佛山科学技术学院 概率统计考试试题
概率统计期末考试试题及答案
概率统计期末考试试题及答案试题一:随机变量的概率分布某工厂生产的产品合格率为0.9,不合格率为0.1。
假设每天生产的产品数量为100件,求下列事件的概率:1. 至少有80件产品是合格的。
2. 至多有5件产品是不合格的。
试题二:连续型随机变量的概率密度函数设随机变量X的概率密度函数为f(x) = 2x,0 ≤ x ≤ 1,0 其他,求:1. X的期望E(X)。
2. X的方差Var(X)。
试题三:大数定律与中心极限定理假设某银行每天的交易量服从均值为100万元,标准差为20万元的正态分布。
求:1. 该银行连续5天的总交易量超过500万元的概率。
2. 根据中心极限定理,该银行连续20天的总交易量的平均值落在90万元至110万元之间的概率。
试题四:统计推断某工厂生产的零件长度服从正态分布,样本数据如下:95, 96, 97, 98, 99, 100, 101, 102, 103, 104求:1. 零件长度的平均值和标准差。
2. 零件长度的95%置信区间。
试题五:假设检验某公司对两种不同品牌的打印机进行了效率测试,测试结果如下:品牌A:平均打印速度为每分钟60页,标准差为5页。
品牌B:平均打印速度为每分钟55页,标准差为4页。
样本量均为30台打印机。
假设两种打印机的平均打印速度没有显著差异,检验假设是否成立。
答案一:1. 至少有80件产品是合格的,即不合格的产品数少于或等于20件。
根据二项分布,P(X ≤ 20) = Σ[C(100, k) * (0.1)^k *(0.9)^(100-k)],k=0至20。
2. 至多有5件产品是不合格的,即不合格的产品数不超过5件。
根据二项分布,P(X ≤ 5) = Σ[C(100, k) * (0.1)^k * (0.9)^(100-k)],k=0至5。
答案二:1. E(X) = ∫[2x * x dx],从0到1,计算得 E(X) = 2/3。
2. Var(X) = E(X^2) - [E(X)]^2 = ∫[2x^2 * x dx] - (2/3)^2,从0到1,计算得 Var(X) = 1/18。
佛山科学技术学院 20022003学年第一学期概率与数理统计试卷(a卷)
佛山科学技术学院2002-2003学年第一学期期末考试试题课程: 概率论与数理统计( A 卷)专业、班级: 姓名: 学号:一、单选题:把所选答案前面的字母填在括号内(每小题2分,共10分)1、若,1)()(>+B P A P 则事件A 与B 必定()A 互斥B 相容C 对立D 独立2、已知随机变量ξ的方差为D ξ,若a ,b 为常数,则b a +ξ的方差为()AD ξB a 2D ξC(a D ξ)2D03、若随机变量ξ与η相互独立,则它们的相关系数等于()A1B-1C ±1D 04、设产品的废品率为0.03,用切贝谢夫不等式估计1000个产品中废品多于20个且少于40个的概率为()A0.802B0.786C0.709D0.8135、从一副去掉大小王的52张扑克牌中任意抽5张,其中没有K 字牌的概率为()A 5248B 552548C C C 554852CD 555248 二、填空题:(1、2、3小题各2分,4,5小题各3分,6,8小题各4分,7小题6分,共26分)1、设[][]⎪⎩⎪⎨⎧∉∈+=1,001,0 1)(2x x x c x φ为随机变量ξ的概率密度,则常数c =_____________.2、假设检验是由部分来推断整体,它不可能绝对准确,而可能犯的错误有和3、设相互独立的随机变量ξ,η的方差分别为0.1,0.09,则=-)(ηξD .4、已知)(A P =0.3,P (B )=0.4,(P A ∣B )=0.32,则=)(B A P _________.5、评价估计量优劣的标准有 , , .6、设连续型随机变量ξ具有分布函数⎩⎨⎧≤>-=-000 1)(x x e x F x λ,则==ξξD E _,_________________________.7、设),,,(21n x x x 为总体ξ中取出的一组样本观察值,若⎩⎨⎧><<=-其它当 00)( 10 )(1θθφθx x x ,则用最大似然法估计ξ的概率密度)(x φ中的未知参数θ时,得到似然函数为 ,似然方程为 估计量=θˆ 8、已知灯泡寿命的标准差σ=50小时,抽出25个灯泡检验,得平均寿命500=x 小时,试以95%的可靠性对灯泡的平均寿命进行区间估计,则置信区间为 (假设灯泡寿命服从正态分布)。
佛山科学技术学院 概率统计试题
命题方式:自主命题
佛山科学技术学院2009—2010学年第二学期
《概率与数理统计》课程期末考试试题(A)
专业、班级姓名:学号:
共6页第1页
13,)X 取自正态总体
)=____ ____
是非题(4分,每题.在古典概型的随机试验中,.抽样分布就是指样本,)n X 的函数,)n X 的分布.在假设检验中,显著性水平α是指)0为假H P .小概率事件在一次试验中绝对不会发生 分)某工厂有甲、乙、丙3个车间生产同一种产品,产量各占并且在各自的产品里,不合格品各占4%5%,现从待出厂的产品中任取一只恰是不合格品,求这批产品中各车间的次品率是多少?这件产品由哪个车间生产的可能性大? 共 6页第2页
共6页第3页
共6页第4页
共6页第5页
共6页第6页。
广东历年高考——9概率统计小题
历年广东高考之——概率统计小题9.概率统计(2007年高考广东卷第8题)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ) A.310B.15C.110D.112【解析】从五个球中任取两个共有=10种,而1+2=3,2+4=6,1+5=6,取出的小球标注的数字之和为3或6的只有3种情况,故取出的小球标注的数字之和为3或6的概率为103。
答案:A(2008年高考广东卷第11题)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量。
产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95),由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[55,75)的人数是_______。
【解析】20(0.06510)13⨯⨯=,故答案为13. (2009年高考广东卷第12题)某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是 。
若用分层抽样方法,则40岁以下年龄段应抽取 人.【解析】由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37. 40岁以下年龄段的职工数为2000.5100⨯=,则应抽取的人数为4010020200⨯=人. 【答案】37, 20 (2010年高考广东卷第12题)某市居民2005~2009年家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表所示:根据统计资料,居民家庭年平均收入的中位数是 ,家庭年平均收入与年平均支出有 线性相关关系.答案:13 ˆ3yx =- (2011年高考广东卷第13题)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:小李这5天的平均投篮命中率为 ;用线形回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为 .解析:小李这5天的平均投篮命中率1(0.40.50.60.60.4)0.55y =++++= 3x =,1222221()()0.2000.1(0.2)0.01(2)(1)012()niii nii x x y y b x x ==--++++-===-+-+++-∑∑,0.47a y bx =-=∴线性回归方程0.010.47y x =+,则当6x =时,0.53y =∴预测小李该月6号打6小时篮球的投篮命中率为0.53 答案:0.5;0.53(2012年高考广东卷第13题)由整数组成的一组数据,,,,4321x x x x 其平均数和中位数都是2,且标准差等于1,则这组数据为______________________.(从小到大排列)【解析】不妨设1234x x x x ≤≤≤得:231234144,84x x x x x x x x +=+++=⇒+=2222212341(2)(2)(2)(2)420,1,2i s x x x x x =⇔-+-+-+-=⇒-=①如果有一个数为0或4;则其余数为2,不合题意 ②只能取21i x -=;得:这组数据为1,1,3,3(2014年高考广东卷第6题)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本, 则分段的间隔为( )A .20B .25C .40D .50 解析:本题考查系统抽样的特点。
2020年大学基础课概率论与数理统计期末考试题及答案精华版
2020年大学基础课概率论与数理统计期末考试题及答案(精华版),02未知,X ,X ,X ,X 为其样本,下列各项不是统计量的是 1234(A) X =11 X4ii =1(B) X + X — 2R14(A) X = - 1 X4ii =1(B) X + X — 2R14(C) K = — 1(X — X )202ii =1【答案】C 4、若X 〜t (n )那么%2〜【答案】A5、设X ,X ,…,X 为总体X 的一个随机样本,E (X ) = R ,D (X )=02 12 n C=(C) K = — 102i =1(X — X )2i(D) S 2 = 1 1(X — X )3ii =1【答案】C 2、设 X 〜P(1, p ) ,X ,X ,…,X ,是来自X 的样本,那么下列选项中不正确的是 12n-A) 当n 充分大时 近似有X 〜N B) P {X = k } = C k p k (1 — p )n —k , k =0,1,2,…,n n C) k 、 一 〜、 ・—一P { X =—} = C k p k (1— p )n -k , k =0,1,2,…,n n n D) P {X= k } = C k p k (1 — p )n -k ,1 < i <n 【答案】B 3、设 X ~ N (R ,O 2),其中R 已知,o 2未知,X , X , X , X 为其样本,下列各项不是统计量的是 1234(A)F (1,n )(B )F (n ,1)(C)殍(n )(D) t (n)一、单选题1、设X 〜N (R ,o 2),其中R 已知(D) S 2 =1 X ( X —X )3i0 2= C 乏1(X — X )2为02的无偏估计, i +1 i【答案】C6、对于事件人,B,下列命题正确的是(A)若A, B互不相容,则才与B也互不相容。
(B)若A, B相容,那么%与B也相容。
概率统计考试试卷及答案(最终)
概率统计测验试卷及答案一、 填空题〔每题 4 分,共 20分〕 1. 设 ,且,那么.X~ P ( )P ( X 1) P ( X2) P ( X3) _________A 2. 设随机变量 X 的分布函数 ,那么F ( x ),( x) A___x1 e 1 41 31 23. P( A ) , P ( B | A ) , P( A | B ), 那么 P ( AB )_____4. 随机变量X ~ U (0,1),那么随机变量的密度函数2 ln XYf Y ( y )___25. 设随机变量 X 与 Y 彼此独立,且那么 D ( 2 X4Y )____DX DY, 二、 计算以下各题 (每题 8分,共 40 分〕 xe , x 0f ( x )1. 设随机变量 X 的概率密度为Y=2X,求 E(Y), D(Y).0,x2. 两封信随机地投入标号为 I,II,III,IV 的四个邮筒,求第二个邮筒恰 好投入 1 封信的概率。
3. 设 X,Y 是两个彼此独立的随机变量, X 在(0,1)上从命均匀分布,y12e, y y0 f Y ( y)Y 的概率密度为2求含有 a 的二次方 程0,2a2 Xa Y0 有实根的概率。
24. 假设 X 1 , , X 9 是来自总体 的简单随机样本,求系数X ~ N ( 0,2 ) 222a,b,c 使 Qa ( X 1X 2 )b( X 3 X 4 X 5 )c( X 6 X 7 X 8 X 9 )从命 2分布,并求其自由度。
5. 某车间出产滚珠,从持久实践知道,滚珠直径X 从命正态分布。
从某天产物里随机抽取 6 个,测得直径为 〔单元: 毫米〕14.6, 15.1, 2假设总体方差 , 求总体均值 的置信0.06 区间(0 05. , z1 96 . )/ 2三、〔14 分〕设 X,Y 彼此独立,其概率密度函数别离为y1,0 x1e , y 0f X ( x )f Y ( y ) , 0,其他0,y求 X+Y 的概率密度6x( x),x 四、〔14 分〕设 是总体 XnX~ f ( x )3,且 X 1 , , X0,其它的简单随机样本,求 (1) 的矩估计量 ,(2)D ( )五、(12 分)据以往经验, 某种电器元件的寿命从命均值为 100小时的 指数分布,现随机地取 16 只,设它们的寿命是彼此独立的,求这 16 只元件的寿命的总和大于 1920小时的概率。
最新佛山科学技术学院期末高数复习题
高数(AI)复习题P5例2P37例2、例3、例4、例5、例6、例7、例8P39 习题 1-5Ex1.(1)、(2)、(3)、(4)、(5)、(6)、(7)Ex2.(3)、(5)Ex5.P43~P44 例4P45 习题 1-6Ex1.(1)、(2)、(4)、(7)、(9)P48 例3、例4P48 习题 1-7Ex4.(1)、(2)、(3)、(4)、(5)、(6)、(7)Ex5.P51 例5、例6、例7、例8、例9P57 习题 1-9Ex3P59 例1P60 习题 1-10Ex1、Ex2、Ex3、Ex5P65 例6P68 习题 2-1Ex2.(2)、(3)、(4)Ex8、Ex10P71 例6、例7、例8、例9P75 习题 2-2Ex5.(1)~(14)P79 习题 2-3Ex2、Ex3P80~P83 例2、例3、例4、例5、例6、例8、例10P89 ~P90例5、例6、例7、例8、例9P98例5P102 习题 3-1Ex6、Ex7、Ex9、Ex12P103 例1、例2、例3、例4、例5、例6、例7、例8、例9、例10P115例6P117~P118例8、例9、例10P120例1、例2P122习题3-5Ex1P126例3、例4P150~P151例5、例7、例9、例10、例11、例12、例13、例14、例15 P152 习题 4-1Ex1.(1)、(2)、(5)P154~P155例1、例2、例3、例4、例5、例6、例7、例8、例9、例10、例11、例12、例13、例14P157~P158例19、例20、例21P163~P164例1、例2、例3、例4、例5、例6、例7P165例11P184例7P184习题 5-2Ex1.(2)、(3)、(7)、(12)Ex2Ex3.(1)、(5)、(7)、(10)Ex4.P187例2、例3、例4P190~P191习题 5-3Ex1.(2)、(3)、(4)、(5)、(7)、(9)、(11)、(12)、(16)、(18)、(20)Ex6.(1)、(2)、(3)、(6)、(7)、(9)P197习题 5-4Ex1.Ex2.(1)、(2)、(5)P199~P203例1、例2、例4、例5、例6、例7P206~P208例11、例13P225例2、例3P227例1P231例1、例2P234~P235例2、例4P240~P242例1、例2、例3P244例1、例2、例3、例4一、填空题(每空3分 ) 1. ()lg 3x f x -=的定义域是_____________________;2.()1arctan1f x x =-的定义域是____________________________; 3. 若2(1)241f x x x +=+-,求()f x =________________________;4. 若21lim 51x x bx cx→++=-,则c =________________________; 5. 123lim 21x x x x +→∞+⎛⎫⎪+⎝⎭=______________;6. 已知0cos lim1sin xx x xa x be →=+,则a =__________,b =__________;7. 设ln x 是()f x 的一个原函数,则()____________f x '=;8. 设()103f '=,且对任意的x 有()()33f x f x +=,则()3f '=_________;9. y =在1x =处的切线方程为_____________________________。
07佛大应用统计与答案AA
佛山科学技术学院2008—2009学年第一学期《应用统计》课程期末考试试题(A )一、填空题(共20分,每空1分)1、统计数据是对现象进行测量的结果。
按照所采用的计量尺度不同,可以将统计数据分为:(分类数据、顺序数据、数值型数据)2、参数是用来描述___总体特征_______的概括性数字度量;而用来描述样本特征的概括性数字度量,称为___统计量________。
3、在某一城市所做的一项抽样调查中发现,在所抽取的1000个家庭中,人均月收入在200~300元的家庭占24%,人均月收入在300~400元的家庭占26%,在400~500元的家庭占29%,在500~600元的家庭占10%,在600~700元的家庭占7%,在700元以上的占4%。
从此数据分布状况可以判断:(1)该城市收入数据分布形状属 右偏 (左偏、对称、右偏)。
(2)你觉得用均值、中位数、众数中的 中位数 来描述该城市人均收入状况较好。
理由是 数据分布明显右偏,频数较多的几个组家庭百分比相差不大 。
(3)从收入分布的形状上判断,我们可以得出中位数和均值中 均值 数值较大。
上四分位数所在区间为 400~500 ,下四分位数所在区间为 300~400 。
4、在估计某种商品的女性消费者比例时,确定了估计的边际误差为E=0.014,而调查人员没有关于该比例的一切信息。
那么应抽取的样本容量为_4900_才能保证达到估计的精度要求。
(取α=0.05)5、方差分析中,构造的统计量MSEMSA 服从 F 分布。
6、判定系数的取值范围是 [0,1] 。
7、当变量x 值增加,变量y 值也增加,这是__正__线性相关关系;当变量x 值减少,变量y 值也减少,这是___正____线性相关关系(正、负)。
8、当原假设正确而被拒绝时,所犯的错误是 第一类错误 ;当备择假设正确而没拒绝原假设时,所犯的错误是 第二类错误 ;只有在拒绝原假设时我们才可能犯第_一_类错误,只有在没有拒绝原假设时我们才可能犯第_二_类错误。
大学概率统计试题及答案
大学概率统计试题及答案一、选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,即X~N(0,1),则P(X > 1)等于()。
A. 0.1587B. 0.8413C. 0.5000D. 0.34462. 设随机变量X服从区间[0,1]上的均匀分布,则E(X)等于()。
A. 0B. 0.5C. 1D. 0.253. 一组数据的方差是12,标准差是()。
A. 2B. 3.46C. 4D. 64. 两个独立的随机变量X和Y,如果P(X > 0) = 0.7,P(Y > 0) =0.5,则P(X > 0 且 Y > 0)等于()。
A. 0.35B. 0.5C. 0.7D. 0.25. 抛一枚均匀硬币两次,出现至少一次正面朝上的概率是()。
A. 0.5B. 0.75C. 1D. 0.256. 从1到10的整数中随机抽取一个数,抽到奇数的概率是()。
A. 0.5B. 0.4C. 0.6D. 0.37. 设随机变量X服从泊松分布,参数为λ=2,则P(X=1)等于()。
A. 0.2707B. 0.1353C. 0.5000D. 0.75008. 一组数据的平均数是5,中位数是4,则这组数据的众数可能是()。
A. 3B. 4C. 5D. 69. 随机变量X和Y相互独立,且都服从标准正态分布,则Z=X+Y服从()。
A. 正态分布B. 泊松分布C. 二项分布D. 均匀分布10. 随机变量X服从二项分布,参数为n=10,p=0.5,则P(X=5)等于()。
A. 0.246B. 0.176C. 0.121D. 0.061二、填空题(每题4分,共20分)1. 如果随机变量X服从二项分布B(n,p),那么其方差Var(X)=________。
2. 设随机变量X服从指数分布,参数为λ,则其概率密度函数为f(x)=________,x>0。
3. 一组数据的均值为50,标准差为10,则这组数据的变异系数CV=________。
统计概率专项练习
统计概率专项练习一、单选题1.“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[]0,10内的一个数来表示,该数越接近10表示满意程度越高,现随机抽取7位小区居民,他们的幸福感指数分别为5,6,7,8,9,5,4,则这组数据的第75百分位数是( ) A .7 B .7.5 C .8 D .92.若样本数据123x +,223x +,,823x +的方差为32,则数据128,,,x x x 的方差为( ) A .16 B .8 C .13 D .53.盒子中装有红色,黄色和黑色小球各2个,一次取出2个小球,下列事件中,与事件“2个小球都是红色”对立的事件是( )A .2个小球都是黑色B .2个小球恰有1个是红色C .2个小球都不是红色D .2个小球至多有1个是红色4.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中正确的是( )A .估计该地农户家庭年收入的平均值超过7.5万元B .估计该地有一半以上的农户,其家庭年收入不低于8.5万元C .该地农户家庭年收入低于4.5万元的农户比率估计为4%D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至7.5万元之间5.为迎接北京2022年冬奥会,小王选择以跑步的方式响应社区开展的“喜迎冬奥爱上运动”(如图)健身活动.依据小王2021年1月至2021年11月期间每月跑步的里程(单位:十公里)数据,整理并绘制的折线图(如图),根据该折线图,下列结论正确的是( )A .月跑步里程逐月增加B .月跑步里程的极差小于15C .月跑步里程的中位数为5月份对应的里程数D .1月至5月的月跑步里程的方差相对于6月至11月的月跑步里程的方差更大 6.寒假来临,秀秀将从《西游记》、《童年》、《巴黎圣母院》、《战争与和平》、《三国演义》、《水浒传》这六部著作中选四部(其中国外两部、国内两部),每周看一部,连续四周看完,则《三国演义》与《水浒传》被选中且在相邻两周看完的概率为( )A .112B .16C .13D .237.为了研究某种病毒与血型之间的关系,决定从被感染的人群中抽取样本进行调查,这些感染人群中O 型血、A 型血、B 型血、AB 型血的人数比为4:3:3:2,现用比例分配的分层随机抽样方法抽取一个样本量为n 的样本,已知样本中O 型血的人数比AB 型血的人数多20,则n =( ) A .100 B .120 C .200 D .2408.某商场推出抽奖活动,在甲抽奖箱中有四张有奖奖票.六张无奖奖票;乙抽奖箱中有三张有奖奖票,七张无奖奖票.每人能在甲乙两箱中各抽一次,以A 表示在甲抽奖箱中中奖的事件,B 表示在乙抽奖箱中中奖的事件,C 表示两次抽奖均末中奖的事件.下列结论中不正确的是( )A .()2150P C = B .事件A 与事件B 相互独立 C .()P AB 与()P C 和为54% D .事件A 与事件B 互斥二、多选题9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场的进球数是3.2,全年进球数的标准差为3;乙队平均每场的进球数是1.8,全年进球数的标准差为0.3.下列说法中正确的是 ( )A .乙队的技术比甲队好B .乙队发挥比甲队稳定C .乙队几乎每场都进球D .甲队的表现时好时坏10.某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号车站开始,在每个车站下车是等可能的,则( )A .甲、乙两人下车的所有可能的结果有9种B .甲、乙两人同时在第2号车站下车的概率为19C .甲、乙两人同时在第4号车站下车的概率为13 D .甲、乙两人在不同的车站下车的概率为2311.某校为做好疫情防控,每天早中晩都要对学生进行体温检测.某班级体温检测员对一周内甲、乙两名同学的体温进行了统计,其结果如图所示,则( )A .甲同学体温的极差为0.4℃B .乙同学体温的众数为36.4℃,中位数与平均数相等C .乙同学的体温比甲同学的体温稳定D .甲同学体温的第60百分位数为36.4℃12.从高一某班抽三名学生(抽到男女同学的可能性相同)参加数学竞赛,记事件A 为“三名学生都是女生”,事件B 为“三名学生都是男生”,事件C 为“三名学生至少有一名是男生”,事件D 为“三名学生不都是女生”,则以下正确的是( )A .()18P A = B .事件A 与事件B 互斥 C .()()P C P D ≠ D .事件A 与事件C 对立三、填空题13.某人有3把钥匙,其中2把能打开门,如果随机地取一把钥匙试着开门,把不能打开门的钥匙扔掉,那么第二次才能打开门的概率为__________.14.一个总体分为,A B 两层,用分层抽样方法从总体中抽取一个容量为20的样本.已知B 层中每个个体被抽到的概率都是112,则总体中的个体数为________.15.由于夏季炎热某小区用电量过大,据统计一般一天停电的概率为0.3,现在用数据0、1、2表示停电;用3、4、5、6、7、8、9表示当天不停电,现以两个随机数为一组,表示连续两天停电情况,经随机模拟得到以下30组数据, 28 21 79 14 56 74 06 89 53 90 14 57 62 30 93 78 63 44 71 28 67 03 53 82 47 23 10 94 02 43根据以上模拟数据估计连续两天中恰好有一天停电的概率为________.16.一所初级中学为了估计全体学生的平均身高和方差,通过抽样的方法从初一年级随机抽取了30人,计算得这30人的平均身高为154cm ,方差为30;从初二年级随机抽取了40人,计算得这40人的平均身高为167cm ,方差为20;从初三年级随机抽取了30人,计算得这30人的平均身高为170cm ,方差为10.依据以上数据,若用样本的方差估计全校学生身高的方差,则全校学生身高方差的估计值为_________. 四、解答题17.为了估计某校的一次数学考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在[)40,100上,将这些成绩分成六段[)40,50,[)50,60,…,[)90,100,后得到如图所示部分频率分布直方图.(1)求抽出的60名学生中分数在[)70,80内的人数;(2)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校优秀人数; (3)根据频率分布直方图算出样本数据的中位数.18.为普及抗疫知识,弘扬抗疫精神,某学校组织防疫知识竞赛,比赛分两轮进行,每位选手都必须参加两轮比赛,若选手在两轮比赛中都胜出,则视为该选手赢得比赛,现已知甲、乙两位选手,在第一轮胜出的概率分别为11,23,在第二轮胜出的概率分别为23,34,甲、乙两位选手在一轮二轮比赛中是否胜出互不影响.(1)在甲、乙二人中选派一人参加比赛,谁赢得比赛的概率更大? (2)若甲、乙两人都参加比赛,求至少一人赢得比赛的概率.19.某教育集团为了办好人民满意的教育,每年底都随机邀请8名学生家长代表对集团内甲、乙两所学校进行人民满意度的民主测评(满意度最高分120分,最低分0分,分数越高说明人民满意度越高,分数越低说明人民满意度越低).去年测评的结果(单位:分)如下甲校:96,112,97,108,100,103,86,98; 乙校:108,101,94,105,96,93,97,106(1)分别计算甲、乙两所学校去年人民满意度测评数据的平均数、中位数; (2)分别计算甲、乙两所学校去年人民满意度测评数据的方差;20.在某校2022年春季的高一学生期末体育成绩中随机抽取50个,并将这些成绩共分成五组:[)[)[)[)[]50,60,60,70,70,80,80,90,90,100,得到如图所示的频率分布直方图.在[)50,70的成绩为不达标,在[]70,100的成绩为达标.(1)根据样本频率分布直方图求a的值,并估计样本的众数和中位数(中位数精确到个位);(2)以体育成绩是否达标为依据,用分层抽样的方法在该校2022年春季的高一学生中选出5人,再从这5人中随机选2人,那么这两人中至少有一人体育成绩达标的概率是多少?21.每年的11月9日是我国的全国消防日.119为我国规定的统一火灾报警电话,但119台不仅仅是一部电话,也是一套先进的通讯系统.它可以同中国国土上任何一个地方互通重大灾害情报,还可以通过卫星调集防灾救援力量,向消防最高指挥提供火情信息.佛山某中学为了加强学生的消防安全意识,防范安全风险,特在11月9日组织消防安全系列活动.甲、乙两人组队参加消防安全知识竞答活动,每轮竞答活动由甲、乙各答一题.在每轮竞答中,甲和乙答对与否互不影响,各轮结果也互不影响.已知甲每轮答对的概率为23,乙每轮答对的概率为p,且甲、乙两人在两轮竞答活动中答对3题的概率为5 12.(1)求p的值;(2)求甲、乙两人在三轮竞答活动中答对4题的概率.22.在一个文艺比赛中,由10名专业评审、10名媒体评审和10名大众评审各组成一个评委小组,给参赛选手打分.小组A 85 91 87 93 88 84 97 94 95 86小组B 84 87 92 96 89 95 92 91 94 90小组C 95 89 95 96 97 93 92 90 89 94(1)选择一个可以度量每一组评委打分相似性的量,并对每组评委的打分计算度量值;(2)你能依据(1)的度量值判断小组A,B与C中哪一个更象是由专业人士组成的吗?(3)已知选手小华专业评审得分的平均数和方差分别为195x=,218s=,媒体评审得分的平均数和方差分别为293x=,2212s=,大众评审得分的平均数和方差分别为391x=,2320s=,将这30名评审的平均分作为最终得分,求该选手最终的得分和方差.参考答案:1.C【分析】把该组数据从小到大排列,计算775%⨯,从而找出对应的第75百分位数; 【详解】解:依题意可得这组数据从小到大排列为4、5、5、6、7、8、9, 且775% 5.25⨯=,所以这组数据的第75百分位数为8. 故选:C 2.B【分析】根据方差的性质进行求解即可.【详解】因为样本数据12823,23,,23x x x +++的方差为32,所以数据128,,,x x x 的方差为 23282=. 故选:B 3.D【分析】根据互斥事件与对立事件的概念逐个分析可得答案.【详解】对于A ,“2个小球都是黑色”与“2个小球都是红色”是只互斥不对立事件,故A 不正确;对于B ,“2个小球恰有1个是红色” 与“2个小球都是红色”是只互斥不对立事件,故B 不正确;对于C ,“2个小球都不是红色” 与“2个小球都是红色”是只互斥不对立事件,故C 不正确; 对于D ,“2个小球至多有1个是红色” 与“2个小球都是红色”是对立事件,故D 正确. 故选:D 4.A【分析】根据频率分布直方图,即可结合选项逐一计算平均值以及所占的比重. 【详解】对于A ,估计该地农户家庭年收入的平均值为30.0240.0450.160.1470.280.290.1100.1110.04120.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+ 130.02140.027.687.5⨯+⨯=>,故A 正确,对于B ,家庭年收入不低于8.5万元所占的比例为0.10.10.040.020.020.020.3+++++=,故B 错误,对于C ,该地农户家庭年收入低于4.5万元的农户比率估计为(0.020.04)16%+⨯=,故C 错误,家庭年收入介于4.5万元至7.5万元之间的频率为0.10.140.20.440.5++=<,故D 错误. 故选:A 5.C【分析】根据折线分布图中数据的变化趋势可判断A 选项;利用极差的定义可判断B 选项;利用中位数的定义可判断C 选项;利用数据的波动幅度可判断D 选项.【详解】对于A 选项,1月至2月、6月至8月、10月至11月月跑步里程逐月减少,A 错; 对于B 选项,月跑步里程的极差约为2552015-=>,B 错;对于C 选项,月跑步里程由小到大对应的月份分别为:2月、8月、3月、4月、 1月、5月、7月、6月、11月、9月、10月,所以,月跑步里程的中位数为5月份对应的里程数,C 对;对于D 选项,1月至5月的月跑步里程的波动幅度比6月至11月的月跑步里程的波动幅度小,故1月至5月的月跑步里程的方差相对于6月至11月的月跑步里程的方差更小,D 错. 故选:C. 6.B【分析】首先计算出没有任何限制条件的所有可能,再计算《三国演义》与《水浒传》被选中且在相邻则用捆绑法,再从三部国外著作中选两部然后再分配到每周即可得到结果.【详解】三部国内三部国外各选两部再全排列共有224334C C A ;由于要选《三国演义》与《水浒传》被选中且在相邻两周看完,则将两本书看成一个整体,有22A 种;从三部国外著作中选出两部有23C 种,此时将四本书分布在四周转化为三整体分布在三空中,先从中选一个为《三国演义》与《水浒传》有13C ,剩下两本书再排列有22A 种.综上:22122332224334A C C A 1C C A 6P ==故选:B 7.B【分析】由题知422043324332n n -=++++++,再解方程即可得答案. 【详解】解:因为感染人群中O 型血、A 型血、B 型血、AB 型血的人数比为4:3:3:2,所以,抽取样本量为n 的样本中,O 型血的人数为44332n +++, AB 型血的人数为24332n +++,所以,422043324332n n -=++++++,解得120n = 故选:B 8.D【分析】分别求出()P A ,()P B ,进一步求出()P C 与()P AB ,从而判断AC 选项,在甲抽奖箱抽奖和在乙抽奖箱抽奖互不影响,故事件A 和事件B 相互独立,判断BD 选项.【详解】()42105P A ==,()310P B = 在甲抽奖箱抽奖和在乙抽奖箱抽奖互不影响,故事件A 和事件B 相互独立,B 项正确()321(1)(1)510502C P =--=,故A 正确()()()325P AB P A P B ==()P AB ()2754%50P C +==,故C 正确 事件A 与事件B 相互独立而非互斥,故D 错误. 故选:D. 9.BCD【分析】根据平均数、方差的知识,对四个说法逐一分析,由此得出正确选项 【详解】因为甲队每场进球数为3.2,乙队平均每场进球数为1.8, 甲队平均数大于乙队较多,所以甲队技术比乙队好,所以A 不正确;因为甲队全年比赛进球个数的标准差为3,乙队全年进球数的标准差为0.3, 乙队的标准差小于甲队,所以乙队比甲队稳定,所以B 正确; 因为乙队的标准差为0.3,说明每次进球数接近平均值, 乙队几乎每场都进球,甲队标准差为3, 说明甲队表现时好时坏,所以C ,D 正确, 故选:BCD. 10.ABD【分析】由题意,根据分步乘法计数原理,可得A 的答案;根据古典概型的概率计算公式,可得B 、C 、D 的答案.【详解】对于A ,甲下车的情况有第2号站、第3号站,第4号站,共3种,同理可得,乙下车的情况数也是3,由题意,甲乙两人下车互不影响,则总情况数为339⨯=,故A 正确;对于B ,甲、乙两人同时在第2号站下车的情况数为1,由题意,下车是等可能的,则概率为19,故B 正确; 对于C ,甲、乙两人同时在第4号站下车的情况数为1,由题意,下车是等可能的,则概率为19,故C 错误;对于D ,甲、乙两人在相同车站下车的情况数为3,则在不同车站下车的情况数为936-=,即概率为62=93,故D 正确.故选:ABD. 11.ABC【分析】根据图中数据,依次分析各选项即可得答案.【详解】解:对于A 选项,甲同学体温的极差为36.636.20.4-=℃,故A 选项正确; 对于B 选项,乙同学体温为36.4,36.3,36.5,36.4,36.4,36.3,36.5,其众数为36.4℃,中位数、平均数均为36.4℃,故B 选项正确;对于C 选项,根据图中数据,甲同学的体温平均数为36.4℃,与乙同学的体温平均数相同,但甲同学的体温极差为0.4℃,大于乙同学的体温极差0.2℃,而且从图中容易看出乙同学的数据更集中,故乙同学的体温比甲同学的体温稳定,C 选项正确;对于D 选项,甲同学的体温从小到大排序为36.2,36.2,36.4,36.4,36.5,36.5,36.6,760% 4.2⨯=,故甲同学体温的第60百分位数为36.5℃,故D 选项错误. 故选:ABC 12.ABD【分析】由独立乘法公式求()P A ,根据事件的描述,结合互斥、对立事件的概念判断B 、C 、D 即可.【详解】由所抽学生为女生的概率均为12,则311()()28P A ==,A 正确;,A B 两事件不可能同时发生,为互斥事件,B 正确;C 事件包含:三名学生有一名男生、三名学生有两名男生、三名学生都是男生,其对立事件为A ,D 正确;D 事件包含:三名学生都是男生、三名学生有一名男生、三名学生有两名男生,与C 事件含义相同,故()()P C P D =,C 错误; 故选:ABD13.13【分析】分析试验过程,利用概率的乘法公式即可求出概率. 【详解】记事件A :第二次才能打开门.因为3把钥匙中有2把能打开门,而第一次没有打开,第二次必然能打开.所以()121323P A =⨯=.故答案为:13.14.240【分析】根据分层抽样每个个体抽到的概率相等,即可求出结论 【详解】因为用分层抽样方法从总体中抽取一个容量为20的样本.由B 层中每个个体被抽到的概率都为112 ,知道在抽样过程中每个个体被抽到的概率是112,所以总体中的个体数为12024012÷=.故答案为:240.15.25##0.4【分析】根据题意从30个数据中找出恰有一天停电的情况,再利用古典概型的概率公式可求得结果.【详解】由题意可知恰有一天停电的情况有:28,14,06,90,14,62,30,71,28,03,82,23,共12种,所以连续两天中恰好有一天停电的概率为122305=,故答案为:2516.64.4【分析】利用方差及平均数公式可得()()()()()()30304040303022222221111111100i i i i i i i i i s x x x y y y z z z ωωω======⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑∑∑∑, 进而即得.【详解】初一学生的样本记为1x ,2x ,…,30x ,方差记为21s ,初二学生的样本记为1y ,2y ,…,40y ,方差记为22s ,初三学生的样本记为1z ,2z ,…,30z ,方差记为23s .设样本的平均数为ω,则301544016730170164100ω⨯+⨯+⨯==,设样本的方差为2s .则()()()30403022221111100i i i i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑ ()()()3040302221111100i i i i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑ 又()303011300i i i i x x x x ==-=-=∑∑,故()()()()303011220i ii i x x x x x x ωω==--=--=∑∑,同理()()40120i i y yy ω=--=∑,()()30120ii z z z ω=--=∑,因此,()()()()()()30304040303022222221111111100i i i i i i i i i s x x x y y y z z z ωωω======⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑∑∑∑ ()()()2222221231303040403030100s x s y s z ωωω⎡⎤=+-++-++-⎢⎥⎣⎦()()(){}222130301541644020167164301017016464.4100⎡⎤⎡⎤⎡⎤=⨯⨯+-+⨯+-+⨯+-=⎣⎦⎣⎦⎣⎦.故答案为:64.4. 17.(1)15人 (2)135人 (3)76【分析】(1)根据频率的和等于1求出成绩在[)70,80内的频率,计算对应的频数即可.(2)计算小于85分的频数即可.(3)根据中位数平分频率直方图的面积,求出即可. 【详解】(1)解:由题意得:在频率分布直方图中,小矩形的面积等于这一组的频率,频率的和等于1, 成绩在[)70,80内的频率()10.0050.010.020.0350.005100.25-++++⨯= 人数为0.256015⨯=人;(2)估计该校的优秀人数为不小于85分的频率再乘以样本总量600,即0.0356000.005101352⎛⎫⨯+⨯=⎪⎝⎭人; (3)分数在[)70,80内的频率为0.25,∵分数在[)40,70内的频率为()0.0050.0100.020100.350.5++⨯=<, ∴中位数在[)70,80内,∵中位数要平分方图的面积,∴中位数为0.50.3570760.025-+= 18.(1)甲赢得比赛的概率更大 (2)12【分析】(1)根据独立事件概率乘法公式可分别计算甲、乙赢得比赛的概率,对比即可得到结论;(2)首先求得二人都没有赢得比赛的概率,根据对立事件概率公式可求得结果.【详解】(1)甲赢得比赛的概率为121233⨯=,乙赢得比赛的概率为131344⨯=,1134>,∴甲赢得比赛的概率更大. (2)若二人都没有赢得比赛,则概率为112311134342⎛⎫⎛⎫-⨯-=⨯= ⎪ ⎪⎝⎭⎝⎭,∴甲、乙至少一人赢得比赛的概率为11122-=.19.(1)平均数为100;100;中位数99;99 (2)55.25;29.5【分析】(1)利用平均数、中位数定义及公式直接求即可; (2)利用方差公式直接求即可 【详解】(1)甲学校人民满意度的平均数为:()1961129710810010386981008x =+++++++=甲,甲校:86,96,97,98,100,103,108,112甲学校人民满意度的中位数为10098992+=; 乙学校人民满意度的平均数为:1(10810194105969897106)1008x =+++++++=乙,乙校:93,94,96,97,101,105,106,108乙学校人民满意度的中位数为10197992+=. (2)甲学校人民满意度的方差:()2222222221412380314255.258S =+++++++=甲,乙学校人民满意度的方差:()222222222181********.58S =+++++++=乙.20.(1)0.020a =,众数为65,中位数为73;(2)910.【分析】(1)根据各组频率和为1可求出a 的值,然后根据众数和中位数的定义求解即可;(2)根据分层抽样的概念可知不达标的学生有2人,达标的学生有3人,然后利用列举法,根据古典概型概率公式即得. 【详解】(1)由题知()0.0040.0080.0320.036101a ++++⨯=, 得0.020a =,由直方图可知众数为65;因为()0.0040.036100.4+⨯=,()0.0040.0320.036100.72++⨯=,设中位数为x ,则()0.004100.03610700.0320.5x ⨯+⨯+-⨯=,得73.12573x =≈, 所以中位数为73;(2)分层抽样的方法从不达标和达标的学生中共选出5人,则不达标的学生有2人记为,A B ,达标的学生有3人记为,,a b c ,从这5人中选2人的情况有,,,,,,,AB Aa Ab Ac Ba Bb Bc ab ,,ac bc 共10种,这两人中至少有一人是“达标”的情况有,,Aa Ab Ac ,,,,,,Ba Bb Bc ab ac bc 共9种,设M =“这两人中至少有一人达标”,则()910P M =,所以,这两人中至少有一人达标的概率是910.21.(1)34(2)3196【分析】(1)利用相互独立事件概率的乘法公式列方程求解;(2)分甲有两题没有答对,乙有两题没有答对,甲乙各有一题没有答对三种情况,利用相互独立事件的概率以及独立重复事件的概率的乘法公式求出概率. 【详解】(1)设事件A =“甲第一轮猜对” ,事件B =“乙第一轮猜对” ,事件C =“甲第二轮猜对” ,事件D “乙第二轮猜对 ,∴甲、乙两人在两轮竞答活动中答对3题的概率为 ()P ABCD ABCD ABCD ABCD +++()()()()()()()()()()()()()()()()P A P B P C P D P A P B P C P D P A P B P C P D P A P B P C P D =+++()2533331212221p p p p ⎡⎤=⨯⨯⨯+⨯-⨯⨯=⎢⎥⎣⎦解得34p =或54p =(舍去)34p ∴=; (2)三轮竞答活动中甲乙一共答6题,甲、乙两人在三轮竞答活动中答对4题,即总共有2题没有答对,可能甲有两题没有答对,可能乙有两题没有答对,可能甲乙各有一题没有答对. 甲、乙两人在三轮竞答活动中答对4题的概率32322211223333231321213131C C +C C 344433334496P ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 22.(1)答案见解析 (2)C 组(3)90分;160【分析】(1)可以用方差来度量每一组评委打分的相似性,方差越小,相似程度越高.根据方差公式计算出各组的方差即可.(2)根据第(1)问的结果,方差最小的即为结果.(3)根据题意每一组各有10人,所以选手的最终得分为123101010303030x x x x =++,同理方差为()()(){}2222222112233*********s s x x s x x s x x ⎡⎤⎡⎤⎡⎤=⨯+-+⨯+-+⨯+-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,代入计算即可得到结果.【详解】(1)(1)可以用方差来度量每一组评委打分的相似性,方差越小,相似程度越高.小组A 的平均数1(85918793888497949586)9010A x =+++++++++=,答案第7页,共7页 小组A 的方差2222221[(8590)(9190)(8790)(9390)(8890)10A s =-+-+-+-+- 22222(8490)(9790)(9490)(9590])19(8690)+-+-+-+-=-+,小组B 的平均数1(84879296899592919490)9110B x =+++++++++=, 小组B 的方差2222221[(8491)(8791)(9291)(9691)(8991)10B s =-+-+-+-+- 22222(9591)(9291)(9191)(9491)(90]12.91)2+-+-+-+-+-=,小组C 的平均数1(95899596979392908994)9310C x =+++++++++=, 小组C 的方差2222221[(9593)(8993)(9593)(9693)(9793)10C s =-+-+-+-+- 22222(9393)(9293)(9093)(8993)]7(9493).6+-+-+-+-+=-.(2)由于专业评委给分更符合专业规则,相似程度应该高,即方差小,因而C 组评委更像是专业人士组成的.(3)小华的得分12310101010101095939193303030303030x x x x =++=⨯+⨯+⨯=分. 方差()()(){}2222222112233110101030s s x x s x x s x x ⎡⎤⎡⎤⎡⎤=⨯+-+⨯+-+⨯+-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, {}22221108(9593)1012(9393)1020(9193)30s ⎡⎤⎡⎤⎡⎤=⨯+-+⨯+-+⨯+-⎣⎦⎣⎦⎣⎦, 2160s =.。
概率论和数理统计期末考试题及答案
概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。
则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。
概率论与数理统计试题及评分标准11
四、解 由于事件{X=i}与事件{Y=j}相互独立(i,j=0,1) ,所以
3 3 9 ,........................2 5 5 25 3 2 6 P{X=0,Y=1}=P{X=0}P{Y=1}= ,........................4 5 5 25 3 2 6 P{X=1,Y=0}=P{X=1}P{Y=0}= ,........................6 5 5 25 2 2 4 P{X=1,Y=1}=P{X=1}P{Y=1}= 。 .............8 5 5 25
四、 (10 分)设盒中有 2 个红球 3 个白球,从中每次任取一球,连续取两次,记 X,Y 分别表示第一次与 第二次取出的红球个数,在有放回摸球情况求出(X,Y)的分布律与边缘分布律。
3
A 五、 (10 分)连续性随机变量 X 的密度函数为 f ( x ) 1 x 2 0 1 1 求: (1)系数 A ; (2) X 落在区间 ( , ) 的概率。 2 2
2
B. nX ~ N (0,1)
C.
X
i 1
n
2 i
~ x 2 (n)
D.
X ~ t (n 1) S
D ).
10. 设总体 X ~ N ( , ) , X 1 ,, X n 为抽取样本,则
2
1 n ( X i X ) 2 是( n i 1
2
A. 的无偏估计 B. 的无偏估计 C. 的矩估计 D. 的矩估计
C. P{Y 2} D. Y ~ B(3, ) A. 0. 7 B. 0. 8 C. 0. 6 D. 0. 5 B ). 5. 设相互独立的随机变量 X,Y 均服从 [0,1] 上的均匀分布,令 Z X Y , 则( A. Z 也服从 [0,1] 上的均匀分布 C. Z 服从 [0, 2] 上的均匀分布 6. X ~ N (0,1), Y X , 则 E(Y)=(
佛山科学技术学院 2010-2011学年第二学期《 概率论与数理统计》(B卷)
Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999
六、(8分)某超市为增加销售,对营销方式、管理人员等进行了一系列调整,调整后随机抽查了9天的日销售额(单位:万元),经计算知 。据统计调整前的日平均销售额为 万元,假定日销售额服从正态分布。试问调整措施的效果是否显著?( )
附表: 。
七、(8分)设 的概率密度为
求(1)边缘概率密度 ;问 是否独立?
A.2B.3
C.4D.5
9.设x1,x2,…,x5是来自正态总体N( )的样本,其样本均值和样本方差分别为 和 ,则 服从( )
A.t(4)B.t(5)
C. D.
10.设总体X~N( ), 未知,x1,x2,…,xn为样本, ,检验假设H0∶ = 时采用的统计量是( )
A. B.
C. D.
二、填空题(每小空2分,共12分)
八、(12分)设随机变量服从几何分布,其分布列为
,
求 与
九、(8分)在一天中进入某超市的顾客人数服从参数为 的泊松分布,而进入
超市的每一个人购买 种商品的概率为 ,若顾客购买商品是相互独立的,
求一天中恰有 个顾客购买 种商品的概率。
十、(8分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求 .
A. B.
C. D.
4.设随机变量X的概率分布为( )
X
0
1
2
3
P
0.2
0.3
k
0.1
则k=
A.0.1B.0.2
C.0.3D.0.4
5.设随机变量X的概率密度为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意的实数a,有( )
(完整版)大学概率统计试题及答案
选择填空题(共80分, 其中第1-25小题每题2分,第26-353分) A 、B 是两个随机事件,P( A ) = 0.3,P( B ) = 0.4,且A 与B 相互独立, 则()P A B U = B ;(A) 0.7 (B) 0.58(C) 0.82(D) 0.12A 、B 是两个随机事件,P( A ) = 0.3,P( B ) = 0.4,且A 与B 互不相容,则()P A B =U D ;(A) 0 (B) 0.42(C) 0.88(D) 1已知B,C 是两个随机事件,P( B | C ) = 0.5,P( BC ) = 0.4,则P( C ) = C ; (A) 0.4 (B) 0.5(C) 0.8(D) 0.9袋中有6只白球,4只红球,从中抽取两只,如果作不放回抽样,则抽得的两个球颜色不同的概率为: A ;(A) 815 (B) 415(C) 1225(D) 625袋中有6只白球,4只红球,从中抽取两只,如果作放回抽样,则抽得的两个球颜色不同的概率为: C ;(A) 815 (B) 415(C) 1225(D) 625在区间[0,1]上任取两个数,则这两个数之和小于12的概率为 C ;(A) 1/2 (B) 1/4 (C) 1/8(D) 1/16在一次事故中,有一矿工被困井下,他可以等可能地选择三个通道之一逃生.1/2,通过第二个通道逃生成功的1/3,通过第三个通道逃生成功的可能性为1/6.请问:该矿工能成功逃生的可能性是 C .(A) 1 (B) 1/2(C) 1/3(D) 1/68.已知某对夫妇有四个小孩,但不知道他们的具体性别。
设他们有Y 个儿子,如果生男孩的概率为0.5,则Y 服从 B 分布. (A) (01)- 分布 (B) (4,0.5)B (C) (2,1)N(D)(2)π9.假设某市公安机关每天接到的110报警电话次数X 可以用泊松(Poisson)分布()πλ来描述.已知{99}{100}.P X P X ===则该市公安机关平均每天接到的110报警电话次数为 C 次. (A) 98 (B) 99(C) 100(D) 10110.指数分布又称为寿命分布,经常用来描述电子器件的寿命。
(完整版)大学概率统计试题及答案.docx
__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _⋯⋯⋯⋯⋯⋯⋯注意:以下是本次考试可能用到的分位点以及标准正态分布的分布函数值:⋯t0.025(15)t 0.05 (15)t0. 025 (24)t0.05 (24)(2)(0.8)(1)⋯⋯ 2.1315 1.7531 2.0639 1.71090.97720.78810.8413⋯⋯⋯一、选择填空题(共 80 分 , 其中第 1-25 小题每题 2 分 ,第 26-35⋯小题每题 3 分)得分:⋯业⋯ 1. A 、B 是两个随机事件, P( A ) = 0.3,P( B ) = 0.4,且 A 与 B 相互独立,则专⋯P( AU B) = B;级⋯年⋯(A) 0.7(B) 0.58(C) 0.82(D) 0.12⋯⋯⋯ 2. A 、B 是两个随机事件, P( A ) = 0.3 ,P( B ) = 0.4 ,且 A 与 B 互不相容 ,则⋯P( A U B)D;⋯⋯⋯(A) 0(B)0.42(C)0.88(D)1⋯:⋯ 3.已知 B,C 是两个随机事件 ,P( B | C ) = 0.5,P( BC ) = 0.4,则 P( C ) = C ;别)⋯系封(A) 0.4(B)0.5(C)0.8(D)0.9⋯答⋯ 4.袋中有 6 只白球 ,4 只红球 ,从中抽取两只 ,如果作不放回抽样 ,则抽得的两个球不⋯颜色不同的概率为 : A;内⋯⋯⋯84126封⋯(A) 15(B)15(C)25(D)25密⋯(⋯⋯ 5. 袋中有 6 只白球 ,4 只红球 ,从中抽取两只 ,如果作放回抽样 ,则抽得的两个球颜:⋯色不同的概率为 :C;⋯号⋯学84126⋯(C)(D)⋯(A)(B)15152525⋯⋯1⋯的概率为C;则这两个数之和小于密6.在区间 [0,1] 上任取两个数 ,2⋯:⋯(A) 1/ 2(B) 1/ 4(C)1/ 8(D)1/16⋯名⋯姓7.在一次事故中,有一矿工被困井下,他可以等可能地选择三个通道之一逃生.⋯⋯假设矿工通过第一个通道逃生成功的可能性为1/2,通过第二个通道逃生成功的⋯⋯可能性为 1/3,通过第三个通道逃生成功的可能性为1/6.请问:该矿工能成功逃⋯生的可能性是C.(A) 1(B) 1/ 2(C) 1/ 3(D) 1/ 68.已知某对夫妇有四个小孩,但不知道他们的具体性别。
高考数学压轴专题佛山备战高考《计数原理与概率统计》知识点总复习有答案
数学《计数原理与概率统计》复习资料一、选择题1.2020(1)(1)i i +--的值为( )A .0B .1024C .1024-D .10241-【答案】A【解析】【分析】利用二项式定理展开再化简即得解.【详解】由题得原式=11223319192011223319192020202020202020201++i )1i )C i C i C i C i C i C i C i C i ++++--+-+-+L L (( =1133551919202020202()C i C i C i C i ++++L=1133555331132020202020202(++)C i C i C i C i C i C i ++++L=113355553312020202020202(C )C i C i C i i C i C i +++---L=0.故选:A【点睛】本题主要考查二项式定理,意在考查学生对该知识的理解掌握水平和分析推理能力.2.若不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的区域为Ω,不等式222210x y x y +--+≤表示的区域为T ,则在区域Ω内任取一点,则此点落在区域T 中的概率为( )A .4πB .8πC .5πD .10π 【答案】D【解析】【分析】作出不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩对应的平面区域,求出对应的面积,利用几何概型的概率公式即可得到结论.【详解】作出不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的区域Ω,不等式222210x y x y +--+≤化为()()22111x y -+-≤ 它表示的区域为T ,如图所示;则区域Ω表示ABC V ,由240 230x y x y -+=⎧⎨--=⎩,解得点()12B -,; 又()20A -,,30B (,),∴()132252ABC S =⨯+⨯=V , 又区域T 表示圆,且圆心()11M ,在直线230x y +-=上,在ABC V 内的面积为21122ππ⨯=; ∴所求的概率为2510P ππ==,故选D . 【点睛】 本题主要考查了几何概型的概率计算问题,利用数形结合求出对应的面积是解题的关键,属于中档题.3.下列四个结论中正确的个数是(1)对于命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∃∈都有210x ->;(2)已知2(2,)X N σ:,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为ˆ23yx =-; (4)“1x ≥”是“12x x +≥”的充分不必要条件. A .1B .2C .3D .4【答案】C【解析】【分析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∀∈都有210x ->,是错误的;(2)中,已知()22,X N σ~,正态分布曲线的性质,可知其对称轴的方程为2x =,所以 (2)0.5P X >=是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为ˆ23yx =-是正确;(4)中,当1x ≥时,可得12x x +≥=成立,当12x x +≥时,只需满足0x >,所以“1x ≥”是“12x x+≥”成立的充分不必要条件. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.某小学要求下午放学后的17:00-18:00接学生回家,该学生家长从下班后到达学校(随机)的时间为17:30-18:30,则该学生家长从下班后,在学校规定时间内接到孩子的概率为( )A .78B .34C .12D .14【答案】A【解析】【分析】根据题意,设学生出来的时间为x ,家长到达学校的时间为y ,转化成线性规划问题,利用面积型几何概型求概率,即可求得概率.【详解】解:根据题意,设学生出来的时间为x ,家长到达学校的时间为y ,学生出来的时间为17:00-18:00,看作56x ≤≤,家长到学校的时间为17:30-18:30,5.5 6.5y ≤≤,要使得家长从下班后,在学校规定时间内接到孩子,则需要y x ≥,则相当于565.5 6.5x y ≤≤⎧⎨≤≤⎩,即求y x ≥的概率, 如图所示:约束条件对应的可行域面积为:1,则可行域中y x ≥的面积为阴影部分面积:111712228-⨯⨯=, 所以对应的概率为:77818=, 即学生家长从下班后,在学校规定时间内接到孩子的概率为:78. 故选:A.【点睛】本题考查利用面积型几何概型求概率,考查运算求解能力.5.三位同学参加数学、物理、化学知识竞赛,若每人都选择其中两个科目,则有且仅有两人选择的科目完全相同的概率是( )A .14B .13C .12D .23【答案】D【解析】【分析】 先求出三位同学参加数学、物理、化学知识竞赛,每人都选择其中两个科目的基本事件总数,再求出有且仅有两人选择的科目完全相同所包含的基本事件个数,利用古典概型的概率计算公式即可得到答案.【详解】三位同学参加数学、物理、化学知识竞赛,每人都选择其中两个科目共有233()27C =种不同结果,有且仅有两人选择的科目完全相同共有22133218C C C ⋅⋅=种,故由古典概型的概率计算公式可得所求概率为182273=. 故选:D【点睛】不同考查古典概型的概率计算问题,涉及到组合的基本应用,考查学生的逻辑推理与数学运算能力,是一道中档题.6.设*N n ∈,n a 为()()41n nx x +-+的展开式的各项系数之和,7c t =-,R t ∈,1222555n n n na a a b ⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦L ([]x 表示不超过实数x 的最大整数).则()()22n n t b c -++的最小值为( ) A .12 BC.D.【答案】A【解析】【分析】令1x =可得,52n n n a =-,求出n b ,则22()()n n t b c -++的几何意义为点(n ,2)(*)2n n n N -∈到点(,7)t t -的距离的平方,最小值即(3,3)到7y t =-的距离d 的平方,然后由点到直线的距离公式求解即可得答案.【详解】令1x =可得,52n nn a =-,2[][]55nn n n na n n =-g , 设25n n n n c =g ,所以1+11(1)22223()()055555n n n n n n n n n c c n +++-=-=-<g g , 所以数列{}n c 单调递减,所以数列2{}5nn n n -g 是单调递增数列,(增函数+增函数=增函数) 当n →+∞时,20,5n n n →g 且20,5nn n >g 所以2[][]155n n n n na n n n =-=-g . 21222[][][]12(1)5552n n n na a a n n b n -=++⋯+=++⋯+-=, 则22()()n n t b c -++的几何意义为点(n ,2)(*)2n n n N -∈到点(,7)t t -的距离的平方, 即求点(n ,2)(*)2n n n N -∈到7y t =-的距离d 的最小值,所以222|7|157|14||()|4424n n n d n n n -+-==+-=+-,当1n =时,957||=4444d =-; 当2n =时,2557||=4444d =-当3n =时,4957||=2=44442d =-; 当4n =时,8157||=6=44442d =-; 由函数的图象可知当5,6,7,n =L时,d > 所以点(n ,2)(*)2n n n N -∈为(3,3)时,它到7y t =-的距离d 最小,d ==Q ,∴. ∴()()22n n t b c -++的最小值为12. 故选:A .【点睛】本题考查了二项式定理的应用,考查了点到直线的距离公式,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.在区间[]0,1内随机取两个数m 、n ,则关于x的方程20x m +=有实数根的概率为( )A .18B .17C .16D .15【答案】A【解析】【分析】根据方程有实根可得到约束条件,根据不等式组表示的平面区域和几何概型概率公式可求得结果.【详解】若方程20x m +=有实数根,则40n m ∆=-≥.如图,400101n m m n -≥⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域与正方形0101m n ≤≤⎧⎨≤≤⎩的面积之比即为所求的概率,即111124118SPS⨯⨯===⨯阴影正方形.故选:A.【点睛】本题考查几何概型中面积型概率问题的求解,涉及到线性规划表示的平面区域面积的求解,关键是能够根据方程有实根确定约束条件.8.如图所示,将四棱锥S-ABCD的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种色可供使用,则不同的染色方法种数为()A.240 B.360 C.420 D.960【答案】C【解析】【分析】可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法原理即可得出结论.【详解】由题设,四棱锥S-ABCD的顶点S、A、B所染的颜色互不相同,它们共有54360⨯⨯=种染色方法.设5种颜色为1,2,3,4,5,当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法,若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有607420⨯=(种).故选:C【点睛】本题考查分类加法原理、分步乘法原理的综合应用,考查学生的分类讨论的思想、逻辑推理能力,是一道中档题.9.设某中学的女生体重y (kg )与身高x (cm )具有线性相关关系,根据一组样本数(),i i x y ()1,2,3,,i n =L L ,用最小二乘法建立的线性回归直线方程为ˆ0.8585.71yx =-,给出下列结论,则错误的是( ) A .y 与x 具有正的线性相关关系B .若该中学某女生身高增加1cm ,则其体重约增加0.85kgC .回归直线至少经过样本数据(),i i x y ()1,2,3,,i n =L L 中的一个D .回归直线一定过样本点的中心点(),x y【答案】C【解析】【分析】根据回归直线方程的性质和相关概念,对选项进行逐一分析即可.【详解】因为0.850k =>,所以y 与x 具有正的线性相关关系,故A 正确;该中学某女生身高增加1cm ,则其体重约增加0.85kg ,故B 正确; 回归直线一定过样本点的中心点(),x y ,回归直线有可能不经过样本数据,故D 正确;C 错误.故选:C .【点睛】本题考查线性回归直线方程的定义,相关性质,属基础题.10.若随机变量X 的分布列为( )且()1E X =,则随机变量X 的方差()D X 等于( )A .13B .0C .1D .23【答案】D【解析】分析:先根据已知求出a,b 的值,再利用方差公式求随机变量X 的方差()D X .详解:由题得1113,,130213a b a b a b ⎧++=⎪⎪∴==⎨⎪⨯++=⎪⎩ 所以2221112()(01)(11)(21).3333D X =-⋅+-⋅+-⋅= 故答案为D.点睛:(1)本题主要考查分布列的性质和方差的计算,意在考查学生对这些知识的掌握水平.(2) 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,那么D ξ=211()x E p ξ-⋅+222()x E p ξ-⋅+…+2()n n x E p ξ-⋅,称为随机变量ξ的均方差,简称为方差,式中的E ξ是随机变量ξ的期望.11.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种【答案】D【解析】 4项工作分成3组,可得:24C =6, 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:36363A ⨯=种. 故选D.12.已知()812x +展开式的二项式系数的最大值为a ,系数的最大值为b ,则b a 的值( )A .1265B .1285C .1253D .26【答案】B【解析】【分析】根据二项式系数的性质求得a ,系数的最大值为b 求得b ,从而求得b a的值. 【详解】由题意可得4870a C ==,又展开式的通项公式为182r r r r T C x +=,设第1r +项的系数最大,则11881188·2?2·2?2r r r r r r r r C C C C ++--⎧⎨⎩……,即56r r ⎧⎨⎩…„, 求得=5r 或6,此时,872b =⨯,∴1285b a =, 故选:B .【点睛】本题主要考查二项式系数的性质,第n 项的二项式系数与第n 项的系数之间的关系,属于中档题.13.某中学2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:则下列结论正确的是( )A .与2015年相比,2018年一本达线人数减少B .与2015年相比,2018二本达线人数增加了0.5倍C .2015年与2018年艺体达线人数相同D .与2015年相比,2018年不上线的人数有所增加【答案】D【解析】【分析】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S . 观察柱状统计图,找出各数据,再利用各数量间的关系列式计算得到答案.【详解】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S .对于选项A.2015年一本达线人数为0.28S .2018年一本达线人数为0.24 1.50.36S S ⨯=,可见一本达线人数增加了,故选项A 错误;对于选项B ,2015年二本达线人数为0.32S ,2018年二本达线人数为0.4 1.50.6S S ⨯=,显然2018年二本达线人数不是增加了0.5倍,故选项B 错误;对于选项C ,2015年和2018年.艺体达线率没变,但是人数是不相同的,故选项C 错误;对于选项D ,2015年不上线人数为0.32S .2018年不上线人数为0.28 1.50.42S S ⨯=.不达线人数有所增加.故选D. 【点睛】本题考查了柱状统计图以及用样本估计总体,观察柱状统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.14.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为1ξ;当无放回依次取出两个小球时,记取出的红球数为2ξ,则( ) A .12E E ξξ<,12D D ξξ< B .12E E ξξ=,12D D ξξ> C .12E E ξξ=,12D D ξξ< D .12E E ξξ>,12D D ξξ>【答案】B 【解析】 【分析】分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系. 【详解】1ξ可能的取值为0,1,2;2ξ可能的取值为0,1,()1409P ξ==,()1129P ξ==,()141411999P ξ==--=, 故123E ξ=,22214144402199999D ξ=⨯+⨯+⨯-=. ()22110323P ξ⨯===⨯,()221221323P ξ⨯⨯===⨯, 故223E ξ=,2221242013399D ξ=⨯+⨯-=, 故12E E ξξ=,12D D ξξ>.故选B. 【点睛】离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.15.设2012(12)n nn x a a x a x a x L -=++++,若340a a +=,则5a =( )A .256B .-128C .64D .-32【答案】D 【解析】 【分析】由题意利用二项展开式的通项公式求得n 的值,从而求得5a 的值.【详解】∵()201212nn n x a a x a x a x -=++++L ,∵334434220n n a a C C +=⋅-+⋅-=()(),5n ∴=,则5555232a C (),=⋅-=- 故选D . 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16.我国在北宋1084年第一次印刷出版了《算经十书》,即贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》、《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》和《四元玉鉴》.这些书中涉及的很多方面都达到古代数学的高峰,其中一些“算法”如开立方和开四次方也是当时世界数学的高峰.某图书馆中正好有这十本书现在小明同学从这十本书中任借两本阅读,那么他取到的书的书名中有“算”字的概率为( ) A .518B .12C .59D .79【答案】D 【解析】 【分析】现在小明同学从这十本书中任借两本阅读,基本事件总数210C 45n ==,他取到的书的书名中有“算”字包含的基本事件总数211555C C C 35m =+=,由此能求出他取到的书的书名中有“算”字的概率. 【详解】解: 小明同学从这十本书中任借两本阅读,基本事件总数210C 45n ==,他取到的书的书名中有“算”字包含的基本事件总数211555C C C 35m =+=,那么他取到的书的书名中有“算”字的概率为357459m p n ===. 故选:D . 【点睛】本题考查排列组合与古典概型的综合应用,难度一般.注意此题中的书名中有“算”字包含两种情况:仅有一本书的书名中有“算”、两本书的书名中都有“算”,分类需要谨慎.17.古代人常常会研究“最大限度”问题,下图是一个正三角形内最大限度地可以放入三个同样大小的圆,若将一个质点随机投入如图所示的正三角形ABC 中(阴影部分是三个半径相同的圆,三个圆彼此互相外切,且三个圆与正三角形ABC 的三边分别相切),则质点落在阴影部分内部的概率是()A.2334-B.(233)4π-C.2332-D.(233)2π-【答案】D【解析】【分析】设圆的半径为r,表示出三角形的边长,分别求出圆的面积和三角形面积,根据几何概型求解概率.【详解】设“质点落在阴影部分内部”为事件M.如右图所示:设圆的半径为r,正三角形ABC的边长为a.因为130PBO∠=︒,所以3tan30rBP=︒=3BP r=.同理,3CQ r=.又因为122PQ O O r==,所以332(232)BP CQ PQ r r r r BC a++=++===,所以由几何概型得,点落在阴影部分内部的概率是2222(233)()133(232)4P Ma a rπ-===⨯+.故选:D.【点睛】此题考查求几何概型,关键在于准确求出圆的面积和三角形的面积,找出其中的等量关系即可得解.18.已知变量y关于x的回归方程为0.5ˆbxy e-=,其一组数据如下表所示:x1234若5x =,则预测y 的值可能为( ) A .5e B .112eC .7eD .152e【答案】D 【解析】 【分析】将式子两边取对数,得到$ln 0.5y bx =-,令ln z y $=,得到0.5z bx =-,根据题中所给的表格,列出,x z 的取值对应的表格,求得,x z ,利用回归直线过样本中心点,列出等量关系式,求得 1.6b =,得到 1.60.5z x =-,进而得到$ 1.60.5x y e -=,将5x =代入,求得结果. 【详解】由$0.5bx y e -=,得$ln 0.5y bx =-,令ln z y $=,则0.5z bx =-.12342.54x +++==,1346 3.54z +++==, ∵(,)x z 满足0.5z bx =-,∴3.5 2.50.5b =⨯-, 解得 1.6b =,∴ 1.60.5z x =-,∴ 1.60.5x y e -=,当5x =时,$151.650.52y e e ⨯-==,故选D. 【点睛】该题考查的是有关回归分析的问题,涉及到的知识点将对数型回归关系转化为线性回归关系,根据回归直线过样本中心点求参数,属于简单题目.19.某公司在2014~2018年的收入与支出情况如下表所示:根据表中数据可得回归直线方程为$$0.7y x a=+,依此估计如果2019年该公司收入为8亿元时的支出为( ) A .4.502亿元 B .4.404亿元 C .4.358亿元 D .4.856亿元【答案】D 【解析】 【分析】先求 3.92x =,2y =,根据$0.7a y x =-,求解$0.744a =-,将8x =代入回归直线方程为$$0.7y x a=+,求解即可. 【详解】 2.2 2.4 3.8 5.2 6.03.925x ++++==,0.2 1.5 2.0 2.5 3.825y ++++==$0.720.7 3.920.744a y x =-=-⨯=-即$0.70.744y x =-令8x =,则$0.780.744 4.856y =⨯-= 故选:D 【点睛】本题考查回归分析,样本中心点(),x y 满足回归直线方程,是解决本题的关键.属于中档题.20.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C .17D .710【答案】B 【解析】 【分析】根据条件概率的计算公式即可得出答案. 【详解】3311166617()216A P AB C C C +==Q ,11155561116691()1216C C C P B C C C =-=()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B 【点睛】本题主要考查了利用条件概率计算公式计算概率,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率分布表为: 六、已知离散型随机变量(X,Y) 已知离散型随机变量( , ) 概率分布表为
X 0 1 2
Y -1
0
2 0 0.1
0.2 0.1 0.05 0.3 0
0.15 0.1
(1) 求X,Y的边缘概率分布 判断 的边缘概率分布,判断 是否独立. 的边缘概率分布 判断X,Y是否独立 是否独立 (2) 求Z=X+Y的概率分布 的概率分布. 的概率分布
4. 设随机变量 服从区间 设随机变量X 服从区间[1,5]上的均匀分布 则 上的均匀分布,则 上的均匀分布
P {2 < X ≤ 4.5} = ____
5. 设事件 A ,B ,C 满足 满足P(A)=P(B)=P(C)=1/4,P(AB)=0 P(AC)=P(BC)=1/16,则事件 A ,B ,C 全不发生的概率是____ 则事件 全不发生的概率是
的分布函数为: 三. 设连续型随机变量 X 的分布函数为:
1 − ke − x 2 , x > 0 F ( x) = x≤0 0 ,
试求 (1) k 的值; 的值 (2) E(X) , D(X).
有一批建筑房屋用的木柱,其中 其中80%的长度不小于 3 米,现 四. 有一批建筑房屋用的木柱 其中 的长度不小于 现 从这批木柱中随机抽取100根,问其中至少有 根短于 米的 问其中至少有30根短于 从这批木柱中随机抽取 根 问其中至少有 根短于3米的 概率是多少? 概率是多少
8. 设随机变量 X ~ N ( µ ,1), Y ~ χ 2 ( 3); 又X与Y相互独立, 相互独立,
X −µ 则 服从 __________ 分布 Y 3
(以下各题均为 分) 以下各题均为10分 以下各题均为 一个工厂有甲、 二、一个工厂有甲、乙、丙三个车间生产同一种螺 每个车间的产量分别占总产量的25%,35%, 钉,每个车间的产量分别占总产量的 , , 40%,并且设它们的次品率分别是 ,并且设它们的次品率分别是5%,4%,2%, , , , 现在从它们混合在一起的产品中任取一个, 现在从它们混合在一起的产品中任取一个,发现是 次品,问该次品是甲车间生产的概率是多少? 次品,问该次品是甲车间生产的概率是多少?
P {2 < X ≤ 4.5} = ____
5. 设事件 A ,B ,C 满足P(A)=P(B)=P(C)=1/4,P(AB)=0 满足 P(AC)=P(BC)=1/16,则事件 A ,B ,C 全不发生的概率是 全不发生的概率是____ 则事件
6. 设随机变量 X 的分布函数为
则 A = _____, P { X <
t 0.025 ( 36) = 2.0281, t 0.025 ( 35) = 2.0301
填空题(每小题3分 一. 填空题(每小题 分,共30分) 分 1. 设事件 与B 相互独立,且 P ( A) = 0.2, P ( B ) = 0.3 , 设事件A 相互独立,
则 P ( A U B ) = ______
( 已知 Φ (1.5) = 0.9332,Φ ( 2.0) = 0.9772, Φ ( 2.3) = 0.9893,Φ ( 2.5) = 0.9938
注:运算时取最接近的数据 运算时取最接近的数据
设随机变量X服从标准正态分布 服从标准正态分布, 五. 设随机变量 服从标准正态分布,试求 Y = X 2 + 1 的概率密度函数。 的概率密度函数。
X −µ 则 服从 __________ 分布 Y 3
(以下各题均为 分) 以下各题均为10分 以下各题均为 二、一个工厂有甲、乙、丙三个车间生产同一种螺 一个工厂有甲、 钉,每个车间的产量分别占总产量的25%,35%, 每个车间的产量分别占总产量的 , , 40%,并且设它们的次品率分别是 ,并且设它们的次品率分别是5%,4%,2%, , , , 现在从它们混合在一起的产品中任取一个, 现在从它们混合在一起的产品中任取一个,发现是 次品,问该次品是甲车间生产的概率是多少? 次品,问该次品是甲车间生产的概率是多少?
解
t 0.025 ( 36) = 2.0281, t 0.025 ( 35) = 2.0301 H 0 : µ = 70 = µ 0 H 1 : µ ≠ 70
X = 66.5 n = 36 s = 15 α = 0.05 X − µ0 X − µ0 ~ t ( n − 1) P > tα 2 ( n − 1) = α = 0.05 s n s n tα 2 ( n − 1) = t 0.025 ( 35) = 2.0301
π
0 F ( x ) = A sin x 1
x<0 0≤ x≤π 2 x>π 2
3
} = _____ .
7. 已知 E ( X ) = 10, D( X ) = 4, 由切比雪夫不等式,若 由切比雪夫不等式, P{ X − 10 ≥ c } ≤ 0.08, 则c = ___ 8. 设随机变量 X ~ N ( µ ,1), Y ~ χ 2 ( 3); 又X与Y相互独立, 相互独立,
( 已知 Φ (1.5) = 0.9332,Φ ( 2.0) = 0.9772, Φ ( 2.3) = 0.9893,Φ ( 2.5) = 0.9938
注:运算时取最接近的数据 运算时取最接近的数据
设随机变量X服从标准正态分布 服从标准正态分布, 五. 设随机变量 服从标准正态分布,试求 Y = X 2 + 1 的概率密度函数。 的概率密度函数。
概率分布表为: 六、已知离散型随机变量(X,Y) 已知离散型随机变量( , ) 概率分布表为
X 0 1 2
Y -1
0
2 0 0.1
0.2 0.1 0.05 0.3 0
0.15 0.1
(1) 求X,Y的边缘概率分布 判断 的边缘概率分布,判断 是否独立. 的边缘概率分布 判断X,Y是否独立 是否独立 (2) 求Z=X+Y的概率分布 的概率分布. 的概率分布
2. 对随机变量 X 与Y,已知 已知EX=2,EY=5,DX=16,DY=4, 已知 ρ XY = 0.25 ,则E(X+3Y)=_____,D(X-Y)=_____. 则 3. 已知在 10 只晶体管中有 2 只次品,在其中任取两次 每次 只次品 在其中任取两次,每次 在其中任取两次 作不放回抽样,则第二次取出的是次品的概率 取 1 只,作不放回抽样 则第二次取出的是次品的概率 作不放回抽样 则第二次取出的是次品的概率____
概率论与数理统计试题及答案
填空题(每小题3分 一. 填空题(每小题 分,共30分) 分 1. 设事件 与B 相互独立,且 P ( A) = 0.2, P ( B ) = 0.3 , 设事件A 相互独立,
则 P ( A U B ) = ______
2. 对随机变量 X 与Y,已知 已知EX=2,EY=5,DX=16,DY=4, 已知 ρ XY = 0.25 ,则E(X+3Y)=_____,D(X-Y)=_____. 则 3. 已知在 10 只晶体管中有 2 只次品,在其中任取两次 每次 只次品 在其中任取两次,每次 在其中任取两次 作不放回抽样,则第二次取出的是次品的概率 取 1 只,作不放回抽样 则第二次取出的是次品的概率 作不放回抽样 则第二次取出的是次品的概率____ 4. 设随机变量X 服从区间[1,5]上的均匀分布 则 设随机变量 服从区间 上的均匀分布,则 上的均匀分布
的概率密度为: 七. 设总体 X 的概率密度为: (θ + 1) x θ ,
f ( x) = 0,
0< x<1 其它
的矩估计量。 求参数 θ 的矩估计量。 八、设某次考试的考生成绩服从正态分布,从中 设某次考试的考生成绩服从正态分布, 随机抽取36位考生的成绩 算得平均成绩为66.5 位考生的成绩, 随机抽取 位考生的成绩,算得平均成绩为 标准差为15分 问在显著性水平0.05下 分,标准差为15分。问在显著性水平0.05下,是否 可以认为这次考试全体考生的平均成绩为70分 可以认为这次考试全体考生的平均成绩为 分?
的概率密度为: 七. 设总体 X 的概率密度为: (θ + 1) x θ ,
f ( x) = 0,
0< <1 其它
的矩估计量。 求参数 θ 的矩估计量。
八、设某次考试的考生成绩服从正态分布,从中 设某次考试的考生成绩服从正态分布, 随机抽取36位考生的成绩 算得平均成绩为66.5 位考生的成绩, 随机抽取 位考生的成绩,算得平均成绩为 标准差为15分 问在显著性水平0.05下,是否 分,标准差为 分。问在显著性水平 下 可以认为这次考试全体考生的平均成绩为70分 可以认为这次考试全体考生的平均成绩为 分?
三. 设连续型随机变量 X 的分布函数为: 的分布函数为:
1 − ke − x 2 , x > 0 F ( x) = x≤0 0 ,
的值; 试求 (1) k 的值 (2) E(X) , D(X).
有一批建筑房屋用的木柱,其中 其中80%的长度不小于 3 米,现 四. 有一批建筑房屋用的木柱 其中 的长度不小于 现 从这批木柱中随机抽取100根,问其中至少有 根短于 米的 问其中至少有30根短于 从这批木柱中随机抽取 根 问其中至少有 根短于3米的 概率是多少? 概率是多少
X − µ0 66.5 − 70 = = −1.4 s n 15 36
∴
− 1.4 < 2.0301
接受 H 0 , 即认为平均成绩为 70分。
6. 设随机变量 X 的分布函数为
则 A = _____, P { X <
π
0 F ( x ) = A sin x 1
x<0 0≤ x≤π 2 x>π 2
3
} = _____ .
7. 已知 E ( X ) = 10, D( X ) = 4, 由切比雪夫不等式,若 由切比雪夫不等式, P{ X − 10 ≥ c } ≤ 0.08, 则c = ___