运动仿真技术经验

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理

一SW 运动仿真

1.简介

二十世纪八十年代以来,设计工程中首次使用计算机辅助工程(CAE )方法后,有限元分析(FEA )就成了最先被广泛采用的模拟工具。多年来,该工具帮助设计者在研究新产品的结构性能时节约了大量时间。

由于机械产品日渐复杂,不断加剧的竞争加快了新设计方案投入市场的速度。设计者迫切感到必须使模拟超出FEA 的局限范围,除使用FEA 模拟结构性能外,还需要在构建物理原型之前确定新产品的运动学和动力学性能。

用。

2.装配当几何体发生改变时,可在几秒内更新所有结果。图4为急回机构中滑杆和驱动连杆之间的干涉。

图4急回机构中滑杆和驱动连杆之间的干涉

运动模拟可在短时间内对任何复杂程度的机构进行分析,可能包含刚性连接装置、弹簧、阻尼器和接触面组。如雪地车前悬架、健身器、CD 驱动器等的运动。

图5复杂机构的运动仿真

除机构分析外,设计者还可通过将运动轨迹转换成CAD 几何体,将运动模拟用于机构合成。例如,设计一个沿着导轨移动滑杆的凸轮,用运动仿真生成该凸轮的轮廓。首先将所需滑杆位置表达为时间和滑杆在旋转凸轮上移动轨迹的函数,然后将轨迹路径转换为CAD 几何体,以创建凸轮轮廓。

图6滑杆沿导轨移动的位移函数

图7滑杆沿旋转盘移动绘制的凸轮轮廓

设计者还可将运动轨迹用于很多用途,例如,验证工业机器人的运动、测试工具路径以获取选择机器人大小所需的信息,以及确定功率要求。

图8工业机器人在多个位置之间的移动

运动模拟的另外一项重要应用是模拟零部件之间的碰撞和接触,以研究零部件之间可能形成的缝隙,得出机构的精确结果。例如,通过模拟碰撞和接触,可以研究阀提升机构中凸轮和曲线仪(摇杆)之间可能形成的缝隙。

3.将运动仿真与FEA结合

想了解运动仿真和FEA在机构仿真中如何结合使用,首先要了解每种方法的基本假设。

FEA是一种用于结构分析的数字技术,已成为研究结构的主导CAE方法。它可以分析任何固定支撑的弹性物体的行为,此处弹性是指物体可变性。如图8所示托架,在静态载荷作用下会变形,

形。FEA

FEA

(1

点反作用力和惯性力。在此步骤中,所有机构连接装置均视为刚性实体。图13中的曲线为曲柄转动一周连杆上接点的反作用力。

图13曲柄转动一周连杆上接点的反作用力

(2).找出与连杆接点上最大反作用力相对应的机构位置。因为施加最大载荷情况下进行的分析将得到连杆所承受的最大应力。如有必要,可选择多个位置进行分析。

图14与连杆上最大反作用力相对应的位置

(3).将这些反作用力载荷以及惯性载荷从CAD装配体传输到连杆CAD零件模型。

(4).作用于从装配体分离出来的连杆上的载荷包括接点反作用力和惯性力,如图15所示。

根据d’Alambert原理,这些载荷是互相平衡的,这就可将连杆视为处于静态载荷下的结构。

图15连杆上的载荷

(5).对受平衡静态载荷的连杆定义弹性材料属性,并传输给FEA以进行结构静态分析,以计算变形、应变和应力。

4.运动仿真和测试

运动仿真可以从测试中导入历史数据,这样,使用廉价的计算机模型,而不必进行耗费时间和财力的实验测试,便可轻松地再现机构的运动,并进行全面分析,包括所有接点的反作用力、惯性效应、

5.

CAD 6.

行试验研究的一门综合性技术。

在机械设计领域,其设计工程主要可分为①原理方案设计;②运动学分析;③静力学或动力学分析;④方案及系统优化;⑤强度分析计算;⑥结构设计等几个阶段。传统的设计方法可以通过理论分析计算实现,但在大多数情况下,为避免复杂的理论分析计算,在机械设计过程中经常采用“经验法”、“类比法”、“试凑法”等,这样不但延长设计周期和降低工作效率,且容易导致设计结果不准确,很难得到满意的结果,也缺乏科学的理论依据。

科学技术的飞速发展和学科的相互交叉,极大地促进了机械设计行业的发展和进步,设计的高效化和自动化已经成为今后发展的必然趋势,随着机械产品性能要求的不断提高和计算机技术的广泛应用,作为机械设计强大支撑技术之一的运动仿真技术越来越受到机械设计者的重视和亲睐。

机械运动仿真技术是一种建立在机械系统运动学、动力学理论和计算机实用技术基础上的新技术,涉及建模、运动控制、机构学、运动学和动力学等方面的内容,主要是利用计算机来模拟机械系统在真实环境下的运动和动力特性,并根据机械设计要求和仿真结果,修改设计参数,直至满足

机械性能指标要求或对整个机械系统进行优化的过程,其一般步骤如图所示:

图1运动仿真一般步骤

通过机械系统的运动仿真,不但可以对整个机械系统进行运动模拟,以验证设计方案是否正确合理,运动和力学性能参数是否满足设计要求,运动机构是否发生干涉等,还可及时发现设计中可能存在的问题,通过不断改进和完善,严格保证设计阶段的质量,缩短机械产品的研制周期,提高设计成功率,从而不断提高产品在市场中的竞争力。因此,机械运动仿真当前已经成为机械系统运动学和动力学等方面研究的一种重要手段和方法,并在交通、国防、航空航天以及教学等领域得到广泛应用。

机械系统的运动仿真可以采用VB、OpenGL、3Dmax、VC等语言编程实现,也可使用具有运动仿真功能的机械设计软件(如ADMAS、Pro/E、EUCLID、UG、Solidworks、SolidEdge等)实现。随着计算机软件功能的不断强大和完善,用软件进行运动仿真是一种省时、省力、高效的方法,也是运

试)

(1

(2

作。

(3

由开发(

(4

相关文档
最新文档