金属线膨胀系数测定
金属线膨胀系数的测定
金属线膨胀系数的测定教学目的:1.掌握用千分表测量微小位移的方法;2.学习测定金属棒线膨胀系数的方法;3.掌握温控仪的使用方法;4.学习PID 调节的原理;5.通过实验了解参数设置对PID 调节过程的影响。
教学内容:1.绝大多数物质具有热胀冷缩特性,在一维情况下,固体受热后长度的增加称为线膨胀。
线膨胀系数是物质的基本物理参数之一,在道路、桥梁、建筑等工程设计,精密仪器仪表设计,材料的焊接、加工等各种领域,都必须对物质的膨胀特性予以充分的考虑。
2.利用千分表和PID 温控仪来测定铜棒和铝棒的线膨胀系数,测量公式为01L L t α∆=⋅∆。
实验要注意的是:千分表应水平放置,千分表要刚刚接触上金属棒,也不能使接触太紧,否则千分表的读数不会发生变化,一旦开始升温及读数,避免再触动实验仪;为减小系统误差,将第1次温度达到平衡时的当前温度T 及千分表读数分别作为t 0和l 0。
重点难点:1.重点:利用千分表和PID 温控仪来测定铜棒和铝棒的线膨胀系数;2.难点:千分表的放置和读数。
教学设计:1.讲述物质膨胀系数特性的应用(5min )2.讲述线膨胀系数的测量原理(10min )3.介绍千分表和PID 温控仪的使用和使用注意事项(10min )4.讲述实验操作步骤,要特别强调将第1次温度达到平衡时的当前温度T 及千分表读数分别作为t 0和l 0(15min )5.学生自己完成实验,老师辅导(85min )6.检查学生测量的实验数据(10min )作业、实验:写一份完整的实验报告。
实验报告要求:通过测量数据描绘Lt ∆∆的直线图,利用图解法求出线膨胀系数α。
金属线膨胀系数的测定(讲稿)大家都知道绝大多数物质都具有“热胀冷缩”的性质。
这是由于当温度增高时,组成物质的分子间距膨胀增大,这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工中,都必须加以考虑。
否则,将影响结构的稳定性和仪表的精度,甚至会造成工程结构的毁损,仪表的失灵等。
金属线胀系数的测定
实验四 利用直读式测量仪测定金属的线胀系数【实验目的】利用直读式测量仪测量金属棒的线胀系数; 【实验仪器】DH4608金属热膨胀系数试验仪、不锈钢管、钢卷尺 【实验原理】已知金属的线胀方程为: , 其中 是金属在00C 时的长度。
当温度为 时,当温度为 时, 设金属棒伸长量为 , 则有: 两式相减得: , 其中 为金属的线胀系数。
实验时, 利用DH4608金属热膨胀系数试验仪, 每5℃设定一个控温点, 利用热电偶记录样品上的实测温度和千分尺上的变化值。
根据数据 和 , 画出 (作y 轴)- (作x 轴)的曲线图, 观察其线型性, 并利用图形求出斜率, 计算样品(不锈钢管)的线胀系数。
【实验步骤】1.将试验样品(不锈钢管)固定在实验架上, 注意挡板要正对千分尺;2.调节千分尺和挡板的位置, 保证两者无间隙且千分尺有足够的伸长空间;3.打开电源和水泵开关, 每5℃设定一个控温点, 记录样品的实测温度和千分尺上的变化值。
实际操作时, 由于千分尺的指针在不停地转动, 所以在设定的控温点不易准确读数, 从而导致样品加热后的伸长量测量不准确。
具体操作可改为: 在加热过程中, 当观察到千分尺的指针转动匀速时, 在千分尺上设定一个记录起点(比如0格), 记下此时的温度值和数字电压表上的示值作为第一组实验数据。
以后每当千分尺的指针转过50格(或30格)记录一组温度值和数字电压表上的示值, 填入设计的记录表中。
实验结束后再根据铜—康铜热电偶分度表将数字电压表上的示值转换为温度值作为试验样品的实际温度。
4、根据数据 和 , 画出 (作y 轴)- (作x 轴)的曲线图, 观察其线型性。
5、利用图形求出斜率, 计算样品的线胀系数( , 为斜率, 近似为室温下金属棒的有效长度)。
【数据记录举例】固体线胀系数测定数据记录表测量样品: 紫铜管φ10mm ×593mm i温度计读数实测温度ti千分尺读数l i30.0 ℃ 1.17mV ( 29.5℃ ) 0.000 593.0001、电热偶安装座;2、待测样品;3、挡板;4、千分尺 )1(10at l l +=附录:。
金属线膨胀系数的测定实验报告
金属线膨胀系数的测定实验报告一、实验目的。
本实验旨在通过测定金属线的膨胀系数,探究金属在受热作用下的膨胀规律,并验证线性膨胀系数的概念。
二、实验原理。
金属在受热作用下会发生线性膨胀,其膨胀量与温度变化呈线性关系。
金属线的膨胀量可用以下公式表示:ΔL = αL0ΔT。
其中,ΔL为金属线的膨胀量,α为线性膨胀系数,L0为金属线的原始长度,ΔT为温度变化量。
三、实验器材。
1. 金属线。
2. 热水槽。
3. 温度计。
4. 尺子。
四、实验步骤。
1. 准备金属线,并测量其原始长度L0。
2. 将金属线固定在支架上。
3. 将热水倒入热水槽中,待温度稳定后,记录水温作为初始温度T1。
4. 将金属线放入热水中,测量金属线的膨胀量ΔL。
5. 记录金属线在热水中的最终温度T2。
6. 根据实验数据计算金属线的线性膨胀系数α。
五、实验数据记录。
1. 金属线原始长度L0 = 1m。
2. 初始温度T1 = 25°C。
3. 最终温度T2 = 75°C。
4. 金属线膨胀量ΔL = 5mm。
六、实验结果分析。
根据实验数据计算得到金属线的线性膨胀系数α为:α = ΔL / (L0ΔT) = 5mm / (1m × 50°C) = 1 × 10^-4 /°C。
七、实验结论。
通过本实验的测定和计算,验证了金属线在受热作用下会发生线性膨胀的规律,并得到了金属线的线性膨胀系数α。
实验结果表明,金属线的膨胀量与温度变化呈线性关系,膨胀系数是一个常数,可用于预测金属在不同温度下的膨胀量。
八、实验注意事项。
1. 在实验过程中要小心热水的温度,避免烫伤。
2. 测量金属线的膨胀量时要注意准确度,避免误差。
九、实验总结。
本实验通过测定金属线的膨胀量,验证了金属在受热作用下的线性膨胀规律,得到了金属线的线性膨胀系数α。
实验结果对于理解金属膨胀规律具有重要意义,也为工程应用提供了重要参考。
以上为金属线膨胀系数的测定实验报告。
金属线膨胀系数测定
金属线膨胀系数的测量绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。
这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。
否则,将影响结构的稳定性和仪表的精度。
材料的线膨胀是材料受热膨胀时,在一维方向上的伸长。
线胀系数是选用材料的一项重要指标。
一、实验教学目的1.掌握一种测线膨胀系数的方法;2.应用逐差法处理数据。
二、实验教学重难点1.千分表的读数2.逐差法处理数据三、实验仪器与用具固体线膨胀系数测定仪、千分表、直尺四、实验原理固体受热后其长度的增加称为线膨胀。
经验表明,在一定的温度范围内,原长为L 的物体,受热后其伸长量L ∆与其温度的增加量t ∆近似成正比,与原长L 亦成正比,即L L t α∆=∆式中的比例系数α。
1t 时杆长L 、受热后温度达2t 时的伸长量L ∆和受热前后的温度1t 及2t ,则该材料在(1t ,2t )温区的线胀系数为:21()L L t t α∆=- (2) 其物理意义是固体材料在(t 1,t 2)温区内,温度每升高一度时材料的相对伸长量,其单位为(℃)-1。
本实验中采用千分表测微小的线胀量。
五、实验步骤1、用直尺测出室温下待测金属杆的原长L ,测三次求出算术平均值。
2、连接好电缆连接线,将待测金属杆插于加热盘内,调节螺钉,使千分表的指针转动一个微小的角度。
3、打开仪器,设定温度为55摄氏度,开始加热金属杆。
4、从20度开始,即T 1=20度,温度依次递增3C ︒,且递增7次(依次为23℃、26.0℃、29.0℃、32.0℃、35.0℃、38.0℃、41.0℃),随着温度的上升,千分表开始旋转,当温度稳定后,记下此时的温度值(2T =23度、3T =26度、4T 、5T 、6T 、7T 、8T )及千分表读数(L 2、L 3、L 4、L 5、L 6、L 7、L 8)。
5、用逐差法求出温度每升高3℃时铜杆的平均伸长量,由(2)式即可求出铜杆在这个温区(如45.0℃)内的线胀系数。
金属线胀系数的测量
金属线胀系数的测量1.引言金属材料在物理环境的变化下会产生热胀冷缩的效应,因此,在工业生产和实验研究中要考虑到材料的热膨胀性能。
其中,线膨胀系数是衡量物质在长度方向上的热膨胀的指标。
本文探讨了金属线胀系数的测量方法及其应用。
2.线膨胀系数的定义和计算公式线膨胀系数是指材料在温度变化下单位长度的变化量,通常用α表示。
线膨胀系数可以根据材料的特性来计算,具体计算公式如下:α=ΔL/(L0×ΔT)其中,ΔL表示线材的长度变化量,L0表示线材的初始长度,ΔT表示温度的变化量。
线膨胀系数的单位通常是m/m °C。
3.1 编织网法编织网法是一种相对简单的测量线膨胀系数的方法。
具体操作如下:①先制作一块编织网,其网孔大小应该适合于线膨胀系数的测量。
编织网可用铜网或不锈钢网制作。
②将待测样品嵌入编织网中,并将两端固定在支架上。
③取一个温度计将其固定在样品的中央位置。
④将样品和温度计放入恒温器中,升温至所需温度,使样品达到稳态。
⑤记录样品的长度变化量和温度变化量。
⑥根据线膨胀系数的计算公式计算材料的线膨胀系数。
3.2 拉伸法拉伸法需要使用精密的仪器和设备,比编织网法的测量精度要高。
具体操作步骤如下:①将待测样品插入到仪器的卡槽中,两端各钳紧一个夹具。
②加热样品,同时保持夹具上下的温度相同。
③在进行加热的同时,由于样品被卡在夹具中,因此在材料的线膨胀系数作用下,样品将在长度方向上扩张。
3.3 差异法①将两根相同的样品A和B固定在两个不同的支架上,相隔一段距离,保证两个试样上下温度相等。
②用导线将两个样品连接到直流稳压源上,将其通过电路连接起来。
③在稳定的电流过程中,对试样进行加热,此时会存在两个样品长度的差异,通过测量差异长度就可以计算出材料的线膨胀系数。
4. 线膨胀系数的应用① 材料选择:根据材料的线膨胀系数,可以选择在升温或降温过程中性能更稳定的材料。
② 构件设计:针对长大膨胀系数较大的构件,在其设计中要考虑到升温对构件的影响。
1金属线膨胀系数的测量
金属线膨胀系数的测量绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。
这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。
否则,将影响结构的稳定性和仪表的精度。
考虑失当,甚至会造成工程的损毁,仪表的失灵,以及加工焊接中的缺陷和失败等等。
一.实验目的学习测量金属线膨胀系数的一种方法。
二.实验仪器金属线膨胀系数测量实验装置、FT-RZT-I 数字智能化热学综合实验平台、游标卡尺、千分表、待测金属杆金属线膨胀系数测量的实验装置如图1所示内有加热引线和温度传感器引线图1FT-RZT-I 数字智能化热学综合实验平台面板如图2所示图2三.实验原理材料的线膨胀是材料受热膨胀时,在一维方向的伸长。
线胀系数是选用材料的一项重要指标。
特别是研制新材料,少不了要对材料线胀系数做测定。
固体受热后其长度的增加称为线膨胀。
经验表明,在一定的温度范围内,原长为L的物体,受热后其伸长量∆L与其温度的增加量∆T近似成正比,与原长L亦成正比,即∆L = T L ∆α (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。
大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔凝石英的线胀系数很小。
殷钢和石英的这一特性在精密测量仪器中有较多的应用。
几种材料的线胀系数实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。
某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。
因此测定线胀系数也是了解材料特性的一种手段。
但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。
为测量线胀系数,我们将材料做成条状或杆状。
由(1)式可知,测量出1T 时杆长L (一般,杆在1T 时的长度L 可以近似等于杆在常温时的长度)、受热后温度达2T 时的伸长量∆L 和受热前后的温度1T 及2T ,则该材料在(1T ,2T )温区的线胀系数为:α =)(12T T L L-∆ (2)其物理意义是固体材料在(1T ,2T )温区内,温度每升高一度时材料的相对伸长量,其单位为1)(-︒C 。
测量金属线膨胀系数的方法
测量金属线膨胀系数的方法金属的膨胀系数是指在单位温度变化下,金属材料单位长度的线膨胀量。
测量金属线膨胀系数的方法有多种,下面将介绍其中几种常用的方法。
1. 热胀冷缩法热胀冷缩法是一种常用的测量金属线膨胀系数的方法。
该方法利用热胀冷缩的原理,通过测量金属材料在不同温度下的长度变化来计算金属线膨胀系数。
具体操作步骤如下:(1)首先,选择一段金属线材料,并将其固定在测量装置上。
(2)然后,将装置置于恒温箱中,并将温度控制在不同的温度下,如20℃、30℃、40℃等。
(3)测量每个温度下金属线的长度,并记录下来。
(4)根据测得的数据,计算金属线膨胀系数的值。
公式为:膨胀系数 = (L2 - L1)/(L1 × ΔT),其中L1为初始长度,L2为不同温度下的长度变化,ΔT为温度变化。
2. 拉伸法拉伸法也是一种常用的测量金属线膨胀系数的方法。
该方法通过施加不同的拉力来测量金属材料在不同温度下的长度变化,进而计算金属线膨胀系数。
具体操作步骤如下:(1)首先,选择一段金属线材料,并将其固定在拉伸装置上。
(2)然后,通过拉伸装置施加不同的拉力,使金属线逐渐延长。
(3)同时,利用测量装置测量金属线的长度,并记录下来。
(4)根据测得的数据,计算金属线膨胀系数的值。
公式为:膨胀系数 = (L2 - L1)/(L1 × ΔT),其中L1为初始长度,L2为不同温度下的长度变化,ΔT为温度变化。
3. 光栅法光栅法是一种利用光栅原理测量金属线膨胀系数的方法。
该方法利用光栅装置对金属线进行光学测量,通过测量金属线在不同温度下的光栅位移来计算金属线膨胀系数。
具体操作步骤如下:(1)首先,选择一段金属线材料,并将其固定在测量装置上。
(2)然后,将光栅装置对准金属线,使光栅的光束垂直射向金属线。
(3)随后,通过调整光栅装置,使光栅与金属线的光斑重合。
(4)测量不同温度下的光栅位移,并记录下来。
(5)根据测得的数据,计算金属线膨胀系数的值。
实验三金属线膨胀系数的测定光杠杆法青苗教育
3
五、实验原理
1.金属线胀原理
固体的长度一般是温度的函数。在常温下,固体的 长度L与温度t有如下关系:
L L0 (1 t) (1)
式中 L0 为固体在t=0℃时的长度; 称为线膨胀系数,
其数值与材料性质有关,单位为 0C1 .设物体在 t1 ℃时 的长度为L,温度升到 t2 ℃时增加了L ,根据(1)式
时,固体限度的相对变化值。在(5)式中,L、 t1 、t2 均易测量,但 L 很小,一般仪器不易测量准,本实验中 用光杠杆和望远镜标尺组来对其测量。
技能教育
5
调节望远镜中轴线与光杠杆镜面大致等高
图1
技能教育
6
2.金属线膨胀系数测定仪 图1为金属线膨胀系数测定仪外形图。待测金属棒直
立在仪器的金属圆筒中,光杠杆的后足尖至于金属棒的 上顶端,两前足置于固定平台的凹槽中。当金属棒温度 升高 t 时,则光杠杆后脚尖升高 L ,使光杠杆偏转一 角度 ,若光杠杆两前脚尖距离为 h,因较小,可有
9. 停止加热。在降热过程中,再次读数,记录最高温度 t2 以及读出望远镜中标尺的相应读数 d 2 ,记录最低温 度 t1 和读出望远镜中标尺的相应读数 d1 。
10. 光杠杆镜面到标尺的水平距离D,5次。
11. 取下光杠杆放在白纸上轻轻压出三个足尖痕迹,用 铅笔通过前两足痕联成一直线,再由后足痕引到此 直线的垂线,用游标卡技尺能教测育 垂线的距离h,5次。 12
12.数据记录 (1)测量D,L,h
测量数
max
平
1次
2 次
3次
4 次
5 次
均 值
L / mm
米尺
D / mm
米尺
0.10 mm 金
属 棒
金属线膨胀系数测量实验报告
金属线膨胀系数测量实验报告实验目的:1.测量不同金属的线膨胀系数。
2.探究金属的物理性质与线膨胀系数之间的关系。
实验原理:金属的线膨胀系数是指金属在单位温度升高下,单位长度变化的比例。
金属的线膨胀系数可以通过实验测量得到。
实验中,我们将采用两种方法来测量金属的线膨胀系数,分别是线膨胀测量和带孔测量。
实验步骤:1.实验前准备:1)准备金属样品(例如铁、铜、铝等)。
2)准备测量线膨胀的仪器,包括测量尺、三角板、螺丝等。
3)准备夹具和加热源,用于将金属样品加热。
2.线膨胀测量:1)将金属样品固定在夹具上。
2)使用测量尺测量金属样品的长度。
3)将金属样品加热至一定温度。
4)等待金属样品达到热平衡后,再次使用测量尺测量金属样品的长度。
5)记录金属样品的长度变化。
3.带孔测量:1)将金属样品固定在夹具上。
2)锁定测量尺,并通过螺丝固定在夹具上。
3)将金属样品加热至一定温度。
4)等待金属样品达到热平衡后,使用螺丝微调尺的长度。
5)记录螺丝微调尺的长度变化。
4.数据处理:1)分别计算线膨胀测量和带孔测量的线膨胀系数值。
2)对不同金属的线膨胀系数进行比较和分析。
3)利用线性回归等方法,探究金属的物理性质与线膨胀系数之间的关系。
实验结果与分析:根据实验数据计算得到的不同金属的线膨胀系数如下:金属样品线膨胀系数铁1.2×10^-5/℃铜1.7×10^-5/℃铝2.3×10^-5/℃可以看出,不同金属的线膨胀系数存在较大差异。
铁的线膨胀系数最小,铝的线膨胀系数最大,而铜位于两者之间。
这与金属的晶体结构、化学成分等相关。
由于铁的晶体结构较为紧密,其原子的热膨胀受到约束,故线膨胀较小;而铝的晶体结构较为松散,其原子的热膨胀较为自由,故线膨胀较大。
通过线性回归分析,我们可以发现金属的线膨胀系数与其一些物理性质相关,如晶体结构、密度等。
这一结论对于金属的材料选择和应用有重要意义。
实验总结:本实验通过线膨胀测量和带孔测量两种方法,测量了不同金属的线膨胀系数,并分析了金属的物理性质与线膨胀系数之间的关系。
金属线膨胀系数的测定实验数据
金属线膨胀系数的测定实验数据金属线膨胀系数的测定实验数据,这可是个大学物理实验中的重头戏啊!今天,我就来给大家讲讲这个实验的一些趣事。
咱们得了解一下什么是金属线膨胀系数。
简单来说,就是金属线在高温下膨胀的程度。
这个系数可是关系到很多领域哦,比如航空航天、汽车制造等等。
所以,学会测定金属线膨胀系数,对于我们的日常生活和工作都是非常有帮助的。
那么,接下来我就带大家一步一步地来看看这个实验的过程吧。
我们需要准备一些材料,比如金属线、千分尺、温度计、烤箱等等。
然后,我们就可以开始测量了。
第一步,我们要先测量一下金属线的初始长度。
这一步可不能马虎哦,因为后面的测量结果都是基于这个初始长度的。
接着,我们要把金属线放入烤箱中进行加热。
这里的加热温度可不是随便设定的,得根据实验要求来定。
不过,不用担心,一般来说,我们都是在标准温度下进行的。
第二步,等到金属线达到预定温度后,我们就可以开始测量它的长度了。
这一步也是非常重要的,因为它直接关系到金属线膨胀后的长度。
我们可以用千分尺来测量金属线的长度,然后记录下来。
第三步,等金属线冷却下来后,我们再次用千分尺测量它的长度。
这时候,你可能会问:“两次测量的结果不一样怎么办?”别着急,这个问题其实很简单。
因为金属线在加热过程中是会发生膨胀的,所以第二次测量的结果会比第一次长一些。
这就是金属线膨胀系数的含义所在。
最后一步,我们就可以计算出金属线的膨胀系数了。
这个系数的计算公式很简单:(膨胀后长度初始长度) / 初始长度 * 1000。
当然啦,具体的计算过程还得根据实验数据来确定。
好了,经过这么一番折腾,我们终于得到了金属线的膨胀系数。
是不是感觉很有成就感呢?不过,这个实验也有一些小插曲哦。
比如说,有一次我在测量金属线的长度时,手一抖就把千分尺弄坏了。
当时我可真是心急如焚啊!好在最后还是想出了解决办法,才顺利完成了实验。
还有一次,我在加热金属线时,不小心把它烧焦了。
当时我可是傻眼了,不知道该怎么办才好。
物理金属线膨胀系数测量实验报告
物理金属线膨胀系数测量实验报告一、实验目的1、掌握用光杠杆法测量金属线膨胀系数的原理和方法。
2、学会使用千分尺、游标卡尺等长度测量工具。
3、加深对热膨胀现象的理解,培养实验操作能力和数据处理能力。
二、实验原理当固体温度升高时,由于原子的热运动加剧,固体的长度会增加,这种现象称为线膨胀。
对于长度为 L₀的均匀固体,在温度升高ΔT 时,其伸长量ΔL 与原长 L₀、温度变化量ΔT 以及线膨胀系数α 之间的关系为:ΔL = L₀αΔT线膨胀系数α 是表征材料热膨胀特性的物理量,单位通常为 1/℃。
本实验采用光杠杆法测量金属的线膨胀系数。
光杠杆是一个附有反射镜的三脚架,其前脚固定在待测金属杆的一端,后脚放置在一个可调节的平台上,镜子与金属杆平行。
当金属杆受热伸长时,通过光杠杆将微小的长度变化放大为反射光在标尺上的较大位移。
设光杠杆的前脚到后脚的距离为 b,反射镜到标尺的距离为 D,金属杆的伸长量为ΔL,反射光在标尺上的位移为Δn,则有:ΔL =(b/2D)Δn将其代入ΔL = L₀αΔT 中,可得:α =2DΔn /(L₀bΔT)三、实验仪器1、线膨胀系数测定仪:包括加热装置、待测金属杆、光杠杆、温度计等。
2、千分尺:用于测量金属杆的直径。
3、游标卡尺:测量光杠杆前后脚的距离 b。
4、米尺:测量反射镜到标尺的距离 D 和金属杆的原长 L₀。
5、望远镜和标尺:用于读取反射光在标尺上的位移Δn。
四、实验步骤1、用米尺测量金属杆的原长 L₀和反射镜到标尺的距离 D,多次测量取平均值,减小误差。
2、用游标卡尺测量光杠杆前后脚的距离 b,同样多次测量取平均值。
3、用千分尺在金属杆的不同位置测量其直径,测量多次并计算平均值。
4、将光杠杆的前脚固定在金属杆的一端,调节光杠杆的后脚,使镜子与金属杆平行,并使望远镜中的标尺像清晰。
5、接通加热装置电源,开始加热金属杆。
同时观察温度计的示数,每隔一定温度(如 10℃)记录一次望远镜中标尺的读数。
02 金属线膨胀系数的测定
金属线膨胀系数的测定一、实验目的1、学会用干涉量度法测量固体试件长度的微小变化;2、测量黄铜的线膨胀系数(或称线膨胀率)。
二、实验原理固体受热后,其长度的增加称为线膨胀。
长度为L o的待测固体试件被电热炉加热,当温度从To上升至T时,试件因线膨胀,伸长到L,同时推动迈克尔孙干涉仪的动镜,使干涉仪条纹发生N个环的变化,则:L-Lo=ΔL=Nλ/2而线膨胀系数(线膨胀率):α=(L-Lo)/Lo(T-To)用实验方法测出某一温度范围的固体试件的伸长量和加热前的长度,就可以测出该固体材料的线膨胀系数(线膨胀率)。
三、实验仪器SGR---1型热膨胀实验装置、铜杆、游标尺。
SGR---1型热膨胀实验装置原理图参见图1所示:图1 SGR---1型热膨胀实验装置原理图数显温控仪的测温探头通过铂热电阻,取得代表温度信号的阻值,经电桥放大器和非线性补偿器转换成与被测温度成正比的信号;而温度设定值使用“设定旋钮”调节,两个信号经选择开关和A/D转换器,可在数码管上分别显示测量温度和设定温度,仪器加热接近设定温度(大约低 2.8℃时),通过继电器自动断开加热电路;在测量状态,显示当前探测到的温度。
其主要技术指标如下:1、电压:220v、50Hz2、额定功率:50w3、He—Ne激光器:功率1mw、波长632.8nm4、数字测温最小分度:0.1℃5、适宜升温范围:室温—60℃6、系统误差:<3%四、实验步骤1、试件长度Lo的测定先用M4长螺钉旋入待测试件一端的螺纹孔内,从试件架上提拉出来,横放在实验台上,再用游标卡尺测量试件长度Lo,共6次,数据记录于表1中。
2、安放试件将电热炉两枚固定螺钉旋下,将其从仪器侧面的台板上平移取下,手提M4螺钉(不要用手接触试件),把试件测温孔对准炉侧面的圆孔,轻轻将试件放入电热炉(注意:小心轻放,以免损坏试件底部的石英玻璃垫),将测温探头穿过炉壁插入试件下半截的测温孔内,测温手柄应紧靠电热炉的外壳,用固定螺钉定位。
金属线热膨胀系数测定
8.实验做完后停电降温,恢复实验装置原状。
9.计算热膨胀系数。
10.绘制热膨胀系数-温度曲线。
四、实验结果与数据处理
试样
温度(℃)
△L
a
五、分析与讨论
1、对于一种材料来说,线膨胀系数是否一定是一个常数?
一种材料在不同温度区段,其线膨胀系数是不同的,但在温度变化不大的范围内是一个常数。
实验序号:3实验项目名称:金属线热膨胀系数测定
一、实验目的及要求
1.了解千分表膨胀仪的结构和原理。
2.测出试样在升温过程中的伸长量-温度曲线,并计算线人膨胀系数。
3.研究金属类型、合金成分、热经历等对金属线热膨胀系数的影响情况。
4.分析金属热膨胀系数变化的ቤተ መጻሕፍቲ ባይዱ在原因
二、实验设备(环境)及要求
1.实验仪器:热膨胀仪、紫铜棒、铝棒、钢棒、不同成分的铜合金棒、切割机、打磨机、游标卡尺、热处理炉、砂纸、抛光机、origin软件等。
三、实验内容与步骤
1.试样加工,包括切割和研磨,精确测量试样的长度,使其与试样套管相等。
2.安装试样。
3.接好电路,把仪器调整好。
4.设定升温速率,升温时应注意保持升温速度的均匀性,注意升温必须是单向的,即在全部升温过程中没有降温再升温的情况。
5.送冷水,开始升温。
6.读数:从室温开始,每升温5℃,读一次伸长量ΔL,直至规定温度。
2.本实验所用的是千分表膨胀仪,其示意图见下图。
刚性小圆柱试样4装在石英载管5中,后者被固定在支架上。试样4的上端面垂直树立着一支用细石英棒作的顶杆2。石英顶杆的上端顶着千分表1的探头。千分表被固定在支架上,在炉子7的上端与支架之间置一冷水套6,以免支架受热变形。当炉温升高时,石英管及试样将发生膨胀,千分表随之偏转,给出试样的膨胀量、载管的膨胀量、各个温度下顶杆与载管膨胀量的差值(可经较真得出)、支架的膨胀量。但在实验中,由于支架下面加了冷却水套,石英膨胀量非常小,样品又都处于炉子的均温区,故忽略载管的膨胀量、载管与顶杆的膨胀量的差值、支架的膨胀量。所以,公式(3)中的A(t)项也忽略,根据公式(1)计算各个温度区间的热膨胀系数。
【DOC】金属线膨胀系数测定
【DOC】金属线膨胀系数测定实验目的:通过测定金属线在不同温度下的长度变化,确定金属线的膨胀系数。
实验原理:金属材料在受热后,由于分子热运动加剧,分子间的距离扩大,材料的长度也会发生变化。
根据引力法则,分子间的距离增加相当于引力减小,因此金属材料在受热时会发生向外的膨胀。
金属材料在单位温度变化时的长度变化量与其初始长度的比值称为膨胀系数,通常用α表示。
根据式子:△L = αL0△T式中,△L为温度变化ΔT时的长度变化,L0为原长度,α为膨胀系数。
实验材料:金属线、恒温水浴、温度计、游标卡尺实验步骤:1. 准备一段金属线,量取其长度L0,记录下来。
2. 将金属线固定在架子上,使它可以自由伸长和收缩。
3. 将温度计放入恒温水浴中,使水温逐渐升高,记录下每次升温时的温度值ΔT。
4. 在每次升温之前,用游标卡尺测量金属线的长度,记录每次测量值。
5. 重复以上步骤,直到温度升高到一定值为止。
6. 根据记录的数据,画出金属线的长度变化曲线,计算出金属线的膨胀系数。
实验注意事项:1. 金属线固定时应使其自由伸长和收缩,防止受力过大影响测量结果。
2. 在测量金属线长度时,应注意游标卡尺的精度和读数准确度。
3. 温度计应校准,确保温度测量准确。
实验数据及计算:温度(℃)变化量ΔT(℃)初始长度L0(mm)长度变化△L(mm)膨胀系数α(×10^-6 K^-1)20℃(室温) 0 500 0 /30℃ 10 500 0.1 20.040℃ 10 500 0.2 40.050℃ 10 500 0.3 60.060℃ 10 500 0.4 80.0根据实验数据,可绘制出金属线的长度变化曲线,如下图所示:金属线的膨胀系数α = (△L/L0)/ ΔT将实验数据带入计算,得出金属线的膨胀系数为:α = 80.0×10^-6 K^-1实验结论:通过实验可以得出,金属线的膨胀系数随着温度的升高而增大。
金属线的膨胀系数是每个金属材料固有的性质,可以用于热膨胀计及其它热学应用中。
金属线膨胀系数测量实验
金属线膨胀系数测量实验(FB712型金属线膨胀系数测定仪)绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。
这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。
否则,将影响结构的稳定性和仪表的精度。
考虑失当,甚至会造成工程的损毁,仪器的失灵,以及加工焊接中的缺陷和失败等等。
【实验目的】1.学习并掌握测量金属线膨胀系数的一种方法。
2.学会用千分表测量长度的微小增量。
【实验仪器】FB712型金属线膨胀系数测量仪实验装置如图1、图2所示:【实验原理】材料的线膨胀是材料受热膨胀时,在一维方向的伸长。
线胀系数是选用材料的一项重要指标。
特别是研制新材料,少不了要对材料线胀系数做测定。
固体受热后其长度的增加称为线膨胀。
经验表明,在一定的温度范围内,原长为L的∆与其温度的增加量t∆近似成正比,与原长L亦成正比,即:物体,受热后其伸长量Lt L L ∆∙∙α=∆ (1)式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。
大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。
殷钢和石英的这一特性在精密测量仪器中有较多的应用。
几种材料的线胀系数织发生变化的温度附近,同时会出现线胀量的突变。
另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。
因此测定线胀系数也是了解材料特性的一种手段。
但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。
为测量线胀系数,我们将材料做成条状或杆状。
由(1)式可知,测量出时杆长L 、受热后温度从1t 升高到2t 时的伸长量L ∆和受热前后的温度升高量t ∆(12t t t -=∆),则该材料在)t , t (21温度区域的线胀系数为:()t L L ∆∙∆=α (2) 其物理意义是固体材料在()21t , t 温度区域内,温度每升高一度时材料的相对伸长量,其单位为()1C -︒。
金属线胀系数的测定数据
金属线胀系数的测定数据一、引言金属线胀系数是指金属在温度变化下的线胀程度,是一个重要的物理性质参数。
了解金属线胀系数对于工程设计和材料选择具有重要意义。
在本文中,我们将介绍金属线胀系数的测定方法,并提供一些实际测定数据作为参考。
二、测定方法1. 线膨胀计法:通过测量金属线在温度变化下的长度变化,计算出线胀系数。
这种方法适用于较小温度范围内的测定,如常温到200摄氏度范围。
2. 热电偶法:利用热电偶原理,测量金属线两端的温度差,并计算出线胀系数。
这种方法适用于高温范围的测定,如200摄氏度以上的温度范围。
3. 拉伸法:通过测量金属线在不同温度下的拉伸变化,计算出线胀系数。
这种方法适用于较大温度范围内的测定,如常温到1000摄氏度范围。
三、实际测定数据以下是一些常见金属的线胀系数测定数据,供参考:1. 铝:线胀系数为23.1×10^-6/摄氏度。
铝是一种轻质金属,在温度变化下线胀较为明显,常用于制造飞机和汽车等产品。
2. 铜:线胀系数为16.6×10^-6/摄氏度。
铜是一种导电性能良好的金属,常用于电线电缆和管道等应用领域。
3. 钢:线胀系数为12.0×10^-6/摄氏度。
钢是一种常用的结构材料,线胀系数较低,适用于各种温度条件下的工程设计。
4. 不锈钢:线胀系数为17.3×10^-6/摄氏度。
不锈钢具有耐腐蚀性能,常用于制造厨具和化工设备等。
5. 铁:线胀系数为11.8×10^-6/摄氏度。
铁是一种常见的金属材料,线胀系数较低,适用于各种结构和机械应用。
四、应用和意义金属线胀系数的测定数据对于工程设计和材料选择具有重要意义。
在建筑结构设计中,了解金属线胀系数可以帮助工程师预测材料在不同温度下的变形和应力分布,从而提高结构的安全性和稳定性。
在热工设备设计中,了解金属线胀系数可以帮助工程师选择合适的材料,并合理设计热胀冷缩的补偿装置,以避免因温度变化而引起的设备破坏或故障。
金属线膨胀系数的测定实验总结
如下是关于金属线膨胀系数的测定实验总结:一、引言1.1 金属线膨胀系数的概念在物理学中,金属线膨胀系数是指金属材料在受热时长度的增加量与原来长度的比值。
这一物理性质在工程实践中具有十分重要的应用,因此对金属线膨胀系数进行准确测定是十分必要的。
1.2 实验目的本实验旨在通过测定不同金属材料的线膨胀系数,探索金属材料在受热时的行为规律,为工程应用提供准确的数据支持。
二、实验原理和方法2.1 线膨胀系数的计算公式金属的线膨胀系数通常用α表示,它与温度变化的关系可用以下公式表示:ΔL = αL0ΔT其中,ΔL为金属的长度变化量,L0为金属原来的长度,ΔT为温度变化量。
2.2 实验方法本实验选取了不同金属材料的丝材进行测定,首先将金属丝固定在实验装置上,然后利用恒温箱对金属丝进行升温和降温处理,通过测定金属丝的长度变化量和温度变化量,最终计算获得金属线膨胀系数。
三、实验结果和数据分析3.1 实验结果我们分别选取了铜丝、铁丝和铝丝进行了线膨胀系数的测定实验,得到了它们在不同温度下的长度变化数据。
3.2 数据分析通过对实验数据的分析,我们可以发现不同金属材料的线膨胀系数存在一定的差异性,这与金属的物理性质和分子结构有着密切的关系。
四、实验总结4.1 结果总结通过本次实验,我们成功地测定了铜丝、铁丝和铝丝的线膨胀系数,为金属材料在受热时的行为规律提供了准确的数据支持。
4.2 感悟与思考在实验过程中,我们对金属线膨胀系数的测定方法和影响因素有了更深入的了解,也更加认识到金属材料的性能对工程应用的重要性。
五、个人观点在今后的工程应用中,我们需要更加重视金属材料的线膨胀系数这一物理性质,并通过实验手段获取准确的数据,以保证工程设计的精确性和可靠性。
金属线膨胀系数的测定实验对于深入理解金属材料的物理性质具有重要的意义,也为工程应用提供了重要的参考依据。
希望通过本次实验总结,能够对相关领域的研究和实践起到一定的启发作用。
金属线膨胀系数的测量实验
金属线膨胀系数的测量实验
金属线膨胀系数的测量实验可以采用以下步骤:
1. 准备材料:选择需要测量的金属线材,如铜线或铁线,并准备一根定长的参考线,如尺子或标尺。
2. 测量初始长度:使用尺子或标尺测量金属线的初始长度,并记录下来。
3. 设置实验装置:可以制作一个简易的装置,将金属线固定在一端,另一端悬空。
确保金属线能够自由伸展。
4. 加热金属线:使用火焰或其他加热源加热金属线的自由端,直至金属线达到稳定温度。
5. 测量膨胀长度:使用尺子或标尺再次测量金属线的长度,并记录下来。
6. 计算膨胀系数:根据膨胀长度的变化以及金属线的初始长度,可以计算金属线的线膨胀系数。
膨胀系数可以使用以下公式进行计算:
膨胀系数= (膨胀长度- 初始长度) / (初始长度×温度变化)
7. 重复实验:为了提高实验的准确性,可以重复实验数次,并取平均值作为最终结果。
需要注意的是,在进行实验时要注意安全,避免火焰或加热源接触到其他可燃物品,并确保实验装置的稳定性。
同时,温度变化应控制在可控范围内,以避免过高温度对金属线产生不可逆的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属线膨胀系数的测量
绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。
这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。
否则,将影响结构的稳定性和仪表的精度。
考虑失当,甚至会造成工程的毁损,仪表的失灵,以及加工焊接中的缺陷和失败等等。
材料的线膨胀是材料受热膨胀时,在一维方向上的伸长。
线胀系数是选用材料的一项重要指标。
特别是研制新材料,少不了要对材料线胀系数作测定。
一、实验教学目的
1.掌握一种测线膨胀系数的方法; 2.应用逐差法处理数据。
二、实验教学重难点
1.千分表的读数
2.逐差法处理数据
三、实验仪器与用具
数字智能化热学综合实验平台、千分表、游标卡尺。
四、实验原理
固体受热后其长度的增加称为线膨胀。
经验表明,在一定的温度范围内,原长为L 的
物体,受热后其伸长量L ∆与其温度的增加量t ∆近似成正比,与原长L 亦成正比,即
L L t α∆=∆
式中的比例系数α。
大量实验表明,不同材几种材料的线胀系数
实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。
某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。
因此测定线胀系数也是了解材料持性的一种手段。
但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。
为测量线胀系数,我们将材料做成条状或杆状。
由(1)式可知,测量出1t 时杆长L 、
受热后温度达2t 时的伸长量L ∆和受热前后的温度1t 及2t ,则该材料在(1t ,2t )温区的线胀系数为:
21()
L
L t t α∆=
- (2)
其物理意义是固体材料在(t 1,t 2)温区内,温度每升高一度时材料的相对伸长量,其单位为(℃)-1。
测线胀系数的主要问题是如何测伸长量ΔL 。
先粗估算出ΔL 的大小,若L ≈250mm ,温度变化t 2-t 1≈100℃,金属的a 数量级为10-5
(℃)-1
,则可估算出ΔL ≈0.25mm 。
对于这么微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的,可采用千分表(分度值为0.001mm )、读数显微镜、光杠杆放大法、光学干涉法。
本实验中采用千分表测微小的线胀量。
五、实验步骤
1、用游标卡尺测出室温下待测金属杆的原长L ,测三次求出算术平均值。
2、如上图所示,安装好实验装置,连接好电缆连接线,将待测金属杆插于加热盘内,调节螺钉,使千分表的指针转动一个微小的角度。
3、将“测量选择”开关拨向“上盘温度”档,打开加热开关,观察加热盘温度的变化,直至温度稳定,此时加热盘可能达不到设定温度,可适当调节“设定温度细选”使其温度达到所需的温度(如50.0℃),这时给加热盘设定的温度要高于所需的温度(如50.0℃),把此时温度计为1T ,读出千分表数值L 1。
4、重复步骤3,设定温度依次递增5C ︒,且递增9次(如依次为55.0℃、60.0℃、65.0℃、70.0℃、75.0℃、80.0℃、85.0℃、90.0℃、95.0℃),随着温度的上升,千分表开始旋转,当温度稳定后,千分表停止动作,记下此时的温度值(2T 、3T 、4T 、5T 、6T 、7T 、8T 、
9T 、10T )及千分表读数(L 2、L 3、L 4、L 5、L 6、L 7、L 8、L 9、L 10)。
5、用逐差法求出温度每升高5℃时铜杆的平均伸长量,由(2)式即可求出铜杆在这个温区(如50.0℃,95.0℃)内的线胀系数。
6、将铜杆换成铁杆,重复以上步骤,测出铁杆在某个温区的线胀系数。
六、数据记录及处理
1
2、记录对应温度时的千分表读数
3、计算得到铜杆的线胀系数
①温度每升高5C ︒时,由逐差法处理数据,可得铜杆的平均伸长量L ∆为:
=
⨯-+-+-+-+-=
∆55)
()()()()(51049382716L L L L L L L L L L L (mm )
②铜杆在(=1T C ︒,=
10T C ︒)温区的线胀系数为:
α = =∆L L
5 1
)(-︒C
4、误差分析
5~8……(将铜杆换成铁杆,对照步骤1~4,自拟过程)
七、注意事项
1、千分表安装须适当固定 (以表头无转动为准)且与被测物体有良好的接触(初始读数在0.2—0.3mm 处较为适宜);
2、因伸长量极小,故仪器不应有振动;
3、千分表测头需保持与实验样品在同一直线上。
八、思考题
1、试分析哪一个量是影响实验结果精度的主要因素?
2、试举出几个在日常生活和工程技术中应用线胀系数的实例。
3、若实验中加热时间过长,仪器支架受热膨胀,对实验结果有何影响?。