高中物理:磁场 单元测试卷(含答案)
高中物理磁场练习题及答案
Oxy V 0 a b《磁场》单元练习一.选择题:每小题给出的四个选项中,每小题有一个选项、或多个选项正确。
1、如图所示,两根垂直纸面、平行且固定放置的直导线M 和N ,通有同向等值电流;沿纸面与直导线M 、N 等距放置的另一根可自由移动的通电导线ab ,则通电导线ab 在安培力作用下运动的情况是 A.沿纸面逆时针转动 B.沿纸面顺时针转动C.a 端转向纸外,b 端转向纸里D.a 端转向纸里,b 端转向纸外2.两根长直通电导线互相平行,电流方向相同.它们的截面处于一个等边三角形ABC 的A 和B 处.如图所示,两通电导线在C 处的磁场的磁感应强度的值都是B ,则C 处磁场的总磁感应强度是( )A.2BB.BC.0D.3B3、空间存在竖直向下的匀强电场和水平方向(垂直纸面向里)的匀强磁场,如图所示,已知一离子在电场力和洛仑兹力共同作用下,从静止开始自A 点沿曲线ACB 运动,到达B点时速度为零,C 为运动的最低点.不计重力,则 A.该离子带负电B.A 、B 两点位于同一高度C.C 点时离子速度最大D.离子到达B 点后,将沿原曲线返回A 点4、一带电粒子以一定速度垂直射入匀强磁场中,则不受磁场影响的物理量是: A 、速度 B 、加速度 C 、动量 D 、动能5、MN 板两侧都是磁感强度为B 的匀强磁场,方向如图,带电粒子(不计重力)从a 位置以垂直B 方向的速度V 开始运动,依次通过小孔b 、c 、d ,已知ab = bc = cd ,粒子从a 运动到d 的时间为t ,则粒子的荷质比为: A 、tB π B 、tB 34π C 、π2tB D 、tBπ3 6、带电粒子(不计重力)以初速度V 0从a 点进入匀强磁场,MN a bc dVB B如图。
运动中经过b 点,oa=ob 。
若撤去磁场加一个与y 轴平行的匀强电场,仍以V 0从a 点进入电场,粒子仍能通过b 点,那么电场强度E 与磁感强度B 之比E/B 为: A 、V 0 B 、1 C 、2V 0 D 、2V 7、如图,MN 是匀强磁场中的一块薄金属板,带电粒子(不计重力)在匀强磁场中运动并穿过金属板,虚线表示其运动轨迹,由图知:A 、粒子带负电B 、粒子运动方向是abcdeC 、粒子运动方向是edcbaD 、粒子在上半周所用时间比下半周所用时间长8、带负电的小球用绝缘丝线悬挂于O 点在匀强磁场中摆动,当小球每次通过最低点A 时: A 、摆球受到的磁场力相同 B 、摆球的动能相同 C 、摆球的动量相同D 、向右摆动通过A 点时悬线的拉力大于向左摆动通过A 点时悬线的拉力9、如图,磁感强度为B 的匀强磁场,垂直穿过平面直角坐标系的第I 象限。
高二物理磁场练习题及答案
高二物理磁场练习题及答案一、选择题1. 以下哪个不是磁场中的基本物理量?A) 磁感应强度 B) 磁场强度C) 磁通量 D) 磁矩2. 在空间中,某点的磁感应强度最大,磁场强度为零,则该点的磁场中的电流线是从哪个方向来的?A) 上方 B) 下方C) 左方 D) 右方3. 在均匀磁场中,电子的轨道半径和质量均不变,将磁感应强度变为原来的4倍后,电子的运动周期将A) 减至原来的1/4 B) 减至原来的1/2C) 保持不变 D) 增至原来的2倍4. 以下哪种情况不会使磁感应强度发生变化?A) 改变导线长度 B) 改变导线截面积C) 改变导线形状 D) 引入铁芯5. 两根平行的长直导线之间的力是相互的,它们的方向是A) 互相平行 B) 互相垂直C) 互相成60度角 D) 互相成180度角二、填空题1. 测量某区域的磁场强度,使用的仪器是________。
2. 直观地表示磁场分布情况的方法是绘制________。
3. 磁感应线指示出磁场中________的方向。
4. 磁场强度是________的物理量。
5. 真空中磁场中的电流线是________的。
三、解答题1. 描述磁感线的基本特征及其与磁场强度的关系。
2. 一根长直导线通过平面内一点O,与O点的距离为d,点O的水平方向又有一根与之平行的长直导线通过。
导线间的电流为I,分别求:a) 两导线间的相互作用力;b) 对第一根导线单位长度的作用力。
3. 在一个外磁场强度为B的均匀磁场中,一个具有电荷量q,质量m的带电粒子垂直于磁场以速度v运动,由于磁场的作用,其运动轨道发生半径R的圆弧。
求推导出R和v 之间的关系。
四、高分答案1. 答案:D2. 答案:A3. 答案:C4. 答案:C5. 答案:D二、填空题1. 答案:磁力计2. 答案:磁力线3. 答案:磁场强度4. 答案:矢量5. 答案:闭合的三、解答题1. 磁感线是用来表示磁场分布的线条,具有以下特征:- 磁感线起始于北极,终止于南极,是闭合曲线。
高中物理:磁场测试题(含答案)
高中物理:磁场测试题(含答案)
1. 磁场中硬币的行为
一枚硬币在磁场中被放置在水平面上。
磁场方向指向纸面内,硬币受力情况如何?
A. 硬币不受力,保持静止。
B. 硬币受力向下,向外滚动。
C. 硬币受力向上,向内滚动。
D. 硬币受力向下,向内滚动。
答案:C
2. 带电粒子在磁场中的运动
一个带正电的粒子以与磁场垂直的速度进入磁场,磁场方向指向纸面内。
粒子在磁场中将运动成什么轨迹?
A. 圆形轨迹。
B. 直线轨迹。
C. 椭圆轨迹。
D. 螺旋轨迹。
答案:A
3. 磁感应强度的定义
磁感应强度的定义是什么?
A. 单位长度内的磁感应线数目。
B. 磁力对单位电荷的大小。
C. 磁场中单位面积垂直于磁力方向的大小。
D. 空间单位体积内的磁感应线数目。
答案:C
4. 磁场中电流的力学效应
在两根平行导线通过电流时,它们之间产生一个磁场。
这个磁场对导线有哪种力学效应?
A. 两根导线之间会相互吸引。
B. 两根导线之间会相互排斥。
C. 导线上会产生电压。
D. 导线会受到一个恒定的力。
答案:D
5. 磁场中的电流计测量原理
磁场中的电流计测量原理基于什么原理?
A. 磁感应强度和导线长度成正比。
B. 磁场中电流的方向与电流计示数成反比。
C. 电流计受力与磁感应强度成正比。
D. 磁感应强度和电流的大小成正比。
答案:C。
高中物理磁场练习题(含解析)
D.库仑通过与万有引力类比,在实验的基础上验证得出库仑定律
4.电磁炮是利用电磁系统中电磁场产生的安培力来对金属炮弹进行加速,使其达到打击目标所需的巨大动能,如图甲所示。原理图可简化为如图乙所示,其中金属杆表示炮弹,磁场方向垂直轨道平面向上,则当弹体中通过如图乙所示的电流时,炮弹加速度的方向为( )
高中物理磁场练习题
学校:___________姓名:___________班级:___________
一、单选题
1.假设一个力单独作用的效果跟某几个力共同作用的效果相同,这个力就叫作那几个力的合力,以下概念的建立方法与合力相同的是( )
A.瞬时速度B.交流电的有效值
C.电场强度D.磁通量
2.如图所示,匀强磁场方向垂直纸面向里,匀强电场方向竖直向下,有一正离子恰能沿直线从左向右水平飞越此区域。不计重力,则( )
16.“用霍尔元件测量磁场”的实验中,把载流子为带负电的电子e的霍尔元件接入电路如图,电流为I,方向向左,长方体霍尔元件长宽高分别为 、 、 ,处于竖直向上的恒定匀强磁场中。
(1)前后极板M、N,电势较高的是___________。(选填“M板”或“N板”)
(2)某同学在实验时,改变电流的大小,记录了不同电流下对应的 值,如下表
14.如图所示,面积为10m2的正方形导线框处于磁感应强度为 的匀强磁场中。在线框平面以ad边为轴转过180°的过程中,线圈中________感应电流产生(选填“有”或“无”),整个过程中,磁通量变化量为________Wb。
四、实验题
15.奥斯特研究电和磁的关系的实验中,通电导线附近的小磁针发生偏转的原因是______ 实验时为使小磁针发生明显偏转,通电前导线应放置在其上方,并与小磁针保持______ 选填“垂直”、“平行”、“任意角度” .元电荷的电量是______C.
人教版高中物理选修3-1第三章磁场综合测试题答案及详解
高中物理学习材料金戈铁骑整理制作第三章磁场综合测试题答案及详解本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,时间90分钟.第Ⅰ卷(选择题共40分)一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有些小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.答案:ABD解析:只有当通电导线和磁场平行时,才不受安培力的作用,而A、D中导线均与磁场垂直,B中导线与磁场方向夹角为60°,因此受安培力的作用,故正确选项为A、B、D.2.答案:D解析:因为带电小球静止,所以不受磁场力的作用.3.答案:A解析:用双线绕成的螺丝管,双线中的电流刚好相反,其在周围空间产生的磁场相互抵消,所以螺线管内部磁感应强度为零.4.答案:C解析:通电后,弹簧的每一个圈都相当一个环形电流,且各线圈都通以相同方向的电流,根据同向电流相互吸引,弹簧收缩,下端脱离水银面,使电路断开,电路断开后,弹簧中的电流消失,磁场作用失去,弹簧在弹力和自身重力作用下下落,于是电路又接通,弹簧又收缩……如此周而复始,形成弹簧上下跳动.正确答案为C.5.答案:A解析:离导线越远磁感应强度越小,电子的轨道半径越大.6.答案:A解析:由于m甲∶m乙=4∶1,q甲∶q乙=2∶1,v甲∶v乙=1∶1,故R甲∶R乙=2∶1.由于带电粒子只受洛伦兹力的作用,而洛伦兹力充当粒子做圆周运动的向心力,由左手定则判断,甲、乙所受洛伦兹力方向相反,则可判断,A选项正确.7.答案:ABD解析:当磁场方向垂直斜面向下时,据平衡条件知在沿斜面方向上mg sin30°=BIL所以B=mg2IL,因此选项A正确;当磁场方向竖直向下时,由左手定则知安培力应水平向左,直导体受力如图所示.由平衡条件知在沿斜面方向上mg sin30°=BIL cos30°所以B =mg3IL,故选项B 正确;若磁感应强度垂直斜面向上,由左手定则知安培力应沿斜面向下,这样直导体不可能静止在斜面上,所以选项C 不正确;若B 水平向左,由左手定则知,安培力方向应竖直向上,此时若满足BIL =mg ,即B =mgIL,则直导体仍可静止在斜面上,所以D 选项正确.8.答案:ACD解析:各粒子做圆周运动的周期T =2πmqB,根据粒子的比荷大小可知:T 1=T 2<T 3,故A正确;由于r 1>r 2>r 3结合r =m vqB及粒子比荷关系可知v 1>v 2>v 3,故B 错误;粒子运动的向心加速度a =q v Bm,结合各粒子的比荷关系及v 1>v 2>v 3可得:a 1>a 2>a 3,故C 正确;由图可知,粒子运动到MN 时所对应的圆心角的大小关系为θ1<θ2<θ3,而T 1=T 2,因此t 1<t 2,由T 2<T 3,且θ2<θ3,可知t 2<t 3,故D 正确.9.答案:ABD解析:带负电小球由槽口下滑到P 点的过程中,磁场力不做功,支持力不做功,只有重力做功.小球在P 点受磁场力方向竖直向上.根据机械能守恒mgR =12m v 2v =2gR在P 点N +Bq v -mg =m v 2RN =3mg -qB 2gRM 对地面压力N ′=Mg +N =(M +3m )g -qB 2gR 当qB 2gR =2mg 时N ′=(M +m )g 当qB 2gR =3mg 时N ′=Mg 选项A 、B 、D 正确. 10.答案:CD解析:在A 图中刚进入复合场时,带电小球受到方向向左的电场力、向右的洛伦兹力、竖直向下的重力,在重力的作用下,小球的速度要变大,洛伦兹力也会变大,所以水平方向受力不可能总是平衡,A 选项错误;B 图中小球要受到向下的重力、向上的电场力、向外的洛伦兹力,小球要向外偏转,不可能沿直线通过复合场,B 选项错误;C 图中小球受到向下的重力、向右的洛伦兹力、沿电场方向的电场力,若三力的合力恰好为零,则小球将沿直线匀速通过复合场,C 正确;D 图中小球只受到竖直向下的重力和竖直向上的电场力可以沿直线通过复合场,D 正确.第Ⅱ卷(非选择题 共60分)二、填空题(共4小题,每小题5分,共20分.把答案直接填在横线上)11.答案:由安培定则判定答案如下图所示.12.答案:竖直向下 垂直纸面向里 E 2ghgB2πEgB +32h g 22gh π13.答案:0.5T解析:金属杆偏离竖直方向后受力如图所示,杆受重力mg ,绳子拉力F 和安培力F 安的作用,由平衡条件可得:F sin30°=BIL ① F cos30°=mg ②①②联立,得mg tan30°=BIL∴B =mg tan30°IL=0.5T14.答案:速度,荷质比解析:由直线运动可得:qE =qB v 进而可知:v =EB,可得速度相同,再由在后面只有磁场空间内半径相同,可得mq相同.三、论述·计算题(共5小题,共40分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分,有数值计算的题,答案中必须明确写出数值和单位)15.答案:11V解析:ab 棒受到的安培力:F =BIL =0.04N 所以I =2A I 总=3AE =I 总(r +R ·R abR +R ab)=11V .16.答案:P =BIa解析:将原图的立体图改画成从正面看的侧视图,如图所示,根据左手定则判断出电流受力方向向右.F =BIh ,P =F S =F ah =BIh ah =BIa点评:本题的物理情景是:当电流I 通过金属液体沿图中方向向上时,电流受到磁场的作用力,这个磁场力即为驱动液态金属流动的动力,由于这个驱动力而使金属液体沿流动方向产生压强.17.答案:(1)轨迹图见解析(2)2L (L 2+d 2)2mU q解析:(1)作粒子经电场和磁场中的轨迹图,如图(2)设粒子在M 、N 两板间经电场加速后获得的速度为v ,由动能定理得:qU =12m v 2①粒子进入磁场后做匀速圆周运动,设其半径为r ,则:q v B =m v 2r②由几何关系得:r 2=(r -L )2+d 2③ 联立求解①②③式得:磁感应强度B =2L (L 2+d 2)2mUq .18.答案:(1)6×10-3J (2)0.6m解析:(1)从M →N 过程,只有重力和摩擦力做功.刚离开N 点时有 Eq =Bq v即v =E /B =42m/s =2m/s.根据动能定理mgh -W f =12m v 2所以W f =mgh +12m v 2=1×10-3×10×0.8-12×1×10-3×22=6×10-3(J).(2)从已知P 点速度方向及受力情况分析如附图由θ=45°可知 mg =Eq f 洛=2mg =Bq v p所以v P =2mg Bq =2EB=22m/s.根据动能定理,取M →P 全过程有mgH -W f -Eqs =12m v 2P求得最后结果s =mgH -W f -12m v 2PEq=0.6m.19.答案:(1)3.46m (2)1.53s解析:(1)设垒球在电场中运动的加速度为a ,时间为t 1,有:qE =ma h =12at 21 d =v 0t 1代入数据得:a =50m/s 2,t 1=35s ,d =23m =3.46m(2)垒球进入磁场时与分界面夹角为θtan θ=at 1v 0=3,θ=60°进入磁场时的速度为v =v 0cos θ=20m/s设垒球在磁场中做匀速圆周运动的半径为R由几何关系得:R =dsin θ=4m又由R =m v qB ,得B =m vqR=10T球在磁场中运动时间为:t 2=360°-2×60°360°TT =2πm qB ,故t 2=4π15s运动总时间为:t =2t 1+t 2=1.53s。
高二物理-磁场专题训练及答案(全套)
高中物理磁场专题训练一、磁场、安培力练习题一、选择题1.关于磁场和磁感线的描述,正确的说法有[]A.磁极之间的相互作用是通过磁场发生的,磁场和电场一样,也是一种物质B.磁感线可以形象地表现磁场的强弱与方向C.磁感线总是从磁铁的北极出发,到南极终止D.磁感线就是细铁屑在磁铁周围排列出的曲线,没有细铁屑的地方就没有磁感线2.一束带电粒子沿水平方向飞过小磁针上方,并与磁针指向平行,能使磁针的S极转向纸内,如图1所示,那么这束带电粒子可能是[]A.向右飞行的正离子束B.向左飞行的正离子束C.向右飞行的负离子束D.问左飞行的负离子束3.铁心上有两个线圈,把它们和一个干电池连接起来,已知线圈的电阻比电池的内阻大得多,如图2所示的图中,哪一种接法铁心的磁性最强[]4.关于磁场,以下说法正确的是[]A.电流在磁场中某点不受磁场力作用,则该点的磁感强度一定为零B.磁场中某点的磁感强度,根据公式B=F/I·l,它跟F,I,l都有关C.磁场中某点的磁感强度的方向垂直于该点的磁场方向D.磁场中任一点的磁感强度等于磁通密度,即垂直于磁感强度方向的单位面积的磁通量5.磁场中某点的磁感应强度的方向[]A.放在该点的通电直导线所受的磁场力的方向B.放在该点的正检验电荷所受的磁场力的方向C.放在该点的小磁针静止时N极所指的方向D.通过该点磁场线的切线方向6.下列有关磁通量的论述中正确的是[]A.磁感强度越大的地方,穿过线圈的磁通量也越大B.磁感强度越大的地方,线圈面积越大,则穿过线圈的磁通量越大C.穿过线圈的磁通量为零的地方,磁感强度一定为零D.匀强磁场中,穿过线圈的磁感线越多,则磁通量越大7.如图3所示,条形磁铁放在水平桌面上,其中央正上方固定一根直导线,导线与磁铁垂直,并通以垂直纸面向外的电流, []A.磁铁对桌面的压力减小、不受桌面摩擦力的作用B.磁铁对桌面的压力减小、受到桌面摩擦力的作用C.磁铁对桌面的压力增大,个受桌面摩擦力的作用D.磁铁对桌面的压力增大,受到桌面摩擦力的作用8.如图4所示,将通电线圈悬挂在磁铁N极附近:磁铁处于水平位置和线圈在同一平面内,且磁铁的轴线经过线圈圆心,线圈将[]A.转动同时靠近磁铁B.转动同时离开磁铁C.不转动,只靠近磁铁D.不转动,只离开磁铁9.通电矩形线圈平面垂直于匀强磁场的磁感线,则有[]A.线圈所受安培力的合力为零B.线圈所受安培力以任一边为轴的力矩为零C.线圈所受安培力以任一对角线为轴的力矩不为零D.线圈所受安培力必定使其四边有向外扩展形变的效果二、填空题10.匀强磁场中有一段长为0。
高二物理磁场单元测试题(含答案解析)
高二物理磁场单元测试题(含答案解析)高二物理磁场单元测试题注意:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分,考试时间90分钟。
第Ⅰ卷(选择题共60分)一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,1-8小题只有一个选项正确,9-12小题有多个选项正确。
全部选对的得5分,选不全的得3分,有选错或不答的得分。
)1.指南针静止时,其位置如图中虚线所示。
若在其上方放置一水平方向的导线,并通以电流,则此时导线的电流方向和大小应该是(A)。
A.导线南北放置,通有向北的电流B.导线南北放置,通有XXX的电流C.导线东西放置,通有向西的电流D.导线东西放置,通有向东的电流2.磁场中某区域的磁感线,如图所示,则(B)。
A。
a、b两处的磁感应强度的大小不等,a。
bB。
a、b两处的磁感应强度的大小不等,a < bC。
同一通电导线放在a处受力一定比放在b处受力大D。
同一通电导线放在a处受力一定比放在b处受力小3.由磁感应强度的定义式B=F/IL可知,磁场中某处的磁感应强度的大小与下列哪个量无关(D)。
A。
通电导线中的电流IB。
通电导线的长度LC。
通电导线所受磁场力FD。
F、I、L的变化无关4.质量为m、带电量为q的小球,从倾角为θ的光滑绝缘斜面上由静止下滑,整个斜面置于方向水平向外的匀强磁场中,其磁感应强度为B,如图所示。
若带电小球下滑后某时刻对斜面的作用力恰好为零,下面说法中正确的是(B)。
①小球带正电②小球在斜面上运动时做匀加速直线运动③小球在斜面上运动时做加速度增大,而速度也增大的变加速直线运动④则小球在斜面上下滑过程中,当小球对斜面压力为零时的速率为mgcosθ/BqA。
①②③B。
①②④C。
①③④D。
②③④5.如图所示,三根通电直导线P、Q、R互相平行,通过正三角形的三个顶点,三条导线通入大小相等,方向垂直纸面向里的电流;通电直导线产生磁场的磁感应强度B=KI/r,I为通电导线的电流强度,r为距通电导线的距离的垂直距离,K 为常数;则R受到的磁场力的方向是(A)。
高二物理《磁场》单元测试卷及答案
《磁场》单元测试第Ⅰ卷(选择题47分)一、单项选择题(每小题3分,计27分。
每个小题只有一个正确选项)1.关于磁场和磁感线的描述,下列说法正确的是()A.磁感线从磁体的N极出发到磁体的S极终止B.自由转动的小磁针放在通电螺线管内部,其N极指向螺线管的北极C.磁感线的方向就是磁场的方向D.两条磁感线的空隙处不存在磁场2.关于磁感应强度,下列说法中正确的是()A.若长为L、电流为I的导线在某处受到的磁场力为F,则该处的磁感应强度必为FILB.由B=FIL知,B与F成正比,与IL成反比C.由B=FIL知,一小段通电导线在某处不受磁场力,说明该处一定无磁场D.磁感应强度的方向就是小磁针北极所受磁场力的方向3.在磁场中的同一位置,先后引入长度相等的直导线a和b,a、b导线的方向均与磁场方向垂直,但两导线中的电流不同,因此所受到的力也不相同.下图中的几幅图象表现的是导线所受到的力F与通过导线的电流I的关系.a、b各自有一组F、I的数据,在图象中各描出一个点.下列四幅图中正确的是()4.如图所示为磁场、磁场作用力演示仪中的赫姆霍兹线圈,在线圈中心处挂上一个小磁针,且与线圈在同一平面内,则当赫姆霍兹线圈中通以如图所示方向的电流时()A.小磁针N极向里转B.小磁针N极向外转C.小磁针在纸面内向左摆动D.小磁针在纸面内向右摆动5.用两个一样的弹簧吊着一根铜棒,铜棒所在虚线范围内有垂直于纸面的匀强磁场,棒中通以自左向右的电流(如图所示),当棒静止时,弹簧秤的读数为F1;若将棒中的电流方向反向,当棒静止时,弹簧秤的示数为F2,且F2>F1,根据这两个数据,不能确定()A.磁场的方向B.磁感强度的大小C.安培力的大小D.铜棒的重力6.如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出)。
一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O。
已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变。
高三物理磁场测试题及答案
高三物理磁场测试题及答案一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分. 1.如图1所示,两根相互平行放置的长直导线a 和b 通有大小相等、方向相反的电流,a 受到磁场力的大小为F 1,当加入一与导线所在平面垂直的匀强磁场后,a 受到的磁场力大小变为F 2.则此时b 受到的磁场力大小为() A .F 2 B .F 1-F 2C .F 1+F 2D .2F 1-F 22.如图2所示,某空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知一离子在电场力和磁场力作用下,从静止开始沿曲线acb 运动,到达b 点时速度为零,c 为运动的最低点.则() A .离子必带负电34垂直于地面向赤道射来(如图4转轴,上方为地理北极),在地球磁场的作用下,它将向什么方向偏转?()A .向东B .向南C .向西D .向北5.如图5所示,甲是一个带正电的小物块,乙是一个不带电的绝缘物块,甲、乙叠放在一起静置于粗糙的水平地板上,地板上方空间有水平方向的匀强磁场。
现用水平恒力拉乙物块,使甲、乙无相对滑动地一起水平向左加速运动, 在加速运动阶段 ()A.乙物块与地之间的摩擦力不断增大 B.甲、乙两物块间的摩擦力不断增大C .甲、乙两物块间的摩擦力大小不变。
D .甲、乙两物块间的摩擦力不断减小6.如图6,在一水平放置的平板MN 的上方有匀强磁场,磁感应强度的大小为B ,磁场方向垂直于纸面向里。
许多质量为m 带电量为+q 的粒子,以相同的速率v 沿位于纸面内的各个方向,由小孔O 射入磁场区域。
不计重力,不计粒子间的相互影响。
带电粒子可能经过的区域的面积是()a I 图图5图2 图4A.2)(23Bq mv π B.2)(21Bqmv π C.2)(Bq mv π D.2(2Bqmv π 7.在半径为r 的圆形空间内有一匀强磁场,一带电粒子以速度v 从A 沿半径方向入射,并从C 点射出,如图7所示(O 为圆心),已知∠AOC =120°,若在磁场中粒子只受洛仑兹力作用,则粒子在磁场中运行的时间() A .vr 32π B .v r 332πC .vr3πD .v r33π。
人教版高中物理选修3-1《磁场》单元测试试卷(精品整理含答案)
人教版高中物理选修3-1《磁场》单元测试卷限时:90分钟总分:100分一、选择题(每小题4分,共40分)1.下列说法正确的是()A.除永久磁铁外,一切磁场都是由运动电荷产生的B.一切磁现象都起源于运动电荷C.一切磁作用都是运动电荷通过磁场产生的D.有磁必有电,有电必有磁2.关于磁感应强度B,下列说法中正确的是()A.磁场中某点B的大小,跟放在该点的试探电流元的情况有关B.磁场中某点B的方向,跟该点处试探电流元所受磁场力方向一致C.在磁场中某点试探电流元不受磁场力作用时,该点B值大小为零D.在磁场中磁感线越密集的地方,B值越大3.如图所示,一圆形区域内存在匀强磁场,AC为直径,O为圆心,一带电粒子从A沿AO方向垂直射入磁场,初速度为v1,从D点射出磁场时的速率为v2,则下列说法中正确的是(粒子重力不计)()A.v2>v1,v2的方向必过圆心B.v2=v1,v2的方向必过圆心C.v2>v1,v2的方向可能不过圆心D.v2=v1,v2的方向可能不过圆心4.如图所示,三个速度大小不同的同种带电粒子沿同一方向从图示长方形区域的匀强磁场上边缘射入,当它们从下边缘飞出时对入射方向的偏角分别为90˚、60˚、30˚,则它们在磁场中运动时间之比为()A.1∶1∶1B.1∶2∶3C.3∶2∶1D.3∶2∶15.电磁轨道炮工作原理如下图所示,待发射弹体可在两平行轨道之间自由移动,并与轨道保持良好接触.电流I从一条轨道流入,通过导电弹体后从另一条轨道流回.轨道电流可形成在弹体处垂直于轨道面的磁场(可视为匀强磁场),磁感应强度的大小与I成正比.通电的弹体在轨道上受到安培力的作用而高速射出.现欲使弹体的出射速度增加至原来的2倍,理论上可采用的办法是()A.只将轨道长度L变为原来的2倍B.只将电流I增加至原来的2倍C.只将弹体质量减至原来的一半D.将弹体质量减至原来的一半,轨道长度L变为原来的2倍,其他量不变6.如图所示,甲是一带正电的小物块,乙是不带电的绝缘物块,甲、乙叠放在一起置于粗糙的水平地板上,地板上方空间有垂直纸面向里的匀强磁场.现用水平恒力拉乙物块,使甲、乙无相对滑动一起向左加速运动,在加速运动阶段()A.甲、乙两物块间摩擦力不断增大B.甲、乙两物块间摩擦力不断减小C.甲、乙两物块间摩擦力大小不变D.乙物块与地面间摩擦力不断增大7.利用如图所示装置可以选择一定速度范围内的带电粒子.图中板MN上方是磁感应强度大小为B、方向垂直纸面向里的匀强磁场,板上的两条宽度分别为2d和d的缝,两缝近端相距为L.一群质量为m,电荷量为q,具有不同速度的粒子从宽度为2d的缝垂直于板MN进入磁场,对于能够从宽度为d的缝射出的粒子,下列说法正确的是()A.粒子带正电B.射出粒子的最大速度为qB(3d+L)2mC.保持d和L不变,增大B,射出粒子的最大速度与最小速度之差增大D.保持d和B不变,增大L,射出粒子的最大速度与最小速度之差增大8.如图所示,匀强磁场的磁感应强度为B,有一矩形线圈abcd,且ab=L1,ad=L2,通有逆时针方向的电流I,让它绕cd边转过某一角度时,使线圈平面与磁场夹角为θ,则()A.穿过线圈的磁通量为Φ=BL1L2sinθB.穿过线圈的磁通量为Φ=BL1L2cosθC.cd边受到的安培力为F=BIL1sinθD.ad边受到的安培力为F=BIL1cosθ9.如图,空间有垂直于xOy平面的匀强磁场.t=0的时刻,一电子以速度v0经过x轴上的A点,方向沿x轴正方向.A点坐标为(-R2,0),其中R为电子在磁场中做圆周运动的轨道半径.不计重力影响,则() A.电子经过y轴时,速度大小仍为v0B.电子在t=πR6v0时,第一次经过y轴C.电子第一次经过y轴的坐标为(0,2-32R)D.电子第一次经过y轴的坐标为(0,-2-32R)10.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示.设D形盒半径为R.若用回旋加速器加速质子时,匀强磁场的磁感应强度为B,高频交流电频率为f.则下列说法正确的是()A.质子被加速后的最大速度不可能超过2πfRB.质子被加速后的最大速度与加速电场的电压大小无关C.只要R足够大,质子的速度可以被加速到任意值D.不改变B和f,该回旋加速器也能用于加速α粒子二、填空题(每小题5分,共20分)11.如图所示,比荷为em的电子,以速度v0沿AB边射入边长为a的等边三角形的匀强磁场区域中,欲使电子从BC边穿出,磁感应强度B的取值应为________.12.如图所示,质量为m,带电量为-q的粒子,从两平行电极板正中央垂直电场线和磁感线以速度v飞入.已知两板间距为d,磁感应强度为B,这时粒子恰能直线穿过电场和磁场区域(重力不计).今将磁感应强度增大到某值,则粒子将落到极板上.粒子落到极板上的动能为________.13.如图所示,A、B为粗细均匀的铜环直径两端,若在A、B两端加一电压U,则环心O处的磁感应强度为________.(已知圆环直径为d)14.如图所示,质量为m的带电微粒,在相互垂直的匀强电磁场中运动,电场强度为E,方向竖直向下,磁感应强度为B,方向垂直纸面向里,此微粒在垂直于磁场的竖直平面内做半径为R的匀速圆周运动(不计空气阻力),微粒一定带________电(填“正”或“负”),微粒的线速度大小为________.三、计算题(共40分)15.(10分)如图所示,平行金属导轨间距为0.5 m,水平放置,电源电动势为E=1.5 V,内阻r=0.2 Ω,金属棒电阻R=2.8 Ω,与平行导轨垂直,其余电阻不计,金属棒处于磁感应强度B=2.0 T、方向与水平方向成60˚角的匀强磁场中,则开始接通电路瞬间,金属棒受到的安培力的大小和方向如何?若棒的质量为m=5×10-2 kg,此时它对轨道的压力是多少?(g取10 m/s2)16.(10分)如图所示,足够长的绝缘斜面与水平面间的夹角为α(sinα=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E=50 V/m,方向水平向左,磁场方向垂直于纸面向外.一带电量q=+4.0×10-2C,质量m=0.40 kg的光滑小球,以初速度v0=20 m/s,从斜面底端A冲上斜面,经过3 s离开斜面,求磁场的磁感应强度.(取g=10 m/s2)17.图中左边有一对平行金属板,两板相距为d,电压为U,两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面朝里.图中右边有一半径为R,圆心为O的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里.一电荷量为q的正离子沿平行金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区域边界上的G点射出,已知弧FG所对应的圆心角为θ,不计重力,求(1)离子速度的大小;(2)离子的质量.18.(10分)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁感应强度为B,方向垂直xOy平面向里,电场线平行于y轴.一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的距离为L,小球过M点时的速度方向与x轴正方向夹角为θ.不计空气阻力,重力加速度为g,求:(1)电场强度E的大小和方向;(2)小球从A点抛出时初速度v0的大小;(3)A点到x轴的高度h.人教版高中物理选修3-1《磁场》单元测试试卷参考答案一、选择题(每小题4分,共40分)1.下列说法正确的是()A.除永久磁铁外,一切磁场都是由运动电荷产生的B.一切磁现象都起源于运动电荷C.一切磁作用都是运动电荷通过磁场产生的D.有磁必有电,有电必有磁解析:磁现象的电本质,一切磁现象都起源于运动电荷.答案:BC2.关于磁感应强度B,下列说法中正确的是()A.磁场中某点B的大小,跟放在该点的试探电流元的情况有关B.磁场中某点B的方向,跟该点处试探电流元所受磁场力方向一致C.在磁场中某点试探电流元不受磁场力作用时,该点B值大小为零D.在磁场中磁感线越密集的地方,B值越大解析:磁场中某点的磁感应强度由磁场本身决定,与试探电流元无关,而磁感线可以描述磁感应强度,疏密程度表示大小.答案:D图13.如图1所示,一圆形区域内存在匀强磁场,AC为直径,O为圆心,一带电粒子从A沿AO方向垂直射入磁场,初速度为v1,从D点射出磁场时的速率为v2,则下列说法中正确的是(粒子重力不计)()A.v2>v1,v2的方向必过圆心B.v2=v1,v2的方向必过圆心C .v 2>v 1,v 2的方向可能不过圆心D .v 2=v 1,v 2的方向可能不过圆心答案:B图24.如图2所示,三个速度大小不同的同种带电粒子沿同一方向从图示长方形区域的匀强磁场上边缘射入,当它们从下边缘飞出时对入射方向的偏角分别为90˚、60˚、30˚,则它们在磁场中运动时间之比为( )A .1∶1∶1B .1∶2∶3C .3∶2∶1 D.3∶2∶1解析:如图3所示,图3设带电粒子在磁场做圆周运动的圆心为O ,由几何关系知,圆弧MN ︵ 所对应的粒子运动的时间t =MN ︵v =Rαv =m v qB ·αv =mαqB ,因此,同种粒子以不同速度射入磁场,经历时间与它们的偏角α成正比,即t 1∶t 2∶t 3=90˚∶60˚∶30˚=3∶2∶1.答案:C5.(2011·新课标卷)电磁轨道炮工作原理如下图4所示,待发射弹体可在两平行轨道之间自由移动,并与轨道保持良好接触.电流I 从一条轨道流入,通过导电弹体后从另一条轨道流回.轨道电流可形成在弹体处垂直于轨道面的磁场(可视为匀强磁场),磁感应强度的大小与I成正比.通电的弹体在轨道上受到安培力的作用而高速射出.现欲使弹体的出射速度增加至原来的2倍,理论上可采用的办法是()图4A.只将轨道长度L变为原来的2倍B.只将电流I增加至原来的2倍C.只将弹体质量减至原来的一半D.将弹体质量减至原来的一半,轨道长度L变为原来的2倍,其他量不变解析:由题意可知,安培力做功使炮弹的速度逐渐增大.假设轨道宽度为L′,则由动能定理可知F安培力L=12,而F安培力=BIL′,又根据题意可知B=KI(K2m v为常数),三个式子整理可得到弹体的出射速度v=I2KLL′,从而判断B,Dm正确.答案:BD6.如图5所示,甲是一带正电的小物块,乙是不带电的绝缘物块,甲、乙叠放在一起置于粗糙的水平地板上,地板上方空间有垂直纸面向里的匀强磁场.现用水平恒力拉乙物块,使甲、乙无相对滑动一起向左加速运动,在加速运动阶段()图5A.甲、乙两物块间摩擦力不断增大B.甲、乙两物块间摩擦力不断减小C .甲、乙两物块间摩擦力大小不变D .乙物块与地面间摩擦力不断增大答案:BD图67.利用如图6所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上的两条宽度分别为2d 和d 的缝,两缝近端相距为L .一群质量为m ,电荷量为q ,具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( )A .粒子带正电B .射出粒子的最大速度为qB (3d +L )2mC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大解析:粒子要从右边的缝中射出,粒子进入磁场后向右偏,根据左手定则可以判断粒子带负电,A 项错误;由q v B =m v 2r 得v =qBr m ,可见半径越大,速率越大,最大半径为3d +L 2,因此射出的最大速度为qB (3d +L )2m,B 项正确;同理可求得最小速度为qBL 2m ,最大速度与最小速度之差为3qBd 2m ,这个值与L 无关,可以分析,C 项正确,D 项错误.答案:BC8.如图7所示,匀强磁场的磁感应强度为B ,有一矩形线圈abcd ,且ab =L 1,ad =L 2,通有逆时针方向的电流I ,让它绕cd 边转过某一角度时,使线圈平面与磁场夹角为θ,则( )图7A.穿过线圈的磁通量为Φ=BL1L2sinθB.穿过线圈的磁通量为Φ=BL1L2cosθC.cd边受到的安培力为F=BIL1sinθD.ad边受到的安培力为F=BIL1cosθ解析:沿cd转过某一角度,使线圈平面与磁场夹角为θ,此时穿过线圈的有效面积为L1L2sinθ,所以穿过线圈的磁通量为BL1L2sinθ,cd边与磁场方向垂直,受到的安培力为BIL1,ad边与磁场方向平行,受到的安培力为0.答案:A9.如图8,空间有垂直于xOy平面的匀强磁场.t=0的时刻,一电子以速度v0经过x轴上的A点,方向沿x轴正方向.A点坐标为(-R2,0),其中R为电子在磁场中做圆周运动的轨道半径.不计重力影响,则()图8A.电子经过y轴时,速度大小仍为v0B.电子在t=πR6v0时,第一次经过y轴C.电子第一次经过y轴的坐标为(0,2-32R)D.电子第一次经过y轴的坐标为(0,-2-32R)解析:因电子在匀强磁场中运动,只受洛伦兹力,做匀速圆周运动,故A正确;画出轨迹,由几何关系可知,当电子转过30˚角时,到达y轴对应时间t=112T=1 12×2πRv0=πR6v0,故B正确;电子应向下方偏转.故穿过y轴时坐标为∶y=-R(1-cos30˚)=-2-32R,故D正确.答案:ABD10.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图9所示.设D形盒半径为R.若用回旋加速器加速质子时,匀强磁场的磁感应强度为B,高频交流电频率为f.则下列说法正确的是()图9A.质子被加速后的最大速度不可能超过2πfRB.质子被加速后的最大速度与加速电场的电压大小无关C.只要R足够大,质子的速度可以被加速到任意值D.不改变B和f,该回旋加速器也能用于加速α粒子解析:由于回旋加速器所加交变电压周期与粒子转动的周期相同,则粒子的最大速度为2πfR,A项正确;质子被加速后的最大速度v m=BqRm,与加速电场的电压大小无关,B项正确;R足够大,质子速度不能被加速到任意值.因为按相对论原理,质子速度接近光速时光子质量发生变化,进一步提高速度就不可能了,C 项错误;因为回旋加速器所加交变电压周期与粒子转动周期应相同,粒子转动周期T=2πmBq,α粒子与质子的比荷不相同,应调节f或B,故D项错误.答案:AB二、填空题(每小题5分,共20分)图1011.如图10所示,比荷为e m 的电子,以速度v 0沿AB 边射入边长为a 的等边三角形的匀强磁场区域中,欲使电子从BC 边穿出,磁感应强度B 的取值应为________.解析:画出刚好不出BC 边的临界状态对应的轨迹,应与BC 相切,根据轨迹确定半径,再根据r =m v 0eB 求B .答案:B ≤3m v 0ae图1112.如图11所示,质量为m ,带电量为-q 的粒子,从两平行电极板正中央垂直电场线和磁感线以速度v 飞入.已知两板间距为d ,磁感应强度为B ,这时粒子恰能直线穿过电场和磁场区域(重力不计).今将磁感应强度增大到某值,则粒子将落到极板上.粒子落到极板上的动能为________.解析:由题意:q U d =q v B ,又当粒子落到极板上有:-q ·U 2=E k -12m v 2,所以E k =m v 2-q v Bd 2. 答案:m v 2-q v Bd 213.如图12所示,A 、B 为粗细均匀的铜环直径两端,若在A 、B 两端加一电压U,则环心O处的磁感应强度为________.(已知圆环直径为d)图12答案:014.如图13所示,质量为m的带电微粒,在相互垂直的匀强电磁场中运动,电场强度为E,方向竖直向下,磁感应强度为B,方向垂直纸面向里,此微粒在垂直于磁场的竖直平面内做半径为R的匀速圆周运动(不计空气阻力),微粒一定带________电(填“正”或“负”),微粒的线速度大小为________.图13解析:粒子做匀速圆周运动,则重力与电场力等大反向,故电场力竖直向上,则微粒带负电,又R=m vqB 且mg=qE,所以v=qBRm=gBRE.答案:负;BRg E三、论述计算题(共40分)图1415.(10分)如图14所示,平行金属导轨间距为0.5 m,水平放置,电源电动势为E=1.5 V,内阻r=0.2 Ω,金属棒电阻R=2.8 Ω,与平行导轨垂直,其余电阻不计,金属棒处于磁感应强度B=2.0 T、方向与水平方向成60˚角的匀强磁场中,则开始接通电路瞬间,金属棒受到的安培力的大小和方向如何?若棒的质量为m=5×10-2 kg,此时它对轨道的压力是多少?(g取10 m/s2)解:电路刚接通的瞬间,金属棒瞬时速度为零,金属棒受三个力作用,即:重力、支持力、安培力,由于此时金属棒未动,不会产生感应电动势,这时回路中的电流只由电源及回路电阻决定.由闭合电路欧姆定律有I=ER+r = 1.52.8+0.2A=0.5 A.F=BIL=2.0×0.5×0.5 N=0.5 N.方向由左手定则可知,与轨道成30˚角斜向左上方,其竖直的分力F sinθ=0.5×sin30˚ N=0.25 N.因F sin30˚=0.25 N,小于重力mg=5×10-2×10 N=0.5 N.说明轨道对金属棒仍有支持力F N存在,由竖直方向受力平衡知:F N+F sin30˚-mg=0,F N=mg-F sin30˚=0.5 N-0.25 N=0.25 N.由牛顿第三定律可知,金属棒对轨道的压力为0.25 N.图1516.(10分)如图15所示,足够长的绝缘斜面与水平面间的夹角为α(sinα=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E=50 V/m,方向水平向左,磁场方向垂直于纸面向外.一带电量q=+4.0×10-2C,质量m=0.40 kg的光滑小球,以初速度v0=20 m/s,从斜面底端A冲上斜面,经过3 s离开斜面,求磁场的磁感应强度.(取g=10 m/s2)解:带电小球的受力示意图如图16所示.小球沿斜面方向做匀减速运动,根据牛顿第二定律,则有:mg sinα+qE cosα=ma.图16解得:a=g sinα+qEm cosα=(10×0.6+4×10-2×50×0.80.40) m/s2=10 m/s2.设小球运动到最高点时速度v t=0,所用时间为t1,则有:v t=v0-at1=0.解得:t1=v0a=2010s=2 s.图17故带电小球上升至最高点后立即下滑,此时小球受力情况如图17所示.小球沿斜面加速下滑其加速度仍为:a=10 m/s2,下滑时间:t2=t-t1=3 s-2 s=1 s.小球下滑t2=1 s时的速度为:v′=at2=10×1 m/s=10 m/s.此时小球离开斜面,F N=0.则垂直斜面方向有:qE sinα+q v′B=mg cosα,解得B=mg cosα-qE sinαq v′=5.0 T.17.图18中左边有一对平行金属板,两板相距为d,电压为U,两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面朝里.图中右边有一半径为R,圆心为O的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里.一电荷量为q的正离子沿平行金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区域边界上的G点射出,已知弧FG所对应的圆心角为θ,不计重力,求图18(1)离子速度的大小;(2)离子的质量.解:(1)由题设知,离子在平行金属板之间做匀速直线运动,它所受到的向上的磁场力和向下的电场力平衡q v B0=qE0①式中,v是离子运动速度的大小,E0是平行金属板之间的匀强电场的强度,有E0=Ud②由①②式得v =U B 0d ③ (2)在圆形磁场区域,离子做匀速圆周运动.由洛伦兹力公式和牛顿第二定律有q v B =m v 2r ④图19式中,m 和r 分别是离子的质量和它做圆周运动的半径.由题设,离子从磁场边界上的点G 穿出,离子运动的圆周的圆心O ′必在过E 点垂直于EF 的直线上,且在EG 的垂直平分线上(见上图).由几何关系有r =R tan α⑤式中,α是OO ′与直线EF 的夹角.由几何关系有2α+θ=π⑥联立③④⑤⑥式得,离子的质量为m =qBB 0Rd U cot θ2⑦图2018.(10分)如图20所示,直角坐标系xOy 位于竖直平面内,在水平的x 轴下方存在匀强磁场和匀强电场,磁场的磁感应强度为B,方向垂直xOy平面向里,电场线平行于y轴.一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的距离为L,小球过M点时的速度方向与x轴正方向夹角为θ.不计空气阻力,重力加速度为g,求:(1)电场强度E的大小和方向;(2)小球从A点抛出时初速度v0的大小;(3)A点到x轴的高度h.解:(1)小球在电场、磁场中恰能做匀速圆周运动,其所受电场力必须与重力平衡,有qE=mg①E=mg q ②重力的方向是竖直向下的,电场力的方向则应为竖直向上,由于小球带正电,所以电场强度方向竖直向上.(2)小球做匀速圆周运动,O′为圆心,MN为弦长,∠MO′P=θ,(P为MN 的中点).设半径为r,由几何关系知L2r=sinθ③小球做匀速圆周运动的向心力由洛伦兹力提供,设小球做圆周运动的速率为v,有q v B=m v2 r④由速度的合成与分解得v0v=cosθ⑤由③④⑤式得v0=qBL2m cotθ⑥(3)设小球到M点的竖直分速度为v y,它与水平分速度的关系为v y=v0tanθ⑦由匀变速直线运动规律v2y=2gh⑧由⑥⑦⑧式得h=q2B2L2 8m2g⑨。
高中高二物理磁场测试卷试题及含答案
高二物理同步测试〔4〕—磁场本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部.总分值100分,考试用时60分.第一卷〔选择题,共40分〕一、选择题〔每题4分,共40分。
在每题给出的四个选项中,起码有一个选项是正确的,所有选对得4分,对而不全得2分。
〕1.以下四个实验现象中,不可以说明电流能产生磁场的是〔〕A.甲图中,导线通电后磁针发生偏转B.乙图中,通电导线在磁场中遇到力的作用C.丙图中,当电流方向同样时,导线互相凑近D.丁图中,当电流方向相反时,导线互相远离〔〕2.由磁感觉强度的定义式B=F/IL可知A.假定某处的磁感觉强度为零,那么通电导线放在该地方受安培力必定为零B.通电导线放在磁场中某处不受安培力的作用时,那么该处的磁感觉强度必定为零C.同一条通电导线放在磁场中某地方受的磁场力是必定的D.磁场中某点的磁感觉强度与该点能否放通电导线没关3.以以下图,一条形磁铁放在水平桌面上,在其左上方固定一根与磁铁垂直的长直导〔〕线,当导线中通以图示方向的电流时A.磁铁对桌面的压力增大,且遇到向右的摩擦力作用B.磁铁对桌面的压力减小,且遇到向右的摩擦力作用C.磁铁对桌面的压力增大,且遇到向左的摩擦力作用D.磁铁对桌面的压力减小,且遇到向左的摩擦力作用4.从太阳或其余星体上放射出的宇宙射线中含有大批的高能带电粒子,这些高能粒子流抵达地球会对地球上的生命带来危害,可是因为地球四周存在磁场,地磁场能改变宇宙射线中带电粒子的运动方向,对地球上的生命起到保护作用,以以下图。
那么〔〕A.地磁场对宇宙射线的阻拦作用各处同样B.地磁场对垂直射向地球表面的宇宙射线的阻拦作用在南、北两极最强,赤道邻近最弱C.地磁场对垂直射向地球表面的宇宙射线的阻拦作用在南、北两极最弱,赤道邻近最强D.地磁场会使沿地球赤道平面内射来的宇宙射线中的带电粒子向两极偏转5.以以下图,弹簧秤下挂一条形磁铁,此中条形磁铁的一半位于未通电的螺线管内,以下说法正确的选项是〔A .假定将a 接电源正极,B .假定将a 接电源正极,C .假定将b 接电源正极,D .假定将b接电源正极,〕接负极,弹簧秤示数减小接负极,弹簧秤示数增大接负极,弹簧秤示数增大接负极,弹簧秤示数减小6.一个带电粒子,沿垂直于磁场的方向射入一匀强磁场,粒子的一段径迹以以下图,径迹上的每一小段都可近似当作圆弧,因为带电粒子使沿途的空气电离, 粒子的能量渐渐减小 (带电量不变)从图中状况能够确立〔〕A .粒子从a 到b ,带正电.粒子从b 到a ,带正电 .粒子从a 到b ,带负电 D .粒子从b 到a ,带负电7.以以下图的天平可用采测定磁感强度.天平的右臂下边挂有一个矩形线圈,宽为l ,共N匝,线圈的下部悬在匀强磁场中,磁场方向垂直纸面.当线圈中通有电流 I (方向如图)时,在天平左、右两边加上质量各为 m 1、m 2的砝码,天平均衡.当电流反向 (大小不变) 时,右边再加上质量为m 的砝码后,天平从头均衡,由此可知:〔〕A .磁感强度的方向垂直纸面向里,大小为(m 1m 2)gNIlmgB .磁感强度的方向垂直纸面向里,大小为C2NIlD .磁感强度的方向垂直纸面向外,大小为(m 1m 2)gD .磁感强度的方向垂直纸面.向外,大小为NIlmg2NIl8.以以下图,长方体玻璃水槽中盛有NaCl 的水溶液,在水槽左、右边壁内侧各装一导体片,使溶液中通入沿x 轴正向的电流I ,沿y 轴正向加恒定的匀强磁场 B .图中a 、b 是垂直于z 轴方向上水槽 的前后两内侧面,那么〔 〕 A .a 处电势高于 b 处电势B .a 处离子浓度大于 b 处离子浓度C .溶液的上表面电势高于下表面的电势D .溶液的上表面处的离子浓度大于下表面处的离子浓度9.质谱仪是一种测定带电粒子质量和剖析同位素的重要工具, 它的结构原理以以下图,离子源S 产生的各样不一样正离子束(速度可看作为零),经加快电场加快后垂直进入有界匀强磁场,抵达记录它的照相底片P 上,设离子在P 上的地点到进口处 S 1的距离为x ,能够判断〔 〕A .离子束是同位素,那么 x 越大,离子质量越大B .假定离子束是同位素,那么 x 越大,离子质量越小C .只需x 同样,那么离子质量必定同样D.只需x同样,那么离子的荷质比必定同样10.如图,在x0、y0的空间中有恒定的匀强磁场,磁感强度的方向垂直于oxy平面向里,大小为B。
磁场单元测试题(含详解答案)doc高中物理
磁场单元测试题(含详解答案)doc高中物理时刻:90分钟总分值:100分第一卷选择题一、选择题(此题包括10小题,共40分,每题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,错选或不选的得0分) 1.20世纪50年代,一些科学家提出了地磁场的〝电磁感应学讲〞,认为当太阳强烈活动阻碍地球而引起磁暴时,磁暴在外地核中感应产生衰减时刻较长的电流,此电流产生了地磁场.连续的磁暴作用可坚持地磁场,那么外地核中的电流方向为(地磁场N极与S极在地球表面的连线称为磁子午线)()A.垂直磁子午线由西向东B.垂直磁子午线由东向西C.沿磁子午线由南向北D.沿磁子午线由北向南解析:地磁场由南向北,地球内部磁场由北向南,依照安培定那么可判定,外地核中电流方向由东向西.答案:B图12.如图1所示,两根平行放置的长直导线a和b载有大小相同、方向相反的电流,a受到的磁场力大小为F1,当加入一与导线所在平面垂直的匀强磁场后,a受到的磁场力的大小变为F2,那么现在b受到的磁场力的大小变为()A.F2B.F1-F2C.F2-F1D.2F1-F2解析:对a导线,原先b导线对a导线作用力为F1,方向向左,假设加入的匀强磁场垂直向里,如图2甲所示,那么a导线受外加匀强磁场的作用力为F′,那么F1、F′、F2之间有以下关系:图2F2=F1-F′(F′=F1-F2)同理对b导线分析受力,如图2乙所示,故现在导线b受磁场作用力:F=F1-F′=F1-(F1-F2)=F2此题正确的答案为A.答案:A3.带电体表面突出的地点电荷容易密集.雷雨天当带电云层靠近高大建筑物时,由于静电感应,建筑物顶端会集合异种电荷,避雷针通过一根竖直导线接通大地而幸免雷击.你假设想明白竖直导线中的电流方向,进而判定云层所带电荷,安全可行的方法是() A.在导线中接入电流表B .在导线中接入电压表C .在导线中接入小灯泡D .在导线旁放一可自由转动的小磁针解析:依照小磁针静止时N 极的指向判定出其所在处的磁场方向,然后依照安培定那么判定出电流方向,既安全又可行.答案:D4.以下关于磁感线的讲法正确的选项是( )A .磁感线能够形象地描述磁场中各点的磁场方向,它每一点的切线方向都与小磁针放在该点静止时S 极所指的方向相同B .磁感线总是从磁体的N 极动身,到磁体的S 极终止C .磁场的磁感线是闭合曲线D .磁感线确实是细铁屑在磁铁周围排列成的曲线,没有细铁屑的地点就没有磁感线 解析:磁感线的切线方向确实是该点的磁场方向,磁场的方向规定为小磁针N 极受力的方向,也确实是小磁针静止时N 极的指向,因此A 项错误.在磁体的外部,磁感线从N 极动身指向S 极.在磁体的内部,磁感线从S 极指向N 极,同时内、外形成闭合曲线,因此B 项错误,C 项正确.尽管磁感线是为了研究咨询题的方便人为引入的,我们也能够用细铁屑形象地〝显示〞磁感线,但不能讲没有细铁屑的地点就没有磁感线,因此D 项是错误的.答案:C图35.如图3所示,一带负电的质点在固定的正点电荷作用下绕该正电荷做匀速圆周运动,周期为T 0,轨道平面位于纸面内,质点的速度方向如图中箭头所示.现加一垂直于轨道平面的匀强磁场,轨道半径并不因此而改变,那么( )A .假设磁场方向指向纸里,质点运动的周期将大于T 0B .假设磁场方向指向纸里,质点运动的周期将小于T 0C .假设磁场方向指向纸外,质点运动的周期将大于T 0D .假设磁场方向指向纸外,质点运动的周期将小于T 0解析:因电荷在电场力作用下做匀速圆周运动,依照圆周运动知识有F 电=m (2πT 0)2r ,假设所加的磁场指向纸里,因电荷所受的洛伦兹力背离圆心,电荷所受的向心力减小,因此质点运动的周期将增大,大于T 0.假设所加的磁场指向纸外,因电荷所受的洛伦兹力指向圆心,电荷所受的向心力增大,因此质点运动的周期将减小,小于T 0,正确选项为A 、D.答案:AD图46.在某地上空同时存在着匀强的电场与磁场,一质量为m 的带正电小球,在该区域内沿水平方向向右做直线运动,如图4所示.关于场的分布情形可能的是( )A .该处电场方向和磁场方向重合B .电场竖直向上,磁场垂直纸面向里C .电场斜向里侧上方,磁场斜向外侧上方,均与v 垂直D .电场水平向右,磁场垂直纸面向里解析:带电小球在复合场中运动一定受重力和电场力,是否受洛伦兹力需具体分析.A选项中假设电场、磁场方向与速度方向垂直,那么洛伦兹力与电场力垂直,假如与重力的合力为零就会做直线运动.B 选项中电场力、洛伦兹力都向上,假设与重力合力为零,也会做直线运动.C 选项电场力斜向里侧上方,洛伦兹力向外侧下方,假设与重力合力为零,就会做直线运动.D 选项三个力合力不可能为零,因此此题选A 、B 、C.答案:ABC图57.(2007年天津卷)如图5所示,在x 轴上方存在着垂直于纸面向里、磁感应强度为B 的匀强磁场,一个不计重力的带电粒子从坐标原点O 处以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x 轴正方向成120°角.假设粒子穿过y 轴正半轴后在磁场中到x 轴的最大距离为a ,那么该粒子的比荷和所带电荷的正负是( ) A.3v 2aB ,正电荷 B.v 2aB,正电荷 C.3v 2aB ,负电荷 D.v 2aB ,负电荷 图6解析:带电粒子在磁场中的运动轨迹如图6所示,依照左手定那么可知粒子带负电荷.由图可知:sin30°=a -R R 可得R =23a 又由q v B =m v 2R 得q m =3v 2Ba. 应选项C 正确.图7 答案:C8.如图7所示,两平行金属板的间距等于极板的长度,现有重力不计的正离子束以相同的初速度v 0平行于两板从两板正中间射入.第一次在两极板间加恒定电压,建立场强为E 的匀强电场,那么正离子束刚好从上极板边缘飞出.第二次撤去电场,在两极间建立磁感应强度为B 、方向垂直于纸面的匀强磁场,正离子束刚好从下极板边缘飞出,那么E 和B 的大小之比为( )A.54v 0B.12v 0C.14v 0 D .v 0解析:依照题意d =L ① 两板间为匀强电场时,离子做类平抛运动.设粒子在板间的飞行时刻为t ,那么水平方向:L =v 0t ②竖直方向:d 2=12at 2=qE 2mt 2③ 两板间为匀强磁场时,设偏转半径为r由几何关系有r 2=(r -d 2)2+L 2④ 又q v 0B =m v 20r⑤ ①②③④⑤联立得E B =5v 04. 答案:A图89.如图8所示,空间有一垂直纸面向外的磁感应强度为0.5 T 的匀强磁场,一质量为0.2 kg 且足够长的绝缘塑料板静止在光滑水平面上.在塑料板左端无初速度放置一质量为0.1 kg 、带电荷量为+0.2 C 的滑块,滑块与绝缘塑料板之间的动摩擦因数为0.5,滑块受到的最大静摩擦力可认为等于滑动摩擦力.现对塑料板施加方向水平向左、大小为0.6 N 的恒力,g 取10 m/s 2,那么( )A .塑料板和滑块一直做加速度为2 m/s 2的匀加速运动B .滑块开始做匀加速运动,然后做加速度减小的加速运动,最后做匀速直线运动C .最终塑料板做加速度为2 m/s 2的匀加速运动,滑块做速度为10 m/s 的匀速运动D .最终塑料板做加速度为3 m/s 2的匀加速运动,滑块做速度为10 m/s 的匀速运动 解析:滑块随塑料板向左运动时,受到竖直向上的洛伦兹力,和塑料板之间的正压力逐步减小.开始时,塑料板和滑块加速度相同,由F =(M +m )a 得,a =2 m/s 2,对滑块有μ(mg -qvB )=ma ,当v =6 m/s 时,滑块恰好相关于塑料板有相对滑动,开始做加速度减小的加速运动,当mg =q v B ,即v =10 m/s 时滑块对塑料板的压力为零F N =0,塑料板所受的合力为0.6 N ,那么a ′=F M=3 m/s 2,B 、D 正确. 答案:BD10.环形对撞机是研究高能粒子的重要装置,其核心部件是一个高度真空的圆环状的空腔.假设带电粒子初速度可视为零,经电压为U 的电场加速后,沿圆环切线方向注入对撞机的环状空腔内,空腔内存在着与圆环平面垂直的匀强磁场,磁感应强度大小为B .带电粒子将被限制在圆环状空腔内运动.要坚持带电粒子在圆环内做半径确定的圆周运动,以下讲法中正确的选项是( )A .关于给定的加速电压,带电粒子的比荷q /m 越大,磁感应强度B 越大B .关于给定的加速电压,带电粒子的比荷q /m 越大,磁感应强度B 越小C .关于给定的带电粒子和磁感应强度B ,加速电压U 越大,粒子运动的周期越小D .关于给定的带电粒子和磁感应强度B ,不管加速电压U 多大,粒子运动的周期都不变解析:带电粒子通过加速电场后速度为v =2Uq m ,带电粒子以该速度进入对撞机的环状空腔内,且在圆环内做半径确定的圆周运动,因此R =m v Bq =2Um B 2q,关于给定的加速电压,即U 一定,那么带电粒子的比荷q /m 越大,磁感应强度B 应越小,A 错误,B 正确;带电粒子运动周期为T =2πm Bq,与带电粒子的速度无关,因此就与加速电压U 无关,因此,关于给定的带电粒子和磁感应强度B ,不管加速电压U 多大,粒子运动的周期都不变.答案:BD第二卷 非选择题二、填空与实验题(此题包括5小题,每题12分,共60分.把答案填在相应的横线上或按题目要求作答)图911.在原子反应堆中抽搐液态金属时,由于不承诺转动机械部分和液态金属接触,常使用一种电磁泵.如图9所示是这种电磁泵的结构示意图,图中A 是导管的一段,垂直于匀强磁场放置,导管内充满液态金属.当电流I 垂直于导管和磁场方向穿过液态金属时,液态金属即被驱动,并保持匀速运动.假设导管内截面宽为a 、高为b ,磁场区域中的液体通过的电流为I ,磁感应强度为B ,求:(1)电流I 的方向;(2)驱动力对液体造成的压强差.解析:(1)驱动力即安培力方向与流淌方向一致,由左手定那么可判定出电流I 的方向由下向上.(2)把液体看成由许多横切液片组成,因通电而受到安培力作用,液体匀速流淌,因此有安培力F =Δp ·S ,Δp =F S =BIb ab =BI a ,即驱动力对液体造成的压强差为BI a. 答案:(1)电流方向由下向上 (2)BI a图1012.一种半导体材料称为〝霍尔材料〞,用它制成的元件称为〝霍尔元件〞,这种材料有可定向移动的电荷,称为〝载流子〞,每个载流子的电荷量大小为q =1.6×10-19 C ,霍尔元件在自动检测、操纵领域得到广泛应用,如录像机中用来测量录像磁鼓的转速、电梯中用来检测电梯门是否关闭以及自动操纵升降电动机的电源的通断等.在一次实验中,一块霍尔材料制成的薄片宽ab =1.0×10-2 m 、长bc =4.0×10-2 m 、厚h=1.0×10-3 m ,水平放置在竖直向上的磁感应强度B =2.0 T 的匀强磁场中,bc 方向通有I =3.0 A 的电流,如图10所示,由于磁场的作用,稳固后,在沿宽度方向上产生1.0×10-5 V 的横向电压.(1)假定载流子是电子,ad 、bc 两端中哪端电势较高?(2)薄板中形成电流I 的载流子定向运动的速率为多大?(3)这块霍尔材料中单位体积内的载流子个数为多少?解析:(1)由左手定那么可判定,电子受洛伦兹力作用偏向bc 边,故ad 端电势高.(2)稳固时载流子在沿宽度方向上受到的磁场力和电场力平稳q v B =q U ab ,v =U Bab =1.0×10-52.0×1.0×10-2 m/s =5×10-4 m/s. (3)由电流的微观讲明可得:I =nq v S .故n =I /qvS =3.75×1027个/m 3.答案:(1)ad 端 (2)5×10-4 m/s (3)3.75×1027个/m 313.在电子显像管内部,由酷热的灯丝上发射出的电子在通过一定的电压加速后,进入偏转磁场区域,最后打到荧光屏上,当所加的偏转磁场的磁感应强度为0时,电子应沿直线运动打在荧光屏的正中心位置.但由于地磁场对带电粒子运动的阻碍,会显现在未加偏转磁场时电子束偏离直线运动的现象,因此在周密测量仪器的显像管中常需要在显像管的外部采取磁屏蔽措施以排除地磁场对电子运动的阻碍.电子质量为m 、电荷量为e ,从酷热灯丝发射出的电子(可视为初速度为0)通过电压为U 的电场加速后,沿水平方向由南向北运动.假设不采取磁屏蔽措施,且地磁场磁感应强度的竖直向下重量的大小为B ,地磁场对电子在加速过程中的阻碍可忽略不计,在未加偏转磁场的情形下,(1)试判定电子束将偏向什么方向;(2)求电子在地磁场中运动的加速度的大小;(3)假设加速电场边缘到荧光屏的距离为l ,求在地磁场的作用下使到达荧光屏的电子在荧光屏上偏移的距离.解析:(1)依照左手定那么,能够判定出电子束将偏向东方.(2)设从加速电场射出的电子速度为v 0,那么依照动能定理有:12m v 20=eU 从加速电场射出的电子在地磁场中受到洛伦兹力的作用而做匀速圆周运动,设电子的加速度为a ,依照牛顿第二定律,e v 0B =ma由以上各式解得a =eB m 2eU m. (3)设电子在地磁场中运动的半径为R ,依照牛顿第二定律e v 0B =m v 20R 得R =m v 0eB图11设电子在荧光屏上偏移的距离为x ,依照图中的几何关系,有:x =R -R 2-l 2 结合以上关系,得x =1B 2mU e -2mU eB 2-l 2. 答案:(1)东方 (2)eB m 2eU m(3)1B 2mU e -2mU eB 2-l 2图1214.(2007年全国卷Ⅰ)两平面荧光屏互相垂直放置,在两屏内分不取垂直于两屏交线的直线为x 轴和y 轴,交点O 为原点,如图12所示.在y >0、0<x <a 的区域有垂直于纸面向里的匀强磁场,在y >0、x >a 的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B .在O 点处有一小孔,一束质量为m 、带电量为q (q >0)的粒子沿x 轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各种数值.速度最大的粒子在0<x <a 的区域中运动的时刻与在x >a 的区域中运动的时刻之比为2∶5,在磁场中运动的总时刻为7T /12,其中T 为该粒子在磁感应强度为B 的匀强磁场中做圆周运动的周期.试求两个荧光屏上亮线的范畴(不计重力的阻碍).解析:设粒子在磁场中半径为r ,那么q v B =m v 2r 图13假设速度较小的粒子将会在x <a 的区域内运动,最后垂直打在y 轴(竖直荧光屏)上,那么半径范畴为从0到a ,屏上发亮的范畴从0~2a ; 假设速度较大的粒子会进入右侧的磁场速度最大的粒子轨迹如图13中实线所示,左边圆弧的圆心在y 轴上,用C 表示,右边圆弧的圆心为C ′,由对称性可知,C ′在x =2a 直线上.设粒子在左、右两磁场中运动的时刻分不为t 1、t 2.由题意,得:t 1t 2=25t 1+t 2=712T 可得:t 1=T 6,t 2=512T 由几何关系可得 ∠OCM =60°,∠MC ′P =150°.故∠NC ′P =150°-60°=90°即NP 为14圆弧,C ′在x 轴上. 设速度最大的粒子半径为R ,由几何关系可知2a =R ·sin60°.故OP =2(1+33)a (水平荧光屏发光范畴的右边界) 又因为粒子进入右侧磁场的最小半径R min =a ,如图中虚线所示,现在粒子在右侧的圆轨迹与x 轴的D 点相切,那么OD =2a .(水平荧光屏发光范畴的左边界).答案:水平荧光屏上亮线范畴是2a <x <2(1+33)a ,竖直屏上亮线范畴是0<y <2a .图1415.(2007年全国卷Ⅱ)如图14所示,在坐标系xOy 的第一象限中存在沿y 轴正方向的匀强电场,场强大小为E .在其他象限中存在匀强磁场,磁场方向垂直于纸面向里.A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 的距离为l .一质量为m 、电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而通过C 点进入磁场区域,并再次通过A 点,现在速度方向与y 轴正方向成锐角.不计重力作用.试求:(1)粒子通过C 点时速度的大小和方向.(2)磁感应强度B 的大小.解析:(1)粒子在电场中做类平抛运动,设加速度为a ,那么qE =ma ①设粒子从A 点进入电场时初速度为v 0,从A 运动到C 点时刻为t ,那么h =12at 2② l =v 0·t ③图15设粒子在C 点时的速度为v ,v 垂直于x 轴的重量为v ⊥,那么v ⊥=2ah ④由于v =v 20+v 2⊥⑤ ①~⑤式联立,得v =qE (4h 2+l 2)2mh⑥ 设粒子通过C 点时速度与x 轴夹角为α.由tan α=v ⊥v 0⑦ 将②③④代入⑦式,得tan α=2h l⑧ 即α角的正切值是2h l. (2)粒子进入磁场后做圆周运动的半径为R ,那么q v B =m v 2R设圆心为P ,那么PC 必与过C 点的速度垂直,且有PC =P A =R .用β表示P A 与y 轴的夹角,由几何关系得R cos β=R cos α+h ⑩R sin β=l -R sin α⑪由⑧⑩⑪式解得R =h 2+l 22hl4h 2+l 2⑫ 由⑥⑨⑫式得B =l h 2+l22mhE q .答案:(1)qE(4h2+l2)2mh与x轴夹角为arctan2hl(2)lh2+l22mhE q。
整章单元过关检测卷(四)含答案高中物理选修3-1磁场艺考生专用
高中物理专题复习选修3-1磁场单元过关检测考试范围:单元测试;满分:100分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、单选题1.如图甲所示,水平直线MN 下方有竖直向上的匀强电场,现将一重力不计、比荷m q =106C/kg 的正电荷置于电场中的O 点由静止释放,经过15π×10-5s 时间电荷以0v =1.5×104m/s 的速度通过MN 进入其上方的匀强磁场,磁场方向与纸面垂直,磁感应强度B 按图乙所示规律周期性变化(图乙中磁场以垂直纸面向外为正,以电荷第一次通过MN 时为t=0时刻)。
不考虑磁场变化产生的电场(sin53°=0.8,cos53°=0.6)。
求:(1)匀强电场的电场强度E ;(2)图乙中t=54π×10-5s 时刻电荷与O 点的水平距离;(3)如果在O 点正右方d=32cm 处有一垂直于MN 的足够大的挡板,求电荷从第一次进入磁场开始到达挡板需要的时间。
2.如图所示,两平行金属板E 、F 之间电压为U ,两足够长的平行边界MN 、PQ 区域内,有垂直纸面向外的匀强磁场,磁感应强度为B.一质量为m 、带电量为+q 的粒子(不计重力),由E 板中央处静止释放,经F 板上的小孔射出后,垂直进入磁场,且进入磁场时与边界MN 成60°角,最终粒子从边界MN 离开磁场.求:(1)粒子在磁场中做圆周运动的半径r ;(2)两边界MN 、PQ 的最小距离d ;(3)粒子在磁场中运动的时间t.3.如图所示,方向垂直纸面向里的匀强磁场的边界,是一个半径为r 的圆,圆心O1在x 轴上,OO1距离等于圆的半径。
虚线MN 平行于x 轴且与圆相切于P 点,在MN 的上方是正交的匀强电场和匀强磁场,电场强度的大小为E ,方向沿x 轴的负方向,磁感应强度为B ,方向垂直纸面向外。
高中磁场试题及答案
高中磁场试题及答案一、选择题1. 磁场的基本性质是什么?A. 磁场对放入其中的电流有力的作用B. 磁场对放入其中的电荷有力的作用C. 磁场对放入其中的物体有力的作用D. 磁场对放入其中的金属有力的作用答案:A2. 根据安培环路定理,磁场线是闭合的,那么以下哪个选项是错误的?A. 磁场线是闭合的B. 磁场线不相交C. 磁场线可以是直线D. 磁场线总是从磁北极指向磁南极答案:D3. 一个带正电的粒子以一定速度进入磁场,如果磁场方向垂直于粒子运动的方向,那么粒子的运动轨迹是什么形状?A. 直线B. 圆C. 螺旋D. 抛物线答案:B二、填空题4. 根据洛伦兹力公式,一个带电粒子在磁场中的受力大小为 \[ F = q \times v \times B \],其中 \( q \) 表示______,\( v \) 表示______,\( B \) 表示______。
答案:电荷量;速度;磁感应强度5. 磁通量是穿过一个闭合表面的磁场线的总数,其单位是______。
答案:韦伯(Weber)三、简答题6. 请简述法拉第电磁感应定律的主要内容。
答案:法拉第电磁感应定律指出,当磁场中的磁通量发生变化时,会在闭合电路中产生感应电动势。
感应电动势的大小与磁通量变化的速率成正比。
四、计算题7. 一个长为 \( L \) 的导线,以速度 \( v \) 在垂直于磁场 \( B \) 的方向上运动,求导线两端的感应电动势。
答案:根据法拉第电磁感应定律,导线两端的感应电动势 \( E \) 可以通过公式 \( E = B \times L \times v \) 计算得出。
五、论述题8. 论述磁场对带电粒子运动的影响,并给出一个实际应用的例子。
答案:磁场对带电粒子的影响主要体现在洛伦兹力的作用上。
当带电粒子以一定速度进入磁场时,如果其速度方向与磁场方向不平行,粒子将受到一个垂直于速度和磁场方向的力,导致粒子做圆周运动。
一个实际应用的例子是质谱仪,它利用磁场使带电粒子在磁场中做圆周运动,通过测量粒子的轨迹半径来确定粒子的质量和电荷比。
高中物理--磁场 测试题(含答案)
高中物理--磁场 测试题(含答案)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题(本题共12小题,每小题4分.在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分)1.下列说法中不正确的是( )A .磁体在空间能产生磁场,磁场使磁体间不必接触便能相互作用B .在磁场中的某一点,小磁针仅在磁场力作用下静止时北极所指的方向,就是那一点的磁场方向C .当两个磁体的同名磁极相互靠近时,两条磁感线有可能相交D .磁体周围的磁感线都是闭合的曲线2.磁场中某区域的磁感线如图所示,则( )A .a 、b 两处的磁感应强度的大小不等,B a >B b B .a 、b 两处的磁感应强度的大小不等,B a <B bC .同一通电导线放在a 处受力一定比放在b 处受力大D .同一通电导线放在a 处受力一定比放在b 处受力小3.在匀强磁场中某处P 放一个长度为L =20 cm,通电电流I =0.5 A 的直导线,测得它受到的最大磁场力F =1.0 N,其方向竖直向上.现将该通电导线从磁场中撤走,则P 处的磁感应强度为( )A .零B .10 T,方向竖直向上C .0.1 T,方向竖直向下D .10 T,方向肯定不沿竖直向上的方向4.图中a 、b 、c 为三根与纸面重直的固定长直导线,其截面位于等边三角形的三个顶点上,沿水平方向,导线中均通有大小相等的电流,方向如图所示,O 点为三角形的中心(O到三个顶点的距离相等),则( )A .O 点的磁感应强度为零B .O 点的磁场方向垂直Oc 向上C .导线a 受到的安培力方向竖直向上D .导线b 受到的安培力方向沿bc 连线方向指向c5.一个带电粒子在磁场力的作用下做匀速圆周运动,要想确定该带电粒子的比荷,则只需要知道( )A .运动速度v 和磁感应强度B B .磁感应强度B 和运动周期TC .轨迹半径R 和运动速度vD .轨迹半径R 和磁感应强度B 6.如图所示,匀强磁场的磁感应强度为B ,有一矩形线圈abcd ,且ab =L 1,ad =L 2,通有逆时针方向的电流I ,让它绕cd 边转过某一角度时,使线圈平面与磁场夹角为θ,则( )A .穿过线圈的磁通量为Φ=BL 1L 2sin θB .穿过线圈的磁通量为Φ=BL 1L 2cos θC .cd 边受到的安培力为F =BIL 1sin θD .ab 边受到的安培力为F =BIL 1cos θ此卷只装订不密封7.如图所示,空间存在水平向里、磁感应强度大小为B的匀强磁场,磁场内有一绝缘的足够长的直杆,它与水平面的倾角为θ,一带电荷量为-q、质量为m的带负电小球套在直杆上,从A点由静止沿杆下滑,小球与杆之间的动摩擦因数μ<tan θ.则在下图中小球运动过程中的速度-时间图像可能是()8.如图所示,带电粒子以初速度v0从a点进入匀强磁场,运动过程中经过b点,Oa=Ob.若撤去磁场加一个与y轴平行的匀强电场,带电粒子仍以速度v0从a点进入电场,仍能通过b 点,则电场强度E和磁感应强度B的比值为()A.v0B .1 v0C.2v0D.v0 29.如图所示,一根通电直导线垂直放在磁感应强度为1 T的匀强磁场中,以导线截面的中心为圆心,半径为r的圆周上有a、b、c、d四个点,已知a点的实际磁感应强度为零,则下列叙述正确的是( )A.直导线中的电流方向垂直纸面向里B.b点的实际磁感应强度为 2 T,方向斜向上,与B的夹角为45°C.c点的实际磁感应强度也为零D.d点的实际磁感应强度跟b点的相同10.为了测量某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的流量计,该装置由绝缘材料制成,长、宽、高分别为a、b、c,左右两端开口,在垂直于上、下底面方向加磁感应强度为B的匀强磁场,在前、后两个内侧固定有金属板作为电极,污水充满管口从左向右流经该装置时,电压表将显示两个电极间的电压U.若用Q表示污水流量(单位时间内排出的污水体积),下列说法中正确的是()A.若污水中正离子较多,则前表面比后表面电势高B.前表面的电势一定低于后表面的电势,与哪种离子多少无关C.污水中离子浓度越高,电压表的示数将越大D.污水流量Q与U成正比,与a、b无关11.空间存在方向垂直于纸面向里的匀强磁场,如图所示的正方形虚线为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其荷质比相同,且都包含不同速率的粒子.不计重力.下列说法正确的是()A.入射速度不同的粒子在磁场中的运动时间一定不同B.入射速度相同的粒子在磁场中的运动轨迹一定相同C.在磁场中运动时间相同的粒子,其运动轨迹一定相同D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大12.如图所示,一个绝缘且内壁光滑的环形细圆管,固定于竖直平面内,环的半径为R(比细管的内径大得多),在圆管内的最低点有一个直径略小于细管内径的带正电小球处于静止状态,小球的质量为m,带电荷量为q,重力加速度为g.空间存在一磁感应强度大小未知(不为零),方向垂直于环形细圆管所在平面且向里的匀强磁场.某时刻,给小球一方向水平向右、大小为5v gR,则以下判断正确的是( )A.无论磁感应强度大小如何,获得初速度后的瞬间,小球在最低点一定受到管壁的弹力作用B.无论磁感应强度大小如何,小球一定能到达环形细管的最高点,且小球在最高点一定受到管壁的弹力作用C.无论磁感应强度大小如何,小球一定能到达环形细管的最高点,且小球到达最高点时的速度大小都相同D.小球在从环形细圆管的最低点运动到所能到达的最高点的过程中,机械能不守恒二、非选择题(本题共6小题,共52分.把答案填在题中的横线上或按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)6.(4分)劳伦斯制成了世界上第一台回旋加速器,其原理如图所示.这台加速器由两个铜质D形盒构成,其间留有空隙.若D形盒的半径为R,所加交变电压的频率为f,要加速质量为m,电荷量+q的粒子,则所加磁场的磁感应强度B=_________,带电粒子离开加速器时能获得的最大动能E k=__________.14.(7分)霍尔效应是电磁基本现象之一,近期我国科学家在该领域的实验研究上取得了突破性进展.如图甲所示,在一矩形半导体薄片的P、Q间通入电流I,同时外加与薄片垂直的磁场B,在M、N间出现电压U H,这个现象称为霍尔效应,U H称为霍尔电压,且满足U H=IBkd,式中d为薄片的厚度,k为霍尔系数.某同学通过实验来测定该半导体薄片的霍尔系数.(1)若该半导体材料是空穴(可视为带正电粒子)导电,电流与磁场方向如图甲所示,该同学用电压表测量U H时,应将电压表的“+”接线柱与______(填“M”或“N”)端通过导线相连.(2)已知薄片厚度d=0.40 mm,该同学保持磁感应强度B=0.10 T不变,改变电流I的大小,测量相应的U H值,记录数据如下表所示.根据表中数据在图给的表格中画出U H-I图线,利用图线求出该材料的霍尔系数为______×10-3 V·m·A-1·T-1.(保留2位有效数字)I(×10-3A)3.06.09.012.015.018.0U H(×10-3V)1.11.93.44.56.26.8(3)值,可以减小霍尔系数的测量误差,为此该同学设计了如图乙所示的测量电路,S1、S2均为单刀双掷开关,虚线框内为半导体薄片(未画出).为使电流从Q端流入,P端流出,应将S1掷向________(填“a”或“b”),S2掷向________(填“c”或“d”).为了保证测量安全,该同学改进了测量电路,将一合适的定值电阻串联在电路中.在保持其它连接不变的情况下,该定值电阻应串联在相邻器件________和________(填器件代号)之间.15.(6分)如图所示,在x轴上方有匀强磁场B,一个质量为m,带电荷量为-q的粒子,以速度v从O点射入磁场,角θ已知,粒子重力不计,求:(1)粒子在磁场中运动的时间;(2)粒子离开磁场的位置与O点间的距离.16.(9分)水平面上有电阻不计的U形导轨NMPQ,它们之间的宽度为L,M和P之间接入电动势为E的电源(不计内阻).现垂直于导轨搁一根质量为m、电阻为R的金属棒ab,并加一个范围较大的匀强磁场,磁感应强度大小为B,方向与水平面夹角为θ且指向右上方,如图所示,问:(1)当ab棒静止时,受到的支持力和摩擦力各为多少?(2)若B的大小和方向均能改变,则要使ab棒所受支持力为零,B的大小至少为多少?此时B的方向如何?17.(10分)如图所示,两块水平放置、相距为d的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断地喷出质量均为m、水平速度均为v0、带相等电荷量的墨滴.调节电源电压至U,墨滴在电场区域恰能水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M点.(1)判断墨滴所带电荷的种类,并求其电荷量;(2)求磁感应强度B的值;(3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B′,则B′的大小为多少?18.(16分)空间存在两个垂直于Oxy平面的匀强磁场,y轴为两磁场的边界,磁感应强度分别为2B0、3B0.甲、乙两种比荷不同的粒子同时从原点O沿x轴正向射入磁场,速度均为v.甲第1次、第2次经过y轴的位置分别为P、Q,其轨迹如图所示.甲经过Q时,乙也恰好同时经过该点.已知甲的质量为m,电荷量为q.不考虑粒子间的相互作用和重力影响.求:(1)Q到O的距离d;(2)甲两次经过P点的时间间隔Δt;(3)乙的比荷qm''可能的最小值.物理答案一、选择题(本题共12小题,每小题4分.在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分)1.【答案】C【解析】磁体间的作用力是通过磁场传递的,可以不用接触便产生相互作用,A 项正确;小磁针仅在磁场力作用下静止时北极的指向是北极受力的方向,就是那一点的磁场方向,B 项正确;磁感线是闭合的曲线且不能相交,C 项错误,D 项正确.2.【答案】B【解析】a 处的磁感线比b 处疏,则a 点磁感强度比b 点小,所以A 错误,B 正确;当将一小段通电导线放入磁场时,磁场力大小和磁场与电流的角度有关,当通电导线垂直磁场时,受到的磁场力最大,平行时为零.因为不知道电流如何放置,所以C 、D 错误.3.【答案】D【解析】导体受到的是最大磁场力F =1.0 N,可判知导体与磁场方向垂直,由B =FIl ,解得B =10 T.由于磁场力的方向是竖直向上的,故可判定磁场的方向一定不会竖直向上,因为二者是互相垂直的关系,方向可有多种情况.撤走导线后,P 处的磁感应强度不变,仍为10 T.故正确答案为D.4.【答案】B【解析】根据右手螺旋定则,电流a 在O 产生的磁场平行于bc 向右,b 电流在O 产生的磁场平行ac 指向左上方,电流c 在O 产生的磁场平行ab 指向右上方,由于三导线电流相同,到O 点的距离相同,根据平行四边形定则,则O 点合场强的方向垂直Oc 向上,故A 错误,B 正确;根据左手定则,结合矢量合成法则,导线a 受到的安培力方向水平向左,而导线b 受到的安培力方向平行于ac 斜向左上方,故C 、D 错误.5.【答案】B【解析】带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得qvB =m v 2r ,解得T =2πr v =2πm qB ,q m =2πBT ,由此可知,求比荷需要知道粒子的线速度、磁感应强度、轨道半径,或磁感应强度、周期,故ACD 错误,B 正确.6.【答案】A【解析】在图示位置,穿过线圈的磁通量为零,当转过θ时,此时穿过线圈的磁通量为Φ=BL 1L 2sin θ,故A 正确,B 错误;由于cd 边始终和磁场垂直,故受到的安培力F =BIL 1,故C 错误;由于ab 边始终和磁场垂直,所以受到的安培力F =BIL 1,故D 错误.7.【答案】C【解析】带电小球静止时受到竖直向下的重力G 、垂直斜面向上的支持力N 和沿斜面向上的摩擦力f ,小球下滑后,再受到一个垂直斜面向上的洛伦兹力F ,沿斜面方向有:mg sin θ-μ(mg cos θ-F )=ma ,在垂直于斜面方向有:N +F =mg cos θ,由于球加速运动,据F =qvB ,F 增大而支持力N 减小,据f =μN ,摩擦力减小,导致加速度a 增加;当速度v 增到某个值时,mg cos θ-F =0,有mg sin θ=ma ,此时加速度最大;此后,F >mg cos θ,支持力N 反向,且速度继续增大,支持力N 增大,摩擦力f 也随着增大,最后出现mg sin θ=f ,之后小球匀速下滑;所以只有C 选项正确.8.【答案】C【解析】设Oa =Ob =d ,因带电粒子在匀强磁场中做匀速圆周运动,所以圆周运动的半径正好等于d 即d =mv 0qB ,得B =mv 0qd .如果换成匀强电场,带电粒子做类平抛运动,那么有d =qE 2m (d v 0)2,得E =2mv 02qd ,所以EB =2v 0.选项C 正确.9.【答案】AB【解析】由a 点合磁感应强度为零知,该电流在a 点的磁感应强度方向向左,大小为1 T,由安培定则知A 项对,另由平行四边形定则知B 项也正确.10.【答案】BD【解析】由左手定则可知,正离子受洛伦兹力向后表面偏,负离子向前表面偏,前表面的电势一定低于后表面的电势,流量Q =V t =vbctt =vbc ,其中v 为离子定向移动的速度,当前后表面电压一定时,离子不再偏转,所受洛伦兹力和电场力达到平衡,即qvB =Ub q ,得v =U bB ,则流量Q =U Bb bc =U B c ,故Q 与U 成正比,与a 、b 无关.11.【答案】BD【解析】由于粒子荷质比相同,由r =mvqB 可知速度相同的粒子运动半径相同,运动轨迹也必相同,B 正确;对于入射速度不同的粒子在磁场中可能的运动轨迹如图所示,由图可知,粒子的轨迹直径不超过磁场边界一半时转过的圆心角都相同,运动时间都为半个周期,而由T =2πm qB 知所有粒子在磁场运动周期都相同,A 、C 皆错误;再由t =θ2πT =θmqB 可知D 正确.12.【答案】BC【解析】由左手定则可判定小球受到的洛伦兹力始终指向圆心,假设小球受到管道的支持力N ,小球获得05v gR =的初速度后,由圆周运动可得qv 0B +N -mg =m v 02R ,得N =mg +m v 02R -qv 0B ,可见,只要B 足够大,满足mg +m v 02R =qv 0B ,支持力N 就为零,故A 错误;由于洛伦兹力不做功,只有重力对小球做功,故小球能不能到最高点与磁感应强度大小无关,从最低点到最高抵过程中,由动能定理得-mg ‧2R =12mv 2-12mv 02,解得v =gR ,可知小球能到最高点小球受到的向心力等于mg ,故此时小球除受到重力,向下的洛伦兹力之外,一定还有轨道向上的支持力大小等于洛伦兹力,故BC 正确;对小球的运动过程中受到的洛伦兹力和支持力不做功,只有重力做功,故机械能守恒,故D 错误.二、非选择题(本题共6小题,共52分.把答案填在题中的横线上或按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)6.(4分) 【答案】2πfmq2π2mf 2R 2 【解析】粒子在加速器中运动的频率等于所加交变电压的频率为 f ,则12πmT f qB==,解得所加磁场的磁感应强度2πfmB q=;当粒子的运动半径等于D 型盒的半径R 时,粒子的动能最大,此时2mv qvB m R=,且E k =12mv m 2,解得E k =2π2mf 2R 2.14.(7分)【答案】(1)M (2)如图所示 1.5(1.4~1.6) (3)b c S 1(或S 2) E 【解析】(1)根据左手定则得,正电荷向M 端偏转,所以应将电压表的“+”接线柱与M 端通过导线相连.(2) 如图所示,根据U H =IB k d 知,图线的斜率为30.10.3750.410B k k d -==⨯,解得霍尔系数k =1.5×10-3V ‧m ‧A -1‧T -1.(3)为使电流从Q 端流入,P 端流出,应将S 1掷向b ,S 2掷向c ,为了保护电路,定值电阻应串联在S 1和E (或S 2和E )之间.15.(6分)【解析】(1)粒子在磁场中运动的轨迹如图所示,有几何关系可知:圆心角为2π-2θ 又T =2πmqB 所以运动时间t =2π-2θ2πT =2(π)mqBθ-. (2)粒子在磁场中运动的半径r =mvqB则离开磁场的位置与入射点的距离s =2r sin θ=2mv sin θqB . 16.(9分)【解析】从b 向a 看侧视图如图所示.(1)水平方向:f =F 安sin θ 竖直方向:N +F 安cos θ=mg 又F 安=BIL =B ER L 联立解得:N =mg -BLE cos θR ,f =BLE sin θR. (2)要使ab 棒受支持力为零,且让磁场最小,可知安培力竖直向上,则有F 安′=mg B min =mgREL ,根据左手定则判定磁场方向水平向右. 17.(10分)【解析】(1)墨滴在电场区域做匀速直线运动,有:q Ud =mg 解得:q =mgdU由于电场方向向下,电荷所受电场力向上,可知墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力,墨滴做匀速圆周运动,有:qv 0B =m v 20R考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知墨滴在该区域恰完成四分之一圆周运动,则半径R =d 得B =v 0U gd 2.(3)根据题设,墨滴运动轨迹如图所示,设墨滴做圆周运动的半径为R ′,有:qv 0B ′=m v 20R ′由图可得:R ′2=d 2+(R ′-d2)2 联立解得:B ′=4v 0U5gd 2. 18.(16分)【解析】(1)带电粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由qvB =m v 2R 得:102mv R qB =,203mvR qB = 且120223mvd R R qB =-=. (2)甲粒子先后在两磁场中做匀速圆周运动,设运动时间分别为t 1、t 2,由T =2πmqB 得10π2m T qB =,20π3mT qB = 且Δt =2t 1+3t 2解得:02πmt qB ∆=. (3)由洛伦兹力提供向心力,由qvB =m v 2R 得:102m v R q B ''=',203m vR q B ''=' d =2R 1′-R 2′若乙粒子从第一象限进入第二象限的过程中与甲粒子在Q 点相遇,则: 2R 1′+nd′=OQ =d12112()22222T T T T T n '''++=+ 结合以上式子,n 无解.若乙粒子从第二象限进入第一象限的过程中与甲离子在Q 点相遇,则: nd′=OQ1212()2222T T T T n ''+=+ 计算可得q qn m m'='(n =1,2,3……) 由于甲乙粒子比荷不同,则n =2时,乙的比荷q m ''最小,为2q qm m'='.。
高三物理磁场单元测试
高三物理磁场单元测试河南宏力学校 姚海军一、选择题(大题共8小题;每小题4分,共32分.每题给出的四个选项中至少有一个选项是正确的,全部选对的得4分,选对但不全的得2分,有错选或不答的得0分).1.如图所示,通电圆线圈套在条形磁铁右端,磁场对通电圆线圈作用的结果,使得 ( ) A .圆线圈面积有被拉大的倾向 B .圆线圈面积有被压小的趋势 C .线圈将向右平移D .线圈将向左平移2.矩形导线框abcd 中通有恒定的电流I ,线框从如图所示位置开始绕中心轴OO ′ 转动90°,在此过程中线框始终处于水平方向的匀强磁场中,以下说法中正确的是 ( )A .ad 、bc 两边所受磁场力始终为零B .ab 、cd 两边所受磁场力的合力始终为零C .ab 、cd 两边均受到恒定磁场力D .线框所受的磁场力的合力始终为零3.在图中虚线所示的区域存在匀强电场和匀强磁场。
取坐标如图。
一带电粒子沿x 轴正方向进入此区域,在穿过此区域的过程中运动方向始终不发生偏转。
不计重力的阻碍,电场强度E 和磁感强度B 的方向可能是 ( ) A . E 和B 都沿x 轴正方向 B . E 沿y 轴正向,B 沿z 轴正向 C . E 沿x 轴正向,B 沿y 轴正向 D . E 、B 都沿z 轴正向4.电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(在单位时刻内通过管内横截面的流体的体积)。
为了简化,假设流量计是如图所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a 、b 、c ,流量计的两端与输送液体的管道相连接(图中虚线)。
图中流量计的上下两面是金属材料,前后两面是绝缘材料,现于流量计所在处加磁感应强度为B 的匀强磁场,磁场方向垂直于前后两面。
当导电液体稳固地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R 的电流表的两端连接,I 表示测得的电流值。
已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为 ( ) A .)(a c bR B I ρ+ B .)(cbaR B I ρ+ C .)(b a cR B I ρ+ D .)(abc R B I ρ+5.如图示,连接平行金属板P 1和P 2(板面垂直于纸面)的导线的一部分CD 和另一连接电池的回路的一部分GH 平,CD和GH 均在纸平面内,金属板置于磁场中,磁场方向垂直于纸面向里,当一束等离子体射入两金属板之间时,CD 段导线将受到力的作用. ( )A .等离子体从右方射入时,CD 受力的方向背离GHB .等离子体从右方射入时,CD 受力的方向指向GHC .等离子体从左方射入时,CD 受力的方向背离GHD .等离子体从左方射入时,CD 受力的方向指向GH 6.如图所示,长方形abcd 长ad=0.6m ,宽ab=0.3m ,O 、e 分别是ad 、bc 的中点,以ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度B=0.25T 。
(精品)高二物理(人教版选修3-1)磁场单元测试带答案
《磁场》单元测试一.单项选择题(本题共12题,每小题3分,共36分)1. 最早发现电流磁效应的科学家是 (D )A .奥斯特B .法拉第C .法拉第D .奥斯特2. 磁场中某点磁感应强度的方向是 (C )A .正电荷在该点的受力方向B .运动电荷在该点的受力方向C .小磁针N 极在该点的受力方向D .一小段通电直导线在该点的受力方向 3. 如图所示,A 、B 是磁场中的一条磁感线上的两点,下列说法中正确的是 ( D )A .A 点磁场比B 点磁场强 B .B 点磁场比A 点磁场强C .因为磁感线为直线,所以A 、B 两点磁场一样强D .无法判断4. 如图所示,a 、b 、c 三枚小磁针分别放在通电螺线管的正上方、管内和右侧,当开关闭合时,这些小磁针静止时,小磁针的N 极指向为 ( C ) A .a 、b 、c 均向左B .a 、b 、c 均向右C .a 向左、b 向右、c 向右D .a 向右、b 向左、c 向右5. 两根通电直导线平行放置,电流分别为I 1和I 2,电流方向如图所示,且I 1>I 2,在与导线垂直的平面上有a 、b 、c 、d 四点,其中a 、b 在导线横截面连线的延长线上,c 、d 在导线连线的垂直平分线上。
则导体中的电流在这四个点产生的磁感应强度可能为零的是 ( B ) A .a 点 B .b 点 C .c 点 D .d 点6. 在图所示的四个图中,标出了匀强磁场的磁感应强度B 的方向、通电直导线中电流I 的方向以及通电直导线所受安培力F 的方向,其中正确表示这三个方向关系的图是 ( A )7. 关于磁通量的概念,以下说法中正确的是 ( D )A .磁通量发生变化,一定是磁场发生变化引起的B .磁感应强度越大,穿过闭合回路的磁通量也越大C .磁感应强度越大,线圈面积越大,则磁通量也越大D .线圈的磁通量为零,但该处的磁感应强度不一定为零8. 速度不同的电子在匀强磁场中做匀速圆周运动,下列说法正确的是 ( D )A .速度越大,周期越大B .速度越小,周期越大C .速度大小与周期无关D .速度方向与磁场方向平行 9. 如图所示,把一个直角三角形的通电线圈使其平面垂直于磁感线放入匀强磁场中,则线圈所受的磁场力的合力为 (D)A .方向垂直于ac 边斜向上F BACBF BA BB.方向垂直于bc边向右C.方向垂直于ab边向下D.为零10.一个带电粒子,沿垂直于磁场的方向射入一匀强磁场,粒子的一段径迹如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理:磁场 单元测试卷(含答案)1.1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示。
这台加速器由两个铜质D 形盒12D D 、构成,其间留有空隙,下列说法正确的是( )A.离子在回旋加速器中做圆周运动的周期随半径的增大而增大B.离子从磁场中获得能量C.增大加速电场的电压,其余条件不变,离子离开磁场的动能将增大D.增大加速电场的电压,其余条件不变,离子在D 型盒中运动的时间变短2.质子和α粒子在同一点由静止出发,经过相同的加速电场后,进入同一匀强磁场中做匀速圆周运动。
已知质子和α粒子的质量之比:4:1H m m α=,电荷量之比:2:1H q q α=。
则它们在磁场中做圆周运动的周期之比:H T T α为( ) A .4:1B .1:4C .2:1D .1:23.如图所示,回旋加速器是用来加速带电粒子使它获得很大动能的装置。
其核心部分是两个“D ”型金属盒,置于匀强磁场中,两盒分别与高频交流电源相连。
则带电粒子获得的最大动能与下列哪些因素有关( )A.加速的次数B.加速电压的大小C.交流电的频率D.匀强磁场的磁感应强度4.如图所示,由Oa Ob Oc 、、三个 铝制薄板互成120°角均匀分开的Ⅰ、Ⅱ、Ⅲ三个匀强磁场区域,其磁感应强度分别用123B B B 、、表示.现有带电粒子自a 点垂直Oa 板沿逆时针方向射入磁场中,带电粒子完成一周运动,在三个磁场区域中的运动时间之比为1:2:3,轨迹恰好是一个以O 为圆心的圆,则其在b c 、处穿越铝板所损失的动能之比为( )A.1:1B.5:3C.3:2D.27:55.如图所示,在边界PQ 上方有垂直纸面向里的匀强磁场,一对正、负电子同时从边界上的O 点沿与PQ 成 角的方向以相同的速度v 射入磁场中,则关于正、负电子,下列说法不正确的是( )A.在磁场中的运动时间相同B.在磁场中运动的轨道半径相同C.出边界时两者的速度相同D.出边界点到O 点处的距离相等6.如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点。
大量相同的带电粒子以相同的速率经过P 点,在纸面内沿不同的方向射入磁场。
若粒子射入速率为1v ,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为2v ,相应的出射点分布在三分之一圆周上。
不计重力及带电粒子之间的相互作用。
则21:v v 为( )A .2BCD .7.如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为a b c m m m 、、,已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动。
下列选项正确的是( )A.a b c m m m >>B.b a c m m m >>C.c a b m m m >>D.c b a m m m >>8.关于磁感线,下列说法中正确的是( ) A .磁感线是真实存在的B .磁感线切线方向可以表示磁感应强度的方向C .磁感线一定是直线D .沿着磁感线方向,磁感应强度越来越小9.运动的电荷垂直进入匀强磁场中,只受洛伦兹力的作用,则电荷的运动( ) A. 匀速圆周运动B. 匀速直线运动C. 匀加速直线运动D. 平抛运动10.如图所示,M N 、和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,90MOP ∠=︒,在M P 、处各有一条长直导线垂直穿过纸面,导线中通有垂直纸面向里、大小相等的恒定电流,这时O 点的磁感应强度大小为0B 。
若将P 处长直导线移开,则O 点的磁感应强度的大小为( )A .012BB 0C 0D .0B11.如图所示,两个单匝线圈a 、b 的半径分别为r 和2r 。
圆形匀强磁场B 的边缘恰好与a 线圈重合,则穿过a 、b 两线圈的磁通量之比为( )A.1:1B.1:2C.1:4D.4:112.如图所示,当闭合开关S 后,螺线管上方A 点的磁感应强度方向为( )A .向右B .向左C .垂直纸面向里D .垂直纸面向外13.如图所示,一段导线abcd 弯成半径为R 、圆心角为90 的部分扇形形状,置于磁感应强度大小为B 的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直,线段ab 和cd 的长度均为2R,流经导线的电流为I ,方向如图中箭头所示.则abcd 导线受到的安培力的方向和大小为( )A.方向沿纸面向上,大小为B.方向沿纸面向上,C.方向沿纸面向下,D.方向沿纸面向下,14.如图,边长为l 的正方形abcd 内存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面(abcd 所在平面)向外。
ab 边中点有一电子发射源O ,可向磁场内沿垂直于ab 边的方向发射电子。
已知电子的比荷为k 。
则从a d 、两点射出的电子的速度大小分别为( )A .14kBl B .14kBl ,54kBlC .12kBlD .12kBl ,54kBl15.两个带电粒子以同一速度、同一位置进入匀强磁场,在磁场中它们的运动轨迹如图所示.粒子 a 的运动轨迹半径为1r ,粒子b 的运动轨迹半径为2r ,且212r r =,12q q 、分别是粒子a b 、所带的电荷量,则( )A. a 带负电、b 带正电,比荷之比为1212:2:1q q m m = B. a 带负电、b 带正电,比荷之比为1212:1:2q q m m C. a 带正电、b 带负电,比荷之比为1212:=2:1q q m m D. a 带正电、b 带负电,比荷之比为1212:=1:1q q m m 16.如图所示,一个半径为R 的导电圆环与一个轴向对称的发散磁场处处正交,环上各点的磁感应强度B 大小相等、方向均与环面轴线方向成θ角(环面轴线为竖直方向)。
若导电圆环上载有如图所示的恒定电流I ,则下列说法中正确的是( )A .导电圆环所受安培力方向竖直向下B .导电圆环所受安培力方向竖直向上C .导电圆环所受安培力的大小为2BIR πD .导电圆环所受安培力的大小为2sin BIR θπ17.如图所示是电视机显像管及其偏转线圈的示意图.如果发现电视画面的幅度比正常的偏小,可能引起的原因是( )A.电子枪发射能力减弱,电子数减少B.加速电场的电压过高,电子速率偏大C.偏转线圈局部短路,线圈匝数减少D.偏转线圈电流过大,偏转磁场增强18.如图,纸面内有两条互相垂直的长直绝缘导线12L L 、,1L 中的电流方向向左,2L 中的电流方向向上;1L 的正上方有a 、b 两点,它们相对于2L 对称。
整个系统处于匀强外磁场中,外磁场的磁感应强度大小为0B ,方向垂直于纸面向外。
已知a 、b 两点的磁感应强度大小分别为013B 和012B ,方向也垂直于纸面向外。
则( )A .流经1L 的电流在b 点产生的磁感应强度大小为0712B B .流经1L 的电流在a 点产生的磁感应强度大小为0112B C .流经2L 的电流在b 点产生的磁感应强度大小为0112B D .流经2L 的电流在a 点产生的磁感应强度大小为0712B 19.由金属导体薄片制成的霍尔元件,其几何尺寸如图所示,在薄片的垂直面上施加一磁感应强度为B 的匀强磁场,在薄片的左、右两侧接有c 、d 两电极,在薄片的上、下两面接有a 、b 两电极.当c 、d 两电极通过控制电流I 时,薄片的上、下两面将出现霍尔电压U H ,霍尔元件的灵敏度K H 定义为霍尔元件在单位磁感应强度和单位控制电流下霍尔电压的大小.在实际操作中,由于a 、b 两电极不完全对称,而是沿cd 方向有一个很小的距离偏差(a 在左,b 在右),从而使得霍尔电压U H 与a 、b 两电极间的电压有一个微小的差值ΔU .某次测量中,当由c 到d 的电流大小为I ,磁感应强度为B 且方向垂直纸面向里时,a 、b 两电极间的电压为U 1;当保持I 和B 的大小不变,仅使磁场方向反向时,a 、b 两电极间的电压为U 2.下列判断正确的是( )A.1L 越小,H K 越大B.2L 越小,H K 越大C.212U U U -∆=D.122U U U -∆=20.如图甲,一个金属圆环与一个理想二极管串联后放在匀强磁场中,磁场方向垂直于圆环平面,规定磁场方向垂直于圆环平面向外为正方向,磁感应强度B 在一个周期内随时间变化的规律如图乙所示。
若规定圆环内顺时针方向为感应电流的正方向,则穿过圆环的磁通量Φ、圆环中的感应电流i 、圆环的热功率P 随时间变化的图像可能正确的是( )A. B.C. D.21.如图所示,匀强磁场的方向竖直向下,磁场中有光滑的水平桌面.在桌面上平放着内壁光滑、底部有带电小球的试管.在垂直于试管的水平拉力F 作用下,试管向右匀速运动,带电小球能从试管口处飞出.关于带电小球及其在离开试管前的运动, 下列说法中正确的是 ()A.小球带负电B.小球运动的轨迹是一条抛物线C.洛伦兹力对小球做正功D.要保持试管匀速运动,拉力F 应逐渐增大22.1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中运动特点,解决了粒子的加速问题。
现在回旋加速器被广泛应用于科学研究和医学设备中。
回旋加速器的工作原理如图甲所示,置于真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。
磁感应强度为B 的匀强磁场与盒面垂直,加速器接一定频率的高频交流电源,保证粒子每次经过电场都被加速,加速电压为U .D 形金属盒中心粒子源产生的粒子,初速度不计,在加速器中被加速,加速过程中不考虑相对论效应和重力作用.(1)求把质量为m 、电荷量为q 的静止粒子加速到最大动能所需时间;(2)若此回旋加速器原来加速质量为2m,带电荷量为q 的a 粒子42He (),获得的最大动能为km E ,现改为加速氘核21H (),它获得的最大动能为多少?要想使氘核获得与α粒子相同的动能,请你通过分析,提出一种简单可行的办法;(3)已知两D 形盒间的交变电压如图乙所示,设α粒子在此回旋加速器中运行的周期为T ,若存在种带电荷量为'q 、质量为'm 的粒子201100X ,在4Tt =时进入加速电场该粒子在加速器中能获得的最大动能?(在此过程中,粒子未飞出D 形盒).23.如图,空间存在方向垂直于纸面(xOy 平面)向里的磁场。
在x ≥0区域,磁感应强度的大小为B 0;x <0区域,磁感应强度的大小为λ0B (常数λ>1)。
一质量为m 、电荷量为q (q >0)的带电粒子以速度0v 从坐标原点O 沿x 轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x 轴正向时,求(不计重力)(1)粒子运动的时间; (2)粒子与O 点间的距离。