二元一次方程组教学设计

合集下载

湘教版数学七年级下册《二元一次方程组》教学设计

湘教版数学七年级下册《二元一次方程组》教学设计

湘教版数学七年级下册《二元一次方程组》教学设计一. 教材分析《二元一次方程组》是湘教版数学七年级下册的教学内容,主要目的是让学生掌握二元一次方程组的概念、解法及其应用。

本节课的内容是学生学习一元一次方程的延伸和拓展,为后续学习更高级的方程和不等式打下基础。

教材通过丰富的例题和习题,引导学生掌握解二元一次方程组的方法,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了一元一次方程的知识,具备了一定的数学基础。

但部分学生对概念的理解不够深入,解题技巧和方法有待提高。

同时,学生对于实际应用题的解决能力较弱,需要老师在教学中加强引导和训练。

三. 教学目标1.了解二元一次方程组的概念,理解二元一次方程组的解及其性质。

2.学会用加减消元法、代入法解二元一次方程组。

3.能够运用二元一次方程组解决实际问题,提高解决问题的能力。

4.培养学生的逻辑思维能力、合作交流能力和创新意识。

四. 教学重难点1.重点:二元一次方程组的概念、解法及其应用。

2.难点:二元一次方程组的解的判断、加减消元法和代入法的运用。

五. 教学方法1.情境教学法:通过生活实例引入二元一次方程组,激发学生的学习兴趣。

2.引导发现法:引导学生发现二元一次方程组的解法,培养学生的探究能力。

3.合作学习法:分组讨论、交流解题方法,提高学生的合作能力。

4.实践操作法:让学生通过动手操作,加深对二元一次方程组解法的理解。

六. 教学准备1.教学PPT:制作包含教学内容、例题、习题的PPT。

2.教学素材:准备一些实际应用题,用于巩固和拓展学生的知识。

3.学习小组:将学生分成若干小组,便于合作交流。

七. 教学过程1.导入(5分钟)利用生活实例引入二元一次方程组,激发学生的学习兴趣。

如:某商店同时销售两种商品,一件商品售价100元,另一件商品售价120元。

若一件商品的利润是40元,另一件商品的利润是50元,问商店同时销售这两种商品时,每件商品的售价和利润分别是多少?2.呈现(10分钟)呈现二元一次方程组的概念,引导学生理解二元一次方程组的解及其性质。

七年级数学下册《二元一次方程组的应用》教案、教学设计

七年级数学下册《二元一次方程组的应用》教案、教学设计
4.小组讨论题:布置一道小组讨论题,要求学生在课后进行小组合作,共同分析问题、探讨解题方法。通过合作学习,培养学生的团队协作能力和沟通技巧。
5.反思总结:要求学生撰写一篇关于二元一次方程组学习的心得体会,内容包括学习过程中的收获、遇到的困难、解题技巧等,旨在让学生进行自我反思,提升学习效果。
作业布置要求:
(三)情感态度与价值观
1.培养学生对数学的热爱,使其认识到数学在生活中的重要作用,增强学习数学的积极性。
2.引导学生树立正确的价值观,认识到解决问题的重要性,培养敢于面对困难、勇于挑战的精神。
3.鼓励学生积极参与课堂讨论,充分表达自己的观点,培养学生的表达能力和沟通能力。
在教学过程中,教师应关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。同时,注重启发式教学,激发学生的学习兴趣,培养学生的自主学习能力。通过本章节的学习,使学生在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。
3.团队合作与沟通:在小组合作过程中,学生需要学会倾听、表达、讨论,这对部分学生来说可能存在一定难度。
针对以上学情,教师在教学过程中应关注以下几点:
1.注重启发引导,帮助学生建立实际问题与二元一次方程组之间的联系。
2.强化解题策略的训练,让学生在实践中掌握不同解题方法。
3.创设良好的合作氛围,引导学生积极参与,提高团队合作能力。
3.教师对学生的总结进行补充,强调重点和难点,梳理知识结构。
4.鼓励学生将所学知识运用到实际生活中,培养学生的数学应用意识。
五、作业布置
为了巩固学生对二元一次方程组知识的掌握,提高学生的解题能力和应用意识,特布置以下作业:
1.课本习题:完成课本中关于二元一次方程组的练习题,包括选择题、填空题和解答题,旨在让学生熟悉基本的二元一次方程组题型和解题方法。

8.1-二元一次方程组(单元教学设计)-【大单元教学】七年级数学下册

8.1-二元一次方程组(单元教学设计)-【大单元教学】七年级数学下册

8.1 二元一次方程组(大单元教学设计)一、【单元目标】通过情景导入,了解二元一次方程与二元一次方程组的概念与区别,学会根据题目的条件列出二元一次方程或二元一次方程组,学会根据实际情况,找出二元一次方程组的整数解情况等;(1)用生活中常见的事例,让学生可以根据题目中所给的条件,列出二元一次方程组,从中提炼出二元一次方程和二元一次方程组的概念;由之前所学内容“一元一次方程”,归纳总结出二元一次方程与一元一次方程的联系与区别,从而加深学生对方程的理解;(2)通过小组合作探究,让学生参与教学过程,加深对二元一次方程和二元一次方程组解的理解,同时会根据实际情况找出满足要求的整数解,提升了学生的数学抽象素养,进一步发展了学生的类比推理素养;(3)通过典型例题的训练,加强学生的做题技巧,训练做题的方法,提升学生的逻辑推理素养;(4)在师生共同思考与合作下,学生通过概括与抽象、类比的方法,体会了归因与转化的数学思想,同时提升了学生的数学抽象素养,并发展了学生的逻辑推理素养;(5)通过生活中的事例,提高学生对周围事物的感知能力,同时激发学生的学习兴趣,提升学生的人文素养;二、【单元知识结构框架】二元一次方程组{二元一次方程及其解的定义二元一次方程组及其解的定义列二元一次方程组三、【学情分析】1.认知基础二元一次方程和二元一次方程组及其解的定义,对我们后面学习的消元法解二元一次方程组和二元一次方程组的应用题具有关键作用,本节内容强调基础概念,锻炼学生的思维能力和判断能力;2.认知障碍学生在理解二元一次方程组的概念时,会和分式方程混淆,导致概念不清晰;在讲到二元一次方程的解时,要理解此时的解具有无数组,但一旦限定在整数范围内,那就要根据题目实际含义缩小范围;根据题意列二元一次方程组时,要读清题意,加强对逻辑关系的分辨,准确列出二元一次方程组;四、【教学设计思路/过程】课时安排: 约1课时教学重点: 二元一次方程及其解的定义,二元一次方程组及其解的定义;根据实际情况列二元一次方程组;教学难点: 二元一次方程组的认识与识别,根据二元一次方程组解的情况求参数的值;五、【教学问题诊断分析】 情境导入小红到邮局寄挂号信,需要邮费3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种票额的邮票?这个问题中有几个未知数,能列一元一次方程求解吗?如果设需要票额为6角的邮票x 张,需要票额为8角的邮票y 张,你能列出方程吗?8.1.1二元一次方程及其解的定义问题1(利用二元一次方程的定义求参数):已知|m -1|x |m |+y 2n -1=3是二元一次方程,则m +n =________.问题2(二元一次方程的解):已知⎩⎪⎨⎪⎧x =1,y =-1是方程2x -ay =3的一个解,那么a 的值是( )A .1B .3C .-3D .-1 8.1.2二元一次方程组及其解的定义问题3(识别二元一次方程组):有下列方程组:①⎩⎪⎨⎪⎧xy =1,x +y =2;②⎩⎪⎨⎪⎧x -y =3,1x+y =1;③⎩⎪⎨⎪⎧2x +z =0,3x -y =15;④⎩⎪⎨⎪⎧x =5,x 2+y3=7;⑤⎩⎪⎨⎪⎧x +π=3,x -y =1,其中二元一次方程组有( )A .1个B .2个C .3个D .4个问题4(利用二元一次方程组的解求参数的值)甲、乙两人共同解方程组⎩⎪⎨⎪⎧ax +5y =15;①4x -by =-2.②由于甲看错了方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.试计算a 2014+(-110b )2015的值.8.1.3列二元一次方程组问题5:小刘同学用10元钱购买了两种不同的贺卡共8张,单价分别是1元与2元.设他购买了1元的贺卡x 张,2元的贺卡y 张,那么可列方程组( )A.⎩⎪⎨⎪⎧x +y 2=10,x +y =8B.⎩⎪⎨⎪⎧x 2+y 10=8,x +2y =10C.⎩⎪⎨⎪⎧x +y =10,x +2y =8D.⎩⎪⎨⎪⎧x +y =8,x +2y =10六、【教学成果自我检测】 1.课前预习设计意图:落实与理解教材要求的基本教学内容. 1.下列方程组是二元一次方程组的是( ) A .57x y y z +=⎧⎨=+⎩B .24257x y x y ⎧+=⎨+=⎩C .23xy x y =⎧⎨+=⎩D .515328y x y =⎧⎨+=⎩2.下列方程的解为21x y =⎧⎨=-⎩的是( )A .3410x y -=B .1232x y += C .32x y += D .2()6x y y -=3.已知12x y =-⎧⎨=⎩是二元一次方程组321x y mnx y +=⎧⎨-=⎩的解,则m n +的值是( )A .2B .2-C .3D .3-4.若方程()135mm x y ++=是关于x ,y 的二元一次方程,则m 的值为 ______ .5.已知11x y =⎧⎨=-⎩是方程35x ay -=的一个解,那么a 的值是______.6.哪些是二元一次方程?为什么?(1)x 2+y =20;(2)2x +5=10;(3)2a +3b =1;(4)x 2+2x +1=0;(5)2x +y +z =1.2.课堂检测设计意图:例题变式练.【变式1】在下列方程组中,不是二元一次方程组的是( )A .331x y y -=⎧⎨=-⎩B .1321x y +=⎧⎨+=-⎩C .23321x y x y +=⎧⎨-=-⎩D .34xy x y ⎧=⎪⎨⎪-=⎩【变式2】已知21x y =⎧⎨=-⎩是二元一次方程7y kx -=的解,则k 的值是( )A .2B .2-C .4D .4-【变式3】已知21x y =⎧⎨=⎩是方程3ax by +=的解,则代数式631a b +-的值为_________.【变式4】已知124x y ⎧=⎪⎨⎪=⎩是二元一次方程2x y a +=的一个解. (1)则=a _________(2)试直接写出二元一次方程2x y a +=的所有正整数解. 3.课后作业设计意图:巩固提升.1.下列是二元一次方程35x y +=的解为( )A .10x y =⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =-⎧⎨=-⎩D .05x y =⎧⎨=-⎩2.下列方程组中,表示二元一次方程组的是( )A .35x y z x +=⎧⎨+=⎩B .51x y x y +=⎧⎪⎨=⎪⎩C .2512x y x y +=⎧⎨+=⎩D .11122x y y x =+⎧⎪⎨+=⎪⎩3.下列方程中,二元一次方程的个数是( ) ①423=-x ,②57=+y x ,③02=-y x ,④x y =,⑤122=++x yx ,⑥2210x x -+=,⑦z y x 4=+-,⑧20.x y -=,⑨1xy =. A .2B .3C .4D .54.方程22136m n x y -+-=是关于x ,y 的二元一次方程,则2m n +的值为______.5.若32x y =⎧⎨=-⎩是二元一次方程2ax by +=-的一个解,则322025a b -+的值为______________.6.哪些是二元一次方程组?为什么?(1)32950x y y x -=⎧⎨+=⎩;(2)39835x y z y z -+=⎧⎨+=⎩;(3)21x x y =⎧⎨+=⎩;(4)54xy y x y +=⎧⎨-=⎩7.(1)找到几组适合方程0x y +=的x ,y 值; (2)找到几组适合方程2x y -=的x ,y 值;(3)找出一组x ,y 值,使它们同时适合方程0x y +=和2x y -=;(4)根据上面的结论,你能直接写出二元一次方程组02x y x y +=⎧⎨-=⎩的解吗?七、【教学反思】。

二元一次方程组教案3 篇

二元一次方程组教案3 篇

二元一次方程组教案3 篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。

每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。

以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。

之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。

另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。

3、学习内容分析表:知识点重点难点编号内容1二元一次方程组定义及特点二元一次方程组的两个特点二元一次方程组成立的条件(未知数要同时满足两个条件)2二元一次方程组代入消元法代入消元法的具体解法消元法与一元一次方程解法间的联系3二元一次方程组实际运用以实际例题列出方程并解答未知数的假设以及运用已知条件列出正确方程。

二、学习者分析:本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。

初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。

初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。

而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。

此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。

二元一次方程组教学设计

二元一次方程组教学设计

二元一次方程组教学设计二元一次方程组教学设计1教学目标1.认识二元一次方程和二元一次方程组。

2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解。

重点、难点重点:理解二元一次方程组的解的意义难点:求二元一次方程的正整数解教学过程一、复习导入什么是一元一次方程?“元”指什么?“次”指什么?什么是方程的解?设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。

二、观看视频观看洋葱视频关于二元一次方程组的内容,通过熟悉的鸡兔同笼问题来引发思考。

视频内容设计意图:用视频吸引学生注意力,引起学生的认知冲突,从而激发学生的学习兴趣和求知欲望,通过视频内容,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

三、探究新知根据视频内容归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.把两个二元一次方程合在一起,就组成了一个二元一次方程组.提问:对比两个方程,你能发现它们之间的关系吗?师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.探究二元一次方程组的解:满足_+y=10的值有哪些?请填入表中:使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作。

满足方程2_+y=16且符合问题的实际意义的_ 、y的值如下表:不难发现_=6,y=4既是_+y=10的解,也是2_+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。

归纳二元一次方程组的解的定义:二元一次方程组中的.两个方程的公共解叫做二元一次方程组的解。

思考:3_+y=10的解有多少个?一个解有几个数?正整数解有几个?带着问题让学生观看洋葱数学视频二元一次方程组的解视频内容设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。

八年级数学上册《认识二元一次方程组》教案、教学设计

八年级数学上册《认识二元一次方程组》教案、教学设计
2.培养学生的团队合作精神,让学生在合作交流中互相学习、共同进步。
3.使学生认识到数学知识在解决实际问题中的重要作用,增强学生的应用意识。
在教学过程中,教师应关注学生的个体差异,充分调动学生的积极性,激发学生的学习兴趣。以下是具体的教学设计:
1.导入:通过生活中的实际问题,引导学生发现并认识二元一次方程组。
(1)过程性评价:关注学生在课堂上的参与程度、合作交流能力、问题解决能力等;
(2)总结性评价:通过课后作业、测试等方式,评价学生对二元一次方程组知识的掌握程度;
(3)个性化评价:根据学生的个体差异,给予有针对性的评价和建议,激发学生的学习动力。
4.教学反馈:
(1)及时了解学生的学习情况,针对学生存在的问题进行针对性的辅导;
八年级的学生已经具备了一定的数学基础,掌握了线性方程的相关知识,但对于二元一次方程组的认识还不够深入。在此阶段,学生的抽象逻辑思维能力逐渐增强,但仍然需要通过具体实例来理解和掌握抽象的数学概念。此外,学生在解决实际问题时,可能存在将问题转化为数学模型的困难,需要教师在教学过程中给予适当的引导和帮助。
3.鼓励学生主动提问,积极参与课堂讨论,提高自身数学素养。
五、作业布置
为了巩固学生对二元一次方程组知识的掌握,提高学生的解题能力和应用意识,特布置以下作业:
1.基础练习题:完成课本P56页第1-6题,要求学生熟练掌握二元一次方程组的定义、一般形式及其解法。
2.实践应用题:根据课堂所学的代入法、消元法,解决以下实际问题:
(1)小红和小李同时从同一地点出发,小红以每小时5公里的速度向北走,小李以每小时4公里的速度向东走,问两小时后,两人相距多远?
2.教师提问:让学生尝试用之前学过的知识解决这个问题,并引导学生发现问题的难点,即需要同时考虑两个未知数。

《二元一次方程组》教案

《二元一次方程组》教案

2.2二元一次方程组参考教案一、背景介绍及教学资料本节课是在学生学习了二元一次方程的基础上,通过用天平直观形象的展示抽象出二元一次方程组的概念,体会方程组的模型思想,进一步让学生经历体会从实际问题中抽象出数学问题,培养学生良好的数学应用意识.为进一步学习二元一次方程组的解法奠定基础.二、教学设计【教学内容分析】本节课提出二元一次方程组和二元一次方程组解的概念,并利用列表尝试的方法求简单二元一次方程组的解.为接下去学习二元一次方程组的解法作准备.【教学目标】1、了解二元一次方程组的概念和二元一次方程组解的含义.2、会检验一对数是不是二元一次方程组的解,会利用列表尝试的方法求简单二元一次方程组的解.3、通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,同时培养学生观察、归纳、概括能力.【教学重点、难点】重点是二元一次方程组的意义和二元一次方程组解的概念.难点是利用列表尝试的方法求简单二元一次方程组的解.【教学准备】多媒体、实物投影仪.【教学过程】教学环节教师活动学生活动设计意图创设情境提出图中画的是什么?问题展示:学生欣赏被称为被称为“现代绘画之父”的法国保罗·塞尚的作品引发学生兴趣.问题一个苹果和一个梨的质量合计200g 这个苹果的质量加上一个10g的砝码恰好与这个梨的质量相等,问苹果和梨的质量各为多少g?这个问题中,如果设苹果和梨的质量分别为x g和y g,你能列出几条方程?请把它们列出来.交流讨论得出:方程200x y+=和10y x=+经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想”尝试探索引出新知做一做1、(1)已知方程200x y+=,填写下表:x ...85 90 95 100 105...y ......提问:你能从中确定苹果和梨子的质量吗?(2)已知方程10y x=+,填写下表:x ..85 90 95 100 105 .y ...问题:现在你能找出苹果和梨的质量分别为多少g吗?为什么?指出:两个方程中x,y的值必须同时满足上述两个方程,因此可以把两个方程合起来,写成:20010x yy x+=⎧⎨=+⎩自主探索,口答就方程200x y+=而言有无数组解,也就是说苹果和梨子的质量不能唯一的确定.自主探索,口答合作思考、讨论、探索解决问题得出,因为方程200x y+=和方程10y x=+中,x,y都表示同一个未知通过自主探索体会从实际问题中抽象出二元一次方程组及二元一次方程解的不确定性,与二元一次方程组的解的唯一性的辩证关系.95105xy=⎧⎨=⎩12x y =⎧⎨=⎩3328y xx y =-⎧⎨+=⎩ 32x y =⎧⎨=-⎩ 23y xx y =⎧⎨+=⎩ 21x y =⎧⎨=⎩1325y x x y =-⎧⎨+=⎩例 题 讲 解PPT 演示讲解课本例题.总结列表尝试法一般步骤:1.尝试在一定范围内先确定满足其中一个方程的一些解; 2.再代入检验解是否满足另一个方程; 3.同时满足这两个方程的解就是方程组的解.应用 探究 发展能力 巩固练习小聪全家外出旅游,估计需要胶卷底片120张,商店里有两种型号的胶卷:A 型每卷36张底片,B 型每卷12张底片,小聪一共买了4卷胶卷,刚好有120张底片.如果设两种胶卷分别买了x 卷和y 卷,请根据问题中的条件列出关于x ,y 的方程组,并用列表尝试的方法求两种胶卷的数量.(结合本例让学生自主解决课本中的例题)指出: 因为x ,y 必须取正整数(为什么?)x 的最小可能性是多少?分组讨论,交流解:根据条件可列出关于x ,y 的方程组43612120x y x y +=⎧⎨+=⎩ 因为胶卷是整卷卖的,所以x 的最小取值是1.综合运用知识养学生探究、创新的精神和合作交流的意识.所以可以列表尝试如下:x1 2 3y36x+12 y 显然,只有x=3,y=1符合这个方程组,所以方程组的解是答:小聪买了A型胶卷3卷,B型胶卷1卷.x1 2 3y336x+12y反馈练习及时调控1,已知两个自然数的和是67,差是3.设这两个自然数分别是x,y,请列出关于x,y的方程组,并用列表尝试的方法求出这两个自然数.2、探究活动把一根长为1.2m的铁丝折成一个长方形,长方形的长和宽有多少种不同的取法?要使取法只有一种,你准备增加什么条件?设折成的长方形的长与宽分别为x,y,根据题设和你所增加的条件列出方程组.自主练习分组合作,交流探讨,尝试让学生自编习题,1、针对难点设计练习题以随时反馈教学效果.2、尝试让学生自编习题,提高学生探索问题分析问题能力.回顾小节通过这节课的学习,你有什么收获?讨论、整理、口答相互补充.引导学生思考、交流、梳理所学知识.31xy=⎧⎨=⎩教后总结:本节课通过被称为被称为“现代绘画之父”的法国保罗·塞尚的作品引发学生兴趣,导入课题.用天平直观形象的展示抽象出二元一次方程组的过程,体会方程组的模型思想,进一步让学生经历体会从实际问题中抽象出数学问题,发展学生灵活运用有关知识解决实际问题的能力,培养学生良好的数学应用意识.同时综合运用探索、启发等几种方法.体会从实际问题中抽象出二元一次方程组及二元一次方程解的不确定性,与二元一次方程组的解的唯一性的辩证关系.并结合多媒体、实物投影仪等现代教学手段实施教学,体现直观性.使学生进一步体会方程组是刻画现实世界的有效数学模型.通过合作探索:“把一根长为1.2m的铁丝折成一个长方形,长方形的长和宽有多少种不同的取法?要使取法只有一种,你准备增加什么条件?” 尝试让学生自编习题,提高学生探索问题分析问题能力.从而较好地完成二元一次方程组和二元一次方程组的解的概念的建构,达到教学目标.。

初二数学上册第七章《二元一次方程组》教案设计(优秀7篇)

初二数学上册第七章《二元一次方程组》教案设计(优秀7篇)

初二数学上册第七章《二元一次方程组》教案设计(优秀7篇)元一次方程教学设计篇一一、教材分析1、教材的地位和作用函数、方程和不等式都是人们刻画现实世界的重要数学模型。

用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。

本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点重点:一次函数与二元一次方程(组)关系的探索。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、教法说明对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。

以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

三、教学过程(一)感知身边数学学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。

结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。

七年级数学下册《解二元一次方程组》教案、教学设计

七年级数学下册《解二元一次方程组》教案、教学设计
-布置课后作业,让学生运用所学知识解决实际问题,提高学生的应用能力。
-推荐相关阅读材料,拓展学生的知识视野,激发学生学习数学的兴趣。
6.关注个体差异,因材施教
-针对学生的不同水平,设计不同难度的教学任务,使每个学生都能在课堂上获得成就感。
-对于学习困难的学生,教师应给予个别辅导,帮助他们克服学习中的困难。
3.鼓励学生多练习,培养他们的耐心和细心,提高解题正确率。
4.教会学生合作交流的方法,提高团队协作能力,使学生在互动中共同成长。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握二元一次方程组的定义及其解法(代入法、加减运用所学知识解决实际问题。
3.培养学生合作交流、分析问题和解决问题的能力。
2.教学实施
(1)呈现情境,提出问题:让学生了解小明和小华的行程情况,引导学生思考如何求解他们相遇的时间与地点。
(2)学生思考:鼓励学生尝试用已有的数学知识(如一元一次方程)来解决这个问题。
(3)导入新课:引出本节课要学习的二元一次方程组的概念,告诉学生通过学习这个知识点,可以解决类似的问题。
(二)讲授新知
(3)实际应用:展示二元一次方程组在生活中的应用,如购物优惠、行程规划等。
(三)学生小组讨论
1.教学活动设计
本环节我将组织学生进行小组讨论,让学生在合作交流中巩固所学知识,提高解决问题的能力。
2.教学实施
(1)分组讨论:将学生分成若干小组,每组选择一个实际问题,尝试用二元一次方程组求解。
(2)分享交流:每个小组派代表分享自己的解题过程和答案,其他小组进行评价和讨论。
3.拓展延伸
-探究性问题:提出一个开放性的探究问题,如“如何求解三个未知数的方程组?”鼓励学生进行自主探究,培养其数学思维和创新能力。

初中数学教学设计优秀案例

初中数学教学设计优秀案例

《二元一次方程组》教学设计一、教学目标1.知识与技能目标:(1)理解二元一次方程组的概念和二元一次方程组解的含义;(2)会检验一对数是不是二元一次方程组的解,会利用列表尝试的方法求简单二元一次方程组的解;(3)通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,同时培养学生观察、归纳、概括能力。

2.过程与方法目标从一个学生熟悉的生活实例引入二元一次方程组的概念,并通过“辩一辩”“填一填”“试一试”“做一做”,加深学生对“二元一次方程组”和“二元一次方程组的解”的概念的理解;并使学生初步了解用列表尝试的方法求二元一次方程组的解,并使学生在解决问题的过程中经历知识的产生过程。

3.情感与态度目标从学生的生活实际提出问题,既体现知识的学习过程,又体现知识的应用过程,同时还有利于激发学生的学习兴趣,有利于学生养成关注身边的事例、关心他人,培养一种社会的责任感。

二、教学重点、难点重点是二元一次方程组的意义和二元一次方程组解的概念。

难点是利用列表尝试的方法求简单二元一次方程组的解。

三、教学准备多媒体、实物投影仪。

四、教学方法和手段基于本节课内容的特点和七年级学生的心理及思维发展的特征,在教学中选择激趣法、讨论法和总结法相结合。

与学生建立平等融洽的互动关系,营造合作交流的学习氛围。

在引导学生进行观察分析、抽象概括、练习巩固各个环节中运用多媒体进行演示,增强直观性,提高教学效率,激发学生的学习兴趣。

五、教学过程环节一创设情境,探索新知问题1:假设你们每人手上有一根长20cm的铁丝,将这根铁丝首尾相连围成一个正方形,围出来的正方形都完全一样吗?问题2:同样用这根20厘米长的铁丝,首尾相连围成的长方形都完全一样吗?你能用二元一次方程来表示吗?【设计意图】①通过问题情境复习旧知,真正理解二元一次方程的意义;②为探索新知做好铺垫。

问题3:前面两个问题中都存在二元一次方程10=+yx,为何围成的长方形有无数种情况,而围成的正方形只有一种情况?【设计意图】通过两个问题的对比,让学生感受到10=+yx与yx=同时满足时,存在解的唯一性的过程,为二元一次方程组的形成做铺垫。

第五章二元一次方程组-二元一次方程组的应用(教案)

第五章二元一次方程组-二元一次方程组的应用(教案)
3.重点难点解析:在讲授过程中,我会特别强调如何从实际问题中抽象出方程组以及代入法、消元法的应用这两个重点。对于难点部分,我会通过具体案例和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二元一次方程组相关的实际问题,如购物时如何根据预算和单价计算购买数量等。
五、教学反思
在今天的课堂上,我们探讨了第五章“二元一次方程组-二元一次方程组的应用”。回顾整个教学过程,我认为有几个方面值得反思。
首先,我发现同学们在理解二元一次方程组的应用时,普遍对如何从实际问题中抽象出方程组感到困惑。在今后的教学中,我需要更加注重引导学生学会从问题中提取关键信息,培养他们的数学建模能力。
第五章二元一次方程组-二元一次方程组的应用(教案)
一、教学内容
第五章二元一次方程组-二元一次方程组的应用
1.教材章节:本节课主要基于第五章“二元一次方程组”中的第三节“二元一次方程组的应用”进行教学设计。
2.内容列举:
(1)理解并掌握二元一次方程组在现实生活中的应用;
(2)学会利用二元一次方程组解决实际问题,如速度与时间、成本与数量、面积与周长等问题;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二元一次方程组的基本概念。二元一次方程组是由两个含有两个未知数的一次方程组成的,它能够描述许多现实生活中的问题。掌握二元一次方程组不仅可以帮助我们解决实际问题,还能提高我们的逻辑思维能力。
2.案例分析:接下来,我们来看一个具体的案例。假设小明和小华同时从A、B两地出发,相向而行,经过2小时相遇。我们可以通过建立二元一次方程组来求解他们各自的速度和行驶的距离。
三、教学难点与重点
1.教学重点

人教版数学七年级下册第38课时《二元一次方程组》教学设计

人教版数学七年级下册第38课时《二元一次方程组》教学设计

人教版数学七年级下册第38课时《二元一次方程组》教学设计一. 教材分析《二元一次方程组》是人教版数学七年级下册第38课时的内容,本节课的主要任务是让学生掌握二元一次方程组的定义、解法及其应用。

此部分内容是学生在学习了二元一次方程的基础上进行的,进一步提高了学生的数学思维能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了二元一次方程的基本知识,具备了一定的数学思维能力。

但部分学生对概念的理解还不够深入,解题技巧有待提高。

因此,在教学过程中,教师需要关注学生的个体差异,引导他们积极参与课堂讨论,提高他们的数学素养。

三. 教学目标1.理解二元一次方程组的定义及其解法。

2.能够运用二元一次方程组解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.二元一次方程组的定义。

2.二元一次方程组的解法。

3.二元一次方程组在实际问题中的应用。

五. 教学方法1.讲授法:教师讲解二元一次方程组的概念、解法及其应用。

2.案例分析法:通过实际问题,引导学生运用二元一次方程组解决问题。

3.小组讨论法:学生分组讨论,共同探讨二元一次方程组的解法。

4.实践操作法:学生动手解二元一次方程组,提高解题技巧。

六. 教学准备1.教学课件:制作课件,展示二元一次方程组的相关概念、解法及应用。

2.实际问题:挑选一些与生活相关的实际问题,作为课堂练习。

3.练习题:准备一些二元一次方程组的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过复习二元一次方程的基本知识,引导学生进入本节课的学习。

2.呈现(10分钟)教师展示二元一次方程组的定义、解法及其应用,让学生初步了解二元一次方程组的概念。

3.操练(10分钟)学生分组讨论,共同探讨二元一次方程组的解法。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)教师出示一些实际问题,让学生运用二元一次方程组解决问题。

学生独立思考,教师选取部分学生的解题过程进行讲解和分析。

二元一次方程组教学设计(共7篇)

二元一次方程组教学设计(共7篇)

二元一次方程组教学设计(共7篇)第1篇:二元一次方程组教学设计《二元一次方程组》(自主课堂教学设计)学习内容:义务教育课程人教板七年级数学下册88—89页。

教学目标知识与技能:1、使学生了解二元一次方程的概念,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。

过程与方法:学会用类比的方法迁移知识,体验二元一次方程组在处理实际问题中的优越性。

情感、态度与价值观:通过对二元一次方程(组)的概念的学习,感受数学与生活的联系,感受数学的乐趣教学重点:二元一次方程(组)的概念及检验一对数是否是某个二元一次方程(组)的解。

教学难点:二元一次方程组的解的含义。

教学步骤:一、知识回顾1.什么叫做一元一次方程?解方程2X+3=5,X=2.2X+3Y=5是几元几次方程?二、指导自学—问题引领自学指导请认真看P.92—94的内容.思考:1、在P.92引例(篮球赛)中,你能用一元一次方程解吗?对于引例中的这两种解法:一种是设一个未知数,另一种是设两个未知数,哪种解法更好理解呢?:2.把两个二元一次方程合在一起,就形成一个二元一次方程组,是通过什么符号实现的?归纳二元一次方程(组)的概念。

3.如何检验一对数是否是某个二元一次方程(组)的解。

6分钟后,比谁能说出以上问题答案.三.学生自学学生按照自学指导看书,教师巡视,确保人人学得紧张高效.四.老师点拔:1.涉及二元一次方程(组)的概念问题时,要注意二元、一次,整式三方面;2.二元一次方程组的相同的字母它们所表示的意义一样。

并不是任意两个二元一次方程都能组成二元一次方程组。

(举例分析)3、二元一次方程组的解与一元一次方程的解它们有什么异同点?不同点:二元一次方程组的解是满足每一个二元一次的,并且是成对出现的解相同点:都是方程的解,代入方程都会使方程左右两边成立)五.检查自学效果自学检测题1、3x+2y=6,它有______个未知数,且未知数是___次,因此是_____元______次方程2、3x=6是____元____次方程,其解x=_____,有______个解,3x+2y=6,当x=0时,y=_____;当x=2时,y=_____;当y=5时,x=____(因此,使二元一次方程左右两边相等的______个未知数的值,叫作二元一次方程的解。

二元一次方程教学设计

二元一次方程教学设计

二元一次方程教学设计作业内容二元一次方程(组)教学设计教学目标:1、认识二元一次方程和二元一次方程组;2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.教学重难点:1.理解二元一次方程组及其解得含义;2.能区分二元一次方程的解和二元一次方程组的解;教学过程:1.提问:什么叫做一元一次方程?只含有一个未知数并且未知数的次数是1的整式方程叫做一元一次方程。

2.练习:(判断哪些式子是一元一次方程?)3x=6 4x+55x-3=2xy=0 2x+y=10 5 x+2y=183.观察:2x+y=10 5x+2y=18这两个式子从未知数和未知数的次数有怎样的特征?4.引出二元一次方程的概念每个方程都含有两个未知数(x和y),并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.二、讲授新课1.用多种方法解决下题:去年我们学校组织了初中部篮球比赛,规定每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.705班在10场比赛中得到16分,那么705班胜负场数分别是多少?(只列式,不计算)方法1:解:设705班赢了x场,则输了(10-x)场;2x+(10-x)=16方法2:解:设705班赢了x场,输了y场;x+y=102x+y=162.此时的x和y要同时满足上面两个方程,所以我们把这两个方程合在一起就组成了方程组。

3.观察:方程组有几个未知数?未知数的项的次数是多少?二元一次方程组的概念:像这样方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.注意:方程组总共有两个未知数而不是每个方程都要有两个未知数。

三、探究二元一次方程(组)的解满足方程x+y=10,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.满足方程2x+y=16,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.总结:一般地,使二元一次方程两边的值相等的未知数的值,叫做二元一次方程的解.观察:上表中哪对x、y的值既满足x+y=10 又满足2x+y=16?我们还发现,上表中当x=6,y=4时既满足方程x+y=10又满足方程2x+y=16. 即x=6,y=4 是这两个方程公共解.讨论:不结合本道题的实际情况,还有哪些值满足上述两个方程?总结:二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

人教版七年级数学下册 教学设计8.1 第1课时《二元一次方程组》

人教版七年级数学下册 教学设计8.1 第1课时《二元一次方程组》

人教版七年级数学下册教学设计8.1 第1课时《二元一次方程组》一. 教材分析《二元一次方程组》是人教版七年级数学下册的教学内容,本节课的主要内容是让学生掌握二元一次方程组的定义、解法和应用。

通过学习,学生能够解决实际问题,提高解决问题的能力。

教材通过丰富的例题和练习题,帮助学生巩固知识点,提高解题技巧。

二. 学情分析学生在学习本节课之前,已经掌握了整式、方程等基础知识,具备一定的逻辑思维能力和问题解决能力。

但部分学生对抽象的数学概念理解仍有困难,需要教师在教学中给予关注和引导。

同时,学生对于实际问题的解决方法还不够熟练,需要在教学中加强训练。

三. 教学目标1.知识与技能:理解二元一次方程组的定义,学会解二元一次方程组的方法,能够应用二元一次方程组解决实际问题。

2.过程与方法:通过自主学习、合作交流,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:二元一次方程组的定义、解法和应用。

2.难点:如何将实际问题转化为二元一次方程组,以及解二元一次方程组的方法。

五. 教学方法1.情境教学法:通过生活实例引入二元一次方程组,激发学生的学习兴趣。

2.自主学习法:引导学生自主探究二元一次方程组的解法,培养学生的自主学习能力。

3.合作交流法:学生进行小组讨论,共同解决问题,提高学生的团队合作能力。

4.实践操作法:让学生通过解决实际问题,巩固二元一次方程组的应用。

六. 教学准备1.教学课件:制作课件,展示二元一次方程组的相关知识点。

2.练习题:准备一些有关二元一次方程组的练习题,用于巩固所学知识。

3.教学道具:准备一些实物道具,帮助学生更好地理解二元一次方程组的概念。

七. 教学过程1.导入(5分钟)利用生活实例,如购物问题,引入二元一次方程组的概念,激发学生的学习兴趣。

2.呈现(10分钟)呈现二元一次方程组的定义和解法,引导学生自主学习,理解相关知识点。

解二元一次方程组教案优秀9篇

解二元一次方程组教案优秀9篇

解二元一次方程组教案优秀9篇课前预习:篇一一、阅读教材P96-P98的内容二、独立思考:1、满足方程组的x的值是-1,则方程组的解是_____________.2、用代入法解方程组比较容易的变形是()、A、由①得B、由①得C、由得D、则得3、用代入消元法解方程以下各式正确的是()A、B、C、D、4、如果是二元一次方程,则的值是多少?二元一次方程篇二数学七年级下册《二元一次方程》数学教案一、教学目标:1、认知目标:1)了解二元一次方程组的概念。

2)理解二元一次方程组的解的概念。

3)会用列表尝试的方法找二元一次方程组的解。

2、能力目标:1)渗透把实际问题抽象成数学模型的思想。

2)通过尝试求解,培养学生的探索能力。

3、情感目标:1)培养学生细致,认真的学习习惯。

2)在积极的教学评价中,促进师生的情感交流。

二、教学重难点重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三、教学过程(一)创设情景,引入课题1、本班共有40人,请问能确定男女生各几人吗?为什么?(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)(2)这是什么方程?根据什么?2、男生比女生多了2人。

设男生x人,女生y人、方程如何表示?x,y的值是多少?3、本班男生比女生多2人且男女生共40人、设该班男生x人,女生y人。

方程如何表示?两个方程中的x表示什么?类似的两个方程中的y都表示?像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

4、点明课题:二元一次方程组。

(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)(二)探究新知,练习巩固1、二元一次方程组的概念(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

[让学生看书,引起他们对教材重视。

找关键词,加深他们对概念的了解、](2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二元一次方程组》
(自主课堂教学设计)
学习内容:
义务教育课程人教板七年级数学下册88—89页。

教学目标
知识与技能:
1、使学生了解二元一次方程的概念,能举例说明二元一次方程及其中的已知数和未知数;
2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。

过程与方法:
学会用类比的方法迁移知识,体验二元一次方程组在处理实际问题中的优越性。

情感、态度与价值观:
通过对二元一次方程(组)的概念的学习,感受数学与生活的联系,感受数学的乐趣
教学重点:二元一次方程(组)的概念及检验一对数是否是某个二元一次方程(组)的解。

教学难点:二元一次方程组的解的含义。

教学步骤:
一、知识回顾
1.什么叫做一元一次方程?解方程2X+3=5,X=
2.2X+3Y=5是几元几次方程?
二、指导自学—问题引领
自学指导
请认真看P.92—94的内容.思考:
1、在P.92引例(篮球赛)中,你能用一元一次方程解吗?对于引例中的这两种解法:一种是设一个未知数,另一种是设两个未知数,哪种解法更好理解呢?:2.把两个二元一次方程合在一起,就形成一个二元一次方程组,是通过什么符号实现的?归纳二元一次方程(组)的概念。

3.如何检验一对数是否是某个二元一次方程(组)的解。

6分钟后,比谁能说出以上问题答案.
三.学生自学
学生按照自学指导看书,教师巡视,确保人人学得紧张高效.
四.老师点拔:
1.涉及二元一次方程(组)的概念问题时,要注意二元、一次,整式三方面;2.二元一次方程组的相同的字母它们所表示的意义一样。

并不是任意两个二元一次方程都能组成二元一次方程组。

(举例分析)
3、二元一次方程组的解与一元一次方程的解它们有什么异同点?
不同点:二元一次方程组的解是满足每一个二元一次的,并且是成对出现的解
相同点:都是方程的解,代入方程都会使方程左右两边成立)
五.检查自学效果
自学检测题
1、3x +2y =6,它有______个未知数,且未知数是___次,因此是_____元______次方程
2、3x=6是____元____次方程,其解x=_____,有______个解,3x +2y =6,当x=0时,y=_____;当x=2时,y=_____;当y=5时,x=____
(因此,使二元一次方程左右两边相等的______个未知数的值,叫作二元一次方程的解。

由此可知,二元一次方程的解是由两个未知数的值组成。

想想,二元一次方程的解固定吗?)
3、3x +2y =6,通过怎样的变化可使x =_____ ,如用x 来表示y ,则y =__________
4、x+2y=3, 用x 表示y=________;用y 表示x=________
5、下列各式是不是二元一次方程:
○1 3x +2y ○2 2-x+3+5=0 ○3 3x-4y=z
○4 x+xy=1 ○5x 2+3x=5y ○67x-y=0
6、下列方程组是不是二元一次方程组
⎩⎨⎧=+=+75243)1(y x y x ⎩⎨⎧=+=7
524)2(y x xy ⎩⎨⎧=+=+7243)3(z x y x ⎩⎨⎧=+=+7
5243)4(2y x y x 7、以下4组x 、y 的值,哪组是⎩⎨⎧-=+=-4
272y x y x 的解?( ) A .⎩⎨⎧-==51y x B .⎩⎨⎧-==20y x C .⎩⎨⎧-==32y x D .⎩
⎨⎧-==13y x 8、把下列方程中的y 用x 表示出来:
(1)y +2x=0 (2) 3y-4x=6
六.两说合作—小组讨论更正,合作探究
1.学生自由更正,或写出不同解法;
2.评讲
数学概念是数学的基础与出发点,当遇到与方程的解相关的问题时,要回到定义中去;
在求二元一次方程的整数解时,往往采用“给一个,求一个”的方法
七、课堂小结,作业布置
1、 小结(以提问进行):
(1)、二元一次方程(组)的特征是什么?
(2)、二元一次方程组的解要满足什么条件?。

相关文档
最新文档