三年高考数学理试题分项解析专题 立体几何选择填空解析含解析

合集下载

三年高考(2014-2016)数学(理)试题分项版解析 专题10立体几何(选择填空)解析版 Word版含解析

三年高考(2014-2016)数学(理)试题分项版解析 专题10立体几何(选择填空)解析版 Word版含解析

三年高考(2014-2016)数学(理)试题分项版解析第十章 立体几何一、选择题1. 【2014高考北京理第8题】如图,正方体ABCD —A 1B 1C 1D 1的棱长为2,动点E ,F 在棱A 1B 1上,动点P ,Q 分别在棱AD ,CD 上.若EF =1,A 1E =x ,DQ =y ,DP =z (x ,y ,z 大于零),则四面体P —EFQ 的体积( )A .与x ,y ,z 都有关B .与x 有关,与y ,z 无关C .与y 有关,与x ,z 无关D .与z 有关,与x ,y 无关 【答案】D考点:点到面的距离;锥体的体积.【名师点睛】本题考查空间下几何体中相应点的坐标以及四面体的体积,点到面的距离,本题属于基础题,要准确确定三角形的底和高,利用锥体的体积求出多面体的体积.2.【2014高考北京理第7题】在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D A B C 在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S , 故选D.考点:三棱锥的性质,空间中的投影,难度中等.【名师点睛】本题考查空间直角坐标系下几何体的位置和相应点的坐标以及正投影的概念,正投影的位置、形状和面积,本题属于基础题,要准确写出点的坐标,利用坐标求出三角形的面积.3. 【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【答案】A 【解析】试题分析: 该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.4. 【2014高考广东卷.理.7】若空间中四条直线两两不同的直线1l .2l .3l .4l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( )A .14l l ⊥B .14//l lC .1l .4l 既不平行也不垂直D .1l .4l 的位置关系不确定 【答案】D【解析】如下图所示,在正方体1111ABCD A BC D -中,取1AA 为2l ,1BB 为3l ,取AD 为1l ,BC 为4l ,D 1C 1B 1A 1DCBA14//l l ;取AD 为1l ,AB 为4l ,则14l l ⊥;取AD 为1l ,11A B 为4l ,则1l 与4l 异面,因此1l .4l 的位置关系不确定,故选D .【考点定位】本题考查空间中直线的位置关系的判定,属于中等题.【名师点晴】本题主要考查的是空间点、线、面的位置关系,属于中等题.解题时一定要注意选“正确”还是选“错误”, 否则很容易出现错误.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理.5.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C 【解析】试题分析:由题意可知,圆柱的侧面积为122416S ππ=⋅⋅=,圆锥的侧面积为2122482S ππ=⋅⋅⋅=,圆柱的底面面积为2324S ππ=⋅=,故该几何体的表面积为12328S S S S π=++=,故选C.考点: 三视图,空间几何体的体积. 【名师点睛】由三视图还原几何体的方法:5.【 2013湖南7】已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于A .1BC .2D .2【答案】 C【解析】试题分析: 由题知,正方体的棱长为1,水平放置的正方体,当正视图为正方形时,其面积最小为1;因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为. 【考点定位】三视图【名师点睛】本题主要考查了简单空间图形的三视图,解决问题的关键是正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.6.【 2014湖南7】一块石材表示的几何体的三视图如图2所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( ) A.1 B.2 C.3 D.4【答案】B【考点定位】三视图 内切圆 球 三棱柱【名师点睛】解决有关三视图的题目,主要是根据三视图首先得到几何体的空间结构图形,然后运用有关立体几何的知识进行发现计算即可,问题在于如何正确的判定几何体的空间结构,主要是根据“长对正,高平齐,宽相等”进行判断.7.【2015高考山东,理7】在梯形ABCD 中,2ABC π∠=,//,222AD BC BC AD AB === .将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )23π (B )43π (C )53π (D )2π 【答案】C【解析】直角梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为:2215121133V V V πππ=-=⨯⨯-⨯⨯⨯=圆柱圆锥 故选C.【考点定位】1、空间几何体的结构特征;2、空间几何体的体积.【名师点睛】本题考查了空间几何体的结构特征及空间几何体的体积的计算,重点考查了圆柱、圆锥的结构特征和体积的计算,体现了对学生空间想象能力以及基本运算能力的考查,此题属中档题.8. 【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16 B.13 C.12D.1 【答案】A 【解析】试题分析:分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A.考点:1.三视图;2.空间几何体体积计算.【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.9.【2014高考陕西版理第5题】已知底面边长为1在同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π【答案】D 【解析】试题分析:根据正四棱柱的几何特征得:该球的直径为正四棱柱的体对角线,故22R ==,即得1R =,所以该球的体积224441333V R πππ===,故选D .考点:正四棱柱的几何特征;球的体积.【名师点晴】本题主要考查的是正四棱柱的几何特征;球的体积,属于容易题.解题时一定要注意正四棱柱的几何特征(实际上是一个特殊的长方体),求出球的直径,进而得到半径,然后利用球的体积公式直接运算即可10. 【2015高考陕西,理5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D【解析】由三视图知:该几何体是半个圆柱,其中底面圆的半径为1,母线长为2,所以该几何体的表面积是()1211222342ππ⨯⨯⨯++⨯=+,故选D . 【考点定位】1、三视图;2、空间几何体的表面积.【名师点晴】本题主要考查的是三视图和空间几何体的表面积,属于容易题.解题时要看清楚是求表面积还是求体积,否则很容易出现错误.本题先根据三视图判断几何体的结构特征,再计算出几何体各个面的面积即可.11. 【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18+(B )54+(C )90 (D )81 【答案】B 【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积2362332354S =⨯⨯+⨯⨯+⨯⨯=+,故选B .考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.基本性质及推论,线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.12. 【2015高考新课标2,理6】一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .1B .1C .61D .51【答案】D【解析】由三视图得,在正方体1111ABCD A BC D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A A B D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .A1【考点定位】三视图.【名师点睛】本题以正方体为背景考查三视图、几何体体积的运算,要求有一定的空间想象能力,关键是能从三视图确定截面,进而求体积比,属于中档题.13. 【2014新课标,理6】如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727 B. 59 C. 1027 D. 13【答案】C【考点定位】1.三视图;2.简单几何体的体积.【名师点睛】本题考查了三视图,直观图,组合体的体积,属于中档题,注意由三视图还原几何体的解题的关键,注意计算的准确性.14. 【2015高考新课标2,理9】已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π 【答案】C【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C .【考点定位】外接球表面积和椎体的体积.【名师点睛】本题以球为背景考查空间几何体的体积和表面积计算,要明确球的截面性质,正确理解四面体体积最大时的情形,属于中档题.15. 【2014新课标,理11】直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( ) A. 110 B. 25C.D.【答案】C【解析】以C 为原点,直线CA 为x 轴,直线CB 为y 轴,直线1CC 为z 轴,则设CA=CB=1,则(0,1,0)B ,11(,,1)22M ,A (1,0,0),1(0,1)2N ,故11(,,1)22BM =-uuu r ,1(,0,1)2AN =-uuu r ,所以cos ,||||BM AN BM AN BM AN ⋅==⋅uuu r uuu ruuu r uuu r uuu r uuur 3=C. 【考点定位】异面直线所成的角.【名师点睛】本题考查了空间几何体棱柱的性质,异面直线所成角,空间直角坐标,空间向量的数量积,本题属于中档题,要求学生根据根据已知建立空间直角坐标系,然后利用空间向量的知识求异面直线所成角的余弦值,注意由已知准确写出所需点的坐标.16. 【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )13+ (C )13+ (D )1+ 【答案】C 【解析】试题分析:由三视图可知,上面是半径为2的半球,体积为311423V π=⨯⨯=⎝⎭下面是底面积为1,高为1的四棱锥,体积2111133V =⨯⨯=,故选C.考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.17. 【2014四川,理8】如图,在正方体1111ABCD A BC D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则s i n α的取值范围是( )A .3B .[3C .[33D .[3【答案】B【考点定位】空间直线与平面所成的角.【名师点睛】通过证明直线与平面垂直,构造得到直线与平面所成角的平面角,利用解三角形的知识计算得到其正弦值.本题属于中等题,主要考查学生基本的运算能力以及空间想象能力,考查学生空间问题转化为平面问题的转化与化归能力.18【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥,则( ) A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n 【答案】C 【解析】试题分析:由题意知,l l αββ=∴⊂ ,,n n l β⊥∴⊥ .故选C . 考点:空间点、线、面的位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.19. 【2015高考新课标1,理6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

高考数学试题-立体几何选择填空含答案解析

高考数学试题-立体几何选择填空含答案解析

选填训练4答案一、单选题(本大题共8小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项) 1. 如图,在四面体O −ABC 中,G 是底面△ABC 的重心,且OG ⃗⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ +z OC ⃗⃗⃗⃗⃗ ,则log 3|xyz|等于 ( )A. −3B. −1C. 1D. 3【答案】A 解:连结AG ,OG ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AG ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +13(AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=OA ⃗⃗⃗⃗⃗ +13(OC ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=13OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗⃗ +13OC ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ +z OC ⃗⃗⃗⃗⃗ ,∴x =y =z =13, 则log 3|xyz|=log 3127=−3.2. 在△ABC 中A =30°,AC =4,BC =a ,若△ABC 仅一个解时,则a 的取值范围是( )A. a ≥4B. a =2C. a ≥4或a =2D. 无法确定【答案】C解:当a =ACsin30°=4×12=2时,以C 为圆心,以a =2为半径画弧,与射线AD 只有唯一交点, 此时符合条件的三角形只有一个,当a ⩾4时,以C 为圆心以a 为半径画弧时,在从垂足到A 点之间得不到交点,交点只能在垂足外侧,三角形也是唯一的, ∴a ≥4或a =2,故选C .3. 设两个向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 满足|e 1⃗⃗⃗ |=2,|e 2⃗⃗⃗ |=1,e 1⃗⃗⃗ ,e 2⃗⃗⃗ 之间的夹角为60°,若向量2t e 1⃗⃗⃗ +7e 2⃗⃗⃗ 与向量e 1⃗⃗⃗ +t e 2⃗⃗⃗ 的夹角为钝角,则实数t 的取值范围是( )A. (−7,−12)B. (−7,−√142)∪(−√142,−12) C. (−7,−√142)D. (−√142,−12)【答案】B解:由题意知(2t e 1⃗⃗⃗ +7e 2⃗⃗⃗ )·(e 1⃗⃗⃗ +t e 2⃗⃗⃗ )<0,即2t 2+15t +7<0,解得−7<t <−12.又由2t ·t −7≠0,得t ≠±√142,∴t ∈(−7,−√142)∪(−√142,−12). 故选B .4. 已知向量a ⃗ =(1,2),a ⃗ ·b ⃗ =10,|a ⃗ +b ⃗ |=5√2,b ⃗ 方向上的单位向量为e⃗ ,则向量a ⃗ 在 向量b ⃗ 上的投影向量为( ) A. 12e ⃗ B. 2e ⃗ C.125e⃗ D. 52e⃗ 【答案】B解:由a ⃗ =(1,2)可得:|a ⃗ |=√12+22=√5,由|a ⃗ +b|⃗⃗⃗ =5√2两边平方得:|a ⃗ |2+2a ⃗ ·b ⃗ +|b⃗ |2=(5√2)2=50,即:5+2×10+|b⃗ |2=50,解得:|b ⃗ |=5, 设a ⃗ 和b ⃗ 的夹角为θ,则cosθ=a⃗ ·b ⃗|a ⃗ |·|b⃗ |=10√5×5=2√55, 所以向量a ⃗ 在向量b ⃗ 上的投影向量为:|a ⃗ |cosθ·b⃗ |b ⃗ |=√5×2√55e ⃗ =2e ⃗ .故选B .5. 如图所示,在直三棱柱ABC −A 1B 1C 1中,AB ⊥AC ,AB =3,AC =AA 1=4,一只蚂蚁由顶点A 沿棱柱侧面经过棱BB 1爬到顶点C 1,蚂蚁爬行的最短距离为( )A. 4B. 4C.D.+【答案】B解:如图所示,把侧面展开,矩形对角线即为蚂蚁爬行的最短距离,∵AB ⊥AC ,AB =3,AC =AA 1=4,∴BC =√AB 2+AC 2=√32+42=5,由题已知AA 1=CC 1=4,∴蚂蚁爬行的最短距离=√(AB +BC )2+(CC 1)2=√(3+5)2+42=4√5,所以最小值为4√5,故选B .6.在四棱锥P−ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为( )A. B. C. D.【答案】A解:根据题意可知PD=DC,则点D符合“M为底面ABCD内的一个动点,且满足MP=MC”,设AB的中点为N,因为侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,AB⊥AD,AB⊂底面ABCD,所以AB⊥侧面PAD,又PA⊂侧面PAD,所以AB⊥PA,根据题目条件可知△PAN≌△CBN,∴PN=CN,点N也符合“M为底面ABCD内的一个动点,且满足MP=MC”,故动点M的轨迹肯定过点D和点N,而到点P与到点C的距离相等的点为线段PC 的垂直平分面,线段PC的垂直平分面与平面ABCD的交线是一直线.故选A.7.如图,直角梯形ABCD,AB//CD,∠ABC=90°,CD=2,AB=BC=1,E是边CD中点,△ADE沿AE翻折成四棱锥D′−ABCE,则点C到平面ABD′距离的最大值为( )A. 12B. √3−1 C. √22D. √63【答案】C解:直角梯形ABCD ,AB//CD ,∠ABC =90°,CD =2,AB =BC =1,E 是边CD 中点,△ADE 沿AE 翻折成四棱锥D′−ABCE ,当D′E ⊥CE 时,点C 到平面ABD′距离取最大值,∵D′E ⊥AE ,CE ∩AE =E ,CE ,AE ⊂平面ABCE ,∴D′E ⊥平面ABCE , 以E 为原点,EC 为x 轴,EA 为y 轴,ED′为z 轴,建立空间直角坐标系,则A(0,1,0),C(1,0,0),D′(0,0,1),B(1,1,0), AB ⃗⃗⃗⃗⃗ =(1,0,0),AC ⃗⃗⃗⃗⃗ =(1,−1,0),AD′⃗⃗⃗⃗⃗⃗⃗ =(0,−1,1), 设平面ABD′的法向量n⃗ =(x,y,z),则{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =x =0n ⃗ ⋅AD′⃗⃗⃗⃗⃗⃗⃗ =−y +z =0,取y =1,得n ⃗ =(0,1,1),∴点C 到平面ABD′距离的最大值为d =|AC ⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||n ⃗⃗ |=1√2=√22.故选C .8. 在△ABC 中,有正弦定理:asinA =bsinB =csinC =定值,这个定值就是△ABC 的外接圆的直径.如图所示,△DEF 中,已知DE =DF ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,记△DEM 的外接圆面积与△DMF 的外接圆面积的比值为λ,那么( )A. λ先变小再变大B. 仅当M 为线段EF 的中点时,λ取得最大值C. λ先变大再变小D. λ是一个定值【答案】D解:设△DEM 的外接圆半径为R 1,△DMF 的外接圆半径为R 2,则由题意,πR 12πR 22=λ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,由正弦定理可得R 1=12×DE sin∠DME,R 2=12×DFsin∠DMF ,又DE =DF ,sin∠DME =sin∠DMF , 可得R 1=R 2,可得λ=1.故选D .二、多选题(本大题共4小题,共20.0分。

专题05 立体几何(选择题、填空题)——三年(2018-2020)高考真题理科数学分项汇编(含解析)

专题05 立体几何(选择题、填空题)——三年(2018-2020)高考真题理科数学分项汇编(含解析)
15.
点).记直线 PB 与直线 AC 所成的角为α,直线 PB 与平面 ABC 所成的角为β,二面角 P–AC–B 的平面角
为γ,则
A.β<γ,α<γ
B.β<α,β<γ
C.β<α,γ<α
D.α<β,γ<β
16.【2018 年高考全国Ⅰ卷理数】某圆柱的高为 2,底面周长为 16,其三视图如图.圆柱表面上的点 M 在
9.

A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
10.
【2020 年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的
影子来测定时间.把地球看成一个球(球心记为 O),地球上一点 A 的纬度是指 OA 与地球赤道所在平面
所成角,点 A 处的水平面是指过点 A 且与 OA 垂直的平面.在点 A 处放置一个日晷,若晷面与赤道所在平
专题 05
立体几何(选择题、填空题)
1.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.
以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高
与底面正方形的边长的比值为
A.
5 1
4
B.
5 1
2
C.
5 1
4
D.
5 1
19.【2018 年高考浙江卷】某几何体的三视图如图所示(单位:cm)
A.2
B.4
C.6
D.8
20.【2018 年高考全国Ⅲ卷理数】设 A ,B ,C ,D 是同一个半径为 4 的球的球面上四点, △ ABC 为等边三

高三数学立体几何试题答案及解析

高三数学立体几何试题答案及解析

高三数学立体几何试题答案及解析1.已知三棱锥的三视图,则该三棱锥的体积是()A.B.C.D.【答案】B【解析】如图所示,,点P在侧面ABC的射影为O,.∴该三棱锥的体积.故选:B.【考点】由三视图求面积、体积.2.(本小题满分12分)直三棱柱中,,,分别是、的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.【答案】(1)证明见解析;(2)存在,点为中点.【解析】(1)先证明AB⊥AC,然后以A为原点建立空间直角坐标系A-xyz,则能写出各点坐标,由共线可得D(λ,0,1),所以,即DF⊥AE;(2)通过计算,面DEF的法向量为可写成,=(3,1+2λ,2(1-λ)),又面ABC的法向量=(0,0,1),令,解出λ的值即可.试题解析:(1)证明:,又,面又面以为原点建立如图所示的空间直角坐标系则,,,,设,且,即:(2)假设存在,设面的法向量为,则即:令由题可知面的法向量平面与平面所成锐二面角的余弦值为即:或(舍)当点为中点时,满足要求.【考点】1、二面角的平面角及求法;2、直线与平面垂直的性质.【方法点晴】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.3.已知正四棱锥中,,那么当该棱锥的体积最大时,它的高为()A.B.C.D.【答案】C【解析】设正四棱锥的高为,则,则,,所以四棱锥的体积,,由得,所以体积函数在区间上单调递增,在区间上单调递减,所以当时,体积有最大值,故选C.【考点】1.多面体体积;2.导数与函数最值.【方法点睛】本题主要考查本题主要考查立体几何中的最值问题,多面体体积公式、导数与函数等知识,属中档题.解决此类问题的两大核心思路:一是将立体问题转化为平面问题,结合平面几何的相关知识求解;二是建立目标函数的数学思想,选择合理的变量,利用导数、基本不等式或配方法求其最值.4.设三棱锥的三条侧棱两两互相垂直,且长度分别为,则其外接球的表面积为()A.B.C.D.【答案】B【解析】由题意可知其外接球的直径,所以外接球的表面积为.【考点】球的表面积公式.5.某几何体的三视图如图所示,则该几何体的体积为.【答案】【解析】该几何体为一个四棱锥,高为,底面为矩形,长宽分别为,因此体积为【考点】三视图6.已知是两条不同的直线,是三个不同的平面,则下列命题中正确的是()A.若B.若C.若D.若【答案】C【解析】垂直于同一平面的两个平面可能平行,也可能相交,所以A选项不正确;两个平面内存在两条平行的直线时,两平面可能相交,也可能平行,所以B选项不正确;,又,,所以C选项正确;若,则或,所以D不正确.故D正确.【考点】1线面位置关系;2面面位置关系.【易错点晴】本题主要考查的是空间点、线、面的位置关系,属于容易题.解题时一定要抓住题目中的重要字眼“真命题”,否则很容易出现错误.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理.7.已知直线平面,直线平面,给出下列命题,其中正确的是()①;②;③;④A.②④B.②③④C.①③D.①②③【答案】C【解析】对①,因为直线平面,∥,则,又直线,所以,①对;对②,与的关系是:平行、相交或异面,②错;对③,因为直线平面,∥,所以,又由面面垂直的判定定理得,③对;对④,与可以平行或相交,④错,所以选C.本题可借助于长方体去判定.【考点】1.空间直线、平面的位置关系.【易错点晴】本题主要考查的是空间点、线、面的位置关系,属于中档题.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形或长方体作为载体进行检验,也可作必要的合情推理.8.利用一个球体毛坯切削后得到一个四棱锥P—ABCD,其中底面四边形ABCD是边长为1的正方形,,且,则球体毛坯体积的最小值应为()A.B.C.D.【答案】D【解析】若使得球体毛坯体积最小,则四棱锥各顶点应都在球上,由题意,将四棱锥补成一个长方体,则转化为求长方体外接球体积,长方体体对角线为外接球直径,体对角线长为,所以球的半径为,体积为.【考点】多面体的外接球.9.(2007•山东)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④【答案】D【解析】利用三视图的作图法则,对选项判断,A的三视图相同,圆锥,四棱锥的两个三视图相同,棱台都不相同,推出选项即可.解:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确答案为D.故选D【考点】简单空间图形的三视图.10.如图是某几何体的三视图,其中正视图为正方形,俯视图是腰长为的等腰直角三角形,则该几何体的体积为_________________;表面积为________________.【答案】体积为;表面积为【解析】由题意可知三视图复原的几何体如图为四棱锥,是正方体的一部分,正方体的棱长为2;所以几何体的体积是正方体体积的一半减去,所求几何体的体积为;表面积为【考点】三视图,几何体的体积,表面积11.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为()A.B.C.D.【答案】A【解析】根据该几何体的三视图可知几何体的形状是一个长为,宽为,高为的长方体挖去一个直径为高为的圆柱,该几何体的体积为,选A.【考点】1、三视图;2、组合体的体积.12.如图是一建筑物的三视图(单位:米),现需将其外壁用油漆刷一遍,若每平方米用漆千克,则共需油漆的总量为()A.千克B.千克C.千克D.千克【答案】B【解析】由三视图可知可间房由底部长宽高分别为的长方体与底面半径.母线长分别为圆锥体组合而成,所以其可刷漆的表面积为,则需要漆的总量为千克,故正确选项为B.【考点】空间几何体的表面积.13.若=(2,﹣1,0),=(3,﹣4,7),且(λ+)⊥,则λ的值是()A.0B.1C.﹣2D.2【答案】C【解析】利用(λ+)⊥⇔即可得出.解:∵=λ(2,﹣1,0)+(3,﹣4,7)=(3+2λ,﹣4﹣λ,7),(λ+)⊥,∴,∴2(3+2λ)﹣(﹣4﹣λ)+0=0,解得λ=﹣2.故选C.【考点】向量的数量积判断向量的共线与垂直.14.如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,(Ⅰ)求证:平面PED⊥平面PAC;(Ⅱ)若直线PE与平面PAC所成的角的正弦值为,求二面角A﹣PC﹣D的平面角的余弦值.【答案】(Ⅰ)证明见解析(Ⅱ)【解析】(I)由面面垂直的性质定理证出PA⊥平面ABCD,从而得到AB、AD、AP两两垂直,因此以AB、AD、AP为x轴、y轴、z轴,建立坐标系o﹣xyz,得A、D、E、C、P的坐标,进而得到、、的坐标.由数量积的坐标运算公式算出且,从而证出DE⊥AC且DE⊥AP,结合线面垂直判定定理证出ED⊥平面PAC,从而得到平面PED⊥平面PAC;(II)由(Ⅰ)得平面PAC的一个法向量是,算出、夹角的余弦,即可得到直线PE与平面PAC所成的角θ的正弦值,由此建立关于θ的方程并解之即可得到λ=2.利用垂直向量数量积为零的方法,建立方程组算出=(1,﹣1,﹣1)是平面平面PCD的一个法向量,结合平面PAC的法向量,算出、的夹角余弦,再结合图形加以观察即可得到二面角A ﹣PC﹣D的平面角的余弦值.解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA∴PA⊥平面ABCD结合AB⊥AD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ)(λ>0)∴,,得,,∴DE⊥AC且DE⊥AP,∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.∵ED⊂平面PED∴平面PED⊥平面PAC(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P的坐标为(0,0,2)设平面PCD的一个法向量为=(x0,y,z),,由,,得到,令x0=1,可得y=z=﹣1,得=(1,﹣1,﹣1)∴cos<,由图形可得二面角A﹣PC﹣D的平面角是锐角,∴二面角A﹣PC﹣D的平面角的余弦值为.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.15.已知正三棱锥的底面边长为,侧棱长为,则正三棱锥的体积为.【答案】【解析】∵正三棱锥的底面边长为,∴底面正三角形的高为,可得底面中心到三角形顶点的距离为,∵正三棱锥侧棱长为,∴正三棱锥的高,所以三棱锥的体积.所以答案应填:.【考点】棱柱、棱锥、棱台的体积.16.在等腰梯形中,,,,是的中点,将梯形绕旋转,得到(如图).(I)求证:;(II)求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】(I)由题意容易证明四边形是平行四边形,.又为等腰梯形,,四边形是菱形,可证得,根据面面垂直的性质定理可证得平面,从而证得;(II)易证平面,以为坐标原点,建立空间直角坐标系,分别求出平面的法向量和平面的法向量,根据向量的夹角公式求得二面角的余弦值.试题解析:(I)证明:,是的中点,.又,四边形是平行四边形,.又为等腰梯形,,,四边形是菱形,,,即.平面平面,平面平面,平面.又平面,.(II)解:平面,同理平面.如图建立空间直角坐标系,设,则,,,,则,.设平面的法向量为,.设平面的法向量为,,设二面角的平面角为,,二面角的余弦值为.【考点】空间中垂直关系的证明及空间向量的应用.17.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正(主)视图与侧(左)视图的面积的比为.【答案】【解析】因为三棱锥的主视图与左视图都是三角形, 正视图和侧视图三角形的底边长都是正方体的棱长,高都是到底面的距离(都是正方体的棱长),所以,三棱锥的主视图与左视图的面积相等,即比值为,故答案为.【考点】1、几何体的三视图;2、三角形面积公式.18.如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为()A.B.C.D.【答案】B【解析】如图所示,该几何体是一个底面为平行四边形,高为的棱柱,体积为,故选B.【考点】几何体的体积.19.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=2,则原图形OABC的面积为________.【答案】【解析】因为矩形是水平放置的一个平面图形的直观图,所以根据画直观图的基本原理知原图形是底边长为的平行四边形,其高是,因此面积是,故答案为.【考点】1、画直观图的基本原理;2、平行四边形的面积公式.20.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图知几何体是由正方体截取两个角得到,如图所示,故体积为.【考点】三视图.21.如图所示,四棱锥的底面是梯形,且,平面,是中点,.(Ⅰ)求证:平面;(Ⅱ)若,,求直线与平面所成角的大小.【答案】(I)证明见解析;(II).【解析】(I)取的中点,连结,证得,从而证得平面,根据平行四边形的性质,得,即可证明平面;(II)分别以的方向为轴的正方向,建立空间直角坐标系,求解出平面和向量,即可利用向量所成的角,得到直线与平面所成角的大小.试题解析:(Ⅰ)证明:取的中点,连结,如图所示.因为,所以.因为平面,平面,所以.又因为,所以平面.因为点是中点,所以,且.又因为,且,所以,且,所以四边形为平行四边形,所以,所以平面.(Ⅱ)解:设点O,G分别为AD,BC的中点,连结,则,因为平面,平面,所以,所以.因为,由(Ⅰ)知,又因为,所以,所以所以为正三角形,所以,因为平面,平面,所以.又因为,所以平面.故两两垂直,可以点O为原点,分别以的方向为轴的正方向,建立空间直角坐标系,如图所示.,,,所以,,,设平面的法向量,则所以取,则,设与平面所成的角为,则,因为,所以,所以与平面所成角的大小为.【考点】直线与平面垂直的判定与证明;直线与平面所成角的求解.22.如图,在三棱台中,平面平面,,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B-AD-F的平面角的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)先证,再证,进而可证平面;(Ⅱ)方法一:先找二面角的平面角,再在中计算,即可得二面角的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面和平面的法向量,进而可得二面角的平面角的余弦值.试题解析:(Ⅰ)延长,,相交于一点,如图所示.因为平面平面,且,所以平面,因此.又因为,,,所以为等边三角形,且为的中点,则.所以平面.(Ⅱ)方法一:过点作于Q,连结.因为平面,所以,则平面,所以.所以是二面角的平面角.在中,,,得.在中,,,得.所以二面角的平面角的余弦值为.方法二:如图,延长,,相交于一点,则为等边三角形.取的中点,则,又平面平面,所以,平面.以点为原点,分别以射线,的方向为,的正方向,建立空间直角坐标系.由题意得,,,,,.因此,,,.设平面的法向量为,平面的法向量为.由,得,取;由,得,取.于是,.所以,二面角的平面角的余弦值为.【考点】线面垂直,二面角.【方法点睛】解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.23.直线a、b是异面直线,α、β是平面,若a⊂α,b⊂β,α∩β=c,则下列说法正确的是()A.c至少与a、b中的一条相交B.c至多与a、b中的一条相交C.c与a、b都相交D.c与a、b都不相交【答案】A【解析】利用空间中线线、线面、面面间的位置关系判断求解.解:由直线a、b是异面直线,α、β是平面,若a⊂α,b⊂β,α∩β=c,知:对于B,c可以与a、b都相交,交点为不同点即可,故B不正确;对于C,a∥c,b∩c=A,满足题意,故C不正确;对于D,c与a、b都不相交,则c与a、b都平行,所以a,b平行,与异面矛盾,故D不正确;对于A,由B,C、D的分析,可知A正确故选:A.24.已知某几何体的三视图如图所示,则该几何体的体积等于()A.B.160C.D.【答案】A【解析】由三视图知该几何体是由一个直三棱柱和一个四棱锥组合的组合体,其中直三棱柱的底面为左视图,高为,故体积.四棱锥的底面为边长为的正方形,高为,所以体积,所以该几何体的体积为.故选A.【考点】1、几何体的三视图;2、几何体的体积.【方法点睛】本题主要考查三视图及空间几何体的体积,属于中档题.空间几何体体积问题的常见类型及解题策略:(1)求简单几何体的体积时若所给的几何体为柱体椎体或台体,则可直接利用公式求解;(2)求组合体的体积时若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解. (3)求以三视图为背景的几何体的体积时应先根据三视图得到几何体的直观图,然后根据条件求解.25.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为()A.1.2B.1.6C.1.8D.2.4【答案】B【解析】由题意得,即,解得,故选B.【考点】几何体的三视图及体积.26.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于()cm3A.4+B.4+C.6+D.6+【答案】D【解析】由三视图还原原几何体如图,是一个半圆柱与一个直三棱柱的组合体,半圆柱的底面半径为,高为;直三棱柱底面是等腰直角三角形(直角边为),高为.∴.故本题选D.【考点】空间几何体的三视图.27.在正方体中,是的中点,则异面直线与所成角的余弦值等于_______,若正方体边长为1,则四面体的体积为_________.【答案】;【解析】异面直线与所成角为,,.【考点】立体几何中异面直线所成角的余弦值的求法以及三棱锥的体积的求法.28.如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明:;(2)若为棱上一点,满足,求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】(1)以点为原点建立空间直角坐标系(如图),求得,,可得,即可证结论;(2)先根据确定的位置,在求出平面的一个法向量,可证平面一个的法向量为,利用空间向量夹角余弦公式即可得结论.试题解析:(1)证明:依题意,以点为原点建立空间直角坐标系(如图),可得,,,.由为棱的中点,得.向量,,故.所以.(2)向量,,,.由点在棱上,设,.故.由,得,因此,,解得.即.设为平面的法向量,则,即.不妨令,可得为平面的一个法向量.取平面的法向量,则.易知,二面角是锐角,所以其余弦值为.【考点】1、空间直线垂直的判定;2、空间向量夹角余弦公式.29.如图,在三棱锥中,底面,且,点是的中点, 交于点.(1)求证:平面;(2)当时, 求三棱锥的体积.【答案】(1)详见解析(2)【解析】(1)证明线面垂直,一般利用线面垂直判定定理,即从线线垂直出发给予证明,而线线垂直的证明与寻找,往往从两个方面,一是利用线面垂直性质定理转化为线线垂直,另一是结合平几条件,如本题利用等腰三角形底边中线性质得(2)求三棱锥体积,关键在于确定高,即线面垂直.由(1)得平面,因此,这样只需在对应三角形中求出对应边即可.试题解析:(1)底面,面,又因为是的中点, 面由已知平面.(2)平面,平面,而,又又平面而.【考点】线面垂直判定与性质定理,三棱锥体积【思想点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.30.过球表面上一点引三条长度相等的弦,且两两夹角都为60°,若球半径为,求弦的长度___________.【答案】【解析】依题意可知,这是一个正四面体的外接球. 若一个正四面体边长为,其外接球半径公式为:,即.【考点】球的内接几何体.【思路点晴】对棱相等的三棱锥,设三对棱长分别为,如下图所示三棱锥,请同学们推导其外接球半径公式,特别地,若一个正四面体边长为,其外接球半径公式为:.设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.2.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.31.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】D【解析】由题意得,根据给定的三视图可知,原几何体表示,左侧是一个底面半径为,高为半个圆锥,几何体的右侧是一个底面为底边为,高为的等腰三角形三棱锥,其中三棱锥的高为,所以几何体的体积为,故选D.【考点】几何体的三视图及体积的计算.32.已知直线与平面平行,是直线上的一定点,平面内的动点满足:与直线成.那么点轨迹是()A.两直线B.椭圆C.双曲线D.抛物线【答案】C【解析】题意画图如下,是直线上的定点,有一平面与直线平行,平面内的动点满足的连线与成角,因为空间中过与成角的直线组成两个相对顶点的圆锥,即为平行于圆锥轴的平面,点可理解为是截面与圆锥侧面的交点,所以点的轨迹为双曲线,故选C.【考点】1、空间点、线、面的位置关系;2、圆锥曲线的定义.33.三棱锥内接于球,,当三棱锥的三个侧面积和最大时,球的体积为.【答案】【解析】由于三角形的面积公式,当时取得最大值,所以当两两垂直时,侧面积和取得最大值.此时,由于三棱锥三条侧棱两两垂直,所以可以补形为正方体,三棱锥的外接球即正方体的外接球,其直径等于正方体的体对角线即,故求的体积为.【考点】几何体的外接球.【思路点晴】设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为: .34.如图,在直三棱柱中,,过的中点作平面的垂线,交平面于,则与平面所成角的正切值为()A.B.C.D.【答案】C【解析】连接,则,由直三棱柱得,因此,因此为的中点,过作于,则为与平面所成角, ,选C.【考点】线面角35.如图,在四棱锥中,底面,底面是直角梯形,(1)在上确定一点,使得平面,并求的值;(2)在(1)条件下,求平面与平面所成锐二面角的余弦值.【答案】(1)(2)【解析】(1)由线面平行的性质定理,可得线线平行,再根据平行得相似,即得比例关系:取。

三年高考(2016-2018)数学(理)真题分项专题25 立体几何中综合问题(含解析)

三年高考(2016-2018)数学(理)真题分项专题25 立体几何中综合问题(含解析)

专题25 立体几何中综合问题考纲解读明方向分析解读 1.能运用共线向量、共面向量、空间向量基本定理及有关结论证明点共线、点共面、线共面及线线、线面的平行与垂直问题;会求线线角、线面角;会求点点距、点面距等距离问题,从而培养用向量法思考问题和解决问题的能力.2.会利用空间向量的坐标运算、两点间距离公式、夹角公式以及相关结论解决有关平行、垂直、长度、角、距离等问题,从而培养准确无误的运算能力.3.本节内容在高考中延续解答题的形式,以多面体为载体,求空间角的命题趋势较强,分值约为12分,属中档题.2018年高考全景展示1.【2018年理数天津卷】如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).详解:依题意,可以建立以D为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.点睛:本题主要考查空间向量的应用,线面平行的证明,二面角问题等知识,意在考查学生的转化能力和计算求解能力.2.【2018年理北京卷】如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析【解析】分析:(1)由等腰三角形性质得,由线面垂直性质得,由三棱柱性质可得,因此,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系E-ABF,设立各点坐标,利用方程组解得平面BCD一个法向量,根据向量数量积求得两法向量夹角,再根据二面角与法向量夹角相等或互补关系求结果,(3)根据平面BCD一个法向量与直线F G方向向量数量积不为零,可得结论. 详解:解:(Ⅰ)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D (1,0,1),F(0,0,2),G(0,2,1).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量为,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.3.【2018年江苏卷】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【答案】(1)(2)【解析】分析:(1)先建立空间直角坐标系,设立各点坐标,根据向量数量积求得向量的夹角,再根据向量夹角与异面直线所成角的关系得结果;(2)利用平面的方向量的求法列方程组解得平面的一个法向量,再根据向量数量积得向量夹角,最后根据线面角与所求向量夹角之间的关系得结果.详解:如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以.(1)因为P为A1B1的中点,所以,从而,故.因此,异面直线BP与AC1所成角的余弦值为.点睛:本题考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 4.【2018年江苏卷】在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A 1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明. 5.【2018年理新课标I卷】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.【答案】(1)证明见解析.(2) .【解析】分析:(1)首先从题的条件中确定相应的垂直关系,即BF⊥PF,BF⊥EF,又因为,利用线面垂直的判定定理可以得出BF⊥平面PEF,又平面ABFD,利用面面垂直的判定定理证得平面PEF⊥平面ABFD.(2)结合题意,建立相应的空间直角坐标系,正确写出相应的点的坐标,求得平面ABFD的法向量,设DP与平面ABFD所成角为,利用线面角的定义,可以求得,得到结果.详解:(1)由已知可得,BF⊥PF,BF⊥EF,又,所以BF⊥平面PEF.又平面ABFD,所以平面PEF⊥平面ABFD.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的证明以及线面角的正弦值的求解,属于常规题目,在解题的过程中,需要明确面面垂直的判定定理的条件,这里需要先证明线面垂直,所以要明确线线垂直、线面垂直和面面垂直的关系,从而证得结果;对于线面角的正弦值可以借助于平面的法向量来完成,注意相对应的等量关系即可.6.【2018年全国卷Ⅲ理】如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.【答案】(1)见解析(2)【解析】分析:(1)先证平面CMD,得,再证,进而完成证明。

专题10立体几何(解析版)-高三数学(理)百所名校好题分项解析汇编之全国通用专版(2021版)

专题10立体几何(解析版)-高三数学(理)百所名校好题分项解析汇编之全国通用专版(2021版)

高三数学百所名校好题分项解析汇编之全国通用版(2021版)专题10 立体几何一.选择题1.(2020秋•江北区校级期中)如图:正三棱锥A﹣BCD中,∠BAD=30°,侧棱AB=2,BD平行于过点C的截面CB1D1,则截面CB1D1与正三棱锥A﹣BCD侧面交线的周长的最小值为()A.2B.2C.4D.2【答案】D【解答】解:把正三棱锥A﹣BCD的侧面展开,两点间的连接线CC'即是截面周长的最小值.正三棱锥A﹣BCD中,∠BAD=30°,所以AC⊥AC′,AB=2,∴CC′=2,∴截面周长最小值是CC′=2.故选:D.2.(2021•宁夏模拟)在正四面体ABCD中,已知E,F分别是AB,CD上的点(不含端点),则()A.不存在E,F,使得EF⊥CDB.存在E,使得DE⊥CDC.存在E,使得DE⊥平面ABCD.存在E,F,使得平面CDE⊥平面ABF【答案】D【解答】解:(1)对于A,D选项,取E,F分别为AB,CD的中点如图:因为A﹣BCD是正四面体,所以它的各个面是全等的等边三角形.所以CE=DE,所以EF⊥CD,同理可证EF⊥AB.故A错误;又因为AB⊥CE,AB⊥DE,且CE∩DE=E,故AB⊥平面CED,又AB⊂平面ABF,所以平面ABF⊥平面CED.故D正确.(2)对于B选项,将C看成正三棱锥的顶点,易知当E在AB上移动时,∠CDE的最小值为直线CD与平面ABD所成的角,即(1)中的∠CDE,显然为锐角,最大角为∠CDB=∠CDA=60°,故当E在AB上移动时,不存在E,使得DE⊥CD.故B错误.(3)对于C选项,将D看成顶点,则由D向底面作垂线,垂足为底面正三角形ABC的中心,不落在AB上,又因为过空间中一点有且只有一条直线与已知平面垂直,故不存在E,使得DE⊥平面ABC,故C错误.故选:D.3.(2020秋•天津期中)将一个棱长为1cm的正方体铁块磨制成一个球体零件,则可能制作的最大零件的表面积为()A.B.πcm2C.D.3πcm2【答案】B【解答】解:正方体的棱长为1,要使制作成球体零件的体积最大,则球内切于正方体,则球的直径为1cm,半径为cm.∴可能制作的最大零件的表面积为4π×()2=π(cm2).故选:B.4.(2020秋•湖南期中)已知四面体ABCD的四个面都为直角三角形,AB⊥平面BCD,AB=BC=CD=1,若该四面体的四个顶点都在球O的表面上,则球O的表面积为()A.B.C.3πD.【答案】C【解答】解:由题意,四面体有四个面都为直角三角形,四面体放到正方体中,AB⊥平面BCD,AB=BD=CD=1,可得长方体的对角线为=.∴球O的半径R=.球O的表面积S=4πR2=3π.故选:C.5.(2020秋•镇江期中)直三棱柱ABC﹣A1B1C1的所有顶点都在同一球面上,且AB=AC=2,∠BAC=90°,AA1=4,则该球的表面积为()A.40πB.32πC.10πD.8π【答案】A【解答】解:∵直三棱柱ABC﹣A1B1C1的所有顶点都在同一球面上,且AB=AC=2,∠BAC=90°,AA1=4,∴可将棱柱ABC﹣AA1B1C1补成长方体,长方体的对角线=2,即为球的直径,∴球的半径为,∴球的表面积为4π×()2=40π,故选:A.7.(2020秋•宁波期中)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.B.C.D.【答案】C【解答】解:由题意几何体的直观图如图:是一个圆锥,去掉部分的剩余几何体与一个三棱锥的几何体;几何体的体积为:+=.故选:C.8.(2020秋•包河区校级月考)已知三棱锥P﹣ABC的顶点P在底面的射影O为ΔABC的垂心,若,且三棱锥P﹣ABC的外接球半径为3,则SΔP AB+SΔPBC+SΔP AC的最大值为()A.8B.10C.18D.22【答案】C【解答】解:如图,连AO,并延长交BC于D,顶点P在底面的射影O为ABC的垂心,∴AD⊥BC,又PO⊥平面ABC,∴PO⊥BC,∵AD∩PO=O,∴BC⊥面ADP,可得BC⊥P A,BC⊥PD.同理AC⊥PB,AB⊥PC.由,可得AD•OD=PD2,且∠PDO=∠PDA,∴△POD∽△APD,∴∠APD=∠POD=90°,∴P A⊥PD,又P A⊥BC,BC∩PD=D,∴AP⊥面PBC,得P A⊥PB,又PB⊥AC,且AP∩AC=A,∴PB⊥面APC,即可得PB⊥PC,故P A,PB,PC两两互相垂直,∴三棱锥P﹣ABC的外接球为以P A,PB,PC为棱的长方体的外接球,又三棱锥P﹣ABC的外接球半径为3,∴P A2+PB2+PC2=36,则S△P AB+S△PBC+S△P AC=≤=18.∴S△P AB+S△PBC+S△P AC的最大值为18,当且仅当P A=PB=PC=2时,等号成立.故选:C.9.(2020秋•马尾区校级期中)在正方体ABCD﹣A1B1C1D1中,记平面CB1D1为α,若α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的余弦值为()A.B.C.D.【答案】D【解答】解:∵在正方体ABCD﹣A1B1C1D1中,记平面CB1D1为α,α∩平面ABCD=m,α∩平面ABB1A1=n,又α∩平面A1B1C1D1=B1D1,α∩平面DCC1D1=CD1,∴m∥B1D1,n∥CD1,∴m,n所成角等于直线B1D1,CD1所成角,即∠B1D1C是m,n所成角,∵△B1D1C是等边三角形,∴∠B1D1C=60°,∴m,n所成角的余弦值为cos∠B1D1C=cos60°=.故选:D.10.(2020秋•宁夏期中)由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为()A.8092m3B.4046m3C.24276m3D.12138m3【答案】A【解答】解:如图,四棱锥P﹣ABCD,PO⊥底面ABCD,PO=21m,AB=34m,则m3,故选:A.11.(2020秋•沙坪坝区校级期中)设m,n,l为空间不重合的直线,α,β,γ是空间不重合的平面,则下列说法正确的个数是()①m∥l,n∥l,则m∥n;②α∥γ,β∥γ,则α∥β;③m∥l,m∥α,则l∥α;④l∥m,l⊂α,m⊂β,则α∥β;⑤m⊂α,m∥β,l⊂β,l∥α,则α∥β.A.0B.1C.2D.3【答案】C【解答】解:对于①,由平行公理知,m∥l,n∥l,则m∥n,所以①正确;对于②,由平面平行的传递性知,α∥γ,β∥γ,则α∥β,所以②正确;对于③,由m∥l,m∥α,则l∥α或l⊂α,所以③错误;对于④,由l∥m,l⊂α,m⊂β,则α∥β或α∩β,所以④错误;对于⑤,由m⊂α,m∥β,l⊂β,l∥α,则α∥β或α∩β,所以⑤错误;综上知,正确的命题序号是①②,共2个.故选:C.12.(2020秋•成都期中)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,AD⊥P A,BC⊥PB,PB=BC,P A=AB,M为PB的中点,若PC上存在一点N使得平面PCD⊥平面AMN,则=()A.B.C.D.1【答案】B【解答】解:取BC的中点R,AD的中点Q,P A的中点为O,连接MR,RQ,MO,OQ,由CD∥RQ,OQ∥PD,可得平面MOQR∥平面PCD,由平面PCD⊥平面AMN,可得平面MOQR⊥平面AMN,过M作NM⊥PC,垂足为N,底面ABCD是平行四边形,可得AD∥BC,又BC⊥PB,可得AD⊥PB,又AD⊥P A,可得AD⊥平面P AB,BC⊥平面P AB,可得BC⊥AM,在△P AB中,P A=AB,M为PB的中点,可得AM⊥PB,则AM⊥平面PBC,AM⊥MR,而MN⊥PC,MN⊥MR,可得MR⊥平面AMN,设PB=BC=2,则PC=2,而PM=1,则PN=,NC=2﹣=,所以=,故选:B.13.(2020秋•衢州期中)已知圆锥的全面积是底面积的4倍,那么该圆锥的侧面展开图扇形的圆心角为()A.B.C.3D.4【答案】A【解答】解:设圆锥的底面半径为r,母线为l,由于圆锥的全面积是底面积的4倍,即πr2+=4πr2,解得l=3r,即母线和底面半径的比为3,设圆锥底面半径为1,则圆锥母线长为3,圆锥的侧面展开图扇形的弧长是圆锥底面周长为2π,可得该圆锥的侧面展开图扇形的圆心角为.故选:A.14.(2020秋•广陵区校级期中)在正三棱柱ABC﹣A1B1C1中,侧棱长为,底面三角形的边长为1,D为A1C1的中点,则BC1与DA所成角的大小为()A.30°B.45°C.60°D.90°【答案】A【解答】解:以C为原点,在平面ABC内,过C作BC的垂线为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,则B(0,1,0),C1(0,0,),A(,,0),D(,,),=(0,﹣1,),=(,,﹣),设BC1与DA所成角的大小为θ,则cosθ===.∴BC1与DA所成角的大小为30°.故选:A.15.(2020秋•海淀区校级期中)在边长为2的等边三角形ABC中,点D、E分别是边AC,AB上的点,满足DE∥BC且=λ(λ∈(0,1)),将△ADE沿直线DE折到△A′DE的位置,在翻折过程中,下列结论成立的是()A.在边A′E上存在点P,使得在翻折过程中,满足BP∥平面A′CDB.存在λ∈(0,),使得在翻折过程中的某个位置,满足平面A′BC⊥平面BCDEC.若λ=,当二面角A′﹣DE﹣B为直二面角时,|A′B|=D.设O为线段ED的中点,F为线段BC的中点,对于每个给定的λ,记翻折过程中△A′OF面积的最大值为f(λ),则当λ变化时,f(λ)的最大值为【答案】D【解答】解:对于A,连接AA′,A′B,A′C,显然平面A′BE∩平面A′CD=AA′,若A′E上存在点F使得BF∥A′CD,则BF∥AA′,显然BF与AA′为相交直线,矛盾,故A错误;对于B,设BC中点F,DE中点O,由等边三角形性质可知DE⊥AO,DE⊥A′O,故A′在平面BCDE上的射影在直线AF上,若平面A'BC⊥平面BCDE,则F为A′在底面BCDE上的射影,于是A′O>OF,∴λ>,与λ∈(0,)矛盾,故B错误;对于C,若,二面角A'﹣DE﹣B为直二面角,则OA′=OF=AF=,BF=1,且A′O⊥平面BCDE,∵OB==,∴|AB′|==,故C错误;对于D,由可知AO=λ,即A′O=λ,∴OF=﹣λ,显然当A′O⊥OF时,△A′OF的面积最大,故f(λ)=×()=λ(1﹣λ)≤×()2=,当且仅当λ=1﹣λ即λ=时取等号,故D正确.故选:D.16.(2020秋•沈河区校级期中)如果一个八面体各个面都是全等的正三角形,如图所示,则这个几何体叫正八面体,则棱长为3的正八面体的内切球半径是.【答案】.【解答】解:由题意,该正八面体的棱长为3,则该正八面体的体积V==,设正八面体的内切球半径为r,∵,则,解得r=,故答案为:.17.(2020秋•建平县月考)已知长方体ABCD﹣A1B1C1D1的体积为144,点P是正方形A1B1C1D1的中心,点P,A,B,C,D都在球O的球面上,其中球心O在长方体ABCD﹣A1B1C1D1的内部.已知球O的半径为R,球心O到底面ABCD的距离为,则R=4.过AB的中点E作球O的截面,则所得截面圆面积的最小值是6π.【答案】4;6π.【解答】解:由题意可知正方形ABCD的对角线长为,则正方形ABCD的边长为,故长方体ABCD﹣A1B1C1D1的体积为=144,解得R=4.当OE垂直截面时,截面面积达到最小,此时OE=,则截面圆的半径r=,故截面圆的面积最小为πr2=6π.故答案为:4;6π.18.(2020秋•贵池区校级期中)长方、堑堵、阳马、鱉臑、这些名词出自中国古代数学明著《九章算术•商功》,其中阳马和鱉臑是我国古代对一些特殊锥体的称呼.取一长方体,如图长方体ABCD﹣A1B1C1D1,按平面ABC1D1斜切一分为二,得到两个一模一样的三棱柱,称该三棱柱为堑堵,再沿堑堵的一顶点与相对的棱剖开,得四棱锥和三棱锥各一个,其中以矩形为底另有一棱与底面垂直的四棱锥称为阳马,余下的三棱锥是由四个直角三角形组成的四面体称为鱉臑,已知长方体ABCD﹣A1B1C1D1中,BD=DD1=2,当阳马B﹣CDD1C1体积最大时,堑堵ADD1﹣BCC1的体积为2.【答案】2.【解答】解:∵长方体ABCD﹣A1B1C1D1中,BD=DD1=2,∴当阳马B﹣CDD1C1体积最大时,BC=CD=,∴当阳马B﹣CDD1C1体积最大时,堑堵ADD1﹣BCC1的体积为:====2.故答案为:2.19.(2020秋•杨浦区期中)P是直角三角形ABC所在平面外一点,已知三角形的边长AB=3,BC=4,∠ABC=90°,P A =PB=PC=4,则直线PB与平面ABC所成角的余弦值为.【答案】.【解答】解:取AC的中点D,连接PD,BD,∵P A=PC,D是AC的中点,∴PD⊥AC,∵AB=3,BC=4,∠ABC=90°,∴AC=5,∴AD=BD=,又P A=PB=4,∴△P AD≌△PBD,∴∠PDB=∠PDA=90°,∴PD⊥BD,又AC∩BD=D,∴PD⊥平面ABC,∴∠PBD为直线PB与平面ABC所成的角,∴cos∠PBD==.故答案为:.20.(2020秋•宁波期中)如图,在四棱锥E﹣ABCD中,DC∥AB,∠BAE=∠BAD=90°,AB=AD=AE=ED=DC,M为EB的中点.(1)求证:DM⊥AE;(2)求直线DM与平面BCE所成角的正弦值.【解答】(1)证明:记AE的中点为F,连接MF、DF.∵DE=AD=AE,∴AE⊥DF.∵∠BAD=∠BAE=90°,∴AB⊥AD,AB⊥AE,AB∩AE=A,∴AB⊥面ADE.∵M为EB的中点,∴MF∥AB,∴MF⊥面ADE,AE⊂平面ABE,∴MF⊥AE,又AE⊥DF,FM∩DM=M,∴AE⊥面DFM,DM⊂平面DFM,∴AE⊥DM.(2)解:∵AB⊥面AEM,又AB∥DC,∴DC⊥面AED,故可如右图形式以建系.不妨设DC=4,则有,,,设面BCE的一个法向量=(x,y,z),则,即,令x=1,则y=1,z=,可得面BCE的一个法向量,则=,所以直线DM与平面BCE所成角的正弦值为.21.(2020秋•兴宁区校级期中)如图,在长方形ABCD中,AB=4,AD=2,点E是DC的中点.将△ADE沿AE折起,使平面ADE⊥平面ABCE,连结DB、DC、EB.(1)求证:AD⊥平面BDE;(2)求平面ADE与平面BDC所成锐二面角的余弦值.【解答】(1)证明:在长方形ABCD中,AB=4,AD=2,点E是DC的中点.将△ADE沿AE折起,使平面ADE⊥平面ABCE,连结DB、DC、EB.∴AD⊥DE,又∵平面ADE⊥平面ABCE且交线为AE,∴BE⊥平面ADE,∴BE⊥AD,又∵AD⊥DE,且DE∩BE=E,∴AD⊥平面BDE.(2)解:如图所示建立空间直角坐标系,E(0,0,0),A(2,0,0),B(0,2,0),D(),C(﹣,,0),=(﹣,﹣,0),=(,﹣2,),设平面BDC的法向量=(x,y,z),则,取x=1,得=(1,﹣1,﹣3),平面ADE的法向量=(0,1,0),设平面ADE与平面BDC所成锐二面角为θ.则平面ADE与平面BDC所成锐二面角的余弦值为:cosθ===.22.(2020秋•蒸湘区校级期中)将边长为2的正方形ABCD沿对角线BD折叠,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=.(1)求直线DE与直线AC所成的角;(2)求二面角B﹣ED﹣C的余弦值.【解答】解:如图,由题意,AB⊥AD,AE⊥AB,AE⊥AD,以A为坐标原点,分别以AB,AD,AE所在直线为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(1,1,),D(0,2,0),E(0,0,),(1),=(1,1,),∵,∴直线DE与直线AC所成的角为;(2)设平面BED的一个法向量为=(x1,y1,z1),=(﹣2,0,),=(0,﹣2,),由,取,得;设平面EDC的一个法向量为,=(0,﹣2,),=(1,1,0),由,取,得.∴cos<>==,∴二面角B﹣ED﹣C的余弦值为.23.(2020秋•阆中市校级期中)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥BC,CD=2AB,P A⊥平面ABCD,E为PD的中点.(1)证明:AE∥平面PBC;(2)若P A=CD=2BC,求二面角A﹣PD﹣C的余弦值.(2).【解答】(1)证明:取CD的中点F,连结EF,AF,∵E是PD中点,∴EF∥PC,∵CD=2AB,CD=2AB,∴AB=CF,∵AB∥CD,AB⊥BC,∴四边形ABCF是矩形,∴AF∥BC,∵EF∩AF=F,PC∩BC=C,∴平面AEF∥平面PBC,∵AE⊂平面AEF,∴AE∥平面PBC.(2)解:由已知和(1)得AB,AF,P A两两垂直,以A为原点,AF为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,设CD=2AB=2,则P A=CD=2BC=2,∴A(0,0,0),P(0,0,2),C(1,1,0),D(1,﹣1,0),∴=(0,0,2),=(0,20),=(1,﹣1,﹣2),∴平面APD的法向量=(x,y,z),则,令z=1,=(1,1,0),设平面CPD的一个法向量=(x,y,z),则,令x=2,得=(2,0,1),∴cos<>===,∴二面角A﹣PD﹣C的余弦值为.24.(2020秋•浙江期中)如图,已知平面多边形P﹣ABCD中,AP=PD,AD=2DC=2CB=4,AD∥BC,AP⊥PD,AD⊥DC,现将三角形APD沿AD折起,使.(Ⅰ)证明:PB⊥AD;(Ⅱ)证明:平面P AC⊥平面ABCD;(Ⅲ)求二面角P﹣AB﹣D的平面角的余弦值.【解答】(Ⅰ)证明:取AD得中点E,连接PE,BE,因为AP=PD,所以PE⊥AD,又因为,所以四边形BCDE为平行四边形,所以BE∥CD,因为AD⊥DC,所以AD⊥BE,BE∩PE=E,所以AD⊥平面PBE,所以PB⊥AD.(Ⅱ)证明:记AC∩BE=O,所以O是AC的中点,也是BE的中点,因为,所以PO⊥AC,又OD=OA,PD=P A,所以PO⊥OD,AC∩OD=O,所以PO⊥平面ABCD,因为PO⊂平面P AC,所以平面P AC⊥平面ABCD.(Ⅲ)过O作OH⊥AB,垂足为H,由(Ⅱ)可得PH⊥AB(三垂线定理),所以∠PHO为二面角P﹣AB﹣D的平面角.因为,∴,所以.。

高考复习专题10 空间向量与立体几何选择填空题(含解析)三年高考试题

高考复习专题10  空间向量与立体几何选择填空题(含解析)三年高考试题

1.【2019年新课标3理科08】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线2.【2019年全国新课标2理科07】设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面3.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O 的体积为()A.8πB.4πC.2πD.π4.【2019年浙江04】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.3245.【2019年浙江08】设三棱锥V﹣ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P﹣AC﹣B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β6.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.27.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.8.【2018年新课标2理科09】在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.9.【2018年新课标3理科03】中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.10.【2018年新课标3理科10】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.【2018年浙江03】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.812.【2018年浙江06】已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件13.【2018年浙江08】已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ114.【2018年上海15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.1615.【2018年北京理科05】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.416.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.1617.【2017年新课标2理科04】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π18.【2017年新课标2理科10】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.19.【2017年新课标3理科08】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.20.【2017年浙江03】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.1B.3C.1D.321.【2017年浙江09】如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α22.【2017年北京理科07】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3B.2C.2D.223.【2019年天津理科11】已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.24.【2019年新课标3理科16】学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD﹣A1B1C1D1挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为g.25.【2019年北京理科11】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l,那么该几何体的体积为.26.【2019年北京理科12】已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.27.【2019年江苏09】如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是.28.【2018年江苏10】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.29.【2018年新课标2理科16】已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为.30.【2018年天津理科11】已知正方体ABCD﹣A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M﹣EFGH的体积为.31.【2017年江苏06】如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.32.【2017年新课标1理科16】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.33.【2017年新课标3理科16】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°;其中正确的是.(填写所有正确结论的编号)34.【2017年上海04】已知球的体积为36π,则该球主视图的面积等于.35.【2017年上海07】如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是.36.【2017年天津理科10】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.1.【2019年新课标3理科08】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解答】解:∵点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,∴BM⊂平面BDE,EN⊂平面BDE,∵BM是△BDE中DE边上的中线,EN是△BDE中BD边上的中线,∴直线BM,EN是相交直线,设DE=a,则BD,BE,∴BM a,EN a,∴BM≠EN,故选:B.2.【2019年全国新课标2理科07】设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面【解答】解:对于A,α内有无数条直线与β平行,α∩β或α∥β;对于B,α内有两条相交直线与β平行,α∥β;对于C,α,β平行于同一条直线,α∩β或α∥β;对于D,α,β垂直于同一平面,α∩β或α∥β.故选:B.3.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π【解答】解:如图,由P A=PB=PC,△ABC是边长为2的正三角形,可知三棱锥P﹣ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心,连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC,∵E,F分别是P A,AB的中点,∴EF∥PB,又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面P AC,∴正三棱锥P﹣ABC的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D.半径为,则球O的体积为.故选:D.4.【2019年浙江04】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324【解答】解:由三视图还原原几何体如图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解,即27,高为6,则该柱体的体积是V=27×6=162.故选:B.5.【2019年浙江08】设三棱锥V﹣ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P﹣AC﹣B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β【解答】解:方法线段AO上,作DE⊥AC于E,易得PE∥VG,过P作PF∥AC于F,过D作DH∥AC,交BG于H,则α=∠BPF,β=∠PBD,γ=∠PED,则cosαcosβ,可得β<α;tanγtanβ,可得β<γ,方法由最大角定理可得β<γ'=γ;方法易得cosα,可得sinα,sinβ,sinγ,故选:B.6.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.7.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6.故选:A.8.【2018年新课标2理科09】在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1,∴A(1,0,0),D1(0,0,),D(0,0,0),B1(1,1,),(﹣1,0,),(1,1,),设异面直线AD1与DB1所成角为θ,则cosθ,∴异面直线AD1与DB1所成角的余弦值为.故选:C.9.【2018年新课标3理科03】中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选:A.10.【2018年新课标3理科10】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6,球心为O,三角形ABC的外心为O′,显然D在O′O的延长线与球的交点如图:O′C,OO′2,则三棱锥D﹣ABC高的最大值为:6,则三棱锥D﹣ABC体积的最大值为:18.故选:B.11.【2018年浙江03】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.8【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V.故选:C.12.【2018年浙江06】已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵m⊄α,n⊂α,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.13.【2018年浙江08】已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,连接SN,取AB中点M,连接SM,OM,OE,则EN=OM,则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.显然,θ1,θ2,θ3均为锐角.∵tanθ1,tanθ3,SN≥SO,∴θ1≥θ3,又sinθ3,sinθ2,SE≥SM,∴θ3≥θ2.故选:D.14.【2018年上海15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.16【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选:D.15.【2018年北京理科05】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4【解答】解:四棱锥的三视图对应的直观图为:P A⊥底面ABCD,AC,CD,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△P AB,△PBC,△P AD.故选:C.16.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.17.【2017年新课标2理科04】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10•π•32×6=63π,故选:B.18.【2017年新课标2理科10】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC =CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN AB1,NP BC1;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×()=7,∴AC,∴MQ;在△MQP中,MP;在△PMN中,由余弦定理得cos∠MNP;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【解法二】如图所示,补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;BC1,BD,C1D,∴BD2,∴∠DBC1=90°,∴cos∠BC1D.故选:C.19.【2017年新课标3理科08】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r,∴该圆柱的体积:V=Sh.故选:B.20.【2017年浙江03】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.1B.3C.1D.3【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为π×12×331,故选:A.21.【2017年浙江09】如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),B(3,﹣3,0).Q,R,,(0,3,6),(,6,0),,.设平面PDR的法向量为(x,y,z),则,可得,可得,取平面ABC的法向量(0,0,1).则cos,取α=arccos.同理可得:β=arccos.γ=arccos.∵.∴α<γ<β.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.设OD=h.则tanα.同理可得:tanβ,tanγ.由已知可得:OE>OG>OF.∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B.22.【2017年北京理科07】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3B.2C.2D.2【解答】解:由三视图可得直观图,再四棱锥P﹣ABCD中,最长的棱为P A,即P A=2,故选:B.23.【2019年天津理科11】已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.【解答】解:由题作图可知,四棱锥底面正方形的对角线长为2,且垂直相交平分,由勾股定理得:正四棱锥的高为2,由于圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,有圆柱的上底面直径为底面正方形对角线的一半等于1,即半径等于;由相似比可得圆柱的高为正四棱锥高的一半1,则该圆柱的体积为:v=sh=π()2×1;故答案为:24.【2019年新课标3理科16】学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD﹣A1B1C1D1挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为g.【解答】解:该模型为长方体ABCD﹣A1B1C1D1,挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H,分别为所在棱的中点,AB=BC=6cm,AA1=4cm,∴该模型体积为:V O﹣EFGH=6×6×4=144﹣12=132(cm3),∵3D打印所用原料密度为0.9g/cm3,不考虑打印损耗,∴制作该模型所需原料的质量为:132×0.9=118.8(g).故答案为:118.8.25.【2019年北京理科11】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l,那么该几何体的体积为.【解答】解:由三视图还原原几何体如图,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积V.故答案为:40.26.【2019年北京理科12】已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.【解答】解:由l,m是平面α外的两条不同直线,知:由线面平行的判定定理得:若l⊥α,l⊥m,则m∥α.故答案为:若l⊥α,l⊥m,则m∥α.27.【2019年江苏09】如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是.【解答】解:∵长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,∴AB×BC×DD1=120,∴三棱锥E﹣BCD的体积:V E﹣BCDAB×BC×DD1=10.故答案为:10.28.【2018年江苏10】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【解答】解:正方体的棱长为2,中间四边形的边长为:,八面体看做两个正四棱锥,棱锥的高为1,多面体的中心为顶点的多面体的体积为:2.故答案为:.29.【2018年新课标2理科16】已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为.【解答】解:圆锥的顶点为S,母线SA,SB所成角的余弦值为,可得sin∠ASB.△SAB的面积为5,可得sin∠ASB=5,即5,即SA=4.SA与圆锥底面所成角为45°,可得圆锥的底面半径为:2.则该圆锥的侧面积:π=40π.故答案为:40π.30.【2018年天津理科11】已知正方体ABCD﹣A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M﹣EFGH的体积为.【解答】解:正方体的棱长为1,M﹣EFGH的底面是正方形的边长为:,四棱锥是正四棱锥,棱锥的高为,四棱锥M﹣EFGH的体积:.故答案为:.31.【2017年江苏06】如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则.故答案为:.32.【2017年新课标1理科16】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h,3,则V,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为x,则OG,∴FG=SG=5,SO=h,∴三棱锥的体积V,令b(x)=5x4,则,令b′(x)=0,则4x30,解得x=4,∴(cm3).故答案为:4cm3.33.【2017年新课标3理科16】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°;其中正确的是.(填写所有正确结论的编号)【解答】解:由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,不妨设图中所示正方体边长为1,故|AC|=1,|AB|,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,则D(1,0,0),A(0,0,1),直线a的方向单位向量(0,1,0),||=1,直线b的方向单位向量(1,0,0),||=1,设B点在运动过程中的坐标中的坐标B′(cosθ,sinθ,0),其中θ为B′C与CD的夹角,θ∈[0,2π),∴AB′在运动过程中的向量,(cosθ,sinθ,﹣1),||,设与所成夹角为α∈[0,],则cosα|sinθ|∈[0,],∴α∈[,],∴③正确,④错误.设与所成夹角为β∈[0,],cosβ|cosθ|,当与夹角为60°时,即α,|sinθ|,∵cos2θ+sin2θ=1,∴cosβ|cosθ|,∵β∈[0,],∴β,此时与的夹角为60°,∴②正确,①错误.故答案为:②③.34.【2017年上海04】已知球的体积为36π,则该球主视图的面积等于.【解答】解:球的体积为36π,设球的半径为R,可得πR3=36π,可得R=3,该球主视图为半径为3的圆,可得面积为πR2=9π.故答案为:9π.35.【2017年上海07】如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是.【解答】解:如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵的坐标为(4,3,2),∴A(4,0,0),C1(0,3,2),∴.故答案为:(﹣4,3,2).36.【2017年天津理科10】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R,则球的体积Vπ•()3;故答案为:.。

高三立体几何习题(含问题详解)

高三立体几何习题(含问题详解)

C BAC1B1A1高三立体几何习题一、填空题1.已知AB是球O的一条直径,点1O是AB上一点,若14OO=,平面α过点1O且垂直AB,截得圆1O,当圆1O的面积为9π时,则球O的表面积是.【答案】100p2.把一个大金属球表面涂漆,共需油漆2.4公斤.若把这个大金属球熔化制成64个大小都相同的小金属球,不计损耗,将这些小金属球表面都涂漆,需要用漆公斤.【答案】9.63.已知球的表面积为64π2cm,用一个平面截球,使截面圆的半径为2cm,则截面与球心的距离是cm【答案】234.一个圆锥与一个球体积相等且圆锥的底面半径是球半径的2倍,若圆锥的高为1,则球的表面积为.【答案】4p5.一个底面置于水平面上的圆锥,若主视图是边长为2的正三角形,则圆锥的侧面积为.【答案】4p6.如图所示:在直三棱柱111ABC A B C-中,AB BC⊥,1AB BC BB==,则平面11A B C与平面ABC所成的二面角的大小为.【答案】4π二、选择题1.如图,已知圆锥的底面半径为10r=,点Q为半圆弧AB的中点,点P为母线SA的中点.若PQ与SO所成角为4π,则此圆锥的全面积与体积分别为()A.100051006,3ππB.10005100(16),3ππ+C.100031003,3ππD.10003100(13),3ππ+【答案】B2.如图,取一个底面半径和高都为R的圆柱,从圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥,把所得的几何体与一个半径为R的半球放在同一水平面α上.用一平行于平面α的平面去截这两个几何体,截面分别为圆面和圆环面(图中阴影部分).设截面面积分别为S圆和S圆环,那么()A.S圆>S圆环 B.S圆<S圆环 C.S圆=S圆环 D.不确定PSAQOB3.如图所示,PAB ∆所在平面α和四边形ABCD 所在的平面β互相垂直,且AD α⊥,BC α⊥,4AD =,8BC =,6AB =,若tan 2tan 1ADP BCP ∠-∠=,则动点P 在平面α内的轨迹是( ) A.线段 B.椭圆的一部分 C.抛物线 D.双曲线的一部分 【答案】D4.在空间中,下列命题正确的是( )A .若两直线,a b 与直线l 所成的角相等,那么//a bB .空间不同的三点A 、B 、C 确定一个平面C. 如果直线//l 平面α且//l 平面β,那么//αβ D .若直线a 与平面M 没有公共点,则直线//a 平面M【答案】D5.如图,已知直线l ⊥平面α,垂足为O ,在ABC △中,2,2,22BC AC AB ===,点P 是边AC 上的动点.该三角形在空间按以下条件作自由移动:(1)A l ∈,(2)C α∈.则OP PB +的最大值为( )(A) 2. (B) 22. (C) 15+. (D) 10.【答案】C6.平面α上存在不同的三点到平面β的距离相等且不为零,则平面α与平面β的位置关系为( ))(A 平行 )(B 相交 )(C 平行或重合 )(D 平行或相交【答案】D7.a b c 、、表示直线,α表示平面,下列命题正确的是( )A .若//,//αa b a ,则//αbB . 若,α⊥⊥a b b ,则α⊥aC .若,⊥⊥a c b c ,则//a bD .若,αα⊥⊥a b ,则//a b 【答案】D8.下列命题中,正确的个数是【 】① 直线上有两个点到平面的距离相等,则这条直线和这个平面平行; ② a 、b 为异面直线,则过a 且与b 平行的平面有且仅有一个; ③ 直四棱柱是直平行六面体;④ 两相邻侧面所成角相等的棱锥是正棱锥.A 、0B 、1C 、2D 、3 【答案】B9.在四棱锥ABCD V -中,1B ,1D 分别为侧棱VB ,VD 的中点,则四面体11CD AB 的体积与四棱锥 ABCD V -的体积之比为( )A .6:1B .5:1C .4:1D .3:1βαP B A DC A Bl C αNPO【答案】C三、解答题1.(本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分. 如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动. (1)证明:11D E A D ⊥;(2)AE 等于何值时,二面角1D EC D --的大小为4π.【答案】解:(1)在如图所示的空间直角坐标系中,11(1,0,1),(0,0,0),(0,0,1)A D D 设(1,,0)([0,2])E y y ∈ 则11(1,,1),(1,0,1)D E y DA =-=…所以110D E DA ⋅=……所以11D E A D ⊥……(2)方法一:设(,,)n u v w =为平面1D CE 的一个法向量由1100n CD n D E ⎧⋅=⎪⎨⋅=⎪⎩,得200v w u yv w -+=⎧⎨+-=⎩,所以(2)2u y v w v =-⎧⎨=⎩…因为二面角1D EC D --的大小为4π,所以2222(0,0,1)(,,)22cos ||42(2)5u v w u v wy π⋅===++-+ 又[0,2]y ∈,所以23y =-,即当23AE =-时二面角1D EC D --的大小为4π2.(本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分. 如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动. (1)当E 为AB 的中点时,求四面体1E ACD -的体积; (2)证明:11D E A D ⊥.【答案】解:(1)1122ACE S AE BC ∆=⋅=… 因为1D D ACE ⊥平面,所以1111136E ACD D ACE ACE V V S D D --∆==⋅=… (2)正方形11ADD A 中,11A D AD ⊥……因为11AB ADD A ⊥平面,所以1AB A D ⊥…所以11A D AD E ⊥平面…所以11D E A D ⊥……D 1C 1A 1A E DB 1B C Ox yzD 1C 1A 1AEDB 1B C3.三棱柱111C B A ABC -中,它的体积是315,底面ABC ∆中,090=∠BAC ,3,4==AC AB ,1B 在底面的射影是D ,且D 为BC 的中点.(1)求侧棱1BB 与底面ABC 所成角的大小;(7分)(2)求异面直线D B 1与1CA 所成角的大小.(6分)【答案】解:(1)依题意,⊥D B 1面ABC ,BD B 1∠就是侧棱1BB 与底面ABC 所成的角θ 2分111111431532ABC A B C ABC V S B D B D -∆=⋅=⨯⨯⨯=4分1532B D =5分计算25=BD ,θθtan 25tan 1==BD D B , tan 3,3πθθ=∴= 7分 (2)取11C B 的中点E ,连E A EC 1,,则1ECA ∠(或其补角)为所求的异面直线的角的大小 9分 ⊥D B 1面ABC ,D B 1‖CE ,面ABC ‖面111C B A ⊥∴CE 面111C B A ,E A CE 1⊥∴ 11分33325tan 251===∠EC AE CE A 12分 所求异面直线D B 1与1CA 所成的角6π13分4.在如图所示的几何体中,四边形CDPQ 为矩形,四边形ABCD 为直角梯形,且90BAD ADC ∠=∠=,平面CDPQ ⊥平面ABCD ,112AB AD CD ===,2PD =.(1)若M 为PA 的中点,求证:AC //平面DMQ ;(2)求平面PAD 与平面PBC 所成的锐二面角的大小.【答案】解:(1)如图,设CP 与M 的交点为N ,连接MN .易知点N 是CP 的中点,又M 为PA 的中点,故//AC MN .…4分于是,由MN ∉平面DMQ ,得//AC 平面DMQ .……………6分 (2)如图,以点D 为原点,分别以DA DB DC 、、为x 轴,y 轴,z 轴,建立空间直角坐标系,则(0,0,0),(1,0,0),(1,1,0),(0,2,0),(0,0,2)D A B C P .易知1(0,1,0)n =为平面PAD 的一个法向量,设2(,,)n x y z =为平面PBC 的一个法向量.则220220n BC x y n PC y z ⎧=-+=⎪⎨=-=⎪⎩2x yz y =⎧⎪⇒⎨=⎪⎩,令1y =,得2(1,1,2)n =.…………………10分 设平面PAD 与平面PBC 所成的锐二面角为θ,则12121cos 2n n n n θ==,…………………12分 1A ABCQP D M(第20题图)D 1C 1B 1BCDA 1A故平面PAD 与平面PBC 所成的锐二面角的大小为3π.………………………………………14分5.(本题满分14分) 本题共2个小题,第1小题6分,第2小题8分. 在如图所示的直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为2的 菱形,且60,BAD ∠=︒1 4.AA =(1)求直四棱柱1111ABCD A B C D -的体积; (2)求异面直线11AD BA 与所成角的大小.【答案】解:(1)因菱形ABCD 的面积为2sin 6023,AB ⋅︒= ……2分故直四棱柱1111ABCD A B C D -的体积为:12348 3.ABCD S AA ⋅=⨯=底面……6分(2)连接111BC A C 、,易知11//BC AD ,故11A BC ∠等于异面直线11AD BA 与所成角. ……8分由已知,可得111125,23,A B BC AC === ……10分则在11A BC ∆中,由余弦定理,得 222111111117cos .210A B BC AC A BC A B BC +-∠==⋅ ……12分 故异面直线11AD BA 与所成角的大小为7cos .10arc……14分6.(本题满分12分)本题共2小题,第1小题满分6分,第2小题满分6分.在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,过11,,A C B 三点的平面截去长方体的一个角后,得到如下所示的几何体111ABCD AC D -.(1)若11A C 的中点为1O ,求求异面直线1BO 与11A D 所成角的大小(用反三角函数值表示);(2)求点D 到平面11A BC 的距离d .【答案】解:(1)按如图所示建立空间直角坐标系.由题知,可得点D(0,0,0)、(2,2,0)B 、1(0,0,3)D 、1(2,0,3)A 、1(0,2,3)C . 由1O 是11A C 中点,可得1(1,1,3)O . 于是,111(1,1,3),(2,0,0)BO A D =--=-. 设异面直线1BO 与11A D 所成的角为θ,则111111211cos 11||||211BO A D BO A D θ⋅===.因此,异面直线1BO 与11A D 所成的角为11arccos 11. (2)设(,,)nx y z =是平面ABD 的法向量. ∴110,0.n BA n BC ⎧⋅=⎪⎨⋅=⎪⎩ 又11(0,2,3),(2,0,3)BA BC =-=-,∴230,230.y z x z -+=⎧⎨-+=⎩ 取2z =, ABCD1A 1C 1D可得3,3,2.x y z =⎧⎪=⎨⎪=⎩即平面11BA C 的一个法向量是(3,3,2)n =. ∴||n DB d n ⋅=62211=.7.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,过1A 、1C 、B 三点的平面截去长方体的 一个角后,得到如下所示的几何体111ABCD AC D -.(1)求几何体111ABCD AC D -的体积,并画出该几何体的左视图(AB 平行主视图投影所在的平面); (2)求异面直线1BC 与11A D 所成角的大小(结果用反三角函数值表示).【答案】解: 2AB BC ==,13AA =,11111=2232231032ABCD A D C V V V -∴=-⨯⨯-⨯⨯⨯⨯=长方体三棱锥.左视图如右图所示. (2)依据题意,有11,A D AD AD BC ,即11A D BC . ∴1C BC ∠就是异面直线1BC 与11A D 所成的角. 又1C C BC ⊥,∴113tan 2C C C BC BC ∠==.∴异面直线1BC 与11A D 所成的角是3tan 2arc . 8. (本题满分12分)本题共有2个小题,第1小题满分4分,第2小题满分8分.如图,在直三棱柱111C B A ABC -中,已知21===AB BC AA ,AB ⊥BC . (1)求四棱锥111A BCC B -错误!未指定书签。

2023年高考备考三年 立体几何(解答题)(理科专用)(含答案)

2023年高考备考三年 立体几何(解答题)(理科专用)(含答案)
由 ⊂ 平面1, ⊂ 平面可得 ⊥ ,1 ⊥ ,
又,1 ⊂ 平面11且相交,所以 ⊥ 平面11,
所以,,1两两垂直,以 B 为原点,建立空间直角坐标系,如图,
高考材料
高考材料
由〔1〕得 = 2,所以1 = = 2,1 = 2 2,所以 = 2,
角函数的根本关系计算可得;
(1)
证明:连接并延长交于点,连接、,
因为是三棱锥−的高,所以 ⊥ 平面,, ⊂ 平面,
所以 ⊥ 、 ⊥ ,
又 = ,所以 △ ≅ △ ,即 = ,所以∠ = ∠,
又因为, ⊂ 平面, ∩ = ,所以 ⊥ 平面,
因为 ⊂ 平面,所以平面 ⊥ 平面.
(2)
连接,由〔1〕知, ⊥ 平面,因为 ⊂ 平面,
1
所以 ⊥ ,所以 △ = 2 ⋅ ,
当 ⊥ 时,最小,即 △ 的面积最小.
则(0,2,0),1(0,2,2),(0,0,0),(2,0,0),所以1的中点(1,1,1),
则 = (1,1,1), = (0,2,0), = (2,0,0),
设平面的一个法向量 = (,,),则{
⋅ = + + = 0

⋅ = 2 = 0
以为坐标原点建立如下图的空间直角坐标系−,
则(1,0,0),(0, 3,0),(0,0,1),所以 = (−1,0,1), = (−1, 3,0),
设平面的一个法向量为 = (,,),
{
⋅ = − + = 0
则 ⋅ = − + 3 = 0 ,取 = 3,则 = (3, 3,3),
高考材料
高考材料
〔1〕证明: BF DE ;
〔2〕当 B1 D 为何值时,面 BB1C1C 与面 DFE 所成的二面角的正弦值最小

新高考地区专用2020_2022三年高考数学真题分项汇编专题04立体几何

新高考地区专用2020_2022三年高考数学真题分项汇编专题04立体几何

专题04 立体几何1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )A.B.C.D.【答案】C【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【解析】依题意可知棱台的高为MN=157.5−148.5=9(m),所以增加的水量即为棱台的体积V.棱台上底面积S=140.0k m2=140×106m2,下底面积S'=180.0k m2=180×106m2,∴V=13ℎ(S+S'+√S S')=13×9×(140×106+180×106+√140×180×1012)¿3×(320+60√7)×106≈(96+18×2.65)×107=1.437×109≈1.4×109(m3).故选:C.2.【2022年新高考1卷】已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为36π,且3≤l≤3√3,则该正四棱锥体积的取值范围是( )A.[18,814]B.[274,814]C.[274,643]D.[18,27]【答案】C【分析】设正四棱锥的高为ℎ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【解析】∵ 球的体积为36π,所以球的半径R=3,设正四棱锥的底面边长为2a,高为ℎ,则l2=2a2+ℎ2,32=2a2+(3−ℎ)2,所以6ℎ=l2,2a2=l2−ℎ2所以正四棱锥的体积V=13Sℎ=13×4a2×ℎ=23×(l2−l436)×l26=19(l4−l636),所以V'=19(4l3−l56)=19l3(24−l26),当3≤l≤2√6时,V'>0,当2√6<l≤3√3时,V'<0,所以当l=2√6时,正四棱锥的体积V取最大值,最大值为64 3,又l=3时,V=274,l=3√3时,V=814,所以正四棱锥的体积V的最小值为274,所以该正四棱锥体积的取值范围是[274,643].故选:C.3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( )A.100πB.128πC.144πD.192π【答案】A【分析】根据题意可求出正三棱台上下底面所在圆面的半径r1,r2,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【解析】设正三棱台上下底面所在圆面的半径r1,r2,所以2r1=3√3sin60∘,2r2=4√3sin60∘,即r 1=3,r2=4,设球心到上下底面的距离分别为d1,d2,球的半径为R,所以d1=√R2−9,d2=√R2−16,故|d1−d2|=1或d1+d2=1,即|√R2−9−√R2−16|=1或√R2−9+√R2−16=1,解得R2=25符合题意,所以球的表面积为S=4πR2=100π.故选:A.4.【2021年新高考1卷】已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .B.C.D.【答案】B【分析】设圆锥的母线长为,根据圆锥底面圆的周长等于扇形的弧长可求得的值,即为所求.【解析】设圆锥的母线长为,由于圆锥底面圆的周长等于扇形的弧长,则,解得.故选:B.5.【2021年新高考2卷】正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A.B.C.D.【答案】D【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.【解析】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高,下底面面积,上底面面积,所以该棱台的体积.故选:D. 6.【2020年新高考1卷(山东卷)】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为( )A.20°B.40°C.50°D.90°【答案】B【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点处的纬度,计算出晷针与点处的水平面所成角.【解析】画出截面图如下图所示,其中是赤道所在平面的截线;是点处的水平面的截线,依题意可知;是晷针所在直线.是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知、根据线面垂直的定义可得..由于,所以,由于,所以,也即晷针与点处的水平面所成角为.故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.7.【2022年新高考1卷】已知正方体ABCD−A1B1C1D1,则( )A.直线BC1与D A1所成的角为90°B.直线BC1与C A1所成的角为90°C.直线BC1与平面B B1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°【答案】ABD【分析】数形结合,依次对所给选项进行判断即可.【解析】如图,连接B1C、BC1,因为D A1/¿B1C,所以直线BC1与B1C所成的角即为直线BC1与D A1所成的角,因为四边形B B1C1C为正方形,则B1C⊥BC1,故直线BC1与D A1所成的角为90°,A 正确;连接A1C,因为A1B1⊥平面B B1C1C,BC1⊂平面B B1C1C,则A1B1⊥B C1,因为B1C⊥BC1,A1B1∩B1C=B1,所以BC1⊥平面A1B1C,又A1C⊂平面A1B1C,所以BC1⊥C A1,故B正确;连接A1C1,设A1C1∩B1D1=O,连接BO,因为B B1⊥平面A1B1C1D1,C1O⊂平面A1B1C1D1,则C1O⊥B1B,因为C1O⊥B1D1,B1D1∩B1B=B1,所以C1O⊥平面B B1D1D,所以∠C1BO为直线BC1与平面B B1D1D所成的角,设正方体棱长为1,则C1O=√22,BC1=√2,sin∠C1BO=C1OB C1=12,所以,直线BC1与平面B B1D1D所成的角为30∘,故C错误;因为C1C⊥平面ABCD,所以∠C1BC为直线BC1与平面ABCD所成的角,易得∠C1BC=45∘,故D正确.故选:ABD8.【2022年新高考2卷】如图,四边形ABCD为正方形,ED⊥平面ABCD,FB∥ED,AB=ED=2FB,记三棱锥E−ACD,F−ABC,F−ACE的体积分别为V1,V2,V3,则( )A.V3=2V2B.V3=V1 C.V3=V1+V2D.2V3=3V1【答案】CD【分析】直接由体积公式计算V1,V2,连接BD交AC于点M,连接EM,FM,由V3=VA−EFM+VC−EFM计算出V3,依次判断选项即可.【解析】设AB=ED=2FB=2a,因为ED⊥平面ABCD,FB∥ED,则V1=13⋅ED⋅S△ACD=13⋅2a⋅12⋅(2a)2=43a3,V2=13⋅FB⋅S△ABC=13⋅a⋅12⋅(2a)2=23a3,连接BD交AC于点M,连接EM,FM,易得BD⊥AC,又ED⊥平面ABCD,AC⊂平面ABCD,则ED⊥AC,又ED∩BD=D,ED,BD⊂平面BDEF,则AC⊥平面BDEF,又BM=DM=12BD=√2a,过F作FG⊥DE于G,易得四边形BDGF为矩形,则FG=BD=2√2a,EG=a,则EM=√2(√)2√6a,FM=√2(√)2√3a,EF=√2(√)23a,E M2+F M2=E F2,则EM⊥FM,S△EFM=12EM⋅FM=3√22a2,AC=2√2a,则V3=V A−EFM+V C−EFM=13AC⋅S△EFM=2a3,则2V3=3V1,V3=3V2,V3=V1+V2,故A、B错误;C、D正确.故选:CD.9.【2021年新高考1卷】在正三棱柱中,,点满足,其中,,则( )A .当时,的周长为定值B.当时,三棱锥的体积为定值C.当时,有且仅有一个点,使得D.当时,有且仅有一个点,使得平面【答案】BD【分析】对于A,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B,将点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C,考虑借助向量的平移将点轨迹确定,进而考虑建立合适的直角坐标系来求解点的个数;对于D,考虑借助向量的平移将点轨迹确定,进而考虑建立合适的直角坐标系来求解点的个数.【解析】易知,点在矩形内部(含边界).对于A,当时,,即此时线段,周长不是定值,故A错误;对于B,当时,,故此时点轨迹为线段,而,平面,则有到平面的距离为定值,所以其体积为定值,故B正确.对于C,当时,,取,中点分别为,,则,所以点轨迹为线段,不妨建系解决,建立空间直角坐标系如图,,,,则,,,所以或.故均满足,故C错误;对于D,当时,,取,中点为.,所以点轨迹为线段.设,因为,所以,,所以,此时与重合,故D正确.故选:BD.【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.10.【2021年新高考2卷】如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足的是( )A.B.C.D.【答案】BC【分析】根据线面垂直的判定定理可得BC的正误,平移直线构造所考虑的线线角后可判断AD的正误.【解析】设正方体的棱长为,对于A,如图(1)所示,连接,则,故(或其补角)为异面直线所成的角,在直角三角形,,,故,故不成立,故A错误.对于B,如图(2)所示,取的中点为,连接,,则,,由正方体可得平面,而平面,故,而,故平面,又平面,,而,所以平面,而平面,故,故B正确.对于C,如图(3),连接,则,由B的判断可得,故,故C正确.对于D,如图(4),取的中点,的中点,连接,则,因为,故,故,所以或其补角为异面直线所成的角,因为正方体的棱长为2,故,,,,故不是直角,故不垂直,故D错误.故选:BC.11.【2020年新高考1卷(山东卷)】已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球心,为半径的球面与侧面BCC1B1的交线长为________.【答案】.【分析】根据已知条件易得,侧面,可得侧面与球面的交线上的点到的距离为,可得侧面与球面的交线是扇形的弧,再根据弧长公式可求得结果.【解析】如图:取的中点为,的中点为,的中点为,因为60°,直四棱柱的棱长均为2,所以△为等边三角形,所以,,又四棱柱为直四棱柱,所以平面A1B1C1D1,所以,因为,所以侧面,设为侧面与球面的交线上的点,则,因为球的半径为,,所以,所以侧面与球面的交线上的点到的距离为,因为,所以侧面与球面的交线是扇形的弧,因为,所以,所以根据弧长公式可得.故答案为:.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.12.【2020年新高考2卷(海南卷)】已知正方体ABCD-A1B1C1D1的棱长为2,M、N 分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________【答案】【分析】利用计算即可.【解析】因为正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点所以,故答案为:【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些. 13.【2022年新高考1卷】如图,直三棱柱ABC−A1B1C1的体积为4,△A1BC的面积为2√2.(1)求A到平面A1BC的距离;(2)设D为A1C的中点,A A1=AB,平面A1BC⊥平面AB B1A1,求二面角A−BD−C 的正弦值.【答案】(1)√2;(2)√3 2【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC⊥平面AB B1A1,建立空间直角坐标系,利用空间向量法即可得解.【解析】(1)在直三棱柱ABC−A1B1C1中,设点A到平面A1BC的距离为h,则V A−A1BC=13S△A1BC⋅ℎ=2√23ℎ=VA1−ABC=13S△ABC⋅A1A=13VABC−A1B1C1=43,解得ℎ=√2,所以点A到平面A1BC的距离为√2;(2)取A1B的中点E,连接AE,如图,因为A A1=AB,所以AE⊥A1B,又平面A1BC⊥平面AB B1A1,平面A1BC∩平面AB B1A1=A1B,且AE⊂平面AB B1A1,所以AE⊥平面A1BC,在直三棱柱ABC−A1B1C1中,B B1⊥平面ABC,由BC⊂平面A1BC,BC⊂平面ABC可得AE⊥BC,B B1⊥BC,又AE,B B1⊂平面AB B1A1且相交,所以BC⊥平面AB B1A1,所以BC,BA,B B1两两垂直,以B为原点,建立空间直角坐标系,如图,由(1)得AE =√2,所以A A 1=AB =2,A 1B =2√2,所以BC =2,则A (0,2,0),A 1(0,2,2),B (0,0,0),C (2,0,0),所以A 1C 的中点D (1,1,1),则⃗B D =(1,1,1),⃗B A =(0,2,0),⃗BC =(2,0,0),设平面ABD 的一个法向量⃗m =(x ,y ,z ),则{⃗m ⋅⃗BD =x +y +z =0⃗m ⋅⃗BA =2y =0,可取⃗m =(1,0,−1),设平面BDC 的一个法向量⃗n =(a ,b ,c ),则{⃗m ⋅⃗BD =a +b +c =0⃗m ⋅⃗BC =2a =0,可取⃗n=(0,1,−1),则cos 〈⃗m ,⃗n 〉=⃗m ⋅⃗n¿⃗m ∨⋅∨⃗n ∨¿=√√=12¿,所以二面角A −BD−C 的正弦值为√1−(12)2=√32.14.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,P A =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE /¿平面P AC ;(2)若∠ABO =∠CBO =30°,PO =3,P A =5,求二面角C −AE −B 的正弦值.【答案】(1)证明见解析;(2)11 13【分析】(1)连接BO并延长交AC于点D,连接OA、PD,根据三角形全等得到OA=OB,再根据直角三角形的性质得到AO=DO,即可得到O为BD的中点从而得到OE//PD,即可得证;(2)过点A作Az//OP,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得;【解析】(1)证明:连接BO并延长交AC于点D,连接OA、PD,因为PO是三棱锥P−ABC的高,所以PO⊥平面ABC,AO,BO⊂平面ABC,所以PO⊥AO、PO⊥BO,又P A=PB,所以△POA≅△POB,即OA=OB,所以∠OAB=∠OBA,又AB⊥AC,即∠BAC=90°,所以∠OAB+∠OAD=90°,∠OBA+∠ODA=90°,所以∠ODA=∠OAD所以AO=DO,即AO=DO=OB,所以O为BD的中点,又E为PB的中点,所以OE//PD,又OE⊄平面P AC,PD⊂平面P AC,所以OE//平面P AC(2)解:过点A作Az//OP,如图建立平面直角坐标系,因为PO=3,AP=5,所以OA=√A P2−P O2=4,又∠OBA=∠OBC=30°,所以BD=2OA=8,则AD=4,AB=4√3,所以AC=12,所以O(2√3,2,0),B(4√3,0,0),P(2√3,2,3),C(0,12,0),所以E(3√3,1,32),则⃑AE=(3√3,1,32),⃑AB=(4√3,0,0),⃑AC=(0,12,0),设平面AEB的法向量为⃑n=(x,y,z),则¿,令z=2,则y=−3,x=0,所以⃑n=(0,−3,2);设平面AEC的法向量为⃑m=(a,b,c),则¿,令a=√3,则c=−6,b=0,所以⃑m=(√3,0,−6);所以cos⟨⃑n,⃑m⟩=⃑n⋅⃑m|⃑n||⃑m|=√√−4√313设二面角C−AE−B为θ,由图可知二面角C−AE−B为钝二面角,所以cosθ=−4√313,所以sinθ=√1−cos2θ=1113故二面角C−AE−B的正弦值为11 13;15.【2021年新高考1卷】如图,在三棱锥中,平面平面,,为的中点.(1)证明:;(2)若是边长为1的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.【答案】(1)证明见解析;(2).【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【解析】(1)因为,O是中点,所以,因为平面,平面平面,且平面平面,所以平面.因为平面,所以.(2)[方法一]:通性通法—坐标法如图所示,以O为坐标原点,为轴,为y轴,垂直且过O的直线为x轴,建立空间直角坐标系,则,设,所以,设为平面的法向量,则由可求得平面的一个法向量为.又平面的一个法向量为,所以,解得.又点C到平面的距离为,所以,所以三棱锥的体积为.[方法二]【最优解】:作出二面角的平面角如图所示,作,垂足为点G.作,垂足为点F,连结,则.因为平面,所以平面,为二面角的平面角.因为,所以.由已知得,故.又,所以.因为,.[方法三]:三面角公式考虑三面角,记为,为,,记二面角为.据题意,得.对使用三面角的余弦公式,可得,化简可得.①使用三面角的正弦公式,可得,化简可得.②将①②两式平方后相加,可得,由此得,从而可得.如图可知,即有,根据三角形相似知,点G为的三等分点,即可得,结合的正切值,可得从而可得三棱锥的体积为.【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.16.【2021年新高考2卷】在四棱锥中,底面是正方形,若.(1)证明:平面平面;(2)求二面角的平面角的余弦值.【答案】(1)证明见解析;(2).【分析】(1)取的中点为,连接,可证平面,从而得到面面.(2)在平面内,过作,交于,则,建如图所示的空间坐标系,求出平面、平面的法向量后可求二面角的余弦值.【解析】(1)取的中点为,连接.因为,,则,而,故.在正方形中,因为,故,故,因为,故,故为直角三角形且,因为,故平面,因为平面,故平面平面.(2)在平面内,过作,交于,则,结合(1)中的平面,故可建如图所示的空间坐标系.则,故.设平面的法向量,则即,取,则,故.而平面的法向量为,故.二面角的平面角为锐角,故其余弦值为.17.【2020年新高考1卷(山东卷)】如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【答案】(1)证明见解析;(2).【分析】(1)利用线面垂直的判定定理证得平面,利用线面平行的判定定理以及性质定理,证得,从而得到平面;(2)方法一:根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点,之后求得平面的法向量以及向量的坐标,求得的最大值,即为直线与平面所成角的正弦值的最大值.【解析】(1)在正方形中,,因为平面,平面,所以平面,又因为平面,平面平面,所以,因为在四棱锥中,底面是正方形,所以且平面,所以因为,所以平面.(2)[方法一]【最优解】:通性通法因为两两垂直,建立空间直角坐标系,如图所示:因为,设,设,则有,设平面的法向量为,则,即,令,则,所以平面的一个法向量为,则根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB与平面QCD所成角的正弦值等于,当且仅当时取等号,所以直线与平面所成角的正弦值的最大值为.[方法二]:定义法如图2,因为平面,,所以平面.在平面中,设.在平面中,过P点作,交于F,连接.因为平面平面,所以.又由平面,平面,所以平面.又平面,所以.又由平面平面,所以平面,从而即为与平面所成角.设,在中,易求.由与相似,得,可得.所以,当且仅当时等号成立.[方法三]:等体积法如图3,延长至G,使得,连接,,则,过G点作平面,交平面于M,连接,则即为所求.设,在三棱锥中,.在三棱锥中,.由得,解得,当且仅当时等号成立.在中,易求,所以直线PB与平面QCD所成角的正弦值的最大值为.【整体点评】(2)方法一:根据题意建立空间直角坐标系,直线PB与平面QCD所成角的正弦值即为平面的法向量与向量的夹角的余弦值的绝对值,即,再根据基本不等式即可求出,是本题的通性通法,也是最优解;方法二:利用直线与平面所成角的定义,作出直线PB与平面QCD所成角,再利用解三角形以及基本不等式即可求出;方法三:巧妙利用,将线转移,再利用等体积法求得点面距,利用直线PB与平面QCD所成角的正弦值即为点面距与线段长度的比值的方法,即可求出.18.【2020年新高考2卷(海南卷)】如图,四棱锥P-ABCD的底面为正方形,PD底面ABCD.设平面PAD与平面PBC的交线为.(1)证明:平面PDC;(2)已知PD=AD=1,Q为上的点,QB=,求PB与平面QCD所成角的正弦值.【答案】(1)证明见解析;(2).【分析】(1)利用线面平行的判定定理以及性质定理,证得,利用线面垂直的判定定理证得平面,从而得到平面;(2)根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点,之后求得平面的法向量以及向量的坐标,求得,即可得到直线与平面所成角的正弦值.【解析】(1)在正方形中,,因为平面,平面,所以平面,又因为平面,平面平面,所以,因为在四棱锥中,底面是正方形,所以且平面,所以因为,所以平面;(2)如图建立空间直角坐标系,因为,则有,设,则有,因为QB=,所以有设平面的法向量为,则,即,令,则,所以平面的一个法向量为,则根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于所以直线与平面所成角的正弦值为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定和性质,线面垂直的判定和性质,利用空间向量求线面角,利用基本不等式求最值,属于中档题目.。

三年高考高考数学真题分项汇编专题立体几何解答题文含解析.doc

三年高考高考数学真题分项汇编专题立体几何解答题文含解析.doc

专题06立体几何(解答题)1.[2019年高考全国I卷文数】如图,直四棱柱ABCD-A^C^的底面是菱形,』4=4, AB=2, ZBAD=60° ,E, M,"分别是成;BBi, 4〃的中点.(1)证明:刎〃平面GDE;(2)求点。

到平面G庞的距离.【答案】(1)见解析;(2) .【解析】(1)连结.因为〃,盼别为的中点,所以,且.又因为伪的中点,所以.由题设知,可得,故,因此四边形姗为平行四边形,.又平面,所以沥V〃平面.(2)过。

乍G碰垂线,垂足为H由己知可得,,所以班_L平面,故DELCH.从而世上平面,故囹的长即为徐(J平面的距离,由已知可得上1, G&4,所以,故.从而点6®!平面的距离为.【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.2.[2019年高考全国II卷文数】如图,长方体ABCD- ABGB的底面敬刀是正方形,点E在棱如i上,BE LEQ.(1)证明:班」平面EB&(2)若A^AxE, AB=3,求四棱锥的体积.【答案】(1)见详解;(2) 18.【解析】(1)由已知得平面ABB^Ax,政平面ABRA,故.又,所以血工平面.(2)由(1)知ZBE&=90° .由题设知Rt△,母竺RtZ\43E,所以,故』庆舟3,.作,垂足为尸,则时平面,且.所以,四棱锥的体积.【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.3.[2019年高考全国III卷文数】图1是由矩形血陟,政和菱形阴Z组成的一个平面图形,其中AB=\,BE=BF^2,ZFB(=60° .将其沿43 折起使得庞与欧重合,连结〃G,如图2.(1)证明:图2中的瓦C, G,〃四点共面,且平面』3GL平面冏%S';(2)求图2中的四边形成%〃的面积.【答案】(1)见解析;(2) 4.【解析】(1)由已知得地陋,CGBE,所以ADCG,故时 CG确定一个平面,从而』,C, G,〃四点共面. 由已知得』姗,ABBC,故/疗平面成洗又因为/砰面/3G所以平面/及砰面及石(2)取做]中点泌连结敬DM.因为AB//DE, /砰面冏:依所以班平面此窿,故DECG.由已知,四边形及派是菱形,且ZEBG60。

三年高考(2017-2019)高考数学真题分项汇编 专题05 立体几何(选择题、填空题)理(含解析)

三年高考(2017-2019)高考数学真题分项汇编 专题05 立体几何(选择题、填空题)理(含解析)

专题05 立体几何(选择题、填空题)1.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D【答案】D 【解析】解法一:,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,2R ==即344π33R V R =∴=π==,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴又90CEF ∠=︒,12CE AE PA x ∴===, AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D 为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,2212122x x x ∴+=∴==,,PA PB PC ∴=== 又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴,2R ∴=,344338V R ∴=π=π⨯=,故选D 。

【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.2.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.3.【2019年高考全国Ⅲ卷理数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线。

全国通用2020_2022三年高考数学真题分项汇编专题06立体几何解答题理

全国通用2020_2022三年高考数学真题分项汇编专题06立体几何解答题理

06 立体几何(解答题)(理科专用)1.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1 ,AB=2,DP=√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.【答案】(1)证明见解析;(2)√5.5【解析】【分析】(1)作DE⊥AB于E,CF⊥AB于F,利用勾股定理证明AD⊥BD,根据线面垂直的性质可得PD⊥BD,从而可得BD⊥平面PAD,再根据线面垂直的性质即可得证;(2)以点D为原点建立空间直角坐标系,利用向量法即可得出答案.(1)证明:在四边形ABCD中,作DE⊥AB于E,CF⊥AB于F,因为CD//AB,AD=CD=CB=1,AB=2,所以四边形ABCD为等腰梯形,所以AE=BF=1,2,BD=√DE2+BE2=√3,故DE=√32所以AD2+BD2=AB2,所以AD⊥BD,因为PD⊥平面ABCD,BD⊂平面ABCD,所以PD⊥BD,又PD∩AD=D,所以BD⊥平面PAD,又因PA⊂平面PAD,所以BD⊥PA;(2)解:如图,以点D 为原点建立空间直角坐标系, BD =√3,则A(1,0,0),B(0,√3,0),P(0,0,√3),则AP⃗⃗⃗⃗⃗ =(−1,0,√3),BP ⃗⃗⃗⃗⃗ =(0,−√3,√3),DP ⃗⃗⃗⃗⃗ =(0,0,√3), 设平面PAB 的法向量n⃗ =(x,y,z), 则有{n →⋅AP →=−x +√3z =0n →⋅BP →=−√3y +√3z =0,可取n ⃗ =(√3,1,1), 则cos〈n ⃗ ,DP⃗⃗⃗⃗⃗ 〉=n⃗ ⋅DP ⃗⃗⃗⃗⃗⃗ |n ⃗ ||DP ⃗⃗⃗⃗⃗⃗ |=√55, 所以PD 与平面PAB 所成角的正弦值为√55.2.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值. 【答案】(1)证明过程见解析 (2)CF 与平面ABD 所成的角的正弦值为4√37【解析】 【分析】(1)根据已知关系证明△ABD ≌△CBD ,得到AB =CB ,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;(2)根据勾股定理逆用得到BE ⊥DE ,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可. (1)因为AD =CD ,E 为AC 的中点,所以AC ⊥DE ;在△ABD 和△CBD 中,因为AD =CD,∠ADB =∠CDB,DB =DB ,所以△ABD ≌△CBD ,所以AB =CB ,又因为E 为AC 的中点,所以AC ⊥BE ; 又因为DE,BE ⊂平面BED ,DE ∩BE =E ,所以AC ⊥平面BED , 因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD . (2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED , 所以AC ⊥EF ,所以S △AFC =12AC ⋅EF , 当EF ⊥BD 时,EF 最小,即△AFC 的面积最小. 因为△ABD ≌△CBD ,所以CB =AB =2, 又因为∠ACB =60°,所以△ABC 是等边三角形, 因为E 为AC 的中点,所以AE =EC =1,BE =√3, 因为AD ⊥CD ,所以DE =12AC =1,在△DEB 中,DE 2+BE 2=BD 2,所以BE ⊥DE . 以E 为坐标原点建立如图所示的空间直角坐标系E −xyz ,则A (1,0,0),B(0,√3,0),D (0,0,1),所以AD ⃗⃗⃗⃗⃗ =(−1,0,1),AB ⃗⃗⃗⃗⃗ =(−1,√3,0), 设平面ABD 的一个法向量为n⃗ =(x,y,z ), 则{n ⃗ ⋅AD ⃗⃗⃗⃗⃗ =−x +z =0n ⃗ ⋅AB⃗⃗⃗⃗⃗ =−x +√3y =0 ,取y =√3,则n ⃗ =(3,√3,3),又因为C (−1,0,0),F (0,√34,34),所以CF⃗⃗⃗⃗⃗ =(1,√34,34),所以cos⟨n ⃗ ,CF ⃗⃗⃗⃗⃗ ⟩=n ⃗ ⋅CF⃗⃗⃗⃗⃗ |n ⃗ ||CF⃗⃗⃗⃗⃗ |=√21×√74=4√37,设CF 与平面ABD 所成的角的正弦值为θ(0≤θ≤π2), 所以sinθ=|cos⟨n ⃗ ,CF⃗⃗⃗⃗⃗ ⟩|=4√37, 所以CF 与平面ABD 所成的角的正弦值为4√37.3.【2022年新高考1卷】如图,直三棱柱ABC −A 1B 1C 1的体积为4,△A 1BC 的面积为2√2.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A −BD −C 的正弦值.【答案】(1)√2 (2)√32【解析】 【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面ABB 1A 1,建立空间直角坐标系,利用空间向量法即可得解. (1)在直三棱柱ABC −A 1B 1C 1中,设点A 到平面A 1BC 的距离为h , 则V A−A 1BC =13S △A 1BC ⋅ℎ=2√23ℎ=V A 1−ABC =13S △ABC ⋅A 1A =13V ABC−A 1B 1C 1=43,解得ℎ=√2,所以点A 到平面A 1BC 的距离为√2; (2)取A 1B 的中点E ,连接AE ,如图,因为AA 1=AB ,所以AE ⊥A 1B , 又平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B , 且AE ⊂平面ABB 1A 1,所以AE ⊥平面A 1BC , 在直三棱柱ABC −A 1B 1C 1中,BB 1⊥平面ABC ,由BC ⊂平面A 1BC ,BC ⊂平面ABC 可得AE ⊥BC ,BB 1⊥BC , 又AE,BB 1⊂平面ABB 1A 1且相交,所以BC ⊥平面ABB 1A 1,所以BC,BA,BB 1两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE =√2,所以AA 1=AB =2,A 1B =2√2,所以BC =2, 则A(0,2,0),A 1(0,2,2),B(0,0,0),C(2,0,0),所以A 1C 的中点D(1,1,1), 则BD⃗⃗⃗⃗⃗⃗ =(1,1,1),BA ⃗⃗⃗⃗⃗ =(0,2,0),BC ⃗⃗⃗⃗⃗ =(2,0,0), 设平面ABD 的一个法向量m ⃗⃗ =(x,y,z),则{m ⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =x +y +z =0m ⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ =2y =0,可取m⃗⃗ =(1,0,−1), 设平面BDC 的一个法向量n ⃗ =(a,b,c),则{m ⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =a +b +c =0m ⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =2a =0, 可取n⃗ =(0,1,−1), 则cos〈m ⃗⃗ ,n ⃗ 〉=m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ |⋅|n ⃗ |=√2×√2=12,所以二面角A −BD −C 的正弦值为√1−(12)2=√32.4.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE//平面PAC ;(2)若∠ABO =∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值. 【答案】(1)证明见解析 (2)1113 【解析】 【分析】(1)连接BO 并延长交AC 于点D ,连接OA 、PD ,根据三角形全等得到OA =OB ,再根据直角三角形的性质得到AO =DO ,即可得到O 为BD 的中点从而得到OE//PD ,即可得证; (2)过点A 作Az//OP ,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得; (1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P −ABC 的高,所以PO ⊥平面ABC ,AO,BO ⊂平面ABC , 所以PO ⊥AO 、PO ⊥BO ,又PA =PB ,所以△POA ≅△POB ,即OA =OB ,所以∠OAB =∠OBA ,又AB ⊥AC ,即∠BAC =90°,所以∠OAB +∠OAD =90°,∠OBA +∠ODA =90°, 所以∠ODA =∠OAD所以AO =DO ,即AO =DO =OB ,所以O 为BD 的中点,又E 为PB 的中点,所以OE//PD , 又OE ⊄平面PAC ,PD ⊂平面PAC , 所以OE//平面PAC(2)解:过点A 作Az//OP ,如图建立平面直角坐标系, 因为PO =3,AP =5,所以OA =√AP 2−PO 2=4,又∠OBA =∠OBC =30°,所以BD =2OA =8,则AD =4,AB =4√3,所以AC =12,所以O(2√3,2,0),B(4√3,0,0),P(2√3,2,3),C (0,12,0),所以E (3√3,1,32), 则AE ⃗⃗⃗⃗⃗ =(3√3,1,32),AB ⃗⃗⃗⃗⃗ =(4√3,0,0),AC ⃗⃗⃗⃗⃗ =(0,12,0), 设平面AEB 的法向量为n ⃗ =(x,y,z ),则{n ⃗ ⋅AE ⃗⃗⃗⃗⃗ =3√3x +y +32z =0n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =4√3x =0 ,令z =2,则y =−3,x =0,所以n ⃗ =(0,−3,2);设平面AEC 的法向量为m⃗⃗ =(a,b,c ),则{m ⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ =3√3a +b +32c =0m ⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =12b =0 ,令a =√3,则c =−6,b =0,所以m ⃗⃗ =(√3,0,−6); 所以cos ⟨n ⃗ ,m ⃗⃗ ⟩=n⃗ ⋅m ⃗⃗⃗ |n ⃗ ||m ⃗⃗⃗ |=√13×√39=−4√313设二面角C −AE −B 为θ,由图可知二面角C −AE −B 为钝二面角, 所以cosθ=−4√313,所以sinθ=√1−cos 2θ=1113故二面角C −AE −B 的正弦值为1113;5.【2021年甲卷理科】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 【答案】(1)证明见解析;(2)112B D = 【解析】 【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案; 【详解】(1)[方法一]:几何法 因为1111,//BFA B A B AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,A M B N , 因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点, 易证1Rt Rt BCF B BN ≅,则1CBF BB N ∠=∠.又因为1190BB N B NB ∠+∠=︒,所以1190CBF B NB BF B N ∠+∠=︒⊥,. 又因为111111,BFA B B N A B B ⊥=,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥. [方法二] 【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1BB AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤). 因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅=,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++()11=BF B D BF EB BB ⋅+⋅+1BF EB BF BB =⋅+⋅11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=2202-=,所以BF ED ⊥.(2)[方法一]【最优解】:向量法 设平面DFE 的法向量为(),,m x y z =, 因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =, 设平面11BCC B 与平面DEF 的二面角的平面角为θ, 则cos m BA m BAθ⋅=⋅==当12a =时,2224a a -+取最小值为272, 此时cos θ=所以()minsin θ=112B D =. [方法二] :几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE平面11BB C C FT =.作1B H FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1DHB ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//C G A B 交DS 于点G . 由111113C S C G SA A D ==得11(2)3C G t =-. 又1111BD B T C G C T=,即12(2)3t s s t =--,所以31ts t =+.又111B H B TC F FT =,即11B H =1B H =所以DH === 则11sin B D DHB DH∠===所以,当12t =时,()1min sin DHB ∠= [方法三]:投影法 如图,联结1,FB FN ,DEF 在平面11BB C C 的投影为1B NF ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS Sθ=.设1(02)B D t t =≤≤,在1Rt DB F中,DF =在Rt ECF中,EF D作1B N 的平行线交MN 于点Q .在Rt DEQ △中,DE =在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅sin DFE ∠=1sin 2DFESDF EF DFE =⋅∠13,2B NFS = 1cos B NF DFES Sθ==,sin θ=当12t =,即112B D =,面11BBC C 与面DFE 【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维. 第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.6.【2021年乙卷理科】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(1(2【解析】【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长; (2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果. 【详解】(1)[方法一]:空间坐标系+空间向量法PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得a =2BC a == [方法二]【最优解】:几何法+相似三角形法如图,连结BD .因为PD ⊥底面ABCD ,且AM ⊂底面ABCD ,所以PD AM ⊥. 又因为PB AM ⊥,PBPD P =,所以AM ⊥平面PBD .又BD ⊂平面PBD ,所以AM BD ⊥.从而90ADB DAM ∠+∠=︒.因为90∠+∠=︒MAB DAM ,所以∠=∠MAB ADB . 所以∽ADB BAM ,于是=AD BAAB BM.所以2112BC =.所以BC = [方法三]:几何法+三角形面积法 如图,联结BD 交AM 于点N .由[方法二]知⊥AM DB .在矩形ABCD 中,有∽DAN BMN ,所以2==AN DA MN BM,即23AN AM =.令2(0)=>BC t t ,因为M 为BC 的中点,则BM t =,DB AM由1122=⋅=⋅DABSDA AB DB AN ,得=t ,解得212t =,所以2==BC t(2)[方法一]【最优解】:空间坐标系+空间向量法设平面PAM 的法向量为()111,,m x y z =,则AM ⎛⎫= ⎪ ⎪⎝⎭,()AP =-, 由111120220m AMy m AP z ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取1x =()2,1,2m =,设平面PBM 的法向量为()222,,n x yz =,BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =--,由222220220n BM n BP y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3cos ,7m n m n m n ⋅===⋅⨯ 所以,270sin ,1cos ,14m n m n =-=, 因此,二面角A PM B --[方法二]:构造长方体法+等体积法如图,构造长方体1111ABCD A B C D -,联结11,AB A B ,交点记为H ,由于11AB A B ⊥,1AB BC ⊥,所以AH ⊥平面11A BCD .过H 作1D M 的垂线,垂足记为G .联结AG ,由三垂线定理可知1⊥AG D M , 故AGH ∠为二面角A PM B --的平面角.易证四边形11A BCD 的正方形,联结1D H ,HM . 111111111,2D HMD HMD A HHBMMCD A BCD SD M HG S S SSS=⋅=---正方形,由等积法解得=HG在Rt AHG 中,==AH HG =AG所以,sin AH AGH AG ∠==A PMB -- 【整体点评】(1)方法一利用空坐标系和空间向量的坐标运算求解;方法二利用线面垂直的判定定理,结合三角形相似进行计算求解,运算简洁,为最优解;方法三主要是在几何证明的基础上,利用三角形等面积方法求得.(2)方法一,利用空间坐标系和空间向量方法计算求解二面角问题是常用的方法,思路清晰,运算简洁,为最优解;方法二采用构造长方体方法+等体积转化法,技巧性较强,需注意进行严格的论证.7.【2021年新高考1卷】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)证明见解析;【解析】 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可. 【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥, 因为OA ⊂平面ABD ,平面ABD ⊥平面BCD , 且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD . 因为CD ⊂平面BCD ,所以OA CD ⊥. (2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=,设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--.又平面BCD 的一个法向量为()0,0,OA m=,所以cos ,2n OA ==,解得1m =.又点C 到平面ABD112132A BCD C ABD V V--==⨯⨯⨯=, 所以三棱锥A BCD - [方法二]【最优解】:作出二面角的平面角 如图所示,作EGBD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG 为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =. 由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCDBOCV SO SOA A -==⨯⨯=⨯⨯⨯⨯⨯=[方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒, 记二面角E BC D --为θ.据题意,得45θ=︒. 对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.①使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.② 将①②两式平方后相加,可得223cos 2sin 14αα+=,由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=,根据三角形相似知,点G 为OD 的三等分点,即可得43BG =, 结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD -【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.8.【2021年新高考2卷】在四棱锥Q ABCD -中,底面ABCD 是正方形,若2,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面ABCD ; (2)求二面角B QD A --的平面角的余弦值. 【答案】(1)证明见解析;(2)23. 【解析】 【分析】(1)取AD 的中点为O ,连接,QO CO ,可证QO ⊥平面ABCD ,从而得到面QAD ⊥面ABCD . (2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥,建如图所示的空间坐标系,求出平面QAD 、平面BQD 的法向量后可求二面角的余弦值. 【详解】(1)取AD 的中点为O ,连接,QO CO . 因为QA QD =,OA OD =,则QO ⊥AD ,而2,AD QA ==2QO ==.在正方形ABCD 中,因为2AD =,故1DO =,故CO =因为3QC =,故222QC QO OC =+,故QOC 为直角三角形且QO OC ⊥, 因为OCAD O =,故QO ⊥平面ABCD ,因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥, 结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间坐标系.则()()()0,1,0,0,0,2,2,1,0D Q B -,故()()2,1,2,2,2,0BQ BD =-=-. 设平面QBD 的法向量(),,n x y z =,则00n BQ n BD ⎧⋅=⎨⋅=⎩即220220x y z x y -++=⎧⎨-+=⎩,取1x =,则11,2y z ==,故11,1,2n ⎛⎫= ⎪⎝⎭.而平面QAD 的法向量为()1,0,0m =,故12cos ,3312m n ==⨯.二面角B QD A --的平面角为锐角,故其余弦值为23.9.【2020年新课标1卷理科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO上一点,PO .(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值. 【答案】(1)证明见解析;(2. 【解析】 【分析】(1)要证明PA ⊥平面PBC ,只需证明PA PB ⊥,PA PC ⊥即可;(2)方法一:过O 作ON ∥BC 交AB 于点N ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,分别算出平面PCB 的一个法向量n ,平面PCE 的一个法向量为m ,利用公式cos ,||||n mm n n m ⋅<>=计算即可得到答案. 【详解】(1)[方法一]:勾股运算法证明由题设,知DAE △为等边三角形,设1AE =, 则DO =,1122CO BO AE===,所以PO ==PC PB PA ====又ABC 为等边三角形,则2sin 60BA OA =,所以BA = 22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥, 同理PA PC ⊥,又PC PB P =,所以PA ⊥平面PBC ;[方法二]:空间直角坐标系法 不妨设AB =4sin 60==︒=ABAE AD ,由圆锥性质知DO ⊥平面ABC ,所以==DO ==PO O 是ABC 的外心,因此AE BC ⊥.在底面过O 作BC 的平行线与AB 的交点为W ,以O 为原点,OW 方向为x 轴正方向,OE 方向为y 轴正方向,OD 方向为z 轴正方向,建立空间直角坐标系O xyz -,则(0,2,0)A -,B ,(C ,(0,2,0)E ,P .所以(0,AP =,(=--BP ,(3,=-CP . 故0220⋅=-+=AP BP ,0220⋅=-+=AP CP . 所以AP BP ⊥,AP CP ⊥.又BP CP P =,故AP ⊥平面PBC .[方法三]:因为ABC 是底面圆O 的内接正三角形,且AE 为底面直径,所以AE BC ⊥. 因为DO (即PO )垂直于底面,BC 在底面内,所以PO BC ⊥. 又因为PO ⊂平面PAE ,AE ⊂平面PAE ,PO AE O =,所以BC ⊥平面PAE .又因为PA ⊂平面PAE ,所以PA BC ⊥.设AE BC F =,则F 为BC 的中点,连结PF .设DO a =,且PO ,则AF =,PA =,12PF a =. 因此222+=PA PF AF ,从而PA PF ⊥. 又因为PFBC F =,所以PA ⊥平面PBC .[方法四]:空间基底向量法如图所示,圆锥底面圆O 半径为R ,连结DE ,AE AD DE ==,易得OD =,因为=PO ,所以=PO . 以,,OA OB OD 为基底,OD ⊥平面ABC ,则66=+=-+AP AO OP OA OD , 66=+=-+BP BO OP OB OD ,且212OA OB R ⋅=-,0OA OD OB OD ⋅=⋅=所以6666⎛⎫⎛⎫⋅=-+⋅-+= ⎪ ⎪⎝⎭⎝⎭AP BP OA OD OB OD26610666⋅-⋅-⋅+=OA OB OA OD OB OD OD . 故0AP BP ⋅=.所以AP BP ⊥,即AP BP ⊥. 同理AP CP ⊥.又BP CP P =,所以AP ⊥平面PBC . (2)[方法一]:空间直角坐标系法过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,则111(,0,0),((,244E PB C ---,1(,44PC =--,1()44PB =-,1(,0,24PE =--,设平面PCB 的一个法向量为111(,,)n x y z =,由00n PC n PB ⎧⋅=⎨⋅=⎩,得11111100x x ⎧-=⎪⎨-=⎪⎩,令1x 111,0z y =-=,所以(2,0,1)n =-,设平面PCE 的一个法向量为222(,,)m x y z =由00m PC m PE ⎧⋅=⎨⋅=⎩,得22222020x x ⎧-=⎪⎨-=⎪⎩,令21x =,得22z y ==所以3(1,3m =故2cos ,||||3n mmn n m ⋅<>===⋅⨯设二面角B PC E --的大小为θ,由图可知二面角为锐二面角,所以cos θ=[方法二]【最优解】:几何法 设=BCAE F ,易知F 是BC 的中点,过F 作∥FG AP 交PE 于G ,取PC 的中点H ,联结GH ,则∥HF PB .由PA ⊥平面PBC ,得FG ⊥平面PBC . 由(1)可得,222BC PB PC =+,得PB PC ⊥. 所以FH PC ⊥,根据三垂线定理,得GH PC ⊥. 所以GHF ∠是二面角B PC E --的平面角. 设圆O 的半径为r ,则3sin602︒==AF AB r ,2AE r =,12=EF r ,13EF AF =,所以14=FG PA ,1122==FH PB PA ,12=FG FH . 在Rt GFH 中,1tan 2∠==FG GHF FH ,cos ∠=GHF . 所以二面角B PC E --.[方法三]:射影面积法如图所示,在PE 上取点H ,使14HE PE =,设BC AE N =,连结NH .由(1)知14NE AE =,所以∥NH PA .故NH ⊥平面PBC . 所以,点H 在面PBC 上的射影为N .故由射影面积法可知二面角B PC E --的余弦值为cos PCN PCHS θS=.在PCE中,令==PC PE 1CE =,易知=PCES .所以335416PCH PCES S ==.又1328PCNPBCSS ==,故3cos PCN PCHS θS ===所以二面角BPC E --.【整体点评】本题以圆锥为载体,隐含条件是圆锥的轴垂直于底面,(1)方法一:利用勾股数进行运算证明,是在给出数据去证明垂直时的常用方法;方法二:选择建系利用空间向量法,给空间立体感较弱的学生提供了可行的途径;方法三:利用线面垂直,结合勾股定理可证出;方法四:利用空间基底解决问题,此解法在解答题中用的比较少;(2)方法一:建系利用空间向量法求解二面角,属于解答题中求角的常规方法;方法二:利用几何法,通过三垂线法作出二面角,求解三角形进行求解二面角,适合立体感强的学生;方法三:利用射影面积法求解二面角,提高解题速度.10.【2020年新课标2卷理科】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;(2【解析】 【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;(2)连接NP ,先求证四边形ONPA 是平行四边形,根据几何关系求得EP ,在11B C 截取1B Q EP =,由(1)BC ⊥平面1A AMN ,可得QPN ∠为1B E 与平面1A AMN 所成角,即可求得答案. 【详解】 (1),M N 分别为BC ,11B C 的中点,1//MN BB ∴,又11//AA BB , 1//MN AA ∴,在ABC 中,M 为BC 中点,则BC AM ⊥, 又侧面11BB C C 为矩形, 1BC BB ∴⊥, 1//MN BB ,MN BC ⊥,由MN AM M ⋂=,,MN AM ⊂平面1A AMN , ∴BC ⊥平面1A AMN ,又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC ,又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =11//B C EF ∴ ,//EF BC ∴,又BC ⊥平面1A AMN , ∴EF ⊥平面1A AMN ,EF ⊂平面11EB C F , ∴平面11EB C F ⊥平面1A AMN .(2)[方法一]:几何法如图,过O 作11B C 的平行线分别交1111,A B AC 于点11,E F ,联结11,,,AE AO AF NP , 由于//AO 平面11EB C F ,11//E F 平面11EB C F ,11=AOE F O ,AO ⊂平面11AE F ,11E F ⊂平面11AE F ,所以平面11//AE F 平面11EB C F .又因平面11AE F 平面111=AA B B AE ,平面11EB C F ⋂平面111=AA B B EB ,所以11∥EB AE .因为111B C A N ⊥,11B C MN ⊥,1A N MN N =,所以11B C ⊥面1AA NM .又因1111∥E F B C ,所以11⊥E F 面1AA NM , 所以1AE 与平面1AA NM 所成的角为1∠E AO .令2AB =,则11=NB ,由于O 为111A B C △的中心,故112233==OE NB . 在1Rt AE O 中,122,3===AO AB OE ,由勾股定理得1==AE所以111sin ∠==E O E AO AE 由于11∥EB AE ,直线1B E 与平面1A AMN[方法二]【最优解】:几何法 因为//AO 平面11EFC B ,平面11EFC B 平面1=AMNA NP ,所以∥AO NP .因为//ON AP ,所以四边形OAPN 为平行四边形.由(Ⅰ)知EF ⊥平面1AMNA ,则EF 为平面1AMNA 的垂线. 所以1B E 在平面1AMNA 的射影为NP . 从而1B E 与NP 所成角的正弦值即为所求.在梯形11EFC B 中,设1EF =,过E 作11EG B C ⊥,垂足为G ,则3==PN EG . 在直角三角形1B EG中,1sin ∠==B EG [方法三]:向量法由(Ⅰ)知,11B C ⊥平面1A AMN ,则11B C 为平面1A AMN 的法向量.因为∥AO 平面11EB C F ,AO ⊆平面1A AMN ,且平面1A AMN ⋂平面11EB C F PN =, 所以//AO PN .由(Ⅰ)知11,=∥AA MN AA MN ,即四边形APNO 为平行四边形,则==AO NP AB . 因为O 为正111A B C △的中心,故13==AP ON AM . 由面面平行的性质得111111,33=∥EF B C EF B C ,所以四边形11EFC B 为等腰梯形.由P ,N 为等腰梯形两底的中点,得11PN B C ⊥,则11110,⋅==++=PN B C EB EP PN NB 111111111623+-=-B C PN B C PN B C . 设直线1B E 与平面1A AMN 所成角为θ,AB a ,则21111111sin θ⋅===aEB B C EB B C a 所以直线1B E 与平面1A AMN[方法四]:基底法不妨设2===AO AB AC ,则在直角1AA O 中,1AA =以向量1,,AA AB AC 为基底, 从而1,2π=AA AB ,1,2π=AA AC ,,3π=AB AC .1111123=++=+EB EA AA A B AB AA ,BC AC AB =-, 则12103=EB ,||2BC =. 所以112()3⎛⎫⋅=+⋅-= ⎪⎝⎭EB BC AB AA AC AB 2224333⋅-=-AB AC AB .由(Ⅰ)知BC ⊥平面1A AMN ,所以向量BC 为平面1A AMN 的法向量. 设直线1B E 与平面1A AMN 所成角θ,则11110sin cos ,10||θ⋅===EB BC EB BC EB BC 故直线1B E 与平面1A AMN 所成角的正弦值为sin θ= 【整体点评】(2)方法一:几何法的核心在于找到线面角,本题中利用平行关系进行等价转化是解决问题的关键;方法二:等价转化是解决问题的关键,构造直角三角形是求解角度的正弦值的基本方法; 方法三:利用向量法的核心是找到平面的法向量和直线的方向向量,然后利用向量法求解即可;方法四:基底法是立体几何的重要思想,它是平面向量基本定理的延伸,其关键之处在于找到平面的法向量和直线的方向向量.11.【2020年新课标3卷理科】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【答案】(1)证明见解析;(2. 【解析】 【分析】(1)方法一:连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)方法一:以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值. 【详解】(1)[方法一]【最优解】:利用平面基本事实的推论在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,如图1所示.在长方体1111ABCD A B C D -中,//,BF CG BF CG =,所以四边形BCGF 为平行四边形,则//,BC FG BC FG =,而,//BC AD BC AD =,所以//,AD FG AD FG =,所以四边形DAFG 为平行四边形,即有//AF DG ,同理可证四边形1DEC G 为平行四边形,1//C E DG ∴,1//C E AF ∴,因此点1C 在平面AEF 内.[方法二]:空间向量共线定理以11111,,C D C B C C 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图2所示. 设11111,,3C D a C B b C C c ===,则1(0,0,0),(,0,2),(0,,),(,,3)C E a c F b c A a b c .所以1(,0,2),(,0,2)C E a c FA a c ==.故1C E FA =.所以1AF C E ∥,点1C 在平面AEF 内. [方法三]:平面向量基本定理同方法二建系,并得1(0,0,0),(,0,2),(0,,),(,,3)C E a c F b c A a b c , 所以111(,0,2),(0,,),(,,3)C E a c C F b c C A a b c ===.故111C A C E C F =+.所以点1C 在平面AEF 内. [方法四]:根据题意,如图3,设11111,2,3A D a A B b A A c ===.在平面11A B BA 内,因为12BF FB =,所以1111133B F B B A A ==.延长AF 交11A B 于G ,AF ⊂平面AEF ,11A B ⊂平面1111D C B A .11,G AF G A B ∈∈,所以G ∈平面,AEF G ∈平面1111D C B A ①.延长AE 交11A D 于H ,同理H ∈平面,AEF H ∈平面1111D C B A ②. 由①②得,平面AEF平面1111A B C D GH =.连接11,,GH GC HC ,根据相似三角形知识可得11,2GB b D H a ==.在11Rt C B G 中,1C G =同理,在11Rt C D H 中,1C H =如图4,在1Rt A GH 中,GH = 所以11GH C G C H =+,即G ,1C ,H 三点共线. 因为GH ⊂平面AEF ,所以1C ⊂平面AEF ,得证. [方法五]:如图5,连接11,,DF EB DB ,则四边形1DEB F 为平行四边形,设1DB 与EF 相交于点O ,则O 为1,EF DB 的中点.联结1AC ,由长方体知识知,体对角线交于一点,且为它们的中点,即11AC B D O =,则1AC 经过点O ,故点1C 在平面AEF 内.(2)[方法一]【最优解】:坐标法以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,如图2.则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1AE =--,()2,0,2AF =--,()10,1,2A E =-,()12,0,1A F =-,设平面AEF 的一个法向量为()111,,m x y z =,由00m AE m AF ⎧⋅=⎨⋅=⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-,设平面1A EF 的一个法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,3cos ,3m n m n m n⋅<>===⨯⋅ 设二面角1A EF A--的平面角为θ,则cos θ=sin7θ∴=. 因此,二面角1A EF A--. [方法二]:定义法在AEF 中,AE AF EF ====即222AE EF AF +=,所以AE EF ⊥.在1A EF 中,11A E A F =6,设,EF AF 的中点分别为M ,N ,连接11,,A M MN A N ,则1,A M EF MN EF ⊥⊥,所以1AMN ∠为二面角1A EFA --的平面角.在1AMN 中,1122MN A M A N ====所以1175cos A MN+-∠==1sin A MN∠==[方法三]:向量法由题意得11AE AF AF AE EF==,由于222AE EF AF+=,所以AE EF⊥.如图7,在平面1A EF内作1A G EF⊥,垂足为G,则EA与1GA的夹角即为二面角1A EF A--的大小.由11AA AE EG GA=++,得22221111222AA AE EG GA AE EG EG GA AE GA=++++⋅⋅+⋅.其中,1EG AG==11AE GA⋅=,1cos,AE GA〉〈=所以二面角1A EF A--.[方法四]:三面角公式由题易得,11EA FA FE EA FA===所以2221111cos2EA EA AAAEAEA EA+-∠===⋅.222cos0,sin12EA EF AFAEF AEFEA EF+-∠===∠=⋅.22211111cos2EA EF A FA EF A EFEA EF+-∠===∠=⋅设θ为二面角1A EF A--的平面角,由二面角的三个面角公式,得111cos cos cos cos sin sin AEA AEF A EF AEF A EF θ∠-∠⋅∠==∠⋅∠sin θ=【整体点评】(1)方法一:通过证明直线1//C E AF ,根据平面的基本事实二的推论即可证出,思路直接,简单明了,是通性通法,也是最优解;方法二:利用空间向量基本定理证明;方法三:利用平面向量基本定理;方法四:利用平面的基本事实三通过证明三点共线说明点在平面内;方法五:利用平面的基本事实以及平行四边形的对角线和长方体的体对角线互相平分即可证出. (2)方法一:利用建立空间直角坐标系,由两个平面的法向量的夹角和二面角的关系求出;方法二:利用二面角的定义结合解三角形求出;方法三:利用和二面角公共棱垂直的两个向量夹角和二面角的关系即可求出,为最优解;方法四:利用三面角的余弦公式即可求出. 12.【2020年新高考1卷(山东卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 【答案】(1)证明见解析;(2【解析】 【分析】(1)利用线面垂直的判定定理证得AD ⊥平面PDC ,利用线面平行的判定定理以及性质定理,证得//AD l ,从而得到l ⊥平面PDC ;(2)方法一:根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点(,0,1)Q m ,之后求得平面QCD 的法向量以及向量PB 的坐标,求得cos ,n PB <>的最大值,即为直线PB 与平面QCD 所成角的正弦值的最大值. 【详解】 (1)证明:在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D =,所以l ⊥平面PDC .(2)[方法一]【最优解】:通性通法因为,,DP DA DC 两两垂直,建立空间直角坐标系D xyz -,如图所示:因为1PD AD ==,设(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B , 设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-, 设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则 1cos ,3n PB n PB n PB⋅+<>==根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于|cos ,|n PB <>====当且仅当1m =时取等号,所以直线PB 与平面QCD [方法二]:定义法如图2,因为l ⊂平面PBC ,Q l ∈,所以Q ∈平面PBC .。

高三数学立体几何试题答案及解析

高三数学立体几何试题答案及解析

高三数学立体几何试题答案及解析1.如图,设为正四面体表面(含棱)上与顶点不重合的一点,由点到四个顶点的距离组成的集合记为,如果集合中有且只有个元素,那么符合条件的点有()A.个B.个C.个D.个【答案】C【解析】分以下两种情况讨论:(1)点到其中两个点的距离相等,到另外两点的距离分别相等,且这两个距离不等,此时点位于正四面体各棱的中点,符合条件的有个点;(2)点到其中三个点的距离相等,到另外一点的距离与它到其它三点的距离不相等,此时点在正四面体各侧面的中心点,符合条件的有个点,故选C.【考点】新定义2.在等腰三角形中,点是边上异于的一点,光线从点出发,经发射后又回到原点(如图).若光线经过的中心,则等于()A.B.C.D.【答案】D;【解析】以A为原点,AB所在直线为x轴,AC所在直线为y轴建立直角坐标系,所以等腰三角形ABC的中心坐标为,因为光线从点出发,经发射后又回到原点,故点P为三角新ABC的中心在底边AB上的投影,所以AP=.3.已知三棱锥的三视图,则该三棱锥的体积是()A.B.C.D.【答案】B【解析】如图所示,,点P在侧面ABC的射影为O,.∴该三棱锥的体积.故选:B.【考点】由三视图求面积、体积.4.(本题满分12分)如图,在三棱锥底面ABC,且SB=分别是SA、SC的中点.(Ⅰ)求证:平面平面BCD;(Ⅱ)求二面角的平面角的大小.【答案】(Ⅰ)证明过程详见解析;(Ⅱ).【解析】(Ⅰ)已知SB、AB、BC两两互相垂直,故可建立空间直角坐标系如下图.根据线段长度可求出相应点的坐标,从而可推出,则,所以平面平面BCD.(Ⅱ)求出两个平面的法向量,利用法向量夹角与二面角平面角的关系求出平面角的大小.试题解析:(Ⅰ).又因,所以建立如上图所示的坐标系.所以A(2,0,0),,D(1,0,1),,S(0,0,2)易得,,,又,又又因,所以平面平面BCD.(Ⅱ)又设平面BDE的法向量为,则所以又因平面SBD的法向量为所以所以二面角的平面角的大小为.【考点】•平面与平面的垂直的证明 二面角大小的求法.5.(本小题满分12分)直三棱柱中,,,分别是、的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.【答案】(1)证明见解析;(2)存在,点为中点.【解析】(1)先证明AB⊥AC,然后以A为原点建立空间直角坐标系A-xyz,则能写出各点坐标,由共线可得D(λ,0,1),所以,即DF⊥AE;(2)通过计算,面DEF的法向量为可写成,=(3,1+2λ,2(1-λ)),又面ABC的法向量=(0,0,1),令,解出λ的值即可.试题解析:(1)证明:,又,面又面以为原点建立如图所示的空间直角坐标系则,,,,设,且,即:(2)假设存在,设面的法向量为,则即:令由题可知面的法向量平面与平面所成锐二面角的余弦值为即:或(舍)当点为中点时,满足要求.【考点】1、二面角的平面角及求法;2、直线与平面垂直的性质.【方法点晴】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.6.已知是矩形,分别是线段的中点,平面.(1)求证:平面;(2)若在棱上存在一点,使得平面,求的值.【答案】(1)详见解析;(2)【解析】(1)通过证明,然后再利用线面垂直的判定定理,即可证明平面;(2)过作交于,则平面,且.再过作交于,所以平面,且,所以平面平面,进而满足题意.试题解析:(1)在矩形中,因为,点是的中点,所以.所以,即.又平面,所以,所以平面.(2)过作交于,则平面,且.再过作交于,所以平面,且.所以平面平面,所以平面,从而点满足.【考点】1.线面垂直的判定定理;2.面面平行的判定定理和性质定理.7.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】B【解析】根据三视图知几何体的下面是一个圆柱,上面是圆柱的一半,所以.故应选B.【考点】空间几何体的三视图.8.(2015•汕头二模)某师傅用铁皮制作一封闭的工件,其三视图如图所示(单位长度:cm,图中水平线与竖线垂直),则制作该工件用去的铁皮的面积为(制作过程铁皮的损耗和厚度忽略不计)()A.100(3+)cm2B.200(3+)cm2C.300(3+)cm2D.300cm2【答案】A【解析】本题以实际应用题为背景考查立体几何中的三视图.由三视图可知,该几何体的形状如图,它是底面为正方形,各个侧面均为直角三角形[的四棱锥,用去的铁皮的面积即该棱锥的表面积解:由三视图可知,该几何体的形状如图,它是底面为正方形,各个侧面均为直角三角形的四棱锥,用去的铁皮的面积即该棱锥的表面积,其底面边长为10,故底面面积为10×10=100,与底面垂直的两个侧面是全等的直角,两直角连年长度分别为10,20,故它们的面积皆为100,另两个侧面也是全等的直角三角形,两直角边中一边是底面正方形的边长10,另一边可在与底面垂直的直角三角形中求得,其长为=10,故此两侧面的面积皆为50,故此四棱锥的表面积为S=100(3+)cm2.故选:A【考点】由三视图求面积、体积.9.如图,在直四棱柱中,底面是边长为1的正方形,侧棱,是侧棱的中点.(1)求证:平面⊥平面;(2)求二面角的正切值.【答案】(1)见解析;(2).【解析】(1)易证得为等腰直角三角形,从而得到,又由直四棱柱的性质可得到,进而可使问题得证;(2)方法一:过点作于,过作于,则就是二面角的平面角,然后在中求得,从而求得,再在中求得,最后在中即可求得所求二面角的正切值;方法二:以为原点建立空间直角坐标系,分别求得平面与平面的一个法向量,从而利用空间夹角公式求解即可.试题解析:(1)证明:如图,在矩形中,E为中点且,,所以,所以为等腰直角三角形,所以.在直四棱柱中,因为底面是边长为1的正方形,所以平面.又因为平面,所以,所以平面又因为平面,所以平面⊥平面(2)解:方法一:因为平面,所以平面⊥平面,所以只需在平面内过点作于,而平面.如图,过作于,连接,则就是二面角的平面角.在中,,所以.在中,在中,.所以二面角的平面角的正切值大小为方法二:以为原点,,,分别为轴建立如图所示的空间直角坐标系.由题意,,,,,,,,,设平面的一个法向量为,则,同理可得,平面的一个法向量为,代入公式有:,所以二面角的平面角的正切值大小为【考点】1、空间垂直关系的判定;2、二面角.10.(2015秋•扬州期末)已知正四棱锥底面边长为,体积为32,则此四棱锥的侧棱长为.【答案】5【解析】利用体积求出正四棱锥的高,求出底面对角线的长,然后求解侧棱长.解:正四棱锥底面边长为,体积为32,可得正四棱锥的高为h,=32,解得h=3,底面对角线的长为:4=8,侧棱长为:=5.故答案为:5.【考点】棱柱、棱锥、棱台的体积;点、线、面间的距离计算.11.(2010•江苏二模)如图,在四边形ABCD中,CA=CD=AB=1,=1,sin∠BCD=.(1)求BC的长;(2)求四边形ABCD的面积;(3)求sinD的值.【答案】(1)BC=;(2);(3)【解析】(1)根据题意可分别求得AC,CD和AB,利用=1,利用向量的数量积的性质求得cos∠BAC的值,进而求得∠BAC,进而利用余弦定理求得BC的长.(2)根据(1)可求得BC2+AC2=AB2.判断出∴∠ACB=,进而在直角三角形中求得cos∠ACD的值,利用同角三角函数的基本关系气的sin∠ACD,然后利用三角形面积公式求得三角形ABC和ACD的面积,二者相加即可求得答案.(3)在△ACD中利用余弦定理求得AD的长,最后利用正弦定理求得sinD的值.解:(1)由条件,得AC=CD=1,AB=2. ∵=1,∴1×2×cos ∠BAC=1.则cos ∠BAC=.∵∠BAC ∈(0,π),∴∠BAC=.∴BC 2=AB 2+AC 2﹣2AB•ACcos ∠BAC=4+1﹣2×2×=3.∴BC=.(2)由(1)得BC 2+AC 2=AB 2. ∴∠ACB=.∴sin ∠BCD==. ∵∠ACD ∈∈(0,π),∴.∴S △ACD =×1×1×=. ∴S 四边形ABCD =S △ABC +S △ACD =.(3)在△ACD 中,AD 2=AC 2+DC 2﹣2AC•DCcos ∠ACD=1+1﹣2×1×1×=. ∴AD=.∵,∴. 【考点】解三角形的实际应用.12. (2014•阳泉二模)某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的体积为( )A .B .3πC .D .π【答案】C【解析】由于正视图、侧视图、俯视图都是边长为1的正方形,所以此四面体一定可以放在棱长为1的正方体中,所以此四面体的外接球即为此正方体的外接球,由此能求出此四面体的外接球的体积.解:由于正视图、侧视图、俯视图都是边长为1的正方形, 所以此四面体一定可以放在正方体中, 所以我们可以在正方体中寻找此四面体. 如图所示,四面体ABCD 满足题意,所以此四面体的外接球即为此正方体的外接球,由题意可知,正方体的棱长为1,所以外接球的半径为R=,所以此四面体的外接球的体积V==.故选C.【考点】由三视图求面积、体积.13.如图,一竖立在水平对面上的圆锥形物体的母线长为,一只小虫从圆锥的底面圆上的点出发,绕圆锥表面爬行一周后回到点处,则该小虫爬行的最短路程为,则圆锥底面圆的半径等于()A.B.C.D.【答案】C【解析】作出该圆锥的侧面展开图,如下图所示:该小虫爬行的最短路程为,由余弦定理可得,∴.设底面圆的半径为,则有,∴.故C项正确.【考点】圆锥的计算,平面展开——最值问题.【方法点晴】本题主要考查了圆锥的计算及有关圆锥的侧面展开的应用,着重考查了求立体图形中两点之间的曲线段的最短线路长,解答此类问题一般应把几何体的侧面展开,展在一个平面内,构造直角三角形,从而求解两点间的线段的长度,用到的知识为:圆锥的弧长等于底面周长,本题的解答中圆锥的侧面展开图是一个三角形,此扇形的弧长等于圆锥的面周长,扇形的半径等于圆锥的母线长,体现了“化曲面为平面”的思想方法.14.已知三棱锥中,,,,,则此三棱锥的外接球的表面积为()A.B.C.D.【答案】C【解析】如图,设是的外心,是三棱锥外接球球心,则平面,由已知平面,则,,,,所以.,所以,.故选C.【考点】棱锥的外接球,球的表面积.15.如图,一个空间几何体的正视图、侧视图都是面积为,一个内角为的菱形,俯视图为正方形,那么这个几何体的表面积为()A.B.C.D.【答案】D【解析】因为一个空间几何体的正视图、侧视图都是面积为,且一个内角为的菱形,所以菱形的边长为,由三视图可得,几何体是由两个底面正方形的正四棱锥组合而成,底面边长为,侧棱长为,所以几何体的表面积为:,故选D.【考点】1、三视图;2、多面体的表面积.16.已知直三棱柱中,,侧面的面积为,则直三棱柱外接球表面积的最小值为.【答案】【解析】根据题意,设,则有,从而有其外接球的半径为,所以其比表面积的最小值为.【考点】1、几何体的外接球;2、基本不等式;3、球的体积和表面积.【方法点睛】设,则有,利用直三棱柱中,,从而直三棱柱外接球的半径为,所以其比表面积的最小值为.根据直三棱柱中,,侧面的面积为,设,,利用均值不等式,确定直三棱柱外接球的半径的最小值是关键.17.在体积为的四面体中,平面,,,,则长度的所有值为.【答案】或【解析】由题意得因此由余弦定理得:或,因此或【考点】三棱锥体积,余弦定理18.如图,正四棱锥的底面一边长为,侧面积为,则它的体积为________.【答案】【解析】设侧面三角形的高为,则,解之可得,故棱锥的高为,所以棱锥的体积为,答案应填:.【考点】正四棱锥的侧面面积和体积公式.19.如图,在正方体中分别为棱的中点,用过点的平面截去该正方体的上半部分,则剩余几何体(下半部分)的左视图为()【答案】C【解析】通过观察剩余几何体(下半部分),可以发现C图才正确,故选C.【考点】1、直观图;2、三视图.20.如图,已知三棱柱的所有棱长都是2,且.(1)求证:点在底面内的射影在的平分线上;(2)求棱柱的体积.【答案】(1)证明见解析;(2).【解析】(1)通过作图的方式先作出的射影,只需求到距离相等即是所求,利用三角形全等即可;(2)底面是等边三角形,面积容易求得,其高为,(1)可知,,,可得到,则此可求出.试题解析:(1)证明:过作平面,垂足为,作,垂足为,连接,则,,故平面,故,同理,过作,连接,则.∵,,∴,∴≌,∴,∴是的角平分线,即点在底面内的射影在的平分线上.(2)解:由(1)可知,,,在中,,∴,∴三棱柱的体积为【考点】线面垂直、几何体的体积.【易错点晴】破解线面垂直关系的技巧(1)解答此类问题的关键在于熟练把握空间垂直关系的判定与性质,注意平面图形中的一些线线垂直关系的灵活利用,这是证明空间垂直关系的基础.(2)由于“线线垂直”“线面垂直”“面面垂直”之间可以相互转化,因此整个证明过程围绕着线面垂直这个核心而展开,这是化解空间垂直关系难点的技巧所在.21.如图,梯形中,,分别是的中点,矩形所在的平面与所在的平面互相垂直,且.(1)证明:平面;(2)证明:平面;(3)若二面角为,求直线与平面所成角的大小.【答案】(1)证明见解析(2)证明见解析;(3).【解析】(1)根据平面与平面垂直的性质定理证平面,又,从而可证得平面;(2)取中点,连接,先证得为平行四边形,进而可得,再根据直线与平面平行的判定定理即可证得平面;(3)连接交于,连接,证明平面,则即为直线与平面所成角,再通过解求得的大小.试题解析:(1)平面.(2)取中点,连接,.(3)为二面角的平面角,.由(1)知,中,,,∴,∴,∴与平面成角.【考点】1、线面垂直的判定;2、线面平行的判定;3、线面角的求法.【方法点晴】本题主要考查的是线面垂直、平行判定和线面角的求法,属于中档题.证明线面垂直的方法主要有定义法,判定定理法;证明线面平行的关键是证明线线平行,证明线线平行常用的方法是利用三角形、梯形的中位线,对应线段成比例,构造平行四边形,平行线的传递性,线面垂直的性质定理,面面平行的性质定理.求线面角的一般步骤是:一作出线面角,二证明,三求线面角的大小.22.如图,在正方形中,点分别是的中点,将分别沿、折起,使两点重合于.(Ⅰ)求证:平面⊥平面;(Ⅱ)求二面角的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)要证明面面垂直,可以先证明线面垂直,即可以先证明直线,进而可证明平面⊥平面;(Ⅱ)可以用传统方法也可以用向量方法,用传统方法时,可按照“作、算、证”的步骤,并结合余弦定理即可求二面角的余弦值.向量法关键是要建立适当的直角坐标系,并正确地求出二平面的法向量,进而可得到二面角的余弦值.试题解析:(Ⅰ)证明:连接交于,连接.在正方形中,点是的中点,点是的中点,所以,所以,因此,所以在等腰中,是的中点,且.因此在等腰中,,从而平面.又平面,所以平面平面.即平面平面.(Ⅱ)方法一:在正方形中,连接,交于.设正方形的边长为.由于点是的中点,点是的中点.所以,于是,从而,所以.于是,在翻折后的几何体中,为二面角的平面角.在正方形中,解得,,所以,在中,,由余弦定理得.所以,二面角的余弦值为.方法二:由题知两两互相垂直,故以为原点,向量方向分别为轴的正方向,建立如图的空间直角坐标系.设正方形边长为,则,所以,设为平面的一个法向量,由,得,令,得,又由题知是平面的一个法向量,所以,所以,二面角的余弦值为.【考点】1、面面垂直;2、二面角的平面角.23.如图4,在边长为4的菱形中,,点分别是边的中点,,沿将翻折到,连接,得到如图5的五棱锥,且.(1)求证:;(2)求四棱锥的体积.【答案】(1)证明见解析;(2).【解析】(1)由三角形的中位线定理,证得,再由菱形的对角线互相垂直,证得,即可得到,再由已知可得,然后利用线面垂直的判定得到答案;(2)设,连接,结合已知可得,通过解直角三角形求得平面,然后求出梯形的面积,代入棱锥的体积公式得到答案.试题解析:(1)证明:∵分别是边的中点,∴∵菱形对角线互相垂直,∴,∴∴,∵平面,平面,∴平面,∴平面,∴(2)设,连接,∵,∴为等边三角形,∴,在中,在中,,∴∵平面,平面,∴平面,∴,∴四棱锥的体积【考点】直线与平面垂直的判定;几何体的体积的计算.24.如图,棱形与正三角形的边长均为2,它们所在平面互相垂直,,且.(1)求证:;(2)若,求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】(1)依据线面平行的判定定理,需要在平面找到一条直线与直线平行即可.因为平面平面,则过点作于,连接,证明四边形为平行四边形即可;(2)由(1)知平面,又,为等边三角形,,分别以所在直线为轴建立如图所示空间直角坐标系,分别求出平面和平面的法向量即可.试题解析:(1)如图,过点作于,连接,,可证得四边形为平行四边形,平面(2)连接,由(1),得为中点,又,为等边三角形,分别以所在直线为轴建立如图所示空间直角坐标系,则,设平面的法向量为,由即,令,得设平面的法向量为由即,令,得所以,所以二面角的余弦值是【考点】1.线面平行的判定定理;2.利用空间向量求二面角.25.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图可知,该几何体为半个圆柱加一个长方体的组合体,故其体积为【考点】三视图,几何体的体积26.如图所示,在三棱柱ABC—A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(1)证明:平面BDC1⊥平面BDC;(2)平面BDC1分此棱柱为两部分,求这两部分体积的比.【答案】(1)证明见解析;(2).【解析】(1)由题意易证平面,再由面面垂直的判定定理即可得平面平面;(2)设棱锥的体积为,易求,三棱柱的体积为,于是可得,从而得到答案.试题解析:(1)证明:由题设知BC⊥CC1,BC⊥AC,CC1∩AC=C,所以BC⊥平面ACC1A1.又DC1⊂平面ACC1A1,所以DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,所以∠CDC1=90°,即DC1⊥DC.又DC∩BC=C,所以DC1⊥平面BDC.又DC1⊂平面BDC1,故平面BDC1⊥平面BDC.(2)设棱锥B—DACC1的体积为V1,AC=1.由题意得V1=××1×1=.又三棱柱ABC—A1B1C1的体积V=1,所以(V-V1)∶V1=1∶1.故平面BDC1分此棱柱所得两部分体积的比为1∶1.【考点】平面与平面垂直的判定;棱信的结构特征;棱柱、棱锥、棱台的体积.【易错点睛】(1)两平面垂直,在一个平面内垂直于交线的直线必垂直于另一个平面.这是把面面垂直转化为线面垂直的依据.运用时要注意“平面内的直线”.(2)两个相交平面同时垂直于第三个平面,那么它们的交线也垂直于第三个平面,此性质是在课本习题中出现的,在不是很复杂的题目中要对此进行证明.27.如图1,,,过动点作,垂足在线段上且异于点,连接,沿将折起,使(如图2所示).(Ⅰ)当的长为多少时,三棱锥的体积最大;(Ⅱ)当三棱锥的体积最大时,设点分别为棱的中点,试在棱上确定一点,使得,并求与平面所成角的大小.【答案】(I);(II)是的靠近点的一个四等分点,大小为.【解析】(I)设,利用三棱锥体积公式求得体积的表达式为,利用导数或者基本不等式求出其最大值.(II)以为坐标原点建立空间直角坐标系,设,利用求出,然后利用法向量求出与平面所成角的大小为.试题解析:解析:(Ⅰ)方法一:在图1所示的中,设,则.由,知,为等腰直角三角形,所以.由折起前知,折起后(如图2),,,且.所以平面.又,所以.于是,当且仅当,即时,等号成立,故当,即时,三棱锥的体积最大.方法二:同方法一,得.令,由,且,解得.当时,;当时,.所以当时,取得最大值.故当时,三棱锥的体积最大.(Ⅱ)方法一:以为原点,建立如图所示的空间直角坐标系.由(Ⅰ)知,当三棱锥的体积最大时,.于是可得,,且.设,则,因为等价于,解得,.所以当(即是的靠近点的一个四等分点)时,. 设平面的一个法向量为,由,及,得可取.设与平面所成角的大小为,则由,可得,即.故与平面所成角的大小为.方法二:由(Ⅰ)知,当三棱锥的体积最大时,,如图b,取的中点,连结,则.由(Ⅰ)知平面,所以平面.如图c,延长至点使得,连,则四边形为正方形,所以.取的中点,连结,又为的中点,则,所以.因为平面,又平面,所以.又,所以平面.又平面,所以.因为当且仅当,而点是唯一的,所以点是唯一的.即当(即是的靠近点的一个四等分点)时,.连结,由计算得,所以与是两个共底边的全等的等腰三角形,如图d所示,取的中点,连接,则平面.在平面中,过点作于,则平面,故是与平面所成的角.在中,易得,所以是正三角形,故,故与平面所成角的大小为.【考点】空间向量与立体几何.28.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且,.求证:(1)直线DE平面A1C1 F;(2)平面B1DE⊥平面A1C1F.【答案】(1)详见解析(2)详见解析【解析】(1)利用线面平行判定定理证明线面平行,而线线平行的寻找往往结合平面几何的知识,如中位线的性质等;(2)利用面面垂直判定定理证明,即从线面垂直出发给予证明,而线面垂直的证明,往往需要多次利用线面垂直性质定理与判定定理.试题解析:证明:(1)在直三棱柱中,在三角形ABC中,因为D,E分别为AB,BC的中点,所以,于是,又因为DE平面平面,所以直线DE//平面.(2)在直三棱柱中,因为平面,所以,又因为,所以平面.因为平面,所以.又因为,所以.因为直线,所以【考点】直线与直线、直线与平面、平面与平面的位置关系【名师】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直;(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.29.某四面体的三视图如图,则该四面体四个面中最大的面积是()A.B.C.D.【答案】D【解析】将该几何体放入边长为的正方体中,由三视图可知该四面体为有由直观图可知,最大面积为三角形的面积,在三角形中,所以面积故选D.【考点】1、几何体的三视图;2、三角形的面积公式.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,有时还需要将不规则几何体补形成常见几何体,来增加直观图的立体感.30.如图,在四棱锥中,是边长为的正三角形,底面.(1)求证:;(2)已知是上一点, 且平面.若,求点到平面的距离.【答案】(1)见解析;(2)1.【解析】(1)连接交于,然后利用线面垂直的性质与已知条件证得平面,由此推出,从而通过解三角形推出,进而推出平面,可使问题得证;(2)取的中点, 连接,当为的中点,根据等腰三角形的性质可推出,然后结合中位线定理推出平面,由此可求出点到平面的距离.试题解析:(1)证明:连接交于,底面,平面,则,即,即平面.(2)取的中点, 连接,当为的中点时,平面,证明如下:,由(1) 得,则,则是的中点,平面平面,平面,平面.底面点到平面的距离等于.【考点】1、空间直线与直线的位置关系;2、线面平行的判定定理;3、点到平面的距离.【方法点睛】解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的垂直关系进行转化,转化时要正确运用相关的定理,找出足够的条件进行推理;证明线面平行时,通常利用中位定理得到线线平行,从而推出面面平行,进而推出线面平行.31.已知正三角形边长为2,将它沿高翻折,使点与点间的距离为,此时四面体的外接球的表面积为 .【答案】。

全国通用2020_2022三年高考数学真题分项汇编专题05立体几何选择题填空题文(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编专题05立体几何选择题填空题文(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编:05 立体几何(选择题、填空题)(文科专用)1.【2022年全国甲卷】如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8 B.12 C.16 D.20【答案】B【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,×2×2=12.则该直四棱柱的体积V=2+42故选:B.2.【2022年全国甲卷】在长方体ABCD−A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B 所成的角均为30°,则()A.AB=2AD B.AB与平面AB1C1D所成的角为30°C.AC=CB1D.B1D与平面BB1C1C所成的角为45°【答案】D【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出. 【详解】 如图所示:不妨设AB =a,AD =b,AA 1=c ,依题以及长方体的结构特征可知,B 1D 与平面ABCD 所成角为∠B 1DB ,B 1D 与平面AA 1B 1B 所成角为∠DB 1A ,所以sin30∘=cB 1D=b B 1D,即b =c ,B 1D =2c =√a 2+b 2+c 2,解得a =√2c .对于A ,AB =a ,AD =b ,AB =√2AD ,A 错误;对于B ,过B 作BE ⊥AB 1于E ,易知BE ⊥平面AB 1C 1D ,所以AB 与平面AB 1C 1D 所成角为∠BAE ,因为tan ∠BAE =c a=√22,所以∠BAE ≠30∘,B 错误;对于C ,AC =√a 2+b 2=√3c ,CB 1=√b 2+c 2=√2c ,AC ≠CB 1,C 错误; 对于D ,B 1D 与平面BB 1C 1C 所成角为∠DB 1C ,sin ∠DB 1C =CDB 1D=a2c =√22,而0<∠DB 1C<90∘,所以∠DB 1C =45∘.D 正确. 故选:D .3.【2022年全国甲卷】甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S 甲S 乙=2,则V 甲V 乙=( )A .√5B .2√2C .√10D .5√104【答案】C 【解析】 【分析】设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,根据圆锥的侧面积公式可得r 1=2r 2,再结合圆心角之和可将r 1,r 2分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解. 【详解】解:设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,则S 甲S 乙=πr 1l πr 2l =r1r 2=2, 所以r 1=2r 2, 又2πr 1l +2πr 2l=2π,则r 1+r 2l=1,所以r 1=23l,r 2=13l ,所以甲圆锥的高ℎ1=√l 2−49l 2=√53l ,乙圆锥的高ℎ2=√l 2−19l 2=2√23l , 所以V 甲V 乙=13πr 12ℎ113πr 22ℎ2=49l 2×√53l 19l ×2√23l =√10.故选:C.4.【2022年全国乙卷】在正方体ABCD −A 1B 1C 1D 1中,E ,F 分别为AB,BC 的中点,则( ) A .平面B 1EF ⊥平面BDD 1 B .平面B 1EF ⊥平面A 1BD C .平面B 1EF//平面A 1AC D .平面B 1EF//平面A 1C 1D【答案】A 【解析】 【分析】证明EF ⊥平面BDD 1,即可判断A ;如图,以点D 为原点,建立空间直角坐标系,设AB =2,分别求出平面B 1EF ,A 1BD ,A 1C 1D 的法向量,根据法向量的位置关系,即可判断BCD. 【详解】解:在正方体ABCD −A 1B 1C 1D 1中, AC ⊥BD 且DD 1⊥平面ABCD , 又EF ⊂平面ABCD ,所以EF ⊥DD 1, 因为E,F 分别为AB,BC 的中点, 所以EF ∥AC ,所以EF ⊥BD , 又BD ∩DD 1=D , 所以EF ⊥平面BDD 1, 又EF ⊂平面B 1EF ,所以平面B 1EF ⊥平面BDD 1,故A 正确; 对于选项B ,如图所示,设11A BB E M =,EF BD N =,则MN 为平面1B EF 与平面1A BD 的交线,在BMN △内,作BP MN ⊥于点P ,在EMN △内,作GP MN ⊥,交EN 于点G ,连结BG ,则BPG ∠或其补角为平面1B EF 与平面1A BD 所成二面角的平面角,由勾股定理可知:222PB PN BN +=,222PG PN GN +=, 底面正方形ABCD 中,,E F 为中点,则EF BD ⊥, 由勾股定理可得222NB NG BG +=,从而有:()()2222222NB NG PB PN PG PN BG +=+++=, 据此可得222PB PG BG +≠,即90BPG ∠≠, 据此可得平面1B EF ⊥平面1A BD 不成立,选项B 错误; 对于选项C ,取11A B 的中点H ,则1AHB E ,由于AH 与平面1A AC 相交,故平面1B EF 平面1A AC 不成立,选项C 错误;对于选项D ,取AD 的中点M ,很明显四边形11A B FM 为平行四边形,则11A MB F ,由于1A M 与平面11AC D 相交,故平面1B EF 平面11AC D 不成立,选项D 错误;故选:A.5.【2022年全国乙卷】已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.13B.12C.√33D.√22【答案】C【解析】【分析】先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为α,则S ABCD=12⋅AC⋅BD⋅sinα≤12⋅AC⋅BD≤12⋅2r⋅2r=2r2(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2又r2+ℎ2=1则V O−ABCD=13⋅2r2⋅ℎ=√23√r2⋅r2⋅2ℎ2≤√23√(r2+r2+2ℎ23)3=4√327当且仅当r2=2ℎ2即ℎ=√33时等号成立,故选:C6.【2021年甲卷文科】在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A EFG后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A .B .C .D .【答案】D 【解析】 【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断. 【详解】由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D7.【2021年乙卷文科】在正方体1111ABCD A B C D 中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π6【答案】D 【解析】 【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可. 【详解】如图,连接11,,BC PC PB ,因为1AD ∥1BC , 所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=, 所以1PC ⊥平面1PBB ,所以1PC PB ⊥, 设正方体棱长为2,则111112BC PC D B === 1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 故选:D8.【2021年甲卷文科】已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________. 【答案】39π 【解析】 【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案. 【详解】∵216303V h ππ=⋅=∴52h =∴132 l==∴136392S rlπππ==⨯⨯=侧.故答案为:39π.9.【2021年乙卷文科】以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【解析】【分析】由题意结合所给的图形确定一组三视图的组合即可.【详解】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A B C D -中,12,1AB BC BB ===,,E F 分别为棱11,B C BC 的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF -. 故答案为:③④. 【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.。

三年高考(2019-2021)数学(文)真题分类汇编——立体几何(选择、填空题)(解析版)

三年高考(2019-2021)数学(文)真题分类汇编——立体几何(选择、填空题)(解析版)
可. 【详解】
如图,连接 BC1, PC1, PB ,因为 AD1∥ BC1,
所以 ÐPBC1或其补角为直线 PB 与 AD1所成的角,
因为 BB1 ^ 平面 A1B1C1D1,所以 BB1 ^ PC1,又 PC1 ^ B1D1, BB1 Ç B1D1 = B1,
所以 PC1 ^ 平面 PBB1,所以 PC1 ^ PB,
!
A.
B.Leabharlann C.D.【答案】BC 【分析】
下底面面积 S1 = 16 ,上底面面积 S2 = 4,
( ) ( ) 1
1
28
所以该棱台的体积 V
=h 3
S1 + S2 +
S1S2
=´ 3
2 ´ 16 + 4 +
64 = 3
2.
故选:D.
6.【2021 年全国新高考 II 卷数学】如图,在正方体中,O 为底面的中心,P 为所在棱的中
点,M,N 为正方体的顶点.则满足 MN ^ OP的是( )
B1C1 //BC , B1C1 // 平面 A1BC,则有 P到平面 A1BC的距离为定值,所以其体积为定值,
故 B 正确.
对于
C,当
l
=
1 2
时,
!!!" BP
=
1 2
!!!" BC
+
µ
!!!" BB1 ,取
BC ,
B1C1中点分别为
Q,
H
,则
!!!" BP
=
!!!" BQ
+
!!!" µQH
,所以
æ ççè
-
3 1ö 2 , y0, 2 ÷÷ø,

专题24立体几何中综合问题三年高考数学(理)试题分项版解析Word版含解析

专题24立体几何中综合问题三年高考数学(理)试题分项版解析Word版含解析

1.【2017课标1,理16】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】【解析】【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.2.【2017课标3,理19】如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.【答案】(1)证明略;【解析】(2)由题设及(1)知,,,OA OB OC 两两垂直,以O 为坐标原点,OA的方向为x 轴正方向,OA 为单位长,建立如图所示的空间直角坐标系O xyz-.则()()()()1,0,0,,1,0,0,0,0,1A B C D -由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB的中点,得12E ⎛⎫⎪ ⎪⎝⎭.故 ()()11,0,1,2,0,0,1,22AD AC AE ⎛⎫=-=-=- ⎪ ⎪⎝⎭ .设()=x,y,z n 是平面DAE 的法向量,则AD AE ⎧=⎪⎨=⎪⎩ 0,0,n n即0,1022x z x y z -+=⎧⎪⎨-++=⎪⎩。

可取⎛⎫= ⎪ ⎪⎝⎭n . 设m 是平面AEC 的法向量,则0,0,AC AE ⎧=⎪⎨=⎪⎩m m同理可得(0,=-m .则cos ,7⋅==n m n m n m . 所以二面角D -AE -C(2)设m ,n 分别为平面α,β的法向量,则二面角θ与<m ,n >互补或相等,故有|cosθ|=|cos<m ,n >|=⋅m nm n.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.3.【2017山东,理17】如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB边所在直线为旋转轴旋转120︒得到的,G 是 DF的中点. (Ⅰ)设P 是 CE上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.【答案】(Ⅰ)30CBP ∠=︒.(Ⅱ)60︒.(Ⅱ)两种思路,一是几何法,二是空间向量方法,其中思路一:取 EC的中点H ,连接EH ,GH ,CH . 得四边形BEHC 为菱形,得到AE GE AC GC ===取AG 中点M ,连接EM ,CM ,EC . 得到EM AG ⊥,CM AG ⊥, 从而EMC ∠为所求二面角的平面角. 据相关数据即得所求的角. 思路二:以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为,y ,轴,建立如图所示的空间直角坐标系.写出相关点的坐标,求平面AEG 的一个法向量111(,,)m x y z =,平面ACG 的一个法向量222(,,)n x y z =计算1cos ,||||2m n m n m n ⋅<>==⋅即得.试题解析:(Ⅰ)因为AP BE ⊥,AB BE ⊥,AB ,AP ⊂平面ABP ,AB AP A = ,所以BE ⊥平面ABP , 又BP ⊂平面ABP ,所以BE BP ⊥,又120EBC ∠=︒, 因此30CBP ∠=︒ (Ⅱ)解法一:取 EC的中点H ,连接EH ,GH ,CH . 因为120EBC ∠=︒, 所以四边形BEHC 为菱形,所以AE GE AC GC ===取AG 中点M ,连接EM ,CM ,EC . 则EM AG ⊥,CM AG ⊥, 所以EMC ∠为所求二面角的平面角.又1AM =,所以EM CM ===在BEC ∆中,由于120EBC ∠=︒,由余弦定理得22222222cos12012EC =+-⨯⨯⨯︒=,所以EC =EMC ∆为等边三角形, 故所求的角为60︒. 解法二:设111(,,)m x y z =是平面AEG 的一个法向量.由00m AE m AG ⎧⋅=⎪⎨⋅=⎪⎩可得1111230,0,x z x -=⎧⎪⎨+=⎪⎩取12z =,可得平面AEG的一个法向量(3,m . 设222(,,)n x y z =是平面ACG 的一个法向量.由00n AG n CG ⎧⋅=⎪⎨⋅=⎪⎩可得22220,230,x x z ⎧=⎪⎨+=⎪⎩ 取22z =-,可得平面ACG的一个法向量(3,2)n =-. 所以1cos ,||||2m n m n m n ⋅<>==⋅.因此所求的角为60︒.【考点】1.垂直关系.2. 空间角的计算.【名师点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.立体几何中角的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好的考查考生的空间想象能力、逻辑推理能力\转化与化归思想及基本运算能力等. 4.【2016高考天津理数】(本小题满分13分)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2. (I )求证:EG ∥平面ADF ; (II )求二面角O -EF -C 的正弦值; (III )设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.【答案】(Ⅰ)详见解析(Ⅱ)3(Ⅲ)21【解析】()1,1,0,(1,1,0),(1,1,0),(11,0),(1,1,2),(0,0,2),(1,0,0)A B C D E F G -------,.(I )证明:依题意,()(2,0,0),1,1,2AD AF ==- .设()1,,n x y z =为平面ADF 的法向量,则110n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩,即2020x x y z =⎧⎨-+=⎩.不妨设1z =,可得()10,2,1n = ,又()0,1,2EG =- ,可得10EG n ⋅=,又因为直线EG ADF ⊄平面,所以//EG ADF 平面.(II )解:易证,()1,1,0OA =-为平面O E F 的一个法向量.依题意,()()1,1,0,1,1,2EF CF ==- .设()2,,n x y z = 为平面CEF 的法向量,则2200n EF n CF ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x y z +=⎧⎨-++=⎩.不妨设1x =,可得()21,1,1n =- . 因此有222c o s ,O A n O A n O A n ⋅<>=⋅,于是2s i n ,O A n <> ,所以,二面角O E F C --.考点:利用空间向量解决立体几何问题 5.【2015江苏高考,22】(本小题满分10分)如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,2,1PA AD AB BC ====(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长【答案】(1)3(2)5【解析】则各点的坐标为()1,0,0B ,()C 1,1,0,()D 0,2,0,()0,0,2P .(1)因为D A ⊥平面PAB ,所以D A是平面PAB 的一个法向量,()D 0,2,0A = . 因为()C 1,1,2P =- ,()D 0,2,2P =-.设平面CD P 的法向量为(),,m x y z =,则C 0m ⋅P = ,D 0m ⋅P =,即20220x y z y z +-=⎧⎨-=⎩.令1y =,解得1z =,1x =.所以()1,1,1m =是平面CD P 的一个法向量.从而D cos D,D m m m A ⋅A ==APAB 与平面CD P(2)因为()1,0,2BP =- ,设()Q ,0,2λλλB =BP =-(01λ≤≤), 又()C 0,1,0B =- ,则()CQ C Q ,1,2λλ=B +B =-- ,又()D 0,2,2P =-,从而CQ D cos CQ,D CQ D ⋅P P ==P.设12t λ+=,[]1,3t ∈,则2222229cos CQ,D 5109101520999t t t t P ==≤-+⎛⎫-+⎪⎝⎭.当且仅当95t =,即25λ=时,cos CQ,D P的最大值为10.因为cos y x =在0,2π⎛⎫⎪⎝⎭上是减函数,此时直线CQ 与D P 所成角取得最小值.又因为BP ==2Q 5B =BP =.6.【2016年高考北京理数】(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.【答案】(1)见解析;(2)3;(3)存在,14AM AP =【解析】所以⊥AB 平面PAD ,所以PD AB ⊥, 又因为PD PA ⊥,所以⊥PD 平面PAB ; (2)取AD 的中点O ,连结PO ,CO , 因为PA PD =,所以AD PO ⊥.又因为⊂PO 平面PAD ,平面⊥PAD 平面ABCD , 所以⊥PO 平面ABCD .因为⊂CO 平面ABCD ,所以⊥PO CO . 因为CD AC =,所以AD CO ⊥.如图建立空间直角坐标系xyz O -,由题意得,)1,0,0(),0,1,0(),0,0,2(),0,1,1(),0,1,0(P D C B A -.设平面PCD 的法向量为),,(z y x n =,则⎪⎩⎪⎨⎧=⋅=⋅,0,0即⎩⎨⎧=-=--,02,0z x z y 令2=z ,则2,1-==y x . 所以)2,2,1(-=.又)1,1,1(-=PB,所以33,cos -=>=<. 所以直线PB 与平面PCD 所成角的正弦值为33.(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得λ=. 因此点),,1(),,1,0(λλλλ--=-M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅, 即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM . 考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.7.【2015高考陕西,理18】(本小题满分12分)如图,在直角梯形CD AB 中,D//C A B ,D 2π∠BA =,C 1AB =B =,D 2A =,E 是D A 的中点,O 是C A 与BE 的交点.将∆ABE 沿BE 折起到1∆A BE 的位置,如图.(I )证明:CD ⊥平面1C A O ;(II )若平面1A BE ⊥平面CD B E ,求平面1C A B 与平面1CD A 夹角的余弦值.【答案】(I )证明见解析;(II 【解析】试题分析:(I )先证1BE ⊥OA ,C BE ⊥O ,再可证BE ⊥平面1C A O ,进而可证CD ⊥平面1C A O ;(II )先建立空间直角坐标系,再算出平面1C A B 和平面1CD A 的法向量,进而可得平面1C A B 与平面1CD A 夹角的余弦值. 试题解析:(I )在图1中,因为C 1AB =B =,D 2A =,E 是D A 的中点,D 2π∠BA =,所以C BE ⊥A即在图2中,1BE ⊥OA ,C BE ⊥O 从而BE ⊥平面1AOC 又CD//BE ,所以CD ⊥平面1AOC .所以1(,0,0),E((0,0,2222B -得BC(22-1A )22- ,CD BE (== . 设平面1BC A 的法向量1111(,,)n x y z = ,平面1CD A 的法向量2222(,,)n x y z =,平面1BC A 与平面1CD A 夹角为,则1110n BC n A C ⎧⋅=⎪⎨⋅=⎪⎩,得111100x y y z -+=⎧⎨-=⎩,取1(1,1,1)n = ,2210n CD n A C ⎧⋅=⎪⎨⋅=⎪⎩,得22200x y z =⎧⎨-=⎩,取2(0,1,1)n = ,从而12cos |cos ,|n n θ=〈〉==即平面1BC A 与平面1CD A8.【2014高考陕西版理第17题】四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱CA DC BD ,,于点H G F ,,.221俯视图左视图 主视图ABCDEFGH(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角的正弦值. 【答案】(1)证明见解析;(2)5. 【解析】试题分析:(1)由该四面体的三视图可知:,,BD DC BD AD AD DC ⊥⊥⊥,2,1BD DC AD ===由题设,BC ∥面EFGH ,面EFGH 面BDC FG =,面EFGH 面ABC EH =,所以BC ∥FG ,BC ∥EH ,所以FG ∥EH ,同理可得EF ∥HG ,即得四边形EFGH 是平行四边形,同时可证EF FG ⊥,即证四边形EFGH 是矩形;(2)以D 为坐标原点建立空间直角坐标系,则(0,0,0)D ,(0,0,1)A ,(2,0,0)B ,(0,2,0)C(0,0,1)DA = ,(2,2,0)BC =- ,(2,2,0)BC =- ,设平面EFGH 的一个法向量(,,)n x y z =因为BC ∥FG ,EF ∥AD ,所以0,0n DA n BC ⋅=⋅=,列出方程组,即可得到平面EFGH的一个法向量,AB与的夹角的余弦值的绝对值即为所求.又,,BD AD AD DC BD DC D ⊥⊥=∴AD ⊥平面BDC AD BC ∴⊥BC ∥FG ,EF ∥AD EF FG ∴⊥∴四边形EFGH 是矩形(2)如图,以D 为坐标原点建立空间直角坐标系,则(0,0,0)D ,(0,0,1)A ,(2,0,0)B ,(0,2,0)C(0,0,1)DA = ,(2,2,0)BC =- ,(2,2,0)BC =-设平面EFGH 的一个法向量(,,)n x y z =BC ∥FG ,EF ∥AD 0,0n DA n BC ∴⋅=⋅=即得z =0-2x+2y =0⎧⎨⎩,取(1,1,0)n =sin |cos ,|||5||||BA n BA n BA n θ⋅∴====⋅考点:面面平行的性质;线面角的求法.9.【2016年高考四川理数】(本小题满分12分)如图,在四棱锥P-ABCD 中,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12AD ,E 为边AD 的中点,异面直线PA 与CD 所成的角为90°.(Ⅰ)在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由; (Ⅱ)若二面角P-CD-A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值.EDCBPA【答案】(Ⅰ)详见解析;(Ⅱ)13. 【解析】试题分析:(Ⅰ)探索线面平行,根据是线面平行的判定定理,先证明线线平行,再得线面平行,而这可以利用已知的平行,易得CD ∥EB ;从而知M 为DC 和AB 的交点;(Ⅱ)求线面角,可以先找到这个角,即作出直线在平面内的射影,再在三角形中解出,也可以利用已知图形中的垂直建立空间直角坐标系,用向量法求出线面角(通过平面的法向量与直线的方向向量的夹角来求得).试题解析:(Ⅰ)在梯形ABCD 中,AB 与CD 不平行.延长AB ,DC ,相交于点M (M ∈平面PAB ),点M 即为所求的一个点.理由如下: 由已知,BC ∥ED ,且BC =ED .所以四边形BCDE是平行四边形.,所以CD∥EB从而CM∥EB.又EB⊂平面PBE,CM⊄平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PA⋂AD=A,所以CD⊥平面PAD.从而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.设BC=1,则在Rt△PAD中,PA=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知PA⊥平面ABCD,从而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.在Rt△PAH中,2所以sin∠APH=AHPH=13.由PA ⊥AB ,可得PA ⊥平面ABCD. 设BC=1,则在Rt △PAD 中,PA=AD=2.作Ay ⊥AD ,以A 为原点,以AD ,AP的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系A-xyz ,则A (0,0,0),P (0,0,2),C(2,1,0),E(1,0,0),所以PE =(1,0,-2),EC =(1,1,0),AP =(0,0,2)设平面PCE 的法向量为n=(x,y,z),由0,0,PE EC ⎧⋅=⎪⎨⋅=⎪⎩ n n 得20,0,x z x y -=⎧⎨+=⎩设x=2,解得n=(2,-2,1). 设直线PA 与平面PCE 所成角为α,则sin α=||||||n AP n AP ⋅⋅13=. 所以直线PA 与平面PCE 所成角的正弦值为13.P考点:线线平行、线面平行、向量法.10.【2014安徽理20】(本题满分13分)如图,四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD .四边形ABCD 为梯形,BC AD //,且BC AD 2=.过D C A ,,1三点的平面记为α,1BB 与α的交点为Q . (1)证明:Q 为1BB 的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若A A 14=,2=CD ,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角大小.【答案】(1)Q 为1BB 的中点;(2)117;(3)4π. 【解析】试题分析:(1)利用面面平行来证明线线平行QC ∥1A D ,则出现相似三角形,于是根据三角形相似即可得出1112BQ BQ BC BB AA AD ===,即Q 为1BB 的中点.(2)连接,QA QD .设1A A h =,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为V 上和V 下,=BC a ,则2AD a =.先表示出17=+12Q A AD Q ABCD V V V ahd --=下和11113=2A B C D ABCD V ahd -,就可求出11113711==21212A B C D ABCD V V V ahd ahd ahd ---=下上,从而11=7V V 上下.(3)可以有两种方法进行求解.第一种方法,用常规法,作出二面角.在ADC ∆中,作AE DC ⊥,垂足为E ,连接1A E .又1D E A A⊥且1AA AE A = ,所以DE ⊥平面1AEA ,于是1DE A E ⊥.所以1AEA ∠为平面α与底面ABCD 所成二面角的平面角.第二种方法,建立空间直角坐标系,以D 为原点,1,DA DD分别为轴和轴正方向建立空间直角坐标系.设=C D A θ∠.因为22s i n 62AB C Da a S θ+=⋅=,所以2sin a θ=.从而()2cos ,2sin ,0C θθ,14,0,4sin A θ⎛⎫⎪⎝⎭,所以()2co s ,2s i n ,0DC θθ=,14,0,4sin DA θ⎛⎫= ⎪⎝⎭.设平面(2)解:如第(20)题图1,连接,QA QD .设1AA h =,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为V 上和V 下,=BC a ,则2AD a =.11112323Q A AD V a h d ahd -=⋅⋅⋅⋅=,1213224Q ABCD a a h V d ahd -+⎛⎫=⋅⋅⋅= ⎪⎝⎭,所以17=+12Q A AD Q ABCD V V V ahd --=下, 又11113=2A B C D ABCD V ahd - 所以11113711==21212A B C D ABCD V V V ahd ahd ahd ---=下上, 故11=7V V 上下.解法2如第(20)题图2,以D 为原点,1,DA DD分别为轴和轴正方向建立空间直角坐标系.设=CDA θ∠.因为22sin 62ABCD a aS θ+=⋅=,所以2sin a θ=.从而()2cos ,2sin ,0C θθ,14,0,4sin A θ⎛⎫⎪⎝⎭,所以()2cos ,2sin ,0DC θθ= ,14,0,4sin DA θ⎛⎫= ⎪⎝⎭.设平面1A DC 的法向量(),,1n x y =,由1440,sin 2cos 2sin 0,DA n x DC n x y θθθ⎧⋅=+=⎪⎨⎪⋅=+=⎩得sin ,cos x y θθ=-=, 所以(sin ,cos ,1)n θθ=-.又因为平面ABCD 的法向量()0,0,1m =,所以cos ,n m n m n m⋅==,故平面α与底面ABCD 所成而面积的大小为π4. 考点:1.二面角的求解;2.几何体的体积求解.11.【2014年湖北,卷理9】(本小题满分12分)如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP .(1)当1=λ时,证明:直线//1BC 平面EFPQ ;(2)是否存在λ,使平面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【答案】(1)详见解析;(2)221±=λ 【解析】试题分析:(1)由正方体1111D C B A ABCD -的性质得11//AD BC ,当1=λ时,证明1//AD FP ,由平行于(1)证明:如图1,连结1AD ,由1111D C B A ABCD -是正方体,知11//AD BC , 当1=λ时,P 是1DD 的中点,又F 是AD 的中点,所以1//AD FP , 所以FP BC //1,而⊂FP 平面EFPQ ,且⊄1BC 平面EFPQ , 故//1BC 平面EFPQ .(2)如图2,连结BD ,因为E 、F 分别是AB 、AD 的中点, 所以BD EF //,且BD EF 21=,又BQ DP =,BQ DP //, 所以四边形PQBD 是平行四边形, 故BD PQ //,且BD PQ =, 从而PQ EF //,且PQ EF 21=, 在EBQ Rt ∆和FDP Rt ∆中,因为λ==DP BQ ,1==DF BE , 于是,21λ+==FP EQ ,所以四边形EFPQ 是等腰梯形, 同理可证四边形PQMN 是等腰梯形,分别取EF 、PQ 、MN 的中点为H 、O 、G ,连结OH 、OG , 则PQ GO ⊥,PQ HO ⊥,而O HO GO = ,故GOH ∠是平面EFPQ 与平面PQMN 所成的二面角的平面角,若存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角,则90=∠GOH ,连结EM 、FN ,则由MN EF //,且MN EF =,知四边形EFNM 是平行四边形, 连结GH ,因为H 、G 是EF 、MN 的中点,所以2==ME GH ,在GOH ∆中,42=GH ,21)22(12222+=-+=λλOH ,以D 为原点,射线1,,DD DC DA 分别为z y x ,,轴的正半轴建立如图3的空间直角坐标系xyz D -,由已知得),0,0(),0,0,1(),2,2,0(),0,2,2(1λP F C B , 所以)2,0,2(1-=BC ,),0,1(λ-=,)0,1,1(=, (1)证明:当1=λ时,)1,0,1(-=FP ,因为)2,0,2(1-=BC , 所以FP BC 21=,即FP BC //1,而⊂FP 平面EFPQ ,且⊄1BC 平面EFPQ , 故直线//1BC 平面EFPQ .(2)设平面EFPQ 的一个法向量),,(z y x =n ,由⎪⎩⎪⎨⎧=∙=∙0n n 可得⎩⎨⎧=+-=+00z x y x λ,于是取)1,,(λλ-=n ,同理可得平面MNPQ 的一个法向量为)1,2,2(λλ--=m ,若存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角, 则0)1,,()1,2,2(=-∙--=∙λλλλn m ,即01)2()2(=+---λλλλ,解得221±=λ, 故存在221±=λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角. 考点:正方体的性质,空间中的线线、线面、面面平行于垂直,二面角.12.【2015湖北理19】(本小题满分12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且P D C D =,过棱PC 的中点E ,作E F P B ⊥交PB 于点F ,连接,,,.DE DF BD BE(Ⅰ)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅱ)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.【答案】(Ⅰ)详见解析;(Ⅱ)22.(Ⅱ)如图1,在面PBC 内,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的交线. 由(Ⅰ)知,PB DEF ⊥平面,所以PB DG ⊥.又因为PD ⊥底面ABCD ,所以PD DG ⊥. 而PD PB P = ,所以DG PBD ⊥平面. 故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD D C ==,BC λ=,有BD = 在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 πtan tan 3BD DPF PD=∠==解得λ=所以1DC BC λ==故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC (解法2)(Ⅰ)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系.设1PD D C ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ,(,1,1)PB λ=-,点E 是PC的中点,所以11(0,,)22E ,11(0,,)22DE = , 于是0PB DE ⋅=,即PB DE ⊥.又已知EF PB ⊥,而DE EF E = ,所以PB DEF ⊥平面. 因(0,1,1)PC =- , 0DE PC ⋅=, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB D FB ∠∠,.(Ⅱ)由PD ABCD ⊥平面,所以(0,0,1)DP =是平面ABCD 的一个法向量;由(Ⅰ)知,PB DEF ⊥平面,所以(,1,1)BP λ=--是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3,则π1cos 32||||BP DPBP DP ⋅===⋅,解得λ.所以1DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC 【考点定位】四棱锥的性质,线、面垂直的性质与判定,二面角.13.【2015湖南理19】如图15,已知四棱台1111ABCD A B C D -上、下底面分别是边长为3和6的正方形,16AA =,且1AA ⊥底面ABCD ,点P ,Q 分别在棱1DD ,BC 上. (1)若P 是1DD 的中点,证明:1AB PQ ⊥;(2)若//PQ 平面11ABB A ,二面角P QD A --的余弦值为37,求四面体ADPQ 的体积.【答案】(1)详见解析;(2)24. 【解析】试题分析:(1)建立空间直角坐标系,求得相关点的坐标可知问题等价于证明1=0AB PQ ⋅ ;(2)根据条件二面角P-QD-A 的余弦值为37,利用空间向量可将四面体ADPQ 视为以ADQ ∆为底面的三棱锥ADQ P -,其高4=h ,从而求解试题解析:解法一由题设知,1AA ,AB ,AD 两两垂直,以A 为坐标原点,AB ,AD ,1AA 所在直线分别为轴,y 轴,轴,建立如图b 所示的空间直角坐标系,则相关各点的坐标为)0,0,0(A ,1(3,0,6)B ,)0,6,0(D ,1(0,3,6)D ,)0,,6(m Q ,其中BQ m =,06m ≤≤,∴>=<21,cos n n 1212||||n n n n ⋅=⋅=,而二面角AQD P --的余弦值为37=37,解得4=m ,或者8=m (舍去),此时)0,4,6(Q , 设1(01)DP DD λλ=<≤ ,而1(0,3,6)DD =-,由此得点)6,36,0(λλ-P ,(6,32,6)PQ λλ=--,∵//PQ 平面11ABB A ,且平面11ABB A 的一个法向量是3(0,1,0)n = , ∴PQ 30n ⋅= ,即023=-λ,亦即λ=23,从而)4,4,0(P ,于是,将四面体ADPQ 视为以ADQ ∆为底面的三棱锥A D QP -,则其高4=h ,故四面体A D P Q 的体积11166424332A DQV S h =⋅=⨯⨯⨯⨯= .(2)如图d ,过点P 作1//PM A A 交AD 于点M ,则//PM 平面11ABB A ,∵1A A ⊥平面ABCD ,∴OM ⊥平面ABCD ,过点M 作MN QD ⊥于点N ,连结PN ,则QD PN ⊥,PNM ∠为二面角A QD P --的平面角,∴3cos 7PNM ∠=,即MN PN =37,从而PM MN =③ 连结MQ ,由//PQ 平面11ABB A ,∴AB MQ //,又ABCD 是正方形,所以ABQM 为矩形,故6==AB MQ ,设t MD =,则MN ==④,过点1D 作11//D E A A交AD 于点E ,则11AA D E 为矩形,∴1D E =16A A =,113AE A D ==,因此3=-=AE AD ED ,于是1623D E PM MD ED ===,∴t MD PM 22==,再由③④得=,解得2=t ,因此4=PM ,故四面体ADPQ 的体积11166424332A DQV S h =⋅=⨯⨯⨯⨯= . 【考点定位】1.空间向量的运用;2.线面垂直的性质;3.空间几何体体积计算.14.【2015课标2理19】(本题满分12分)如图,长方体1111ABCD A BC D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11C D 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ【解析】(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM AB ⊥,垂足为M ,则14AM A E ==,18EM AA ==,因为EHGF 为正方形,所以10EH EF BC ===.于是6MH =,所以10AH =.以D 为坐标原点,DA的方向为轴的正方向,建立如图所示的空间直角坐标系D xyz -,则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F ,(10,0,0)FE = ,(0,6,8)HE =-.设(,,)n x y z = 是平面EHGF 的法向量,则0,0,n FE n HE ⎧⋅=⎪⎨⋅=⎪⎩即100,680,x y z =⎧⎨-+=⎩所以可取(0,4,3)n = .又(10,4,8)AF =-,故cos ,n AF n AF n AF⋅<>==⋅ .所以直线AF 与平面α【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角. A1A B 1B D 1D C 1CF EH G M15.【2016高考新课标2理数】如图,菱形A B C D 的对角线AC 与BD 交于点O ,5,6ABAC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H.将DEF ∆沿EF 折到D EF '∆位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;. 【解析】试题分析:(Ⅰ)证//AC EF ,再证'D H OH ⊥,最后证'D H ABCD ⊥平面;(Ⅱ)用向量法求解.试题解析:(I )由已知得AC BD ⊥,AD CD =,又由AE CF =得AE CF AD CD=,故//AC EF . 因此EF HD ⊥,从而EF D H '⊥.由5AB =,6AC =得04DO B ==. 由//EF AC 得14OH AE DO AD ==.所以1OH =,3D H DH '==. 于是1OH =,22223110D H OH D O ''+=+==,故D H OH '⊥.又D H EF '⊥,而OH EF H ⋂=,所以D H ABCD '⊥平面.By(II )如图,以H 为坐标原点,HF 的方向为x 轴的正方向,建立空间直角坐标系H xyz -,则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =- ,()6,0,0AC = ,()3,1,3AD '= .设()111,,m x y z = 是平面ABD '的法向量,则00m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩ ,即11111340330x y x y z -=⎧⎨++=⎩,所以可以取()4,3,5m =- .设()222,,n x y z = 是平面'ACD 的法向量,则00n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩ ,考点:线面垂直的判定、二面角.【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a∥b,a⊥α⇒b ⊥α;③α∥β,a⊥α⇒a⊥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的正视图的面积不.可.能.等于
A.1
B. 2
C. 2 -1 2
D. 2 +1 2
【答案】 C
【解析】
试题分析: 由题知,正方体的棱长为 1,水平放置的正方体,当正视图为正方形时,其面
积最小为 1;当正视图为对角面时,其面积最大为 2 ;因此满足棱长为 1 的正方体的俯

视图是一个面积为 1 的正方形,则该正方体的正视图的面积的范围为[1,2] .
5.【2016 高考新课标 2 理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何
体的表面积为( )
(A) 20
【答案】C 【解析】
(B) 24
(C) 28
(D) 32
试 题 分 析 : 由 题 意 可 知 , 圆 柱 的 侧 面 积 为 S1 2 2 4 16 , 圆 锥 的 侧 面 积 为
D.4
【答案】B
【考点定位】三视图 内切圆 球 三棱柱 【名师点睛】解决有关三视图的题目,主要是根据三视图首先得到几何体的空间结构图形, 然后运用有关立体几何的知识进行发现计算即可,问题在于如何正确的判定几何体的空间结 构,主要是根据“长对正,高平齐,宽相等”进行判断.
S2
1 2 2
2 4 8
,圆柱的底面面积为
S3
22
4
,故该几何体的表面积为
S S1 S2 S3 28 ,故选 C.
考点: 三视图,空间几何体的体积. 【名师点睛】由三视图还原几何体的方法:
5.【 2013 湖南 7】已知棱长为 1 的正方体的俯视图是一个面积为 1 的正方形,则该正方体
A. S1 S2 S3
B. S2 S1 且 S2 S3
C. S3 S1 且 S3 S2
【答案】D 【解析】
D. S3 S2 且 S3 S1
试题分析:三棱锥 D ABC在平面 xoy 上的投影为 ABC,所以 S1 2 ,
设 D 在平面 yoz 、 zox 平面上的投影分别为 D2 、 D1 ,则 D ABC在平面 yoz 、 zox 上的
投影分别为 OCD2 、 OAD1 ,因为 D1(0,1, 2) , D2 (1,0, 2) ,所以 S2 S1 2 ,
故选 D.
考点:三棱锥的性质,空间中的投影,难度中等. 【名师点睛】本题考查空间直角坐标系下几何体的位置和相应点的坐标以及正投影的概念, 正投影的位置、形状和面积,本题属于基础题,要准确写出点的坐标,利用坐标求出三角形 的面积.
三年高考(2014-2016)数学(理)试题分项版解析 第十章 立体几何
一、选择题 1. 【2014 高考北京理第 8 题】如图,正方体 ABCD—A1B1C1D1 的棱长为 2,动点 E,F 在棱
A1B1 上,动点 P,Q 分别在棱 AD,CD 上.若 EF=1,A1E=x,DQ=y,DP=z(x,y,z 大于零), 则四面体 P—EFQ 的体积( )
3. 【2016 高考新课标 1 卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条
相互垂直的半径.若该几何体的体积是 28 ,则它的表面积是( ) 3
(A)17 (B)18 (C) 20 (D) 28
【答案】A
【解析】 试题分析: 该几何体直观图如图所示:
是一个球被切掉左上角的 1 ,设球的半径为 R ,则 V 7 4 R3 28 ,解得 R 2 ,所以它
三视图还原出原几何体,是解决此类问题的关键.
4. 【2014 高考广东卷.理.7】若空间中四条直线两两不同的直线 l1 . l2 . l3 . l4 ,满足 l1 l2 ,
l2 //l3 , l3 l4 ,则下列结论一定正确的是( )
A. l1 l4
系不确定 【答案】D
B. l1 //l4
C. l1 . l4 既不平行也不垂直
8
83
3
的表面积是 7 的球面面积和三个扇形面积之和 8
S= 7 4 22 +3 1 22 =17 故选 A.
8
4
考点:三视图及球的表面积与体积
【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几
何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由
D. l1 . l4 的位置关
【解析】如下图所示,在正方体 ABCD A1B1C1D1 中,取 AA1 为 l2 ,BB1 为 l3 ,取 AD 为 l1 ,
BC 为 l4 ,
A1 B1
D1 C1
A
D
B
C
l1 //l4 ;取 AD 为 l1 ,AB 为 l4 ,则 l1 l4 ;取 AD 为 l1 ,A1B1 为 l4 ,则 l1 与 l4 异面,因此 l1 . l4
的位置关系不确定,故选 D. 【考点定位】本题考查空间中直线的位置关系的判定,属于中等题. 【名师点晴】本题主要考查的是空间点、线、面的位置关系,属于中等题.解题时一定要注 意选“正确”还是选“错误”, 否则很容易出现错误.解决空间点、线、面的位置关系这类 试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必 要的合情推理.
A.与 x,y,z 都有关 B.与 x 有关,与 y,z 无关 C.与 y 有关,与 x,z 无关 D.与 z 有关,与 x,y 无关 【答案】D
考点:点到面的距离;锥体的体积. 【名师点睛】本题考查空间下几何体中相应点的坐标以及四面体的体积,点到面的距离,本 题属于基础题,要准确确定三角形的底和高,利用锥体的体积求出多面体的体积.
2. 【 2014 高 考 北 京 理 第 7 题 】 在 空 间 直 角 坐 标 系 Oxyz 中 , 已 知
A(2, 0, 0)B(2, 2, 0), C(0, 2, 0), D(1,1, 2) . 若 S1, S2 , S3 分 别 是 三 棱 锥 D ABC 在
xOy, yOz, zOx 坐标平面上的正投影图形的面积,则( )
【考点定位】三视图 【名师点睛】本题主要考查了简单空间图形的三视图,解决问题的关键是正确求出满足条件
的该正方体的正视图的面积的范围为[1,2] 是解题的关键.
6.【 2014 湖南 7】一块石材表示的几何体的三视图如图 2 所示,将该石材切削、打磨、加
工成球,则能得到的最大球的半径等于( )
A.1
B.2 C.3
相关文档
最新文档