c 为常数,0a ≠) 转化为它的简单形式 Ax 2 = B ,这种转化方法就是配方,之后再用直接开平方法就可得到方程的解.(3)公式法:适用于任何形式的一元二次方程,但必须先将方程化为一般形式,并计算 24b ac -的值.(4)因式分解法:适用于右边为 0(或可化为 0),而左边易分解为两个一次因式积的方程,缺常数项或含有字母系数的方程用因式分解法较为简便,它是一种最常用的方法.【例 1】(1) 若 x 2a +b -3x a-b +1 = 0 是关于 x 的一元二次方程,求 a 、b 的值.(2) 若 n (n ≠0) 是关于 x 的方程 x 2 +mx +2n = 0 的根,则 m +n 的值为 ( )A. 1B. 2C. -1D. -2(3) 已知 43x =,则2421x x x ++的值是 .(4) 当 111552n n x -⎛⎫=- ⎪⎝⎭时,(.n x = ( n 为自然数)【例 2】(1) 用直接开平方法解方程:2269(5) 2x x x -+=-. (2) 用配方法解方程:22310x x ++=.(3) 用分解因式法解方程:2()2136x x -=-. (4) 用公式法解方程:161432)2(2x x x x ⎛⎫++-=+ ⎪⎝⎭例 3】(1) 解关于 x 的方程: 21 213()()0m x m x m -+-+-=. (2) 解关于 x 的方程22656223200x xy y x y --++-=. 【例 4】(1)如果方程 22()2020x px q x qx p p q -+=-+=≠和 有公共根,则该公共根为 .(2)若方程2222100ax ax x ax a +-=--=和有公共根,求a 的值例 5】(1) 解方程:22132(10)|2|x x ---+=.(2) 解方程:221|4|x x +-=.练习2 高次方程和无理方程知识点睛1.特殊高次方程的解法:一般的高次方程没有统一的求解方法. 对于一些特殊的高次方程, 可通过降次, 转化为一元二次方程或一元一次方程求解,转化的方法有因式分解法(因式定理)、换元法、变换主元法等.2. 特殊分式方程的解法:求解分式方程总的原则是通过去分母或换元, 使其转化为整式方程, 然后再求解. 在这个过程中离不开分式的恒等变形, 如通分、约分及降低分子的次数等等, 这就有可能使方程产生增根(或遗根).3. 特殊无理方程的解法:解无理方程的基本思路是把根式转化为有理方程求解. 转化过程中常用的方法有: 乘方、配方、因式分解、等价变换、换元、增元、对偶、利用比例性质等. 如果变形过程是非等价变形(如方程两边平方), 可能产生增根, 因此应注意验根.精讲精练【例 6】(1) 解方程:43225122560x x x x --++=.(2)解关于 x 的方程 ()()322212 0x t x tx t t +--+-=.(3)解方程 321010x x ++++=【例 7】(1)解方程:(8x + 7)2 (4x + 3)(x + 1)= 29 ;(2)解方程: x x x x x x +-=------2221120102910451069. (3)解方程:222234112283912x x x x x x x x ++-+=+-+.【例 8】(1)解方程:()()222323322x x x x x =+-++--. (2)解方程:22252x x x ⎛⎫+= ⎪+⎝⎭. (3)方程()()3232232?47615180x x x x x x x x -+---++-+=全部实根是 .【例 9】(12=.(2)解方程 266 0x x --+=.【例 10】(1)已知 2x =,求.(2)无理方程 221518x x -=-的解是 。
一元二次方程的概念及解法
一元二次方程的概念及解法要点一、一元二次方程的概念1.一元二次方程只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式()ax bx c a 2++=0≠0,a 为二次项系数,b 为一次项系数,c 为常数项.3.要点归纳(1)要判断一个方程是一元二次方程,必须符合以下三个标准:①一元二次方程是整式方程,即方程的两边都是关于未知数的整式. ②一元二次方程是一元方程,即方程中只含有一个未知数. ③一元二次方程是二次方程,也就是方程中未知数的最高次数是2.(2)任何一个关于x 的一元二次方程经过整理都可以化为一般式ax bx c 2++=0 (a ≠0).要特别注意对于关于x 的方程ax bx c 2++=0.当a ≠0时,方程是一元二次方程;当a =0且b ≠0时,方程是一元一次方程.(3)关于x 的一元二次方程式()ax bx c a 2++=0≠0的项与各项的系数.ax 2为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.【例1】下面关于x 的方程中:①ax bx c 2++=0;②()()x x 223−9−+1=1;③x x21++5=0;④x x 23−2+5−6=0;⑤||x x 2−3−3=0;⑥x kx 2++3=0(k 为常数)是一元二次方程_________. 【解析】(1)②⑥.【变式1】判断下列各式哪些是一元二次方程. ①;②;③;④; ⑤ ;⑥ ;⑦ .【答案】②③⑥.【解析】①不是方程;④不是整式方程;⑤ 含有2个未知数,不是一元方程;⑦ 化简后没有二次项,不是2次方程. ②③⑥符合一元二次方程的定义.【例2】关于x 的方程2x 2−(a +1)x =x (x −1)−1的一次项系数是-1,则a .【答案】原方程化简为x 2-ax+1=0,则-a=-1,a=1.21x x ++2960x x −=2102y =215402x x −+=2230x xy y +−=232y =2(1)(1)x x x +−=21x x ++215402x x −+=2230x xy y +−=2(1)(1)x x x +−=【变式2-1】若一元二次方程()()m x m x m 222−2+3+15+−4=0的常数项为零,则m 的值为_________.由题意可知,m 2−4=0,m −2≠0,故m =−2【变式2-2】若a b a b x x 2+−−3+1=0是关于x 的一元二次方程,求a 、b 的值.分以下几种情况考虑: ①a b 2+=2,a b −=2,此时a 4=3,b 2=−3;②a b 2+=2,a b −=1,此时a =1,b =0; ③a b 2+=1,a b −=2,此时a =1,b =−1;【例3】(1)已知关于x 的一元二次方程()m x x m 22−1+2+−1=0有一个根是x =0,则m 的值为_______.(1)由于为一元二次方程,∴m −1≠0,而x =0代回方程得到:m 2−1=0.综上可知m =−1.(2)x=1是x 2−ax +7=0的根,则a= .【答案】当x=1时,1-a+7=0,解得a=8.(3)已知关于x 的一元二次方程 有一个根是0,求m 的值. 由题意得【变式3-1】如果关于x 的一元二次方程x 2+px+q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是( ) A .-3,2 B .3,-2 C .2,-3 D .2,3 【答案】A ;【解析】∵ x =2是方程x 2+px+q =0的根,∴ 22+2p+q =0,即2p+q =-4 ①同理,12+p+q =0,即p+q =-1 ②联立①,②得 解之得:【变式3-2】已知a 是一元二次方程x x 2−2−1=0的根,求下列各式的值:①a a 1−;②a a221+;③a a a 22−3−3++52. (2)①由a a 2−2−1=0知,a ≠0,故a a 1−2−=0,即a a1−=2;②a a a a 22211⎛⎫+=−+2=6 ⎪⎝⎭;③由于a a 2=2+1,代入所求得,原式a a a 2+1−3=2+1−3++5=52. 22(1)210m x x m −++−=24,1,p q p q +=−⎧⎨+=−⎩3,2.p q =−⎧⎨=⎩【例4】关于x 的方程2()0a x m b ++=的解是12x =−,21x =,(a ,m ,b 均为常数,0a ≠),则方程2(2)0a x m b +++=的解是__________.(3)14x =−,21x =−.【变式4-1】关于x 的方程a (x+m )2+n=0(a ,m ,n 均为常数,m≠0)的解是x 1=﹣2,x 2=3,则方程a (x+m ﹣5)2+n=0的解是( )A .x 1=﹣2,x 2=3B .x 1=﹣7,x 2=﹣2C .x 1=3,x 2=﹣2D .x 1=3,x 2=8 【答案】D ;【思路点拨】把后面一个方程中的x ﹣5看作整体,相当于前面一个方程中的x 求解.【解析】∵关于x 的方程a (x+m )2+n=0的解是x 1=﹣2,x 2=3,(m ,n ,p 均为常数,m≠0), ∴方程a (x+m ﹣5)2+n=0变形为a[(x ﹣5)+m]2+n=0,即此方程中x ﹣5=﹣2或x ﹣5=3, 解得x=3或x=8.故选D .要点二、一元二次方程的解法1. 直接开平方法:适用于解形如()(),≥ax b c a c 2+=≠00的一元二次方程. 2. 配方法:解形如()ax bx c a 2++=0≠0的一元二次方程,运用配方法解一元二次方程的一般步骤是: ① 将二次项系数化为1. ② 将常数项右移.③配方(两边同时加上一次项系数一半的平方). ④化成()x m n 2+=的形式.⑤若≥n 0,直接开平方得出方程的解.【例5】解方程:(1)()x x x 22−6+9=5−2 (2)()()x x 224−2−3−1=0【解析】(1)()()x x 22−3=5−2,()x x −3=±5−2,x 1=2,x 28=3.(2)()()x x 224−2=3−1,()()x x 2−2=±3−1,x 1=−3,x 2=1【变式5】解方程: (1) 3x+2)2=4(x ﹣1)2;(2)(x-2)2=25.【答案】解:(1) 3x+2=±2(x ﹣1),∴3x+2=2x ﹣2或3x+2=﹣2x+2, ∴x 1=﹣4;x 2=0.(2) (x-2)=±5 ∴x-2=5或x-2=-5 ∴x 1=7,x 2=-3.【例6】用配方法解方程:(1)x x 2−4−1=0(2)x x 22−8−3=0(3)x x 24−6−4=0【解析】(1)x x 2−4−1=0,()x 2−2=5,x =2±,x 1=2x 2=2;(2)x x 22−8−3=0,()x 22−2=11,x =2,x 1=2x 2=2; (3)x x 24−6−4=0,x 2325⎛⎫−= ⎪416⎝⎭,x 1=2,x 11=−2.【变式6】用配方法解方程:(1)2x 2﹣4x ﹣3=0; (2)3x 2﹣12x ﹣3=0. 【思路点拨】方程(1) (2)的的次项系数不是1,必须先化成1,才能配方,这是关键的一步.配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为的形式,然后用直接开平方法求解. 【答案与解析】解:(1)∵2x 2﹣4x ﹣3=0,∴,∴,∴x ﹣1=±,∴.(2)3x 2﹣12x ﹣3=0,3x 2﹣12x=3, x 2﹣4x=1, x 2﹣4x+4=1+4,2()(0)mx n P P +=≥(x ﹣2)2=5, x ﹣2=, x 1=2+,x 2=2﹣;(3)2x 2+3=5x (4) 【答案】(3). (4)①当时,此方程有实数解,;②当时,此方程无实数解.3.公式法:将()ax bx c a 2++=0≠0进行配方可以得到:b b ac x a a 222−4⎛⎫+= ⎪24⎝⎭. 当≥b ac 2−40时,两个根为,x 12=b ac 2−4=0时,两根相等为bx x a12−==2;当b ac 2−4<0时,没有实数根.可以用△表示b ac 2−4,△称为根的判别式.20x px q ++=2235x x +=2253x x −=−25322x x −=−2225535()()2424x x −+=−+251()416x −=5144x −=±123,12x x ==20x px q ++=222()()22p px px q ++=−+224()24p p qx −+=240p q −≥12x x ==240p q −<运用公式法解一元二次方程的一般步骤是: ①把方程化为一般形式; ②确定a 、b 、c 的值; ③计算b ac 2−4的值;④若≥b ac 2−40,则代入公式求方程的根; ⑤若b ac 2−4<0,则方程无实数根. 【例7】解方程:(1)()x x 2−5=2+1(2)()x x x x 1⎛⎫6+1+4−3=22+ ⎪2⎝⎭【解析】(1)()x x x x 22−5=2+1⇒−2−7=0,()2=2−4⨯1⨯−7=32△,∴原方程的解为:x 1=1+,x 2=1−(2)()x x x x x x 21⎛⎫6+1+4−3=22+⇒6+−4=0 ⎪2⎝⎭,()△2=1−4⨯6⨯−4=97故,x 12,∴原方程的解为:x 1=,x 2=. 【教师备课提示】这道题主要是想让孩子们练习用公式法去解一元二次方程,牢记解一元二次方程的公式.4.因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式.因式分解法的一般步骤:② 将方程化为一元二次方程的一般形式;③ 把方程的左边分解为两个一次因式的积,方程右边是零; ③令每一个因式分别为零,得到两个一元一次方程; ④解出这两个一元一次方程的解可得到原方程的解.【例8】解方程:(1)22320x x −−= (2)2(21)36x x −=−(3)26x −=−【解析】(1)22320x x −−=,(21)(2)0x x +−=,112x =−,22x =;(2)2(21)36x x −=−,2(21)3(12)x x −=−,2(21)(1)0x x −+=,112x =,21x =−.(3)1x =,2x =. 【教师备课提示】这道题主要是想让孩子们练习用因式分解的方法去解一元二次方程. 【变式8】解方程:(1)﹣3x 2+22x ﹣12=12.(2)3x 2﹣x ﹣4=0【思路点拨】先把方程变形,然后利用因式分解法解方程,注意对于二次项系数的分解. 【答案与解析】解:(1)原式变形得:3x 2﹣22x+24=0,(3x ﹣4)(x ﹣6)=0, 3x ﹣4=0或x ﹣6=0, ∴ x 1=,x 2=6. (2)3x 2﹣x ﹣4=0,分解因式得:(3x ﹣4)(x+1)=0, ∴(3x ﹣4)=0或(x+1)=0 ∴ x 1=,x 2=﹣1;【例9】选择合适的方法求解下列方程:(1)x x 2547−25−572=0(2)x 23=1【解析】(1)方程系数较大,公式法过于麻烦,考虑用因式分解,由于572−547=25,故可以简单分解为:()()x x 547−572+1=0,解为x 1=−1,x 2572=547.(2)公式法解决:()△2=−4⨯3⨯−1=18>0,所以由公式法知x =解为x 1,x 2【课后作业】1.(北京市第十三中学2010-2011九年级数学期中)如果关于x 的方程()a x x 2−1+5−6=0是一元二次方程,则( ) A .a >1 B .a =1 C .a <1 D .a ≠12.如果关于x 的方程()m m x x 2−7−3−+3=0是关于x 的一元二次方程,则m 的值为______.3.关于x 的一元二次方程x ax a 2++=0的一个根是x =3,则a =________.4.若实数a ,b ,c 满足a b c 4−2+=0,则关于x 的一元二次方程()ax bx c a 2++=0≠0一定有一个根_________.5.三角形两边的长是3和4,第三边的长是方程x x 2−12+35=0的根,则该三角形的周长为( ) A .14 B .12 C .12或14 D .以上都不对【解析】1.D ;2.−3;3.9−4;4.x =−2;5.B6.已知a 是方程x x 2+−1=0的根,求a a a 32−−3+1的值.【解析】由题意a a 2+−1=0,∴a a 2=−+1,∴原式()()a a a a a a 22=−+1−−3+1=−2++1=−1.7.解方程:(1)()x 22−4−6=03(2)x x 22−8−198=0 (3)()()x x −5−7=1【解析】(1)1x 1=,x 2=7;(2)x 1=2,x 2=2;(3)()()x x x x 2−5−7=1⇒−12+34=0,△2=12−4⨯1⨯34=8,故,x 1212±==628.解关于x 的方程:(1)x mx m n 222−2+−=0(2)x a ax a 22+3=4−2+1(3)()()a b c x ax a b c 2−++2++−=0【解析】(1)原式可以因式分解为:()()x m n x m n −−−+=0,解为x m n 1=+,x m n 2=−.(2)x a 1=3−1,x a 2=+1.(3)二次项系数中含有字母,所以要加以讨论, ①若a b c −+=0,则原方程成为()ax a b c 2++−=0若a =0,则c b −=0,原方程为x 0+0=0,x 可为一切实数. 若a ≠0,则a b c ax a a−−+−2===−122. ②若a b c −+≠0,则原方程成为[]()()()x a b c x a b c +1−+++−=0,得x 1=−1,c a bx a b c2−−=−+.9.解方程:()()x x x x 2222+−22+=3.【解析】设x x m 22+=,则原方程化为m m 2−2−3=0,即()()m m −3+1=0,代回可得:()()x x x x 222+−32++1=0,即x x 22+−3=0或x x 22++1=0.x x 22+−3=0,可化为()()x x 2+3−1=0,解得x 1=1,x 23=−2;x x 22++1=0,用公式法解决,△2=1−4⨯2⨯1=−7<0,故此方程无实数根.综上方程解为:x 1=1,x 23=−2.。
一元二次方程五大解法
一元二次方程五大解法
1、直接开平方法。
对于直接开平方法解一元二次方程时注意一般都有两个解,不要漏解,如果是两个相等的解,也要写成x1=x2=a的形式,其他的都是比较简单。
2、配方法。
在化成直接开平方法求解的时候需要检验方程右边是否是非负的,如果是则利用直接开平方法求解即可,如果不是,原方程就没有实数解。
3、公式法。
公式法是解一元二次方程的根本方法,没有使用条件,因此是必须掌握的。
用公式法的注意事项只有一个就是判断“△”的取值范围,只有当△≥0时,一元二次方程才有实数解。
4、因式分解法。
因式分解,在初二下学期的时候重点讲了,之前也有相关的文章,重要性毋庸置疑,在一元二次方程里,因式分解法用的还是挺多的,难度非常容易调节。
5、图像解法。
一元二次方程ax2+bx+c=0的根的几何意义是二次函数y=ax2+bx+c的图像(为一条抛物线)与x轴交点的x坐标。
当△>0时,则该函数与x轴相交(有两个交点)。
当△=0时,则该函数与x轴相切(有且仅有一个交点)。
当△<0时,则该函数与轴x相离(没有交点)。
一元二次方程的判别式。
利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况。
一元二次方程ax+bx+c=0(a不等于0)的根与根的判别式有如下关系:△=b2-4ac。
①当△>0时,方程有两个不相等的实数根。
②当△=0时,方程有两个相等的实数根。
③当△<0时,方程无实数根,但有2个共轭复根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 一元二次方程及其解法一·基本概念理解 1 一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
2、一元二次方程的解法 (1)、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
(2)、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 (3)、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b a ac b b x公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c (4)、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(5)、韦达定理若1x ,2x 是一元二次方程的一般形式:)0(02≠=++a c bx ax 的两个实数根,则a b x x -=+21,acx x =21。
以上的就称为韦达定理(或称为根与系数的关系)利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=ab-,二根之积=a c 也可以表示为a b x x -=+21,acx x =21。
利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用 3、一元二次方程根的判别式根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆I 当△>0时,一元二次方程有2个不相等的实数根; II 当△=0时,一元二次方程有2个相同的实数根; III 当△<0时,一元二次方程没有实数根4、一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a bx x -=+21,a cx x =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
5、一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
直接开平方法是最基本的方法。
公式法和配方法是最重要的方法。
公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算根的判别式的值,以便判断方程是否有解。
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。
但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。
(三种重要的数学方法:换元法,配方法,待定系数法)。
二.例题讲解:例1:解一元二次方程(1)42=x (2)062=--x x (3)01322=++x x 【例题解析】:(1)可以利用直接开方法或利用因式分解法或公式法;(2)可以利用配方法或公式法或因式分解法;(3)可以利用配方法或公式法或因式分解法。
解:(1)a 直接开方法:242±=⇒=x xb 因式分解法:220)2)(2(04422-==⇒=-+⇒=-⇒=x x x x x x 或 (2)a 配方法: 解:3225212521)25(425)21()21(6)21(2126062222222=-=⇒±=⇒±=-⇒==-⇒+=+••-⇒=-⇒=--x x x x x x x x x x x 或 b 公式法 :使用该方法首先要将方程转化为02=++c bx ax ,再准确找出该一元二次方程中的c b a ,,的值是做对该题的重要前提和保证。
由题可知:6,1,1-=-==c b a所以 3212)6(14)1()1(2=-=⇒⨯-⨯⨯--±--=x x x 或(3)方法一:(配方法)21141434143161)43()43(21)43(432212313201322222222-=-=⇒±-=⇒±=+⇒=+⇒+-=+•+⇒-=+⇒-=+⇒=++x x x x x x x x x x x x x 或方法二:(公式法)由题可知: 1,3,2===c b a所以:21122124332-=-=⇒⨯⨯⨯-±-=x x x 或方法三:(因式分解)2110)1)(12(-=-=⇒=++x x x x 或注:在求一元二次方程的根之前,首先要将方程转化成标准形式)0(02≠=++a c bx ax ,再对它的∆的取值情况进行判定;最后再对求根的方法进行选取,如配方,公式,还是因式分解法,特别是配方法的知识基础是建立在完全平方公式:222)(2b a b ab a ±=+±之上的。
例2:用直接开方法解一元二次方程(1) 0492=-x (2) 4)1(2=-x (3) 3)1(2=+x (4) 9)1(162=-x解析:(1)由题可知:3232329449049222=-=⇒±=⇒=⇒=⇒=-x x x x x x 或 (2) 由题可知:1321214)1(2-==⇒±=⇒±=-⇒=-x x x x x 或(3) 由题可知:313131313)1(2--=+-=⇒±-=⇒±=+⇒=+x x x x x 或(4)由题可知:4147431431169)1(9)1(1622==⇒±=⇒±=-⇒=-⇒=-x x x x x x 或 注:求一元二次不等式的根方法中,直接开方法是最基础的方法。
【练一练】:用直接开平方法解下列一元二次方程。
(1)0142=-x (2)2)3(2=-x(3)()512=-x (4)()162812=-x例3:用配方法解一元二次方程(1)0822=-+x x (2)01322=++x x (3)0132=--x x (4)01842=+--x x 解析:(1)由题可知:9)1(1811282082222222=+⇒+=+••+⇒=+⇒=-+x x x x x x x423131-==⇒±-=⇒±=+⇒x x x x 或(2) 由题可知:21141434143161)43()43(21)43(432212313201322222222-=-=⇒±-=⇒±=+⇒=+⇒+-=+•+⇒-=+⇒-=+⇒=++x x x x x x x x x x x x x 或(3) 由题可知:22222)23(1)23(23213013+=+••-⇒=-⇒=--x x x x x x2132321323413)23(2±-=⇒±=+⇒=+⇒x x x21332133+-=--=⇒x x 或 (4) 由题可知:212184018401842222=+⇒=+⇒=-+⇒=+--x x x x x x x x 26123)1(1211122222±=+⇒=+⇒+=+••+⇒x x x x 262262261+-=--=⇒±-=⇒x x x 或 注解:配方法的知识基础是建立在完全平方公式:222)(2b a b ab a ±=+±之上的。
【练一练】:用配方法解下列一元二次方程。
1、.0662=--y y2、x x 4232=-3、9642=-x x 4、0542=--x x5、01322=-+x x6、07232=-+x x7、01842=+--x x 8、041212=+--x x例4:用公式法解一元二次方程(1)0322=--x x (2)01322=++x x (3)132=-x x (4)1842-=x x 解析(1)由题可知: 3,2,1-=-==c b a所以:1312)3(14)2()2(2-==⇒⨯-⨯⨯--±--=x x x 或 (2)由题可知: 1,3,2===c b a所以:21122124332-=-=⇒⨯⨯⨯-±-=x x x 或(3)由题可知: 1,3,2===c b a所以:21122124332-=-=⇒⨯⨯⨯-±-=x x x 或(4)由题可知: 1,3,2===c b a所以:21122124332-=-=⇒⨯⨯⨯-±-=x x x 或注解:使用公式法求一元二次方程的根,要将方程转化为)0(02≠=++a c bx x a 的形式,再准确找出对应的c b a ,,的值。
【练一练】用公式解法解下列方程。
1、0822=--x x2、22314y y -=3、y y 32132=+ 4、01522=+-x x5、1842-=--x x 6、02322=--x x7、041212=+--x x 8、07232=-+x x例5:用因式分解法解一元二次方程 (1)0822=-+x x (2)01322=++x x (3)032=-x x (4)0342=+--x x解析:多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”.对于用因式分解法求一元二次方程根的问题,首先将方程转化为)0(02≠=++a c bx x a 或)0(02≠=+a bx x a 的形式,第一种形式)0(02≠=++a c bx x a 再考虑用因式分解中十字相乘法,第二种形式)0(02≠=+a bx x a 就只需提取公因数(式)即可。