高中数学幂函数
高中数学教案《幂函数
![高中数学教案《幂函数](https://img.taocdn.com/s3/m/47e7e545c381e53a580216fc700abb68a882ad5e.png)
高中数学教案《幂函数》章节一:幂函数的定义与性质教学目标:1. 理解幂函数的定义;2. 掌握幂函数的性质;3. 能够运用幂函数的性质解决问题。
教学内容:1. 幂函数的定义:一般形式为f(x) = x^a,其中a为实数,a≠0;2. 幂函数的性质:a) 当a>0时,函数在x>0时单调递增,在x<0时单调递减;b) 当a<0时,函数在x>0时单调递减,在x<0时单调递增;c) 当a=1时,函数为常值函数f(x)=x;d) 当a=0时,函数为常值函数f(x)=1;e) 当a为负偶数时,函数在x>0时单调递增,在x<0时单调递减;f) 当a为负奇数时,函数在x>0时单调递减,在x<0时单调递增。
教学活动:1. 引入幂函数的概念,引导学生理解幂函数的一般形式;2. 通过示例,引导学生掌握幂函数的性质;3. 进行练习,巩固学生对幂函数性质的理解。
章节二:幂函数的图像与性质教学目标:1. 能够绘制幂函数的图像;2. 理解幂函数图像的性质;3. 能够运用幂函数图像解决问题。
教学内容:1. 幂函数的图像:一般形式为一条曲线,当a>0时,图像在x轴正半轴上单调递增,在x轴负半轴上单调递减;当a<0时,图像在x轴正半轴上单调递减,在x轴负半轴上单调递增;2. 幂函数图像的性质:a) 当a>0时,图像在x轴正半轴上无界,在x轴负半轴上有界;b) 当a<0时,图像在x轴正半轴上有界,在x轴负半轴上无界;c) 当a=1时,图像为一条直线,穿过原点;d) 当a=0时,图像为一条水平线,位于y轴上;e) 当a为负偶数时,图像在x轴正半轴上单调递增,在x轴负半轴上单调递减,且过原点;f) 当a为负奇数时,图像在x轴正半轴上单调递减,在x轴负半轴上单调递增,且过原点。
教学活动:1. 通过示例,引导学生绘制幂函数的图像;2. 分析幂函数图像的性质,引导学生理解幂函数图像的特点;3. 进行练习,巩固学生对幂函数图像性质的理解。
高中数学知识点:幂函数的性质知识点总结
![高中数学知识点:幂函数的性质知识点总结](https://img.taocdn.com/s3/m/8950908ccaaedd3382c4d3c1.png)
高中数学知识点:幂函数的性质知识点总结
高中数学知识点:幂函数的性质知识点总结
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x 不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x
大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a 为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q 次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
高中数学-必修一4.1幂函数-知识点
![高中数学-必修一4.1幂函数-知识点](https://img.taocdn.com/s3/m/3b84d953f4335a8102d276a20029bd64783e62b0.png)
高中数学-必修一4.1幂函数-知识点1、幂函数:y=x a(a是定值).特征:①系数为1 ,且
只有1 项,②指数为常数,底数为自变量。
2、幂函数的图像,掌握两步法作图。
第一步:画出幂函数在第一象限的图像,如右图所示;
第二步:根据函数的奇偶性来确定剩余部分图像,需分类讨论:(1)当a是整数时
①若a是奇数②若a是偶数
y是奇函数,图像关于原点对称,另一半在第三象限。
y是偶函数,图像关于y轴对称,另一半在第二象限。
(2)当a是分数时,假定a=n/m(n/m是最简分数)
①n和m都是奇数②n是偶数,m是奇数③n是奇数,m是偶数
y是奇函数,图像关于原点对称,另一半在第三象限. y是偶函数,图像关于y轴
对称,另一半在第二象限.
x<0时函数无意义,y是非奇
非偶函数,y轴左侧无图像.
3、幂函数的性质
(1)必过点必过点(1,1);若a>0,还必过(0,0)。
(2)单调性
①a>0时,在第一象限严格增。
②a<0时,在第一象限严格减。
(3)平移的规律左加右减,上加下减。
(4)定义域a<0时,x不能取0,a为分数且分母是偶数时,x不能取负。
(5)值域(0,+∞)必取,0和(-∞,0)是否能取可结合图像来判断。
4、不同幂函数的指数大小的判断:在(0,1)上,指大图低(指数越大,图像越靠近x轴);在(1,+∞)时,指大图高(指数越大,图像越远离x轴)。
5、比较幂函数值大小的方法:指数相同,底数不同,根据增减性去比较。
小初高个性化辅导,助你提升学习力! 1。
幂函数与指数函数的性质高中数学的核心知识
![幂函数与指数函数的性质高中数学的核心知识](https://img.taocdn.com/s3/m/1f466db8fbb069dc5022aaea998fcc22bcd1433b.png)
幂函数与指数函数的性质高中数学的核心知识幂函数与指数函数的性质高中学数教的核心知识高中数学中,幂函数与指数函数是重要的数学概念,对于理解和解决数学问题具有重要意义。
幂函数和指数函数的性质、图像和应用范围等方面都是我们需要了解的内容。
本文将从这些角度展开,以帮助读者更好地理解和掌握幂函数与指数函数的核心知识。
一、幂函数的性质幂函数是以自变量的幂为指数的函数,通常的形式为f(x) = ax^b,其中a和b是常数,a不等于0,x是实数。
1. 幂函数的定义域与值域:幂函数的定义域是所有实数,即(-∞, +∞)。
当b是有理数时,幂函数的值域是(0, +∞)或(-∞, 0)。
当b是无理数时,幂函数的值域是(0, +∞)或(0, +∞)。
2. 幂函数的增减性:当b大于0时,幂函数f(x) = ax^b是递增函数。
当b小于0时,幂函数f(x) = ax^b是递减函数。
3. 幂函数的奇偶性:当b是偶数时,幂函数是偶函数,即f(x) = f(-x)。
当b是奇数时,幂函数是奇函数,即f(x) = -f(x)。
4. 幂函数的拐点和极值:幂函数的拐点是x = 0,当b大于1时,f(x)在x = 0处有极小值,当0 < b < 1时,f(x)在x = 0处无极值。
二、指数函数的性质指数函数是以指数为自变量的函数,通常的形式为f(x) = a^x,其中a是正实数且不等于1。
1. 指数函数的定义域与值域:指数函数的定义域是所有实数,即(-∞, +∞)。
指数函数的值域是(0, +∞)。
2. 指数函数的增减性:当a大于1时,指数函数f(x) = a^x是递增函数。
当0 < a < 1时,指数函数f(x) = a^x是递减函数。
3. 指数函数的奇偶性:指数函数没有奇偶性。
4. 指数函数的导数与斜率:指数函数的导数是f'(x) = a^x * ln(a),表示指数函数的斜率。
三、幂函数与指数函数的图像幂函数与指数函数的图像呈现出不同的特点:1. 幂函数的图像特点:当a大于1时,幂函数f(x) = ax^b在x轴正半轴上逐渐增加;当0 < a < 1时,幂函数f(x) = ax^b在x轴正半轴上逐渐减小。
高中数学 幂函数
![高中数学 幂函数](https://img.taocdn.com/s3/m/9a9db4eea5e9856a57126069.png)
幂函数•冥函数的定义:一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数。
幂函数的解析式:y=xα幂函数的图像:•幂函数图像的性质:所有幂函数在(0,+∞)上都有定义.①α>0,图像都过定点(0,0)和(1,1);在区间(0,+∞)上单调递增;②α<0,图像都过定点(1,1);在区间(0,+∞)上单调递减;③当O<a<l时,曲线上凸,当a>l时,曲线下凸.④当a=l时,图象为过点(0,0)和(1,1)的直线.⑤当a=0时,表示过点(1,1)且平行于x轴的直线(除去点(0,1)) 。
幂函数图象的其他性质:(1)图象的对称性:把幂函数的幂指数a(只讨论a是有理数的情况)表示成既约分数的形式(整数看作是分母1的分数),则不论a>0还是a<0,幂函数的图象的对称性用口诀记为:“子奇母偶孤单单;母奇子偶分两边;分子分母均为奇,原点对称莫忘记”,(2)图象的形状:①若a>0,则幂函数的图象为抛物线形,当a>l时,图象在[0,+∞)上是向下凸的(称为凸函数);当O<a<l时,图象在[o,+∞)上是向上凸的(称为凹函数).②若a<0,则幂函数y=x“的图象是双曲线形,图象与x轴、y轴无限接近,在(0,+∞)上图象都是向下凸的。
幂函数的单调性和奇偶性:对于幂函数(a∈R).(1)单调性当a>0时,函数在第一象限内是增函数;当a<0时,函数在第一象限内是减函数.(2)奇偶性①当a为整数时,若a为偶数,则是偶函数;若a为奇数,则是奇函数。
②当n为分数,即(p,q互素,p,q∈Z)时,若分母q为奇数,则分子p为奇数时,为奇函数;分子p为偶数时,为偶函数,若分母q为偶数,则为非奇非偶函数.。
高一数学复习考点知识与题型专题讲解12--- 幂函数
![高一数学复习考点知识与题型专题讲解12--- 幂函数](https://img.taocdn.com/s3/m/820bc6b950e79b89680203d8ce2f0066f53364cc.png)
高一数学复习考点知识与题型专题讲解3.3 幂函数【考点梳理】知识点一幂函数的概念一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.知识点二五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y=x;(2)y=12x;(3)y=x2;(4)y=x-1;(5)y=x3的图象如图.2.五个幂函数的性质y=x y=x2y=x312y xy=x-1定义域R R R[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增在[0,+∞) 上增,增增在(0,+∞)上减,在(-∞,0] 上减在(-∞,0)上减知识点三 一般幂函数的图象特征1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).2.当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸. 3.当α<0时,幂函数的图象在区间(0,+∞)上是减函数.4.幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.5.在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.【题型归纳】题型一:幂函数的定义1.(2020·江苏省平潮高级中学高一月考)如果幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( ) A .1B .2C .1或2D .无解2.(2021·云南省玉溪第一中学高一月考)已知幂函数()y f x =的图象过点()33,,则该函数的解析式为( )A .2y x =B .2y x =C .3y x =D .y x =3.(2020·江苏镇江市·)已知幂函数()2()33m f x m m x =--在区间()0,∞+上是单调递增函数,则实数m 的值是( )A .-1或4B .4C .-1D .1或4题型二:幂函数的值域问题4.(2021·全国高一课时练习)已知幂函数()f x x α=的图像过点(8,4),则()f x x α= 的值域是( )A .(),0-∞B .()(),00,-∞⋃+∞C .()0,∞+D .[)0,+∞5.(2020·湖南衡阳市·高一月考)函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-6.(2018·南京市第三高级中学高一期中)以下函数12y x =,2y x =,23y x =,1y x -=中,值域为[0,)+∞的函数共( )个 A .1B .2C .3D .4题型三:幂函数的定点和图像问题7.(2021·高邮市临泽中学高一月考)已知幂函数1()(21)a g x a x +=-的图象过函数1()(0,1)2x b f x m m m -=->≠的图象所经过的定点,则b 的值等于( )A .12±B .22±C .2D .2± 8.(2020·南宁市银海三美学校高一月考)函数23y x =的图象是( )A .B .C .D .9.(2019·宁都县宁师中学高一月考)已知函数y =x a ,y =x b ,y =x c 的图象如图所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b题型四:幂函数的单调性问题(比较大小、解不等式、参数)10.(2021·江西宜春市·高安中学高一月考)已知 1.13a =, 1.14b =,0.93c =,则a ,b ,c 的大小关系为( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<11.(2020·江苏省平潮高级中学高一月考)幂函数223a a y x --=是奇函数,且在()0+∞,是减函数,则整数a 的值是( ) A .0B .0或2C .2D .0或1或212.(2020·江西鹰潭一中)已知幂函数12()f x x =,若()()132f a f a +<-,则实数a 的取值范围是( )A .[)1,3-B .21,3⎡⎫-⎪⎢⎣⎭C .[)1,0-D .21,3⎛⎤- ⎥⎝⎦题型五:幂函数的奇偶性问题13.(2020·江西南昌市·南昌十中高一月考)已知幂函数y =f (x )经过点(3,3),则f (x )( )A .是偶函数,且在(0,+∞)上是增函数B .是偶函数,且在(0,+∞)上是减函数C .是奇函数,且在(0,+∞)上是减函数D .是非奇非偶函数,且在(0,+∞)上是增函数14.(2021·吴县中学)有四个幂函数:①()2f x x -=;②()1f x x -=;③()3f x x =;④()3f x x =,某向学研究了其中的一个函数,并给出这个函数的三个性质:(1)()f x 为偶函数;(2)()f x 的值域为()(),00,-∞⋃+∞;(3)()f x 在(),0-∞上是增函数.如果给出的三个性质中,有两个正确,一个错误,则他研究的函数是( ) A .①B .②C .③D .④15.(2020·乌苏市第一中学高一月考)已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭,若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则a =( ) A .1-,12-B .1,3C .2-D .12,2【双基达标】一、单选题16.(2021·镇远县文德民族中学校高一月考)已知幂函数()()21f x m x =-,则实数m 等于( )A .2B .1C .0D .任意实数17.(2020·南京市第十三中学高一月考)函数 85y x =的图象是( )A .B .C .D .18.(2021·全国高一课时练习)下列结论中,正确的是( ) A .幂函数的图象都经过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数 D .当α=-1时,幂函数y =x α在其整个定义域上是减函数19.(2021·全国高一单元测试)已知幂函数()f x 的图象过点1(2,)2,则f (4)的值是( ) A .64B .42C .24D .1420.(2021·全国高一专题练习)函数()()()102121f x x x -=-+-的定义域是( ) A .(],1-∞B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭21.(2021·全国高一课前预习)已知幂函数()3m f x x -=(m ∈N *)为奇函数,且在区间(0,+∞)上是减函数,则m 等于( ) A .1B .2C .1或2D .322.(2021·全国)幂函数()f x 满足:对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,则(1)(0)(1)f f f -++=( ). A .1-B .0C .1D .223.(2021·全国)下列比较大小中正确的是( ).A .0.50.532()()23<B .1123()()35---<-C .3377( 2.1)( 2.2)--<-D .443311()()23-<24.(2019·云南昭通市第一中学高一月考)已知函数()f x x =,若(1)(102)f a f a+<-,则a 的取值范围是( )A .(0,5)B .(5,)+∞C .[1,3)-D .(3,5)25.(2021·全国)幂函数1y x -=,及直线,1,1y x y x ===将直角坐标系第一象限分成八个“卦限: I, II, III,IV, V, VI, VII, VIII (如图所示),那么,而函数13y x -=的图象在第一象限中经过的“卦限”是( )A .IV,VII B . IV,VIII C . III, VIII D . III, VII 【高分突破】一:单选题26.(2021·全国高一课前预习)幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,则m的值为( ) A .1B .2C .3D .1或227.(2021·浙江)下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .()y x x R =-∈B .3()y x x x R =--∈ C .1()()2x y x R =∈D .1y x=-(x R ∈,且0)x ≠28.(2021·全国高一课时练习)点(,8)m 在幂函数()(1)n f x m x =-的图象上,则函数()g x n x x m =-+-的值域为( )A .0,2⎡⎤⎣⎦B .1,2⎡⎤⎣⎦C .2,2⎡⎤⎣⎦D .[]2,329.(2021·全国高一课时练习)如图,①②③④对应四个幂函数的图像,其中②对应的幂函数是( )A .3y x =B .2y x =C .y x =D .y x =30.(2021·全国高一课时练习)已知幂函数()()2133m f x m m x +=-+的图象关于原点对称,则满足()()132m ma a +>-成立的实数a 的取值范围为( )A .22,33⎛⎫- ⎪⎝⎭B .22,3⎛⎫-- ⎪⎝⎭C .22,3⎛⎫- ⎪⎝⎭D .2,43⎛⎫ ⎪⎝⎭31.(2021·全国高一课时练习)设11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭则“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的( )A .充分不必要件B .必要不充分条件C .充要条件D .既不充分也不必要条件32.(2021·浙江高一期末)已知实数a ,b 满足等式35a b =,给出下列五个关系式:①1b a <<;②1a b <<-;③01b a <<<;④10a b -<<<;⑤a b =,其中,可能成立的关系式有( ) A .1个B .2个C .3个D .5个33.(2021·全国高一单元测试)已知函数1a y ax b =-+-是幂函数,直线20(0,0)mx ny m n -+=>>过点(,)a b ,则11n m ++的取值范围是( ) A .11,,333⎫⎫⎛⎛-∞⋃ ⎪ ⎪⎝⎝⎭⎭B .(1,3)C .1,33⎡⎤⎢⎥⎣⎦D .1,33⎛⎫ ⎪⎝⎭二、多选题34.(2021·全国高一课时练习)下列关于幂函数y x α=的性质,描述正确的有( ) A .当1α=-时函数在其定义域上是减函数B .当0α=时函数图象是一条直线 C .当2α=时函数是偶函数D .当3α=时函数在其定义域上是增函数35.(2021·全国高一课时练习)已知函数()21m m y m x -=-为幂函数,则该函数为( ) A .奇函数B .偶函数C .区间()0,∞+上的增函数D .区间()0,∞+上的减函数36.(2021·全国高一课时练习)已知幂函数223()(1)m m f x m m x +-=--,对任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-,若,a b ∈R 且()()0f a f b +<,则下列结论可能成立的有( )A .0a b +> 且0ab <B .0a b +< 且0ab <C .0a b +< 且0ab >D .以上都可能37.(2021·全国高一专题练习)已知幂函数9()5m f x m x ⎛⎫=+ ⎪⎝⎭,则下列结论正确的有( )A .()13216f -=B .()f x 的定义域是RC .()f x 是偶函数D .不等式()()12f x f -≥的解集是[)(]1,11,3-38.(2020·江苏常州市·常州高级中学高一期中)若函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=;②对于定义城上的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-,则称函数()f x 为“理想函数”.下列四个函数中,能被称为“理想函数”的有( ) A .()2121x f x x -=+B .()3f x x =-C .()f x x =-D .()22,0,,0x x f x x x ⎧-≥=⎨<⎩三、填空题39.(2021·湖南邵阳市·高一期末)已知幂函数()y f x =的图象过点()2,2,则()5f =______.40.(2021·雄县第二高级中学高一期末)已知幂函数()f x 过定点18,2⎛⎫ ⎪⎝⎭,且满足()()2150f a f ++->,则a 的范围为________.41.(2021·全国高一课时练习)不等式()()1133312a a -<+的解集为______42.(2021·上海上外浦东附中高一期末)已知幂函数()223()m m f x x m Z --=∈的图像关于y 轴对称,与x 轴及y 轴均无交点,则由m 的值构成的集合是__________.43.(2021·全国高一单元测试)已知112,1,,1,,2,322k ⎧⎫∈---⎨⎬⎩⎭,若幂函数()kf x x =为奇函数,且在()0,∞+上单调递减,则k =______.四、解答题44.(2021·全国高一课时练习)已知函数()()21212223m f x m m xn -=+-+-是幂函数,求2m n -的值.45.(2021·全国高一课时练习)已知函数()()()()1221a a f x a a x -+=--是幂函数()a R ∈,且()()12f f <.(1)求函数()f x 的解析式;(2)试判断是否存在实数b ,使得函数()()32g x f x bx =-+在区间[]1,1-上的最大值为6,若存在,求出b 的值;若不存在,请说明理由.46.(2021·全国高一专题练习)已知幂函数()()1222mf x m m x =--在()0,∞+上单调递减.(1)求实数m 的值.(2)若实数a 满足条件()()132f a f a ->+,求a 的取值范围.47.(2021·江西省乐平中学高一开学考试)已知幂函数()()()22322k k f x m m x k -=-+∈Z 是偶函数,且在()0,∞+上单调递增. (1)求函数()f x 的解析式;(2)若()()212f x f x -<-,求x 的取值范围: (3)若实数()*,,a b a b ∈R 满足237a b m +=,求3211a b +++的最小值.【答案详解】1.C 【详解】由幂函数的定义得m 2-3m +3=1,解得m =1或m =2;当m =1时,m 2-m -2=-2,函数为y =x -2,其图象不过原点,满足条件; 当m =2时,m 2-m -2=0,函数为y =x 0,其图象不过原点,满足条件. 综上所述,m =1或m =2. 故选:C. 2.D 【详解】设()f x x α=,依题意()13332f αα==⇒=,所以()f x x =. 故选:D 3.B 【详解】幂函数()2()33mf x m m x =--在(0,)+∞上是增函数则2331m m m ⎧--=⎨>⎩ ,解得4m = 故选:B 4.D【详解】幂函数()f x x α=的图像过点(8,4),84α∴=,解得23α=,2332(0)f x x x ∴==≥,∴()f x 的值域是[)0,+∞. 故选:D. 5.A 【详解】∵函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,∴2min 124y -==, 故选:A. 6.C 【详解】函数12y x x ==,其定义域为[0,)+∞,值域为[0,)+∞; 函数2y x =的定义域为R ,值域为[0,)+∞; 函数2323y x x ==,20x ≥Q ,∴函数值域为[0,)+∞;函数331y x x -==,值域为(,0)(0,)-∞+∞. ∴值域为[0,)+∞的函数共3个.故选:C. 7.B 【详解】由于1()(21)a g x a x +=-为幂函数,则211a -=,解得:1a =,则2()g x x =; 函数1()(0,1)2x b f x m m m -=->≠,当x b = 时,11()22b b f b a -=-=,故()f x 的图像所经过的定点为1,2b ⎛⎫ ⎪⎝⎭, 所以1()2g b =,即212b =,解得:22b =±, 故选:B. 8.C 【详解】首先由分数指数幂运算公式可知()21233x x ⎛⎫=⎪⎝⎭,则()()23y f x x ==,()()f x f x -=,且函数的定义域为R ,所以函数是偶函数,关于y 轴对称,故排除AD ,因为2013<<,所以23y x =在第一象限的增加比较缓慢,故排除B , 故选:C 9.A试题:由幂函数图像特征知,1a >,01b <<,0c <,所以选A . 10.A 【详解】由题意,构造函数 1.13,x y y x ==,由指数函数和幂函数的性质, 可知两个函数在(0,)+∞单调递增;由于0.9 1.10.9 1.133c a <∴<∴<;由于 1.1 1.13434a b <∴<∴<;综上:c a b << 故选:A 11.B由于幂函数223a a y x --=是奇函数,且在(0,)+∞是减函数,故2230a a --<,且223a a --是奇数,且a 是整数,13a -<<∴,a Z ∈,当0a =时,2233a a --=-,是奇数,; 当1a =时,2234a a --=-,不是奇数; 当2a =时,2233a a --=-,是奇数; 故0a =或2. 故答选:B 12.B 【详解】因为幂函数()12f x x =是增函数,且定义域为[)0,+∞,由()()132f a f a +<-得13210320a aa a +<-⎧⎪+≥⎨⎪-≥⎩,解得213a -≤<.所以实数a 的取值范围是21,3⎡⎫-⎪⎢⎣⎭故选:B 13.D 【详解】设幂函数的解析式为y x α=, 将点()3,3的坐标代入解析式得33α=,解得12α=, ∴12y x =,函数的定义域为[)0,+∞,是非奇非偶函数,且在()0,+∞上是增函数,14.A 【详解】对于①,函数()2f x x -=为偶函数,且()2210f x x x -==>,该函数的值域为()0,∞+, 函数()2f x x -=在()0,∞+上为减函数,该函数在(),0-∞上为增函数,①满足条件;对于②,函数()11x x f x -==为奇函数,且()10f x x=≠,该函数的值域为()(),00,-∞⋃+∞, 函数()f x 在(),0-∞上为减函数,②不满足条件;对于③,函数()3f x x =的定义域为R ,且()()33f x x x f x -=-=-=-,该函数为奇函数, 当0x ≥时,()30f x x =≥;当0x <时,()30f x x =<,则函数()f x 的值域为R , 函数()3f x x =在()0,∞+上为增函数,该函数在(),0-∞上也为增函数,③不满足条件;对于④,函数()3f x x =为奇函数,且函数()3f x x =的值域为R ,该函数在(),0-∞上为增函数,④不满足条件. 故选:A. 15.C 【详解】112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则0α<且2,k k Z α=∈, 所以2a =-. 故选:C 16.A因为函数()()21f x m x =-为幂函数,所以m -1=1,则m =2.故选:A. 17.A 【详解】由幂函数85y x =可知: 85y x =是定义域为R 的偶函数,在(0,+∞)上单调递增,且当x >1时,函数值增长的比较快. 故选:A 18.C 【详解】当幂指数α=-1时,幂函数y =x -1的图象不经过原点,故A 错误;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α(α∈R)>0,所以幂函数的图象不可能出现在第四象限,故B 错误; 当α>0时,y =x α是增函数,故C 正确;当α=-1时,y =x -1在区间(-∞,0),(0,+∞)上是减函数,但在整个定义域上不是减函数,故D 错误. 故选:C. 19.D 【详解】幂函数()a f x x =的图象过点1(2,)2,122a ∴=,解得1a =-,1()f x x∴=, f ∴(4)14=, 故选:D . 20.B 【详解】因为()()()()121121211f x x x x x-=-+-=+--, 则有10210x x ->⎧⎨-≠⎩,解得1x <且12x ≠,因此()f x 的定义域是11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭. 故选:B. 21.B 【详解】因为()3m f x x -=在(0,+∞)上是减函数,所以m -3<0,所以m <3. 又因为m ∈N *,所以1m =或2.又因为()3m f x x -=是奇函数,所以m -3是奇数, 所以m =2. 故选:B. 22.B 【详解】设()a f x x =,由已知,函数()f x 的定义域为R ,∴0a >,又∵对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,即y 与x 一一对应,()f x 必定不是偶函数,∴必定为奇函数,∴答案为0,故选:B. 23.C 【详解】A 选项,0.5y x =在[0)+∞,上是递增函数,0.50.523()()32<,错, B 选项,1y x -=在()0-∞,上是递减函数,1123()()35--->-,错, C 选项,37y x =在()0-∞,上是递增函数, 337721( 2.1)()10-=-,33775( 2.2)()11--=-,3377( 2.1)( 2.2)--<-,对,D 选项,43y x =在[0)+∞,上是递增函数, 443311()()22-=,443311()()23>,443311()()23->,错,故选:C . 24.C 【详解】()f x x =的定义域为[)0,+∞,且在[)0,+∞单调递增,所以(1)(102)f a f a +<-可化为:1010201102a a a a +≥⎧⎪-≥⎨⎪+<-⎩,解得:13x -≤<. 故a 的取值范围是[1,3)-. 故选:C 25.B【详解】对于幂函数13y x -=,因为103-< ,所以13y x -=在第一象限单调递减, 根据幂函数的性质可知:在直线1x =的左侧,幂函数的指数越大越接近y 轴 ,因为113->-,所以13y x -=的图象比1y x -=的图象更接近y 轴 ,所以进过第IV 卦限, 在直线1x =的右侧,幂函数的指数越小越接近x 轴,因为1103-<-<, 所以13y x -=的图象位于1y x -=和1y =之间,所以经过VIII 卦限,所有函数13y x -=的图象在第一象限中经过的“卦限”是IV,VIII , 故选:B 26.A 【详解】解:幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,2331m m ∴-+=,且2660m m -+>,解2331m m -+=得1m =或2m =,当1m =时26610m m -+=>符合题意; 当2m =时26620m m -+=-<不符合题意; 故选:A . 27.B 【详解】解:对于A 选项,()()f x x x f x -=--=-=,为偶函数,故错误;对于B 选项,()()()()33f x x x x x f x -=----=+=-,为奇函数,且函数3,y x y x =-=-均为减函数,故3()y x x x R =--∈为减函数,故正确; 对于C 选项,指数函数没有奇偶性,故错误;对于D 选项,函数为奇函数,在定义域上没有单调性,故错误.故选:B28.B【详解】解:因为点(,8)m 在幂函数()(1)n f x m x =-的图象上,所以11m -=,即2m =,()()228n f m f ===,所以3n =, 故()32g x x x =-+-,[]2,3x ∈, ()()22()12321256g x x x x x =+--=+-+-, 因为[]2,3x ∈,所以21560,4x x ⎡⎤-+-∈⎢⎥⎣⎦, 所以[]2()1,2g x ∈, 所以函数()g x n x x m =-+-的值域为1,2⎡⎤⎣⎦.故选:B.29.C【详解】 解:由图知:①表示y x =,②表示y x =,③表示2y x =,④表示3y x =.故选:C.30.D【详解】由题意得:2331m m -+=,得1m =或2m =当1m =时,2()f x x =图象关于y 轴对称,不成立;当2m =时,3()f x x =是奇函数,成立;所以不等式转化为22(1)(32)a a +>-,即231480a a -+<,解得243a <<.故选:D31.C【详解】 由11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,由()f x x α=的图像经过()1,1--,则α的值为11,3-,,此时()f x x α=为奇函数. 又当()f x x α=为奇函数时,则α的值为11,3-,,此时()f x x α=的图象经过()1,1--. 所以“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的充要条件故选:C32.C【详解】在同一坐标系中画出函数3y x =和5y x =的图像,如图所示:数形结合可知,在(1)处1a b <<-;在(2)处10b a -<<<;在(3)处01a b <<<; 在(4)处1b a <<;在1a b ==或1a b ==-也满足,故①②⑤对故选:C.33.D【详解】由1a y ax b =-+-是幂函数,知:1,1a b =-=,又(,)a b 在20mx ny -+=上,∴2m n +=,即20n m =->,则1341111n m m m m +-==-+++且02m <<, ∴11(,3)13n m +∈+. 故选:D.34.CD【详解】对于A 选项,1y x =,在(,0)-∞和(0,)+∞上递减,不能说在定义域上递减,故A 选项错误.对于B 选项,0y x =,0x ≠,图像是:直线1y =并且除掉点(0,1),故B 选项错误. 对于C 选项,2y x =,定义域为R ,是偶函数,所以C 选项正确.对于D 选项,3y x =,函数在其定义域上是增函数,所以D 选项正确.故选:CD35.BC【详解】由()21m m y m x -=-为幂函数,得11m -=,即m =2,则该函数为2y x =,故该函数为偶函数,且在区间()0,∞+上是增函数,故选:BC .36.BC【详解】因为223()(1)m m f x m m x +-=--为幂函数,所以211m m --=,解得:m =2或m =-1.因为任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-, 不妨设12x x >,则有12())0(f x f x ->,所以()y f x =为增函数,所以m =2,此时3()f x x =因为()33()()f x x x f x -=-=-=-,所以3()f x x =为奇函数.因为,a b ∈R 且()()0f a f b +<,所以()()f a f b <-.因为()y f x =为增函数,所以a b <-,所以0a b +<.故BC 正确.故选:BC37.ACD【详解】 因为函数是幂函数,所以915m +=,得45m =-,即()45f x x -=, ()()()45451322216f --⎡⎤-=-=-=⎣⎦,故A 正确;函数的定义域是{}0x x ≠,故B 不正确; ()()f x f x -=,所以函数是偶函数,故C 正确;函数()45f x x -=在()0,∞+是减函数,不等式()()12f x f -≥等价于12x -≤,解得:212x -≤-≤,且10x -≠,得13x -≤≤,且1x ≠,即不等式的解集是[)(]1,11,3-,故D 正确.故选:ACD38.BCD【详解】对于①对于定义域内的任意x ,恒有()()0f x f x +-=,即()()f x f x -=-,所以()f x 是奇函数;对于②对于定义域内的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-, ()f x 在定义域内是减函数; 对于A :()2121x f x x -=+,()113f =,()13f -=,故不是奇函数,所以不是“理想函数”; 对于 B :()3f x x =-是奇函数,且是减函数,所以是“理想函数”;对于C :()f x x =-是奇函数,并且在R 上是减函数,所以是“理想函数”;对于D :()22,0,0x x f x x x x x ⎧-≥==-⎨<⎩,()||()f x x x f x -==-, 所以()22,0,0x x f x x x ⎧-≥=⎨<⎩是奇函数; 根据二次函数的单调性,()f x 在(,0)-∞,(0,)+∞都是减函数,且在0x =处连续,所以()22,0,0x x f x x x ⎧-≥=⎨<⎩在R 上是减函数, 所以是“理想函数”.故选:BCD.39.5【详解】设()f x x α=,则()12222f αα==⇒=, 所以()(),55f x x f ==. 故答案为:540.()22-,【详解】设幂函数()y f x x α==,其图象过点18,2⎛⎫ ⎪⎝⎭, 所以182α=,即3122α-=,解得:13α=-,所以()13f x x -=, 因为()()()13f x x f x --=-=-,所以()13f x x -=为奇函数,且在()0-∞,和()0+∞,上单调递减, 所以()()2150f a f ++->可化为()()()2155f a f f +>--=, 可得215a +<,解得:22a -<<,所以a 的范围为()22-,, 故答案为:()22-,. 41.()4,-+∞【详解】 解:因为幂函数13y x =在R 上为增函数,()()1133312a a -<+, 所以312a a -<+,解得4a >-,所以不等式的解集为()4,-+∞,故答案为:()4,-+∞42.{}1,1,3-【详解】由幂函数()f x 与x 轴及y 轴均无交点,得2230m m -≤-,解得13m -≤≤,又m Z ∈,即{}1,0,1,2,3m ∈-,()223()m m f x x m Z --=∈的图像关于y 轴对称, 即函数为偶函数,故223m m --为偶数, 所以{}1,1,3m ∈-,故答案为:{}1,1,3-.43.1-【详解】由题意知,幂函数()k f x x =在(0)+∞,上单调递减, 则k 为负数,则k =-2,-1,12-,又由函数()k f x x =为奇函数,则k =-1,故答案为:-144.-6【详解】因为()()21212223m f x m m x n -=+-+-是幂函数,所以22221,10,230,m m m n ⎧+-=⎪-≠⎨⎪-=⎩,解得3,3,2m n =-⎧⎪⎨=⎪⎩, 所以323262m n -=--⨯=-.45.(1)()2f x x =;(2)存在,2b =±. 解:因为函数()()()()1221a a f x a a x -+=--是幂函数,所以211a a --=,解得2a =或1a =-,当2a =时,()4f x x -=,则()()12f f >,故不符题意,当1a =-时,()2f x x =,则()()12f f <,符合题意,所以()2f x x =;(2)由(1)得 ()()()22232233g x f x bx x bx x b b =-+=-++=--++, 函数图像开口向下,对称轴为:x b =,当1b ≤-时,函数()g x 在区间[]1,1-上递减,则()()11236max g x g b =-=--+=,解得2b =-,符合题意; 当1b ≥时,函数()g x 在区间[]1,1-上递增,则()()11236max g x g b ==-++=,解得2b =,符合题意;当11b -<<时,()()22236max g x g b b b ==-++=,解得3b =±,不符题意, 综上所述,存在实数2b =±满足题意.46.(1)1m =-;(2)32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 【详解】解:(1)()f x 是幂函数,2221m m ∴--=,解得:3m =或1m =-, 3m =时,()13f x x =在(0,)+∞上单调递增,1m =-时,()1f x x=在(0,)+∞递减, 故1m =-;(2)若实数a 满足条件()()132f a f a ->+,则10320a a ->⎧⎨+<⎩或10320132a a a a ->⎧⎪+>⎨⎪-<+⎩或10320132a a a a-<⎧⎪+<⎨⎪-<+⎩,解得:32a <-或213a -<<,故a 的取值范围是32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 47.(1)2()f x x =;(2)(1,1)-;(3)2.【详解】(1)()f x 是幂函数,则2221m m -+=,1m =,又()f x 是偶函数,所以23(3)k k k k -=-是偶数,()f x 在(0,)+∞上单调递增,则230k k ->,03k <<,所以1k =或2. 所以2()f x x =;(2)由(1)偶函数()f x 在[0,)+∞上递增, (21)(2)f x f x -<-22(21)(2)212f x f x x x ⇔-<-⇔-<-11x ⇔-<<. 所以x 的范围是(1,1)-.(3)由(1)237a b +=,2(1)3(1)12a b +++=,0,0a b >>, []3213219(1)2(1)2(1)3(1)121112111211b a a b a b a b a b ++⎛⎫⎛⎫+=++++=++ ⎪ ⎪++++++⎝⎭⎝⎭ 19(1)4(1)12221211b a a b ⎛⎫++≥+⨯= ⎪ ⎪++⎝⎭,当且仅当9(1)4(1)11b a a b ++=++,即2,1a b ==时等号成立. 所以3211a b +++的最小值是2.。
(新教材)高中数学必修第一册第3章 3.3 幂函数
![(新教材)高中数学必修第一册第3章 3.3 幂函数](https://img.taocdn.com/s3/m/0ffafe52aef8941ea66e05a2.png)
跟踪训练 1 (1)已知幂函数 f(x)=k·xα 的图象过点12, 22,则 k+α 等于
1 A.2
B.1
√3
C.2
D.2
解析 由幂函数的定义知k=1. 又 f 12= 22,所以12α= 22, 解得 α=12,从而 k+α=32.
(2)已知f(x)=ax2a+1-b+1是幂函数,则a+b等于
(2)下列关于函数 y=xα 与 y=αxα∈-1,12,2,3的图象正确的是
√
反思
感悟 (1)幂函数图象的画法 ①确定幂函数在第一象限内的图象:先根据α的取值,确定幂函数y=xα在 第一象限内的图象. ②确定幂函数在其他象限内的图象:根据幂函数的定义域及奇偶性确定幂 函数f(x)在其他象限内的图象. (2)解决与幂函数有关的综合性问题的方法 首先要考虑幂函数的概念,对于幂函数y=xα(α∈R),由于α的取值不同, 所以相应幂函数的单调性和奇偶性也不同.同时,注意分类讨论思想的应用.
A.1
√B.2
C.3
D.4
解析 幂函数有①⑥两个.
(2)已知 y=(m2+2m-2)xm2-2+2n-3 是幂函数,求m,n的值.
解 由题意得m2n2-+32=m-0,2=1,
m=-3, m=1,
解得n=32
或n=32.
所以 m=-3 或 1,n=32.
反思
感悟 判断函数为幂函数的方法 (1)自变量x前的系数为1. (2)底数为自变量x. (3)指数为常数.
在(0,+∞)上_减__, _增__
在(-∞,0)上_减__
知识点三 一般幂函数的图象特征
1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点 (1,1) . 2.当α>0时,幂函数的图象通过 原点 ,并且在区间[0,+∞)上是 增 函数.特别地,当 α>1时,幂函数的图象 下凸 ;当0<α<1时,幂函数的图象 上凸 . 3.当 α<0 时,幂函数的图象在区间(0,+∞)上是减函数. 4.幂指数互为倒数的幂函数在第一象限内的图象关于直线y=x对称. 5.在第一象限,作直线x=a(a>1),它同各幂函数图象相交,按交点从下到上的顺序, 幂指数按从 小 到 大 的顺序排列.
高中数学课件-幂函数
![高中数学课件-幂函数](https://img.taocdn.com/s3/m/15a256466bec0975f565e2b1.png)
奇偶性 奇函数
偶函数
奇函数
非奇非 偶函数
奇函数
x∈[0,+∞)
单调性 增
时,增 x∈(-∞,0]
增
增
时,减
x∈[0,+∞) 时,增 x∈(-∞,0] 时,减
主页
[难点正本 疑点清源] 1.在(0,1)上,幂函数中指数越大,函数图象越靠近 x 轴, 在(1,+∞)上幂函数中指数越大,函数图象越远离 x 轴.
≤
n
或
b 2a
n
f (m) 0 b2 4ac 0 f (n) 0
f(x)min>0(x∈[m, n])
④f(x)=ax2+bx+c<0(a>0)
在
[m,
n]
上恒成立
f f
(m) 0 (n) 0
f(x)max<0(x∈[m, n])
幂函数的图像与性质
知识点梳理
1.幂函数的概念 一般地,我们把形如 y=xα 的函数称为幂函数,其中 x 是自变量,α 是常数.
变式训练 4
已知幂函数 f(x)= x(m2 m)1 (m∈N*)
(1)试确定该函数的定义域,并指明该函数在其定义域上的单 调性; (2)若该函数还经过点(2, 2),试确定 m 的值,并求满足条 件 f(2-a)>f(a-1)的实数 a 的取值范围.
解 (1)m2+m=m(m+1),m∈N*, 而 m 与 m+1 中必有一个为偶数, ∴m(m+1)为偶数.
∴m>-1+ 5.
[8 分]
由②得 Δ2=(-m)2-4<0,即-2<m<2.
[12 分]
综上可得 5-1<m<2.
[14 分]
高中数学课件-简单的幂函数
![高中数学课件-简单的幂函数](https://img.taocdn.com/s3/m/7e332b4569dc5022abea00bb.png)
幂函数y=xα要满足三个特征: (1)幂xα前系数为1; (2)底数只能是自变量x,指数是常数; (3)项数只有一项.
练习1 判断下列函数是否为幂函数
(1) y=x4
(2) y=2x2 (3) y= -x2
(4)y 2x
1 (5) y x2
(6) y=x3+2
(2) 定义域关于原点对称是函数具有奇偶性的先决条件。
(3)下列关系也成立, 若函数f(x)为奇函数, 则f(-x)=-f(x)成立。 若函数f(x)为偶函数, 则f(-x)= f(x) 成立。
例1、判断下列函数的奇偶性:
(1) f ( x) x4
(2) f ( x) x5
(3) f ( x) x 1 (4) f ( x) x x
1 1.41 1.73
2 2.45
1
y x2 x
定义域: 值 域: 单调性:
y x3
y x2
1
y x2
y x1
在同一平面直角坐 标系内作出幂函数
在第一象限内, 函数图象的变化 趋势与指数有什
么关系?
y x3
y x2
1
y x2
y x1
在第一象限内,
当α >0时,图象上升 当α <0时,图象下降
4
f x x4
例1 若函数 f (x) (m2 m 1)xm2m2
是幂函数,且在区间(0,+∞)内是减函数,
求满足条件的实数m。
解:依题意,得 m2 m 1 1
解方程,得 m=2或m=-1
检验:当 m=-1时,函数为f (x) x2 符合题意.当m=2时,函数为 f (x) x4
高中数学,幂函数知识点及题型
![高中数学,幂函数知识点及题型](https://img.taocdn.com/s3/m/ba86cf719b89680203d825b0.png)
第七节幂函数❖基础知识1.幂函数的概念一般地,形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.幂函数的特征(1)自变量x处在幂底数的位置,幂指数α为常数;(2)xα的系数为1;(3)只有一项.2.五种常见幂函数的图象与性质函数特征性质y=x y=x2y=x3y=x12y=x-1图象定义域R R R{x|x≥0}{x|x≠0} 值域R{y|y≥0}R{y|y≥0}{y|y≠0} 奇偶性奇偶奇非奇非偶奇单调性增(-∞,0)减,(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1) ❖常用结论对于形如f(x)=x nm(其中m∈N*,n∈Z,m与n互质)的幂函数:(1)当n为偶数时,f(x)为偶函数,图象关于y轴对称;(2)当m,n都为奇数时,f(x)为奇函数,图象关于原点对称;(3)当m为偶数时,x>0(或x≥0),f(x)是非奇非偶函数,图象只在第一象限(或第一象限及原点处).考点一幂函数的图象与性质[典例](1)(2019·赣州阶段测试)幂函数y=f(x)的图象经过点(3,33),则f(x)是()A.偶函数,且在(0,+∞)上是增函数B .偶函数,且在(0,+∞)上是减函数C .奇函数,且在(0,+∞)上是增函数D .非奇非偶函数,且在(0,+∞)上是减函数 (2)已知幂函数f (x )=(n 2+2n -2)x23-n n (n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2[解析](1)设f (x )=x α,将点(3,33)代入f (x )=x α,解得α=13,所以f (x )=x 13,可知函数f (x )是奇函数,且在(0,+∞)上是增函数,故选C. (2)∵幂函数f (x )=(n 2+2n -2)x23-n n在(0,+∞)上是减函数,∴⎩⎪⎨⎪⎧n 2+2n -2=1,n 2-3n <0,∴n =1, 又n =1时,f (x )=x -2的图象关于y 轴对称,故n =1.[答案] (1)C (2)B[解题技法] 幂函数y =x α的主要性质及解题策略(1)幂函数在(0,+∞)内都有定义,幂函数的图象都过定点(1,1).(2)当α>0时,幂函数的图象经过点(1,1)和(0,0),且在(0,+∞)内单调递增;当α<0时,幂函数的图象经过点(1,1),且在(0,+∞)内单调递减.(3)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.(4)幂函数的性质因幂指数大于零、等于零或小于零而不同,解题中要善于根据幂指数的符号和其他性质确定幂函数的解析式、参数取值等.[题组训练]1.[口诀第3、4、5句]下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的为( )A .y =x -4 B .y =x -1 C .y =x 2D .y =x 13解析:选A 函数y =x -4为偶函数,且在区间(0,+∞)上单调递减;函数y =x -1为奇函数,且在区间(0,+∞)上单调递减;函数y =x 2为偶函数,且在区间(0,+∞)上单调递增;函数y =x 13为奇函数,且在区间(0,+∞)上单调递增.2.[口诀第2、3、4句]已知当x ∈(0,1)时,函数y =x p 的图象在直线y =x 的上方,则p 的取值范围是________.解析:当p >0时,根据题意知p <1,所以0<p <1;当p =0时,函数为y =1(x ≠0),符合题意;当p <0时,函数y =x p 的图象过点(1,1),在(0,+∞)上为减函数,符合题意.综上所述,p 的取值范围是(-∞,1).答案:(-∞,1)考点二 比较幂值大小[典例] 若a =⎝⎛⎭⎫1223,b =⎝⎛⎭⎫1523,c =⎝⎛⎭⎫1213,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <aD .b <a <c[解析] 因为y =x 23在第一象限内是增函数,所以a =⎝⎛⎭⎫1223>b =⎝⎛⎭⎫1523,因为y =⎝⎛⎭⎫12x 是减函数,所以a =⎝⎛⎭⎫1223<c =⎝⎛⎭⎫1213,所以b <a <c . [答案] D[题组训练]1.若a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b C .c >a >bD .b >c >a解析:选B 因为y =x 25在第一象限内为增函数,所以a =⎝⎛⎭⎫3525>c =⎝⎛⎭⎫2525,因为y =⎝⎛⎭⎫25x 是减函数,所以c =⎝⎛⎭⎫2525>b =⎝⎛⎭⎫2535,所以a >c >b . 2.若(a +1)12<(3-2a )12,则实数a 的取值范围是________. 解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.答案:⎣⎡⎭⎫-1,23 [课时跟踪检测]1.若幂函数y =f (x )的图象过点(4,2),则f (8)的值为( )A .4 B. 2 C .2 2D .1解析:选C 设f (x )=x n ,由条件知f (4)=2,所以2=4n ,n =12,所以f (x )=x 12,f (8)=812=2 2.2.若幂函数f (x )=x k 在(0,+∞)上是减函数,则k 可能是( )A .1B .2 C.12D .-1解析:选D 由幂函数的性质得k <0,故选D. 3.已知幂函数f (x )=(m 2-3m +3)x m+1为偶函数,则m =( ) A .1 B .2 C .1或2D .3解析:选A ∵函数f (x )为幂函数,∴m 2-3m +3=1,即m 2-3m +2=0,解得m =1或m =2.当m =1时,幂函数f (x )=x 2为偶函数,满足条件;当m =2时,幂函数f (x )=x 3为奇函数,不满足条件.故选A.4.(2018·邢台期末)已知幂函数f (x )的图象过点⎝⎛⎭⎫2,14,则函数g (x )=f (x )+x24的最小值为( ) A .1 B .2 C .4D .6解析:选A 设幂函数f (x )=x α.∵f (x )的图象过点⎝⎛⎭⎫2,14,∴2α=14,解得α=-2. ∴函数f (x )=x -2,其中x ≠0. ∴函数g (x )=f (x )+x 24=x -2+x 24=1x 2+x 24≥21x 2·x 24=1, 当且仅当x =±2时,g (x )取得最小值1. 5.(2019·安徽名校联考)幂函数y =x |m -1|与y =x 23-m m (m ∈Z)在(0,+∞)上都是增函数,则满足条件的整数m 的值为( )A .0B .1和2C .2D .0和3解析:选C 由题意可得⎩⎪⎨⎪⎧|m -1|>0,3m -m 2>0,m ∈Z ,解得m =2.6.已知a =345,b =425,c =1215,则a ,b ,c 的大小关系为( )A .b <a <cB .a <b <cC .c <b <aD .c <a <b解析:选C 因为a =8115,b =1615,c =1215,由幂函数y =x 15在(0,+∞)上为增函数,知a >b >c ,故选C.7.设x =0.20.3,y =0.30.2,z =0.30.3,则x ,y ,z 的大小关系为( )A .x <z <yB .y <x <zC .y <z <xD .z <y <x解析:选A 由函数y =0.3x 在R 上单调递减,可得y >z .由函数y =x 0.3在(0,+∞)上单调递增,可得x <z .所以x <z <y .8.已知幂函数f (x )=(m -1)2x242-+m m 在(0,+∞)上单调递增,函数g (x )=2x -k ,当x ∈[1,2)时,记f (x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,则实数k 的取值范围是( )A .(0,1)B .[0,1)C .(0,1]D .[0,1]解析:选D ∵f (x )是幂函数,∴(m -1)2=1,解得m =2或m =0.若m =2,则f (x )=x -2在(0,+∞)上单调递减,不满足条件.若m =0,则f (x )=x 2在(0,+∞)上单调递增,满足条件,即f (x )=x 2.当x ∈[1,2)时,f (x )∈[1,4),即A =[1,4);当x ∈[1,2)时,g (x )∈[2-k,4-k ),即B =[2-k,4-k ).∵A ∪B =A ,∴B ⊆A ,∴2-k ≥1且4-k ≤4,解得0≤k ≤1.9.若f (x )是幂函数,且满足f (9)f (3)=2,则f ⎝⎛⎭⎫19=________. 解析:设f (x )=x α,∵f (9)f (3)=9α3α=3α=2,∴f ⎝⎛⎭⎫19=⎝⎛⎭⎫19α=⎝⎛⎭⎫132α=132α=122=14. 答案:1410.已知函数f (x )=(m 2-m -5)x m 是幂函数,且在(0,+∞)上为增函数,则实数m 的值是________. 解析:由f (x )=(m 2-m -5)x m 是幂函数⇒m 2-m -5=1⇒m =-2或m =3.又f (x )在(0,+∞)上是增函数,所以m =3. 答案:311.当0<x <1时,f (x )=x 2,g (x )=x 12,h (x )=x -2,则f (x ),g (x ),h (x )的大小关系是________________. 解析:分别作出y =f (x ),y =g (x ),y =h (x )的图象如图所示,可知h (x )>g (x )>f (x ).答案:h (x )>g (x )>f (x )12.(2019·银川模拟)已知幂函数f (x )=x12-,若f (a +1)<f (10-2a ),则a 的取值范围是________.解析:由题意得,幂函数f (x )=x -12的定义域为(0,+∞),且函数f (x )在(0,+∞)上单调递减,由f (a+1)<f (10-2a ),得⎩⎪⎨⎪⎧a +1>10-2a ,a +1>0,10-2a >0,解得3<a <5.答案:(3,5)13.已知幂函数f (x )=x()21-+m m (m ∈N *)的图象经过点(2,2).(1)试确定m 的值;(2)求满足条件f (2-a )>f (a -1)的实数a 的取值范围. 解:(1)∵幂函数f (x )的图象经过点(2,2),∴2=2()21-+m m ,即212=2()21-+m m .∴m 2+m =2,解得m =1或m =-2. 又∵m ∈N *,∴m =1. (2)由(1)知f (x )=x 12,则函数的定义域为[0,+∞),并且在定义域上为增函数. 由f (2-a )>f (a -1),得⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32.∴a 的取值范围为⎣⎡⎭⎫1,32.。
高中数学幂函数知识点
![高中数学幂函数知识点](https://img.taocdn.com/s3/m/6817d0b250e79b89680203d8ce2f0066f53364dd.png)
高中数学幂函数知识点高中数学幂函数知识11.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3)函数单调区间与单调性的判定方法(A)定义法:a.任取x1,x2∈D,且x1b.作差f(x1)-f(x2);c.变形(通常是因式分解和配方);d.定号(即判断差f(x1)-f(x2)的正负);e.下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:a.首先确定函数的定义域,并判断其是否关于原点对称;b.确定f(-x)与f(x)的关系;c.作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定.9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1)凑配法2)待定系数法3)换元法4)消参法10.函数最大(小)值(定义见课本p36页)a.利用二次函数的性质(配方法)求函数的最大(小)值b.利用图象求函数的最大(小)值c.利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);.高中数学幂函数知识2一、一次函数定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
高中数学2.3幂 函 数 (2)
![高中数学2.3幂 函 数 (2)](https://img.taocdn.com/s3/m/502a14192f60ddccda38a0b3.png)
α 为指数 底数
y 幂值 幂值
知识点2 幂函数的图象及性质 观察图形,回答下列问题:
问题1:观察上述图象.在第一象限,它们有何特点? 问题2:这些图象有何对称性?奇偶性如何?
【总结提升】 1.幂函数y=xα 在第一象限内的图象特征 (1)指数大于1,在第一象限为抛物线型(下凸). (2)指数等于1,在第一象限为上升的射线(去掉端点). (3)指数大于0小于1,在第一象限为抛物线型(上凸). (4)指数等于0,在第一象限为水平的射线(去掉端点). (5)指数小于0,在第一象限为双曲线型.
2.3 幂函数
【知识提炼】 1.幂函数的概念 函数_y_=_x_α_叫做幂函数,其中自变量是_x_,_α__是常数.
2.幂函数的图象和性质 (1)五个幂函数的图象:
(2)幂函数的性质:
幂函数 y=x
y=x2
y=x3
1
y x2
y=x-1
定义域 _R_
_R_
_R_ [_0_,_+_∞__)__ _(_-_∞__,_0_)_∪__(_0_,_+_∞__)_
3.如图,图中曲线是幂函数f(x)=xα 在第一象限内的大致图象,已知
α
取-2,-
1,
2
1 2
,2四个值,则相应于曲线C1,C2,C3,C4的α
的值依次
为
.
【解题探究】1.典例1中的函数y=
m
xn
的定义域和值域分别是什么?
提示:由图象可以看出,定义域是全体实数,而值域是非负数,由此可得
m是偶数,n是奇数.
53
5
3
(2)因为幂函数y=x-1在(-∞,0)上是单调递减的,
又 2 3,所以( 2)1 ( 3)1.
高中数学人教版必修一 3.5幂函数的定义和性质(共19张PPT)
![高中数学人教版必修一 3.5幂函数的定义和性质(共19张PPT)](https://img.taocdn.com/s3/m/226d3c78f7ec4afe04a1dfdb.png)
奇偶性 奇
偶 奇 非奇非偶 奇
单调性
↗
[0,+∞)↗
(- ∞,0) ↘
↗
(0,+∞) ↘ ↗ (- ∞,0)↘
公共点
(1,1) (0,0)
(1)所有的幂函数y x 均在(0, )上有定义, 过 公 共 点(1, 1)
(2)当 0时,y x的图象过原点(0, 0), 当 0时,y x的图象不过原点;
【解析】(1)若 f(x)为正比例函数,
则mm22+ +m2m-≠1=0 1, ⇒m=1.
(2)若 f(x)为反比例函数,
则mm22+ +m2m-≠1=0 -1, ⇒m=-1.
(3)若 f(x)为二次函数,
则mm22+ +m2m-≠1=0 2,
⇒m=-1±2
13 .
(4)若 f(x)为幂函数,则 m2+2m=1,∴m=-1± 2.
y y x3
x
O
二、基础知识讲解
y
1
y x2
x
012
3
0 x0.5 1 1.414 1.732
x 456
x0.5 2 2.236 2.45
1
y x2
x
定义域:__[_0_,____)_____ 值 域:__[_0_,____)_____
奇偶性: 既__不__是__奇__函___数__也 不 是 偶 函 数
二、基础知识讲解
关于幂函数,主要学习下列几种函数的图象与性质.
(1) y x
1
(4) y x 2
(2) y x2 (5) y x1
(3) y x3
二、基础知识讲解
y
yx
O
定义域:____R________ 值 域:____R________ 奇偶性:___奇__函__数_________ 单调性:__在__R__上__是__增___函__数__
高中文科数学《幂函数》课件
![高中文科数学《幂函数》课件](https://img.taocdn.com/s3/m/3be09dd87d1cfad6195f312b3169a4517723e567.png)
B.(-1,4) D.(-∞,-1)∪(4,+∞)
解析:不等式(x2+1)
1 2
>(3x+5)
1 2
等价于x2+1>3x+5≥0,解得-
5 3
≤x<
-1或x>4,所以原不等式的解集为-53,-1∪(4,+∞).故选A.
答案:A
[例1] (1)若幂函数y=x-1,y=xm与y=xn在第一象限内的图象如图所
示,则m与n的取值情况为
()
A.-1<m<0<n<1 C.-1<m<0<n<12
B.-1<n<0<m<12 D.-1<n<0<m<1
(2)已知幂函数f(x)=(n2+2n-2)x n2-3n (n∈Z)的图象关于y轴对称,
[答案] B
比较幂值大小 (1)同底不同指的幂值大小比较:利用指数函数的单调性进行比较;
(2)同指不同底的幂值大小比较:利用幂函数的单调性进行比较;
(3)既不同底又不同指的幂值大小比较:常找到一个中间值,通过比较 幂值与中间值的大小来判断.
2
3
2
1.若a=35 5 ,b=25 5 ,c=25 5 ,则a,b,c的大小关系是 (
解析:设f(x)=xα,将点(3,
3
3
)代入f(x)=xα,解得α=
1 3,所以f(x)= Nhomakorabea1
x 3 ,可知函数f(x)是奇函数,且在(0,+∞)上是增函数,故选C.
答案:C
1
2.有四个幂函数:①f(x)=x-1;②f(x)=x-2;③f(x)=x3;④f(x)=x 3 .某
同学研究了其中的一个函数,他给出这个函数的三个性质 :(1)偶函
高中数学必修一课件:幂函数
![高中数学必修一课件:幂函数](https://img.taocdn.com/s3/m/7c10a61d5b8102d276a20029bd64783e09127df5.png)
要点1 幂函数的概念
一般地,函数____y_=_x_α_____叫做幂函数,其中x是自变量,α是常数.
要点2 五个幂函数的图象与性质 1
(1)在同一平面直角坐标系内,函数①y=x;②y=x 2 ;③y=x2;④y=x-1; ⑤y=x3的图象如图.
(2)五个幂函数的性质
y=x
y=x2
(2)幂函ห้องสมุดไป่ตู้y=x2,y=x-1,y=x
1 3
y=x-
1 2
在第一象限内的图象依次是图中的曲
线( D )
A.C1,C2,C3,C4 B.C1,C4,C3,C2
C.C3,C2,C1,C4 D.C1,C4,C2,C3 【解析】 由于在第一象限内直线x=1的右侧,幂函数y=xα的图象从上到 下相应的指数α由大变小,即“指大图高”,故幂函数y=x2在第一象限内的图象
1 2
,则α=-1,f(x)=x-1,所以函数f(x)的单调递减区间
是(-∞,0),(0,+∞).
6.已知a=413,b=1212,c=(-8)13,则a,b,c的大小关系为__c_<_b_<_a __. 解析 413>113=1,0<1212<112=1,(-8)13<0,所以c<b<a.
1
解析 ∵y=f(x)和y=-f(x)的单调性相反,y=x 2 -1在[0,+∞)上单调递 增,∴对称后的函数在[0,+∞)上单调递减.故选B.
4.下列函数既是偶函数又是幂函数的是( B )
A.y=x
2
B.y=x3
1
C.y=x2
D.y=|x|
解析 对于A,函数是奇函数,不合题意;对于B,函数是偶函数且是幂函
高中数学幂函数题解题方法
![高中数学幂函数题解题方法](https://img.taocdn.com/s3/m/03876f1adc36a32d7375a417866fb84ae45cc325.png)
高中数学幂函数题解题方法一、幂函数的基本概念幂函数是指形如y = ax^n的函数,其中a为常数,n为指数。
在幂函数中,指数n的取值范围可以是整数、分数、负数等。
二、幂函数的图像特点1. 当指数n为偶数时,幂函数的图像关于y轴对称,且当a>0时,图像开口向上;当a<0时,图像开口向下。
2. 当指数n为奇数时,幂函数的图像关于原点对称,且当a>0时,图像在第一象限和第三象限上;当a<0时,图像在第二象限和第四象限上。
3. 当指数n为0时,幂函数的图像为一条水平直线,即y = a。
三、幂函数的常见题型及解题方法1. 求函数的定义域和值域对于幂函数y = ax^n,其定义域和值域的求解方法如下:- 当指数n为正整数时,定义域为全体实数集R,值域为(0, +∞)。
- 当指数n为负整数时,定义域为全体非零实数集R*,值域为(0, +∞)。
- 当指数n为正分数时,定义域为全体非负实数集[0, +∞),值域为[0, +∞)。
- 当指数n为负分数时,定义域为全体非零实数集R*,值域为(0, +∞)。
例如,对于函数y = 2x^3,其定义域为全体实数集R,值域为(0, +∞)。
2. 求函数的单调性和极值点对于幂函数y = ax^n,其单调性和极值点的求解方法如下:- 当指数n为正数时,当a>0时,函数递增;当a<0时,函数递减。
无极值点。
- 当指数n为负数时,当a>0时,函数递减;当a<0时,函数递增。
无极值点。
- 当指数n为正分数时,当a>0时,函数递增;当a<0时,函数递减。
无极值点。
- 当指数n为负分数时,当a>0时,函数递减;当a<0时,函数递增。
无极值点。
例如,对于函数y = 3x^(-2),其单调递减,无极值点。
3. 求函数的对称轴和图像开口方向对于幂函数y = ax^n,其对称轴和图像开口方向的求解方法如下:- 当指数n为偶数时,对称轴为y轴,图像开口方向由a的正负确定。
幂函数(高中数学)
![幂函数(高中数学)](https://img.taocdn.com/s3/m/02026184cf2f0066f5335a8102d276a20029600d.png)
(2)y=x12的图象位于第一象限且为增函数,所以函数图象是上升的, 函数y=x12-1的图象可看作由y=x12的图象向下平移一个单位得到的(如选 项A中的图所示),将y=x12-1的图象关于x轴对称后即为选项B.]
20
幂函数性质的综合应用 [探究问题] 1.幂函数y=xα在(0,+∞)上的单调性与α有什么关系? 提示:当α>0时,幂函数y=xα在(0,+∞)上单调递增;当α<0时,幂 函数y=xα在(0,+∞)上单调递减.
21
2.2.3-0.2和2.2-0.2可以看作哪一个函数的两个函数值?二者的大小 关系如何?
提示:2.3-0.2和2.2-0.2可以看作幂函数f(x)=x-0.2的两个函数值,因 为函数f(x)=x-0.2在(0,+∞)上单调递减,所以2.3-0.2<2.2-0.2.
22
【例3】 比较下列各组中幂值的大小:
(1)0.213,0.233;(2)1.212,0.9-12, 1.1.
[思路点拨] 构造幂函数,借助其单调性求解. [解] (1)∵函数y=x3是增函数,且0.21<0.23, ∴0.213<0.233. (2)0.9-12=19012, 1.1=1.112. ∵1.2>190>1.1,且y=x12在[0,+∞)上单调递增, ∴1.212>19012>1.112,即1.212>0.9-12> 1.1.
30
C [∵函数 y=x54是非 奇非偶函数,故排除 A、B
选项.又54>1,故选 C.]
A
B
C
D
31
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25 5
x
f (25)
1.所有幂函数在 (0, ) 上均有定义,当 象限,都经过定点 (1,1)
观察下列幂函数的图象,并完成填空:
x (0, ) 时图象均在第一
2、若 幂函数 为奇函数,则图象在 一、三 象限且关于 原点 对称; 若 幂函数 为偶函数,则图象在 一、 二 象限且关于 y 轴对称; 定义域为 (0, ) 的幂函数 为非奇非偶函数,则图象只在 第一 象限
练习:1、判断下列函数中有几个幂函数? 1 2 y 2x2 ⑴ yx x ⑵ ⑶ y 2
⑷
yx
⑸
y ( x 1)
3
x
答: ⑶ ,⑷
2、若函数 y (m 2) x3 , 为幂函数,则m=
3 5
3、若幂函数f(x)的图象过点(9,3),则 f(25)=
解:设
f ( x) x a,则由题意 f (9) 3,即 9a 3, 1
xa
1.所有幂函数f(x)在 (0, ) 上均有定义,当 x (0, ) 时图象均在第 一象限,图象都经过定点(1,1)
2、若幂函数 f ( x) 为奇函数,则图象在一、三象限且关于原点对称;
若幂函数 f ( x) 为偶函数,则图象在一、二象限且关于 y 轴对称;
定义域为 (0, ) 的幂函数(非奇非偶函数),其图象只在第一象限
yx
3
yx
2
yx x
3
2 3
2
yx
1 2
x
11 ) 3.当 a 0 时,幂函数图象都经过 (0,0)和(, 点,并且在 (0, )
上为
增
函数。
yx
1 3
yx
1 4
y x4
y x5
4. 幂指数 a 0 时,幂函数的图象在 (0, ) 上单调递 减,类似反比例 y 函数图象,以 x 轴、 轴为渐近线
2
3
1 2
1
答:都不是指数函数,指数函数是形如 y a x(0<a <1) 的函数,其中指数x是自变量,底数a是常数,而这五个函 数的自变量x都不是指数。
问题2:这五个函数的共同特征是什么?
答:都是是形如 y 量,指数a是常数。
x 的函数,其中底数x是自变
a
y x a 的函数称为 定义:一般地,形如
解:取
上的增函数故 1.10.1 1.20.1,
(2)0.24
0.2
与0.25
0.2
,
f ( x) x 0.2 , 则 解:取
幂指数0.1>0,故f(x)为(0, ) 上的减函数,故 0.240.2 0.250.2 ,
小
一、定义: 一般地,形如 y 二、性质;
结
的函数称为幂函数,其中x是自变量,a是常数。
幂 函
数
石河子第一中学 颜 波
我们先看几个具体问题:
(1)如果张红购买了每千克1元的蔬菜 x 千克,那么她 需要支付 y x 元,这里 y 是 x 的函数; (2)如果正方形的边长为 x ,那么正方形的面积 是 x 的函数;
y x2 ,这里y
(3)如果正方体的边长为 x ,那么正方形的体积 y 是 x 的函数;
…
27 8 1 0
8 27
yx
3
y x3
函数
性质
1 2
定义域
奇偶性 非奇非偶 …
第一象限 的单调性 单调递增
图象分布象限
第1象限
y=x
x x 0
0x yLeabharlann 1 14 29
0
3
…
y=x
1 2
y=x
1 2
函数 性质 定义域 值域
yx
R R
yx
R
2
y x y=x
3
1 2
y=x 1
x3 ,这里 y
(4)如果一个正方形场地的面积为 x ,那么这个正方形的边 长
yx
1 2
,这里
y 是 x 的函数;
(5)如果某人 x s 内骑车行进了 1 km , 那么他骑车的平均 速度 y x 1 km/s,这里 y 是 x 的函数;
问题1:这五个函数 是否为指数函数?为什么?
y y y y y x, x , x , x , x
3.当 a 0 时,幂函数图象都经过 增 函数。
(0,0)
点并且在
(0, )
上为
4. 幂指数 a 0 时,幂函数的图象在 (0, ) 上单调递减,类似反比例函 数图象,以 x 轴、y 轴为渐近线
作业
1.课本p79的习题2.3的第1,2题 2.课本p82的复习参考题A组的第10题 3.练习册上:p62至p64
y x 2
y x 3
yx
3 2
yx
2 3
例1、求下列函数的定义域与值域
(1) y x
6
(2) y x
3 5
(3) y x
1 4
(4) y x 3
yx
yx
6
3 5
yx
1 4
y x3
例2、比较下列数的大小
(1)1.10.1 与1.20.1 ,
f ( x) x 0.1 , 则 幂指数0.1>0,故f(x)为 0,
R R
x x 0 x x 0
y y 0
偶
y y 0 y y 0
非奇非偶 奇
单调递减
奇偶性
第一象限 的单调性
奇
奇
单调递增 单调递增
单调递增 单调递增
都过特殊点 (1,1) (1,1)(1,1) (1,1)(1,1) 图象分布象限 第1,3
象限 第1,2 象限 第1,3 象限 第1象限 第1,3 象限
幂函数,其中x是自变量,a是常数。
分别作出这五个函数的图象
1、先画三个大家 比较熟悉的图象:
(1) y x,
(2) y x 2, (3) y x 1,
性质 定义域 函数
奇偶性 奇
第一象限 的单调性 单调递增
图象分布象限 第1,3象限
y x3
R
x
y
…
…
3 2
1 0
1
1
2
3
…