液力耦合器
化工设备基础知识-液力耦合器
![化工设备基础知识-液力耦合器](https://img.taocdn.com/s3/m/689f087aa22d7375a417866fb84ae45c3a35c25a.png)
化工设备基础知识-液力耦合器引言液力耦合器是一种常见的传动装置,广泛应用于化工设备中。
它具有简单可靠、传动平稳以及对负载变化具有自适应能力的特点。
本文将介绍液力耦合器的工作原理、结构组成、应用领域以及维护保养等内容。
工作原理液力耦合器利用工作液体在转动容器内的离心力产生液力传递动力。
主要由输入轴、转子、定子以及液体组成。
当输入轴带动转子旋转时,液体随着转子的运动形成旋涡,离心力将液体推向定子,随后再被转子重新抓住。
这样,动力就从输入轴传递到输出轴。
液力耦合器的工作原理可以简化为以下几个步骤: 1. 输入轴带动转子旋转。
2. 转子运动使液体形成旋涡。
3. 离心力将液体推向定子。
4. 转子再次抓住液体,形成闭合传递动力。
结构组成液力耦合器主要由转子组件、定子组件、液体以及附件组件组成。
转子组件转子组件包括转子轴、转子盘、转子鳍片等。
转子轴是液力耦合器的主轴,通过输入轴将动力输入到转子上。
转子盘位于转子轴的两端,起到固定转子鳍片的作用。
而转子鳍片则是将动能转化为离心力的关键部件。
定子组件定子组件包括定子壳体、定子鳍片等。
定子壳体是液力耦合器的外壳,起到固定转子组件的作用。
而定子鳍片则是承接离心力并传递到输出轴的部件。
液体液力耦合器中的液体是起到传递动力的媒介。
常见的液体包括油和水。
液体的选择要根据工作条件和要求来确定。
附件组件附件组件包括液力控制阀、壳体附件等。
液力控制阀用于控制液力耦合器的工作状态,例如启动和停止。
壳体附件用于安装和固定液力耦合器。
应用领域液力耦合器广泛应用于各种化工设备中,例如泵、压缩机、搅拌器等。
其主要作用是传递动力并实现转速的适应性调节。
在输送泵中,液力耦合器能够平稳启动泵,并在负载变化时保持泵的稳定工作状态,有效降低设备的损坏风险。
在压缩机中,液力耦合器可以起到起动和停止压缩机的作用,并在压缩机的负载突变时提供缓冲。
在搅拌器中,液力耦合器具有较高的转矩传递能力,能够保证搅拌器在高负载条件下的稳定运行。
液力耦合器工作原理
![液力耦合器工作原理](https://img.taocdn.com/s3/m/c1165f062a160b4e767f5acfa1c7aa00b52a9dc4.png)
液力耦合器工作原理
液力耦合器是一种常见的传动装置,它通过液体的动力传递来实现机械设备的
启动和运转。
其工作原理涉及到流体力学和动力学的知识,下面我们将详细介绍液力耦合器的工作原理。
液力耦合器主要由泵轮、涡轮和液体填充物组成。
当发动机启动时,泵轮开始
旋转,液体填充物被泵轮带动产生旋转运动。
涡轮则受到液体填充物的冲击而开始旋转,从而驱动机械设备的转动。
在液力耦合器中,液体填充物起着至关重要的作用。
液体填充物会随着泵轮的
旋转而产生离心力,使得液体填充物沿径向流动,形成一个旋涡。
这个旋涡将动能传递给涡轮,从而实现机械设备的传动。
液力耦合器的工作原理可以用流体力学和动力学的知识来解释。
在液体填充物
的流动过程中,涡流的产生和传递涉及到液体的动量守恒和能量守恒。
液体填充物的流动速度和压力分布对液力耦合器的传动特性有着重要的影响。
液力耦合器的工作原理可以简单概括为液体填充物的动能转换。
当泵轮旋转时,液体填充物的动能被传递给涡轮,从而实现机械设备的传动。
这种传动方式具有平稳、无级变速的特点,适用于需要频繁启停和变速的机械设备。
总之,液力耦合器是一种通过液体动力传递实现机械传动的装置,其工作原理
涉及到流体力学和动力学的知识。
通过液体填充物的流动和动能转换,液力耦合器能够实现机械设备的平稳传动,具有重要的应用价值。
希望本文能够帮助读者更好地理解液力耦合器的工作原理。
液力耦合器
![液力耦合器](https://img.taocdn.com/s3/m/69e28547f7ec4afe04a1df37.png)
1、液力偶合器的结构液力偶合器又称液力联轴器,是一种靠液体动能传递扭矩的传动元件。
YOX系列限矩型液力偶合器,主要由输入轴、输出轴、泵轮、涡轮、外壳、易熔塞等构件组成。
输入轴一端与电机相连,另一端与泵轮相连。
输出轴一端与涡轮相连,另一端与工作机相连。
泵轮与涡轮对称布置,都是具有径向直叶片的叶轮,叶轮工作腔的最大直径称为有效直径,是规格大小的标志。
外壳与泵轮固连成密封腔,供工作介质在其中做螺旋环流运动以传递扭矩。
2、液力偶合器的原理当电机通过输入轴带动偶合器泵轮旋转时,泵轮工作腔内的工作液体受离心力的作用由半径较小的泵轮入口被加速加压抛向半径较大的泵轮出口处,同时液体的动量矩产生增量,即泵轮将输入的机械能转化成了液体动能。
当携带液体动能的工作液体从泵轮出口冲向对面的涡轮时,液流便沿涡轮叶片所形成的流道做向心流动,同时释放液体动能转化机械能,驱动涡轮并带负载旋转做功。
于是,输入与输出在没有直接机械连接的情况下,仅靠液体动能便柔性的连接起来了。
二、功能与用途1、液力偶合器的功能具有柔性传动功能:能有效的减缓冲击,隔离扭振,提高转动品质;具有电机轻载起动功能:当电机起动时,力矩甚微,接近于空载起动,从而降低起动电流,缩短起动时间,起动过程平衡、顺利;具有过载保护功能:有效的保护电机和工作机,在起动或超载时不受损坏,降低机器故障率,延长使用寿命,降低维护保护费用和停工时间;具有协调多机同步起动功能:在多机起动系统,能够达到电机顺序起动,协调各电机同步、平稳驱动。
2、液力偶合器的用途限矩型液力偶合器适用于一切需要解决起动困难、过载保护、减缓冲击震动和隔离扭振,协调多机驱动的机械设备上,广泛用于矿山。
三、安装与拆卸1、液力偶合器的安装(1)安装偶合器前应将原动机与工作机轴清洁干净并涂抹润滑脂。
(2)安装时不允许用压板或铁锤敲打偶合器铝制壳体,也不可热装,以免损坏密封及元件。
可在工作机轴上绞螺纹孔,并在其上旋入螺杆,通过旋转螺杆上特制的螺母将套在螺杆上的偶合器主轴(联带偶合器)平衡代入,安装在工作设备上(如安装简图所示)。
化工设备基础知识-液力耦合器
![化工设备基础知识-液力耦合器](https://img.taocdn.com/s3/m/2ea9e4194a7302768e993977.png)
• 充液范围为耦合器总容积的40~80%,不
允许超出此范围,更不允许充满,因为充液 量超出容积80%,耦合器转动时,因过载而 急剧升温升压,工作液体积膨胀,耦合器内 压增大,破坏密封,引起漏液,甚至造成耦 合器壳体开裂、机械损坏。 • 而充液量少于容积的40%,轴承可能润滑不 足,耦合器得不到充分利用,且体积大,无 甚意义,建议选小一规格型号。
液力耦合器的 泵轮和涡轮组成一 个可使液体循环流 动的密闭工作腔, 泵轮装在输入轴上, 涡轮装在输出轴上。 动力机(内燃机、电 动机等)带动输入轴 旋转时,液体被离 心式泵轮甩出。
14
这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传 递给输出轴。最后液体返回泵轮,形成周而复始的流动。
15
21
• 液力耦合器一般采用油介质。工作液推荐使
用32号汽轮机油、6号液力传动油、8号液力 传动油。 • 拧下注液塞,用80-100目滤网过滤工作液, 按量注入耦合器内,旋紧注液塞进行试车。 当注油塞口旋至距垂直中心线最高点约55 ,腔内工作液刚好流出时可视为耦合器能传 递较高的额定功率的较佳油位。 • 项目开车时,将由设备厂家(德国福伊特) 和开车试运小组根据实际工作负载的大小及 22 工况要求来调整充油量的多少。
大刻度之间)。 • 7、检查电源电压是否正确连接到电力系统及 传输/过程信号。 • 8、使用水/油换热器,打开水侧阀门,排空 油冷器水侧气体并检查流量。 • 9、通过VEHS位置控制单元和执行机构勺管 位置从0%到100%,检查设定值(信号420mA)。 • 10、勺管位置处在0%。 40 • 11、检查整个系统是否为运行做好准备。
17
• 旋转油环靠自身旋转所形成的压头,当遇
到勺管头时,工作液体便由勺管导出。于 是通过电动执行器操纵勺管的伸缩程度, 便可以改变导管腔内的油环厚度。由于导 管腔与工作腔连通,所以也就改变了工作 腔内的充液度,实现无级调速。勺管排出 的油通过回油三通重新回到油箱。 • 由于勺管吸油和油泵的进、出油口均与耦 合器的转向有关。所以油泵转子与勺管安 装方向要与耦合器转向相适应。也就是说 ,第一,勺头开口方向必须迎着导管腔油 18
液力耦合器工作原理
![液力耦合器工作原理](https://img.taocdn.com/s3/m/676a2dcf8662caaedd3383c4bb4cf7ec4bfeb67d.png)
液力耦合器工作原理引言概述:液力耦合器是一种常用的动力传动装置,广泛应用于各种机械设备中。
它通过液体的力学传动来实现两个轴之间的动力传递。
本文将详细介绍液力耦合器的工作原理,包括液力传动原理、结构组成、工作过程、优缺点以及应用领域。
一、液力传动原理:1.1 流体动力传递机制液力耦合器利用液体流体的动力传递机制来实现动力的转换和传递。
当液体在转子内部流动时,由于离心力的作用,液体会形成一个涡流,涡流的动能将通过液体的黏性传递给输出轴,从而实现动力的传递。
1.2 流体动力传递的特点液力传动具有以下几个特点:- 平稳传动:液力耦合器的液体传动机制使得传动过程平稳无冲击,减少了机械设备的振动和噪音。
- 自动变速:液力耦合器能够根据负载的变化自动调整转速,实现自动变速的功能。
- 负载分配:液力耦合器能够根据负载的大小合理分配动力,确保机械设备的正常运行。
- 起动平稳:液力耦合器的起动过程平稳,不会对机械设备造成冲击和损坏。
1.3 液力耦合器的基本构造液力耦合器由输入轴、输出轴和液力传动装置组成。
液力传动装置包括泵轮、涡轮和导向叶片。
输入轴通过泵轮将动力传递给液体,液体经过涡轮的作用将动力传递给输出轴。
导向叶片用于控制液体流动的方向和速度,从而实现动力的传递和调节。
二、工作过程:2.1 起动过程当启动机械设备时,输入轴开始转动,泵轮通过输入轴将动力传递给液体。
液体在泵轮的作用下形成涡流,涡流的动能将通过液体的黏性传递给涡轮,从而使输出轴开始转动。
2.2 调速过程在机械设备工作时,负载的大小会发生变化,液力耦合器能够根据负载的变化自动调整转速。
当负载增加时,涡轮的转速会下降,导致液体流动速度减小,涡轮上的动力也会减小。
相反,当负载减小时,涡轮的转速会增加,液体流动速度加快,涡轮上的动力也会增加。
2.3 停止过程当停止机械设备时,输入轴停止转动,液体的动力传递也会停止。
液体停止流动后,涡轮上的动力也会消失,输出轴停止转动。
液力耦合器工作原理
![液力耦合器工作原理](https://img.taocdn.com/s3/m/f4011a19ac02de80d4d8d15abe23482fb4da02c4.png)
液力耦合器工作原理引言概述:液力耦合器是一种常见的机械传动装置,广泛应用于各种工业领域。
它通过液体的动力传递来实现机械的连接和传动。
本文将详细介绍液力耦合器的工作原理,包括液力传递、液力变速和液力控制等方面。
一、液力传递1.1 流体动力传递液力耦合器内部填充着液体,通常是油。
当液体在转子内部流动时,它会产生动力,这种动力可以传递给其他机械部件,实现动力传递。
液力传递的基本原理是利用液体的动能和压力来传递转矩和功率。
1.2 液力耦合器的结构液力耦合器由驱动轴、从动轴和液力传递介质组成。
驱动轴和从动轴通过液力传递介质连接在一起。
液力传递介质通常由转子、泵和涡轮组成。
泵将液体从驱动轴端抽出,然后通过转子和涡轮的作用,将液体传递到从动轴端。
1.3 液力传递的特点液力传递具有一定的特点。
首先,液力传递可以在无接触的情况下实现动力传递,减少了磨损和噪音。
其次,液力传递可以实现连续的动力传递,不受转速比的限制。
此外,液力传递还具有一定的扭矩放大效应,可以在启动和低速工况下提供更大的扭矩输出。
二、液力变速2.1 液力耦合器的变速原理液力耦合器可以通过改变液体的流动状态来实现变速。
当液体在转子内部流动时,它的流速和流量会发生变化,从而改变液力传递的效果。
通过调整液体的流动状态,可以实现不同的转速比和扭矩输出。
2.2 液力变速的调节方式液力耦合器的变速可以通过调节泵和涡轮的转速来实现。
当泵和涡轮的转速不同时,液体的流动状态会发生变化,从而实现不同的变速效果。
此外,还可以通过改变液体的粘度和密度来调节液力变速的效果。
2.3 液力变速的优势和应用液力变速具有一定的优势。
首先,液力变速可以实现平滑的变速过程,减少机械部件的磨损和冲击。
其次,液力变速可以实现无级变速,满足不同工况下的需求。
液力变速广泛应用于汽车、船舶、工程机械等领域。
三、液力控制3.1 液力耦合器的控制方式液力耦合器的控制可以通过调节液体的流量和压力来实现。
液力耦合器工作原理
![液力耦合器工作原理](https://img.taocdn.com/s3/m/403401926e1aff00bed5b9f3f90f76c661374c3e.png)
液力耦合器工作原理引言概述:液力耦合器是一种常见的动力传输装置,广泛应用于各种机械设备中。
它通过液体的流动来传递动力,具有承载能力强、传动效率高等特点。
本文将详细介绍液力耦合器的工作原理及其应用。
一、液力耦合器的基本构造:1.1 液力耦合器的外壳:液力耦合器外壳由两个相互套合的壳体组成,内壳连接到动力源,外壳连接到工作机械。
外壳的内部充满了液体,形成一个密闭的工作环境。
1.2 液力耦合器的转子:液力耦合器内部有两个转子,分别称为泵轮和涡轮。
泵轮由内壳驱动,涡轮与外壳相连。
1.3 液力耦合器的液体:液力耦合器中充满了液体,通常使用油作为液体介质。
液体的流动是实现动力传递的关键。
二、液力耦合器的工作原理:2.1 初始状态:当液力耦合器处于静止状态时,泵轮和涡轮之间没有直接的机械连接。
液体充满整个液力耦合器,但没有形成液流。
2.2 动力传递:当内壳驱动泵轮旋转时,泵轮产生离心力将液体向外壁挤压。
液体的流动使得涡轮开始旋转,从而将动力传递到外壳。
2.3 液力变矩:液体流动产生的离心力作用于涡轮,使其产生转矩。
液力耦合器的转矩传递比取决于液体的流动速度和涡轮的转速。
当液体流动速度增加时,液力耦合器的传递比也会增加。
三、液力耦合器的应用:3.1 汽车传动系统:液力耦合器广泛应用于汽车的自动变速器中。
它可以平稳地传递动力,提高汽车的行驶舒适性。
3.2 工业机械:液力耦合器也被用于各种工业机械设备中,如起重机、钢铁厂等。
它可以承载较大的转矩,实现高效的动力传递。
3.3 发电机组:在发电机组中,液力耦合器可以起到启动发电机的作用,使得发电机可以平稳地启动并达到额定转速。
四、液力耦合器的优势与劣势:4.1 优势:液力耦合器具有承载能力强、传动效率高、传递平稳等优点。
它可以适应大范围的负载和转速变化。
4.2 劣势:液力耦合器的传递比不是固定的,会随着负载和转速的变化而改变。
同时,液力耦合器在传递动力时会有一定的能量损耗。
液力耦合器原理
![液力耦合器原理](https://img.taocdn.com/s3/m/4dcb0777b80d6c85ec3a87c24028915f814d8470.png)
液力耦合器原理液力耦合器是一种常见的动力传递装置,广泛应用于各种机械设备中。
它通过液体介质传递动力,具有承载能力强、起动平稳、无级调速等优点,被广泛应用于汽车、船舶、风力发电等领域。
本文将详细介绍液力耦合器的原理和工作机制。
一、液力耦合器的概述液力耦合器是由泵轮、涡轮、导向器和液体介质组成的。
其中,泵轮又称为驱动轮或泵,涡轮又称为从动轮或涡;液体介质则是通过泵轮和涡轮之间的转差,传递运动和动力。
二、液力耦合器的原理液力耦合器的原理基于液体在转动或流动时所具有的一些特性,包括离心力、黏性和旋塞效应。
1. 离心力当泵轮(驱动轮)以一定的速度旋转时,液体受到离心力的作用会被抛到涡轮(从动轮)之中。
这种离心力会使液体获得动能,从而传递给涡轮,实现能量的传递。
2. 黏性液体具有一定的粘滞性,使得液体在传递过程中能够形成一个层流的环境。
这种黏性作用使得转动的液体能够均匀地传递动力,不会因为液体在传递过程中产生明显的滑动。
因此,液力耦合器具有良好的运动平稳性。
3. 旋塞效应液体在传递动力时会形成一个旋转的流体环,这种旋转的液体环会抵消液体传递时的惯性力,从而使液力耦合器具有较小的内部转差。
这种旋塞效应保证了液力耦合器在高速工作时,能够有较小的能量损耗。
三、液力耦合器的工作机制液力耦合器的工作过程可以分为三个阶段:起动阶段、传动阶段和闭锁阶段。
1. 起动阶段当液力耦合器处于起动状态时,液体介质会被泵轮抛向涡轮,形成旋转的液体环。
在起动阶段,液体的离心力非常强,可以实现大扭矩的传递,用于启动被驱动装置。
2. 传动阶段在液力耦合器启动后,液体介质将继续形成旋转的液体环。
在传动阶段,涡轮会以与泵轮相同的速度旋转,进一步传递动力。
液力耦合器在传动阶段具有无级调速的特点,能够灵活适应不同负载的需求。
3. 闭锁阶段当传动装置需要临时断开时,液力耦合器会进入闭锁阶段。
在闭锁阶段,通过控制流体的锁紧器来实现涡轮和泵轮之间的离合和连接。
液力耦合器
![液力耦合器](https://img.taocdn.com/s3/m/8cddeb659b6648d7c1c7460b.png)
液力耦合器fluid coupling以液体为工作介质的一种非刚性联轴器,又称液力联轴器。
液力耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。
动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。
这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。
最后液体返回泵轮,形成周而复始的流动。
液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。
它的输出扭矩等于输入扭矩减去摩擦力矩,所以它的输出扭矩恒小于输入扭矩。
液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。
液力耦合器的特点是:能消除冲击和振动;输出转速低于输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近于输入轴的转速,使传递扭矩趋于零。
液力耦合器的传动效率等于输出轴转速与输入轴转速之比。
一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。
液力耦合器的特性因工作腔与泵轮、涡轮的形状不同而有差异。
它一般靠壳体自然散热,不需要外部冷却的供油系统。
如将液力耦合器的油放空,耦合器就处于脱开状态,能起离合器的作用。
液力变矩器fluid torque converter以液体为工作介质的一种非刚性扭矩变换器,是液力传动的型式之一。
图为液力变矩器,它有一个密闭工作腔,液体在腔内循环流动,其中泵轮、涡轮和导轮分别与输入轴、输出轴和壳体相联。
动力机(内燃机、电动机等)带动输入轴旋转时,液体从离心式泵轮流出,顺次经过涡轮、导轮再返回泵轮,周而复始地循环流动。
泵轮将输入轴的机械能传递给液体。
高速液体推动涡轮旋转,将能量传给输出轴。
液力变矩器靠液体与叶片相互作用产生动量矩的变化来传递扭矩。
液力变矩器不同于液力耦合器的主要特征是它具有固定的导轮。
液力耦合器
![液力耦合器](https://img.taocdn.com/s3/m/1cf4400479563c1ec5da715b.png)
五、液力偶合器故障、危害及其处 理
• ㈡、温升过高:
• • • • • 1、液力偶合器温升过高的原因? ⑴.超负荷运转。 ⑵.带式输送机上下不转的托辊较多。 ⑶.清扫器压力大。 ⑷.刮板输送机或带式输送机在运转中有刮卡 的地方。 • ⑸.易熔合金塞失效。
五、液力偶合器故障、危害及其处 理
• 2、危害: • 温升过高而易熔合金塞不熔化,容易引起液力 偶合器爆炸或烧毁电动机及损坏减速器。 • 3、预防及处理方法: • ⑴.控制给煤量,禁止超负荷运转。 • ⑵.检修或更换带式输送机不转的托辊。 • ⑶.调节清扫器的压力。 • ⑷.清除刮卡阻碍物。 • ⑸.更换合格的易熔合金塞。
四、液力偶合器使用与维护⑴
• 1、液力偶合器的工作介质的性质决定其出力大小 • 严格按着机器规定的额定功率,用量杯注入规 定数量和规定品种的液体,并经常检查有无漏油。 在使用中更换液体时,必须把液力偶合器内原有的 油液完全倒空,否则注液量就不准,不能起到应有 的作用。 • 2、为液力偶合器创造良好的工作环境。 • 转距随着油温的升高而增大。在使用中应为液 力偶合器创造良好的通风、散热条件,并经常清除 液力偶合器上堆积的煤粉。
液力耦合器
液力耦合器
• 一、定义、结构原理及作用
• 定义:以液体为工作介质的一种非刚性联 轴器,又称液力联轴器,也叫机械软启动 装置 • 结构原理:如下图 • 作用: • 1、改善原动机的启动性能,减少启动冲击。 • 2、实现不同速度下运行。 • 3、具备过载保护功能,可以保护原动机。
• 二、保护装置
• 四、液力偶合器使用与维护
• • • • • 环境清洁 介质合格 液量充足 保护可靠 专人维护
• 五、液力偶合器故障、危害及其处理 • 常见故障现象: • 温升过高: 超载 • 易熔塞不融化:易熔合金塞材质不合格 • 漏液: • 打滑: • 软启失灵:装配问题
液力耦合器
![液力耦合器](https://img.taocdn.com/s3/m/5296e7c9050876323112122d.png)
液力偶合器一、设备概述;液力耦合器是安装在电动机与泵之间的一种传递部件,从电机至液力偶合器和偶合器至水泵之间是采用绕性联轴器连接,而偶合器与一般的联轴器不同之处是,它是通过工作油来传递和转换能量的。
它主要由主动轴、泵轮、涡轮、从动轴以及防止漏油的旋转内套等组成,泵轮与涡轮分别装在主动轮和从动轮上,它们之间无机械联系。
旋转外套在其外缘法兰处用螺栓与泵轮相连接。
泵轮与涡轮的轴心线相重合,内腔相对布置,两轮侧板的内腔形状和几何尺寸相同,轮内装有许多径向辐射形叶片,两轮端面留有适当的间隙。
构成一个液流通道,叫工作腔,工作腔的轴面投影称为流道。
运转时,在夜里偶合器中充满工作油,当主动轮带动泵轮回转时,泵轮流道中的工作油因离心力的作用,沿着径向流道由泵轮内侧(进口)流向外缘(出口)形成高压高速油。
在出口处以径向相对速度与泵轮出口圆周速度形成合速,冲入涡轮的进口径向流道,并沿着流道由工作油动量矩的改变去推动涡轮,使其跟随泵轮作同方向旋转。
但它们的转速不可能完全相同,因液体不具有刚性,假使它们在同一转数下旋转,则工作油就不会再冲击涡轮,因而就不会发生动力传递。
一般泵轮与涡轮的转差率为3%-4% 。
油在涡轮流道中由外缘(入口)流向内侧(出口)的过程中减压减速,在出口中又以径向相对速度与涡轮出口圆周形成合速。
冲入泵轮的进口径向流道,重新在泵轮中获得能量。
如此周而复始,构成工作油在泵轮和涡轮两者间的自然环流。
在这种循环中,泵轮将输入的机械功转化为工作油的动能和压力能,而涡轮则将工作油的动能和势能转换为输出的机械功。
从而实现电动机到水泵之间的动力传递。
工作油越多,则传递的动力愈大,也就增加了涡轮的传递。
而工作油减少时,情况正与上述相反。
工作油量靠勺管来调节的,二、液力偶合器构造现以德国voith公司生产的R15K-2.E型液力偶合器为例,主要部件有;箱体、传动齿轮和轴、液力偶合器、轴承、油泵、勺管调节装置、冷油器、油滤网等。
液力耦合器
![液力耦合器](https://img.taocdn.com/s3/m/e6cf48a884868762caaed5d2.png)
液力耦合器耦合器的介绍液力耦合器又称液力联轴器,是一种用来将动力源(通常是发动机或电机)与工作机连接起来传递旋转动力的机械装置。
曾应用于汽车中的自动变速器,在海事和重工业中也有着广泛的应用。
液力耦合器以液体为工作介质的一种非刚性联轴器,又称液力联轴器。
液力耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。
动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。
这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。
最后液体返回泵轮,形成周而复始的流动。
液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。
它的输出扭矩等于输入扭矩减去摩擦力矩,所以它的输出扭矩恒小于输入扭矩。
液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。
液力耦合器的特点是:能消除冲击和振动;输出转速低于输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近于输入轴的转速。
液力耦合器的传动效率等于输出轴转速乘以输出扭矩(输出功率)与输入轴转速乘以输入扭矩(输入功率)之比。
一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。
液力耦合器的特性因工作腔与泵其内充有工作油液。
泵轮通常在内燃机或电机驱动下旋转,带动工作油液做比较复杂的向心力运动。
高速流动的油液在科里奥利力的作用下冲击涡轮叶片,将动能传给涡轮,使涡轮与泵轮同方向旋转。
油液从涡轮的叶片边缘又流回到泵轮,行成循环回路,其流动路线如同一个首尾相连的环形螺旋线。
耦合器的分类根据用途的不同,液力耦合器分为限矩型液力耦合器和调速型液力耦合器。
其中限矩型液力耦合器主要用于对电机减速机的启动保护及运行中的冲击保护,位置补偿及能量缓冲;调速型液力耦合器主要用于调整输入输出转速比,其它的功能和限矩型液力耦合器基本一样。
液力耦合器的作用和特点
![液力耦合器的作用和特点](https://img.taocdn.com/s3/m/020ead117ed5360cba1aa8114431b90d6d85895e.png)
液力耦合器的作用和特点《液力耦合器,低调又厉害的家伙》嘿,大家好呀!今天咱来聊聊液力耦合器这个看似普通却有着大作用的玩意儿。
液力耦合器啊,就像是机械世界里的一位低调高手。
它的主要作用呢,那就是传递动力啦!听着好像很简单对吧,但可别小瞧了它。
它就像一个厉害的中间人,把动力从这边稳稳地传到那边,而且还能让这个传递过程变得特别顺溜,减少那些让人头疼的冲击和震动。
想象一下啊,如果没有液力耦合器,机器运转起来那得多生硬啊,就跟刚学走路的小孩似的,磕磕绊绊的。
但是有了液力耦合器在中间调和,一切就变得不一样啦!它能让动力传递得犹如行云流水一般自然。
这家伙还有个特点,那就是特别能适应各种情况。
不管外面的世界怎么变,它都能坚守自己的岗位。
就好像是个老黄牛,勤勤恳恳地工作,毫无怨言。
就算是面对一些恶劣的工作环境,它也能面不改色心不跳,照传动力不误。
而且啊,液力耦合器还挺耐用的。
你不用像伺候大爷似的小心翼翼地伺候它,它就能给你好好干活儿。
比起那些娇气的玩意儿,它可真是太让人省心啦!当然啦,液力耦合器也不是十全十美的。
偶尔也会有点小脾气,比如效率可能不是那么超级高。
但这就像是人无完人一样,咱不能要求它啥都完美呀。
总的来说,液力耦合器就是那种默默奉献,不太引人注意,但又不可或缺的存在。
它在各种机械中发挥着自己的作用,保障着机器的正常运转。
下次你再看到那些庞大的机器在工作的时候,不妨想想,这里面可有液力耦合器的一份功劳呢!它就像一个幕后英雄,虽然不张扬,但却实实在在地为我们的生活和工作做出了贡献。
大家可别小看了这个低调又厉害的家伙呀!哈哈!。
液力耦合器
![液力耦合器](https://img.taocdn.com/s3/m/653435a6910ef12d2bf9e70a.png)
图11-4 液力耦合器的原始特性曲线
2019/8/14
15
11.2 液力耦合器的特性
11.2.3 液力耦合器的通用特性
•
通用特性是在 D ﹑ 一定时,当不同 nB
特性。它可由原始特性线及式(11-8)﹑
的i 时nnTB的的M关 系f (n绘T )
制出它的通用曲线。取 nB nB,当取不同的若干个 nT 时,
• 对于同一系列彼此相似的液力耦合器,象液力变 矩器一样,可以根据相似原理推导出它的力矩方 程:
M MB MT D5nB2
(11-8)
2019/8/14
14
11.2 液力耦合器的特性
• 式中D为液力耦合器的有 效直径。理论证明,是 随而变化的函数。对于 同系列彼此相似的液力 耦合器,不论大小是否 相同,它们的原始特性 曲线都是一样的,所以 也叫做类型特性,它是 通过实验或外特性曲线 并利用公式换算出来的,
越大,sl 越小。
2019/8/14
21
11.2 液力耦合器的特性
图11-7 液力耦合器部分充液时的液流循环情况
2019/8/14
22
11.3 液力耦合器的类型和结构
11.3.1 液力耦合器的类型
• 液力耦合器按其应用特性可分为三个基本类型,即普通型、 限矩型、调速型及两个派生类型:液力耦合器传动装置与 液力减速器。根GB/T5837-93“液力耦合器型式与基本参 数”国标规定,型号如下。
19
11.2 液力耦合器的特性
• 当 s 0 时,泵轮和涡轮中的液体因离心压力相等而无相
对流动,工作液体对称地分布在工作轮的外缘,如图11-
7a。当 s 增加,因泵轮和涡轮中的离心力不均衡,于是
什么是液力偶合器_特点与原理
![什么是液力偶合器_特点与原理](https://img.taocdn.com/s3/m/7c8c8f26effdc8d376eeaeaad1f34693daef10ec.png)
什么是液⼒偶合器_特点与原理 ⼀般液⼒偶合器正常⼯况的转速⽐在0.95以上时可获得较⾼的效率。
那么你对液⼒偶合器了解多少呢?以下是由店铺整理关于什么是液⼒偶合器的内容,希望⼤家喜欢! 液⼒偶合器的概念 液⼒耦合器是利⽤液体的动能⽽进⾏能量传递的⼀种液⼒传动装置,它以液体油作为⼯作介质,通过泵轮和涡轮将机械能和液体的动能相互转化,从⽽连接原动机与⼯作机械实现动⼒的传递。
液⼒耦合器按其应⽤特性可分为三种基本类型,即普通型、限矩型、调速型及两个派⽣类型:液⼒耦合器传动装置与液⼒减速器。
液⼒偶合器的特点 液⼒耦合器是⼀种柔性的传动装置,与普通的机械传动装置相⽐,具有很多独特之处:能消除冲击和振动;输出转速低于输⼊转速,两轴的转速差随载荷的增⼤⽽增加;过载保护性能和起动性能好,载荷过⼤⽽停转时输⼊轴仍可转动,不致造成动⼒机的损坏;当载荷减⼩时,输出轴转速增加直到接近于输⼊轴的转速,使传递扭矩趋于零。
液⼒偶合器的传动效率等于输出轴转速与输⼊轴转速之⽐。
⼀般液⼒偶合器正常⼯况的转速⽐在0.95以上时可获得较⾼的效率。
液⼒偶合器的特性因⼯作腔与泵轮、涡轮的形状不同⽽有差异。
它⼀般靠壳体⾃然散热,不需要外部冷却的供油系统。
如将液⼒偶合器的油放空,偶合器就处于脱开状态,能起离合器的作⽤。
但是液⼒耦合器也存在效率较低、⾼效范围较窄等缺点。
液⼒偶合器的分类 液⼒耦合器按其应⽤特性可分为三种基本类型,即普通型、限矩型、调速型及两个派⽣类型:液⼒耦合器传动装置与液⼒减速器。
液⼒偶合器的结构与原理 液⼒耦合器结构形式⽐较多,不同的液⼒耦合器在结构与原理上略有不同,但是其基本原理是相同的,都是通过泵轮将机械能转化为液体的动能,再由流动的液体冲击涡轮,实现液体动能向机械能的转化,向外输出动⼒,如图2所⽰。
下⾯分别介绍普通型、限矩型、调速型液⼒耦合器的典型结构与原理。
普通型液⼒耦合器 普通型液⼒耦合器是最简单的⼀种液⼒耦合器,它是由泵轮1、涡轮2、外壳⽪带轮3等主要元件构成,如下图所⽰。
名词解释液力耦合器的结构
![名词解释液力耦合器的结构](https://img.taocdn.com/s3/m/c6beb7596ad97f192279168884868762caaebbab.png)
名词解释液力耦合器的结构液力耦合器(Fluid Coupling)是一种常见的动力传输装置,广泛用于机械及工程领域。
它能够有效地实现动力的传递和转化,具有简单、可靠和高效的特点。
液力耦合器由套筒、转子、液料,以及驱动盘和从动盘等组成,其结构设计能够满足不同的工作条件和要求。
液力耦合器的主要构成部分包括两个主要的部分:外壳和转子。
外壳是一个密闭的圆筒形结构,通常由钢制成,具有强度和耐磨性。
它被设计成一个旋转容器,能够容纳转子和液料。
转子则是液力耦合器的核心部分,由驱动盘和从动盘组成。
驱动盘和从动盘之间通过液料相互连接,实现动力的传输和转化。
液力耦合器的工作原理可以通过液体在高速旋转的环境下产生的动能和压力来解释。
当驱动盘转动时,它携带液料在液力耦合器内形成一层液体环流。
这个环流会产生一定的压力,驱动从动盘开始旋转。
随着驱动盘速度的增加,液料的动能也会增加,从而产生更大的液体压力,在从动盘上形成更大的转矩。
通过这种方式,液力耦合器能够将原始动力转化为更大的输出动力。
液力耦合器的结构设计对其性能有着重要的影响。
为了提高液力耦合器的转矩传递效率和可靠性,通常会在外壳上加装电磁阀、液力控制器等辅助装置,以控制液体动能的传输和转化。
这些装置能够根据实际工况要求对液料的流量、压力和速度进行调节,从而实现动力的有效调配和控制。
液力耦合器的结构可以根据不同的应用需求做出一些改变。
例如,为了适应高扭矩传输和更高的转速要求,一些液力耦合器在转子的设计上进行了优化,增加了叶片数量和形状等。
另外,一些专门的液力耦合器还可以具备防滑和过载保护功能,能够在输入和输出端之间自动调整扭矩的分配,以保护机械设备和传动系统的安全。
总之,液力耦合器是一种非常重要的动力传输装置,其具有简单、可靠和高效的特点。
它的结构设计能够满足不同的工作条件和要求,通过液体的环流和转动运动实现动力的传递和转化。
随着技术的不断发展和创新,液力耦合器在各个领域的应用也愈发广泛,为机械和工程领域提供了可靠的动力解决方案。
液力耦合器的工作原理
![液力耦合器的工作原理](https://img.taocdn.com/s3/m/69f92093a48da0116c175f0e7cd184254a351b4e.png)
液力耦合器的工作原理
液力耦合器是一种常见的动力传动装置,它通过利用液体的黏性和惯性实现传动。
液力耦合器主要由泵轮、涡轮和动力分配装置组成。
液力耦合器的工作原理可以分为三个阶段:启动阶段、加速阶段和稳定阶段。
1. 启动阶段:
液力耦合器在启动过程中,输入轴驱动泵轮旋转,将工作液体(通常是油)从泵轮的叶片中抛出。
由于泵轮和涡轮之间没有直接的机械连接,涡轮并没有立即开始旋转,这是因为涡轮中的工作液体没有受到直接的冲击。
2. 加速阶段:
随着泵轮转速的增加,抛出的工作液体将打到涡轮上,并形成一个液体环流。
这种液体环流会产生一个推动力矩,驱动涡轮开始旋转。
随着涡轮转速的增加,工作液体的涡流也会增加,从而提高传动功率。
3. 稳定阶段:
在液力耦合器稳定运行时,泵轮和涡轮之间的液流速度和涡流方向基本保持不变。
这时液力耦合器可以将输入轴上的动力平稳地传递给输出轴,实现动力的传递和转速的调节。
液力耦合器的优点是具有起动平稳、传动可靠、吸收振动等特点。
然而,由于液力耦合器存在液压损失和能量传递效率低等
缺点,因此在某些应用场景下,如高效率和高转速传动要求的领域,液力耦合器被其他更高效的传动装置所取代。
液力耦合器
![液力耦合器](https://img.taocdn.com/s3/m/f646ad05bed5b9f3f90f1c64.png)
液力耦合器电动给水泵由定转速的电机拖动,在变工况时,只能依靠液力联轴器来改变给水泵的转速以满足工况的要求。
液力耦合器是以工作油为介质的机械能传递给工作机的一种传动变速装置,因油压的大小不受等级限制,所以它是一个无极变速的耦合器(也叫液力联轴器)。
目前600MW以上的机组一般采用GCH型液力耦合器,简要介绍如下。
一;液力耦合器的工作过程液力耦合器主要由泵轮、涡轮、转动外壳、主动轴及从动轴等构件组成,如图8-15所示。
泵轮装在与原动机轴相连的主轴上(或第一级增速车轮上),相当于离心水泵的叶轮;涡涡轮装在与工作机相连的从动轴上(或第二级增速齿轮),相当于水轮机的叶轮。
两轮彼此不接触,相互之间保持几毫米的轴向间隙,不能进行扭矩的直接传递。
泵轮和涡轮的形状相似,尺寸相同,相向布置,合在一起很像汽车的车轮,分开时均为具有20-40片径向直叶片的叶轮,涡轮的片数一般比泵轮少1-4片,以避免共振。
这种叶轮的后盖板及轮毂在周面上形成两个对称的碗状投影,且与叶片共同组成沿圆周对称分布的几十个凹形流道,成为工作腔。
每个工作腔的进、出口均沿轴向,且在叶轮同侧,运行时工作油就在两轮的凹形工作腔内循环流动。
为防止工作油泄漏,一般在泵轮边缘还用螺栓连接旋转外壳,将涡轮密封在壳内。
泵轮和涡轮形成的工作油腔内的油自泵轮内测引入后,在离心力的作用下被甩到油腔外侧形成高速的油流,冲向对面的涡轮叶片,驱动涡轮一同旋转。
然后,工作油又沿涡轮叶片流向油腔内侧并逐渐减速,流回到泵轮内测,构成一个油的循环流动圆,如图8-16所示。
在涡轮和转动外壳的腔中,自泵轮和窝轮的间隙(或涡轮上开设的进油孔)流入的工作油随转动外壳和涡轮旋转,在离心力的作用下形成油环。
这样,工作油在泵轮内获得能量,又在涡轮里释放能量,完成了能量的传递。
如果不计泵轮、涡轮内的流动阻力,那么泵轮和涡轮的力矩相等,即Mp。
若把两者的旋转角度速度分别记作ωp和ωt,不计机械损失和容积损失(工质泄露等),则工质从泵轮得到的功率为Mpωp,涡轮从工质得到的功率为Mtωt,则耦合器的效率可见,在不计动损失、机械损失和容积损失的理想情况下,耦合器的传动效率等于它的转速比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 液力偶合器是一种耗能型的机械调速装置,
调速越深(转速越低)损耗越大,特别是 恒转矩负载,由于原传动输入功率不变, 损耗功率将转速损失成比例增大。 • 对于风机泵类负载,由于负载转矩按转速 平方率变化,原传动输入功率则按转速的 平方率降低,损耗功率相对小一些,但输 出功率是按转速的立方率减小,调速效率 仍然很低。液力耦合器的调速效率曲线如 下图所示,平均效率在50%左右。 下图所示,平均效率在50%左右。
• 如此周而复始的重复,形成工作油在泵轮
和涡轮中的循环流动圆,在这个过程中, 泵轮驱动工作油循环时就把原动机的机械 能转化为工作油的动能和压力势能,而工 作油在进入涡轮后其所携带的机械能在推 动涡轮旋转时对涡轮做功,又转化为输出 轴的机械能,传递给风机,从而实现了电 动机轴功率的柔性传递。
根据液力耦合器的上述特点, 根据液力耦合器的上述特点,可以等效为下图的模型
工作原理
• 调速型液力耦合器主要是由泵轮、涡轮、勺管室
等组成,当主动轴带动泵轮旋转时,在泵轮内叶 片及腔的共同作用下,工作油将获得能量并在惯 性离心力的作用下,被送到泵轮的外圆周侧,形 成高速的油流,泵轮外圆周侧的高速油流又以径 向相对速度与泵轮出口的圆周速度组成合速度, 冲入涡轮的进口径向流道,并沿着涡轮的径向流 道通过油流动量矩的变化而推动涡轮旋转,油流 至涡轮出口处又以其径向相对速度与涡轮出口处 的圆周速度组成合速度,流入泵轮的径向流道, 并在泵轮中重新获得能量。
模
型
• 液力耦合器的功控调速原理与效率 • 功率控制调速原理表明,传动速度的改变,实质 •
是机械功率调节的结果。因此液力耦合器输出转 速的降低,实际是输出功率减小。 在调速过程中,液力耦合器的原传动转速没有发 生变化,假设负载转矩不变,原传动的机械功率 也不变,那么输入与输出功率的差值功率那里去 了呢,显然是被液力耦合器以热能形式损耗掉了。 因此,我们不能简单地认为液力偶合器调速是" 因此,我们不能简单地认为液力偶合器调速是"丢 转",而实际是丢功率。
液力耦合器结构示意图
液力耦合器工作示意图
液力耦合器
模型与工作原理
• 液力耦合器是一种利用液体介质传递转速的机
械设备,其主动输入轴端与原传动机相联结, 从动输出轴端与负载轴端联结,通过调节液体 介质的压力,使输出轴的转速得以改变。 • 理想状态下,当压力趋于无穷大时,输出转速 与输入转速相等,相当于钢性联轴器。 • 当压力减小时,输出转速相应降低,连续改变 介质压力,输出转速可以得到低于输入转速的 无级调节。