二元光学

二元光学
二元光学

二元光学是基于光波衍射理论发展起来的一个新兴光学分支,是光学与微电子技术相互渗透、交*而形成的前沿学科。基于计算机辅助设计和微米级加工技术制成的平面浮雕型二元光学器件具有重量轻、易复制、造价低等特点,并能实现传统光学难以完成的微小、阵列、集成及任意波面变换等新功能,从而使光学工程与技术在诸如空间技术、激光加工、计算技术与信息处理、光纤通信及生物医学等现代国防科技与工业的众多领域中显示出前所未有的重要作用及广阔的应用前景。二元光学于20世纪90年代初在国际上兴起研究热潮,并同时引起学术界与工业界的极大兴趣及青睐。

随着近代光学和光电子技术的迅速发展,光电子仪器及其元件都发生了深刻而巨大的变化。光学零件已经不仅仅是折射透镜、棱镜和反射镜。诸如微透镜阵列、全息透镜、衍射光学元件和梯度折射率透镜等新型光学元件也越来越多地应用在各种光电子仪器中,使光电子仪器及其零部件更加小型化、阵列化和集成化。微光学元件是制造小型光电子系统的关键元件,它具有体积小、质量轻、造价低等优点,并且能够实现普通光学元件难以实现的微小、阵列、集成、成像和波面转换等新功能。

光学是一门古老的科学。自伽利略发明望远镜以来,光学已走过下几百年的漫长道路。60年代激光的出现,促进了光学技术的迅速发展,但基于折反射原理的传统光学元(器)件,如透镜、棱镜等人都是以机械的铣、磨、抛光等来制作的,不仅制造工艺复杂,而且元件尺寸大、重量大。在当前仪器走向光、机、电集成的趋势中,它们已显得臃肿粗大极不匹配。研制小型、高效、阵列化光学元件已是光学界刻不容缓的任务。80年代中期,美国MIT 林肯实验室威尔得坎普(Veldkamp)领导的研究组在设计新型传感系统中,率先提出了“二元光学”的概念,他当时描述道:“ 现在光学有一个分支,它几乎完全不同于传统的制作方式,这就是衍射光学,其光学元件的表面带有浮雕结构;由于使用了本来是制作集成电路的生产方法,所用的掩模是二元的,且掩模用二元编码形式进行分层,故引出了二元光学的概念。”随后二元光学不仅作为一门技术,而且作为一门学科迅速地受到学术界和工业界的青睐,在国际上掀起了一股二元光学的研究热潮。
二元光学元(器)件因其在实现光波变换上所具有的许多卓越的、传统光学难以具备的功能,而有利于促进光学系统实现微型化、阵列化和集成化,开辟了光学领域的新视野。关于二元光学概念的准确定义,至今光学界还没有统一的看法,但普遍认为,二元光学是指基于光波的衍射理论,利用计算机辅助设计,并用超大规模集成(VLSI)电路制作工艺,在片基上(或传统光学器件表面)刻蚀产生两个或多个台阶深度的浮雕结构,形成纯相位、同轴再现、具有极高衍射效率的一类衍射光学元件。它是光学与微电子学相互渗透与交*的前沿学科。二元光学不仅在变革常规光学元件,变革传统光学技术上具有创新意义,而且能够实现传统光学许多难以达到的目的和功能,因而被誉为“90年代的光学”。它的出现将给传统光学设计理论及加工工艺带来一次革命。二元光学元件源于全息光学元件(HOE)特别是计算全息元件(CGH)。可以认为相息图(Kinoform)就是早期的二元光学元件。但是全息元件效率低,且离轴再现;相息图虽同轴再现。但工艺长期未能解决,因此进展缓慢、实用受限。二元光学技术则同时解决了衍射元件的效率和加工问题。它以多阶相位结构近似相息图的连续浮雕结构。二元光学是微光学中的一个重要分支。微光学是研究微米、纳米级尺寸的光学元器件的设计、制作工艺及利用这类元器件实现光波的发射、传输、变换及接收的理论和技术的新学科。
微光学发展的两个主要分支是:
(1)基于折射原理的梯度折射率光学,
(2)基于衍射原理的二元光学。
二者在器件性能、工艺制作等方面各具特色。二元光学是微光学领域中最具活力、最有发展潜力的前沿学科分支。光学和电子学的发展都基于微细加工的两个关键技术:亚微米光刻和各向异性刻蚀技术。微电子学推动了二元光学学科的发展,而微电子工业的进步则得益于光刻水平的提高。此外,二元光学技术的发展又将促进微电子技术的发展与提高。例如,目前在大规模集成电路的制作中所采用的

移相模版和在制作光纤光栅中所用的相位模版也都是建立在二元光学的基础上的。二元光学技术一经提出就吸引了—些技术发达国家的注目,引起了各研究机构、大学及工业界的极大兴趣,并被MIT林肯实验室称为振兴和发展美国光学工业的主要希望,可见其在整个光学领域的意义。二元光学能获得如此迅速的发展,除由于具有体积小、重量轻、容易复制等显而易见的优点外,还由于具有如下许多独特的功能和特点。
一、高衍射效率二元光学元件是一种纯相位衍射光学元件,为得到高衍射效率,可做成多相位阶数的浮雕结构。一般使用N块模版可得到L(=2N) 个相位阶数,其衍射效率为:η=|sin(π/L)/( π/L)|2。由此计算,当L=2、4、8和16时,分别有V=40.5%、81%、94.9%和98.6%。利用亚波长微结构及连续相位面形,可达到接近100%的效率。
二、独特的色散性能在—般情况下,二元光学元件多在单色光下使用。但正因它是一个色散元件,具有不同于常规元件的色散特性,故可在折射光学系统中同时校正球差与色差,构成混合光学系统,以常规折射元件的曲面提供大部分的聚焦功能,再利用表面上的浮雕相位波带结构校正像差。这一方法已用于新的非球面设计和温度补偿等技术中。
三、更多的设计自由度在传统的折射光学系统或镜头设计中只能通过改变曲面的曲率或使用不同的光学材料校正像差,而在二元光学元件中,则可通过波带片的位置、槽宽与槽深及槽形结构的改变产生任意波面,大大增加了设计变量,从而能设计出许多传统光学所不能的全新功能光学元件,这是对光学设计的一次新的变革。
四、宽广的材料可选性二元光学元件是将二元浮雕面形转移至玻璃、电介质或金属基底上,可用材料范围大;此外,在光电系统材料的选取中,—些红外材料如ZnSe和Si等,由于它们有一些不理想的光学特性,故经常被限制使用,而二元光学技术则可利用它们并在相当宽广的波段作到消色差;另外,在远紫外应用中,可使有用的光学成像波段展宽1000倍。
五、特殊的光学功能二元光学元件可产生一般传统光学元件所不能实现的光学波面,如非球面、环状面、锥面和镯面等,并可集成得到多功能元件;使用亚波长结构还可得到宽带、大视场、消反射和偏振等特性;此外,二元光学在促进小型化、阵列化、集成化方面更是不言而喻了。国内外研究概况80年代中期,美国国防部领先科研项目处(DARPA)对MIT林肯实验室资助了名为“二元光学”的项目,其研究目标为:
(1)发展一种基于微电子制作工艺的光学技术,用以节约资金和劳动力,获取在设计和材料选择上更多的自由度,并开发新的光学功能元件;
(2)推动光电系统整体的计算机辅助设计;
(3)在美国工业界广泛应用衍射光学技术。
进入90年代,随着微细加工技术的发展,以及为了得到高衍射效率的二元光学元件,其浮雕结构从两个台阶发展到多个台阶,直至近似连续分布,但由于其主要的制作方法仍基于表面分步成形技术,每次刻蚀可得到二倍的相位阶数,故仍称其为二元光学,而且往往就称为衍射光学。在国内,许多单位都开展了二元光学的研究。鉴于二元光学的潜在价值和国际上的研究状况,国内一些有影响的光学专家90年代初就向国家自然科学基金委员会建议开展这方面的研究。纵观国内外研究现状,目前二元光学的研究重担集中在三个领域:超精细衍射结构的分析理论与设计;激光束或电子束直写技术及高分辨率刻蚀技术;二元光学元件在国防、工业及消费领域的应用。其中二元光学的CAD、掩模技术、刻蚀技术和LIGA(同步辐射光成形)技术是核心技术。

 主要进展
经过近10年的研究,二元光学已经在设计理论、制作工艺和应用等方面取得了突破性的进展。

一、设计理论方面的进展

二元光学元件的设计问题十分类似于光学变换系统中的相位恢复问题:已知成像系统中入射场和输出平面上光场分布,如何计算输入平面上相位调制元件的相位分布,使得它正确地调制入射波场,高精度地给出预期输出图样,实现所需功能。近几年来,随着制作工艺水平的发展和衍射元件应用领域的扩展,二元光学元件特征尺寸进一步缩小,其设计理论

已逐渐从标量衍射理论向矢量衍射理论发展。通常情况下,当二元光学元件的衍射特征尺寸大于光波波长时,可以采用标量衍射理论进行设计。计算全息就是利用光的标量衍射理论和傅里叶光学进行分析的,关于二元光学元件衍射效率与相位阶数之间的数学表达式也是标量衍射理论的结果。在此范围内,可将二元光学元件的设计看作是一个逆衍射问题,即由给定的入射光场和所要求的出射光场求衍射屏的透过率函数。基于这一思想的优化设计方法大致有五种:盖师贝格-撒克斯通(Gerchberg-Saxton)算法(GS)或误差减法(ER)及其修正算法、直接二元搜索法(DBS也称爬山法(HC))、模拟退火算法(SA)和遗传算法(GA)。其中模拟退火算法是一种适合解决大规模组合优化问题的方法,它具有描述简单、使用灵活、应用广泛、运行效率高和较少受初始条件限制等优点;遗传算法是一种借鉴生物界自然选择和自然遗传机制的高度并行、随机、自适应搜索算法,它将适者生存原理同基因交换机制结合起来,形成一种具有独特优化机制的搜索技术,而且特别适用于并行运算,已被应用到诸多领域。在国内,中国科学院物理研究所杨国桢和顾本源提出任意线性变换系统中振幅-相位恢复的一般理论和杨-顾(Y-G)算法,并且成功地应用于解决多种实际问题和变换系统中。在许多应用场合中,二元光学元件的特征尺寸为波长量级或亚波长量级,刻蚀深度也较大(达到几个波长量级),标量衍射理论中的假设和近似便不再成立,此时,光波的偏振性质和不同偏振光之间的相互作用对光的衍射结果起着重大作用,必须发展严格的矢量衍射理论及其设计方法。矢量衍射理论基于电磁场理论,须在适当的边界条件上严格地求解麦克斯韦方程组,已经发展几种有关的设计理论,如积分法、微分法、模态法和耦合波法。前两种方法虽然可以得到精确的结果,但是很难理解和实现,并需要复杂的数值计算;比较起来,模态法和耦合波法的数学过程相对简单些,实现也较容易。这两种方法都是在相位调制区将电磁场展开,所不同的是它们的展开形式,模态法将电磁场按模式展开,而耦合波法则将电磁场按衍射级次展开。因而,耦合波方法涉及到的数学理论较为简单,给出的是可观察的衍射各级次的系数,而不是电磁场模式系数。但总的来说,用这些理论方法设计二元光学元件都要进行复杂和费时的计算机运算,而且仅适合于周期性的衍射元件结构。因此,当衍射结构的横向特征尺寸大于光波波长时,光波的偏振属性变得不那么重要了,仍可采用传统的标量衍射理论得到一些合理的结果。对于更复杂的衍射结构,还有待发展实用而有效的设计理论。
二、制作工艺方面的进展

二元光学元件的基本制作工艺是超大规模集成电路中的微电子加工技术。但是,微电子加工属薄膜图形加工,主要需控制的是二维的薄膜图形;而二元光学元件则是一种表面三维浮雕结构,需要同时控制平面图形的精细尺寸和纵向深度,其加工难度更大。近几年来,在VLSI加工技术、电子、离子刻蚀技术发展的推动下,二元光学制作工艺方面取得的进展集中表现在:从二值化相位元件向多阶相位元件、甚至连续分布相位元件发展;从掩模套刻技术向无掩模直写技术发展。最早的二元光学制作工艺是用图形发生器和VLSI技术制作二阶相位型衍射光学元件。到80年代后期,随着高分辨率掩模版制作技术的发展(如电子束制版分辨率可达到0.1μm),掩模套刻、多次沉积薄膜的对中精度的提高,可以制作多阶相位二元光学元件,大大提高了衍射效率。但是离散化的相位以及掩模的对准误差,仍影响二元光学元件的制作精度和衍射效率的提高。为此,90年代初开始研究直写技术,省去掩模制作工序,直接利用激光和电子束在基底材料上写入所需的二维或三维浮雕图案。利用这种直写技术,通过控制电子束在不同位置处的曝光量,或调制激光束强度,可以刻蚀多阶相位乃至连续分布的表面浮雕结构。无掩模直写技术较适于制作单件的二元或多阶相位元件,或简单的连续轮廓,而利用激光掩模和套刻制作更适合于复杂轮廓和成批生产。在掩模图案的刻蚀技术中,目前主要采用高分辨率的反应离子刻蚀、薄膜沉积技术。其中离子束刻蚀的分辨率高达0.1μm,且图案边缘陡直准确,是一种较为理想的加工手段。二元光学元件的一个很大的优点是便于复制,常用的复制技术有:铸造法(casting)、模压法

(embossing)和注入模压法(injection molding)。其中电铸成型模压复制将是未来大规模生产的主要技术。根据二元光学元件的特点,其他一些新工艺,例如LIGA、溶胶-凝胶(sol-gel)、热溶及离子扩散等技术也被应用于加工二元光学元件,还可利用灰阶掩模及PMMA紫外感光胶制作连续相位器件。

三、应用方面的进展

随着二元光学技术的发展,二元光学元件已广泛用于光学传感、光通信、光计算、数据存储、激光医学、娱乐消费以及其他特殊的系统中。也许可以说,它的发展已经经历了三代。第一代,人们采用二元光学技术来改进传统的折射光学元件,以提高它们的常规性能,并实现普通光学元件无法实现的特殊功能。这类元件主要用于相差校正和消色差。通常是在球面折射透镜的一个面上刻蚀衍射图案,实现折/衍复合消像差和较宽波段上的消色差。如美国柏金-爱尔马(Perkin-Elmer)公司成功地用于施密特(Schmidt)望远镜上消除球差;美国豪奈威尔(Honey-well)公司在远红外系统中,实现了复消色差,它们还采用二元光学技术制作出小型光盘读写头。此外,二元光学元件能产生任意波面以实现许多特殊功能,而具有重要的应用价值。如材料加工和表面热处理中的光束整形元件、医疗仪器中的He-Ne激光聚焦校正器、光学并行处理系统中的光互连元件(等光强分束Dammann光栅)以及辐射聚焦器等。

二元光学元件的第一代应用技术已趋于成熟,国际上有50多家公司正利用混合型特殊功能元件设计新型光学系统。

第二代,主要应用于微光学元件和微光学阵列。80年代末,二元光学进入微光学领域,向微型化、阵列化发展,元件大小从十几个μm至1mm。用二元光学方法制作的高密度微透镜阵列的衍射效率很高,且可实现衍射受限成像。另外,当刻蚀深度超过几个波长时,微透镜阵列表现出普通的折射元件特性,并具有独特的优点:阵列结构比较灵活,可以是矩阵、圆形或密排六方形排列;能产生各种轮廓形状的透镜表面,如抛物面、椭圆面及合成表面等;阵列透镜的“死区”可降到零(即填充因子达到100%)。这类高质量的衍射或折射微透镜阵列,在光通信、光学信息处理、光存储和激光束扫描等许多领域中有重要的应用。比如二元微光学元件在多通道微型传感系统中可作为望远混合光学系统、光束灵巧控制、多通道处理、探测器阵列和自适应光互连。第三代,即目前正在发展的一代,二元光学瞄准了多层或三维集成微光学,在成像和复杂的光互连中进行光束变换和控制。多层微光学能够将光的变换、探测和处理集成在一体,构成一种多功能的集成化光电处理器,这一进展将使一种能按不同光强进行适应性调整、探测出目标的运动并自动确定目标在背景中的位置的图像传感器成为可能。Veldkamp将这种新的二元光学技术与量子阱激光阵列或SEED器件、CMOS模拟电子技术结合在一起,提出了“无长突神经细胞电子装置(Amacronic)”的设想,它把焦平面结构和局域处理单元耦合在一起,以模仿视网膜上无长突神经细胞的近距离探测,系统具有边缘增强、动态范围压缩和神经网络等功能。这一代微光学技术的典型应用是多层光电网络处理器。这是一种焦平面预处理技术,它以二元光学元件提供灵活反馈和非线性预处理能力。探测器硅基片上的微透镜阵列将入射信号光聚焦到阵列探测器的激活区,该基片的集成电路则利用会聚光激发砷化镓铟二极管发光,其发射光波第二层平面石英基底两面的衍射元件引导到第三层面硅基底的阵列探测器上,经集成电路处理后激发二极管发光……依次类推,得到处理后的信号。这种多层焦平面预处理器的每一层之间则利用微光学阵列实现互连耦合,它为传感器的微型化、集成化和智能化开辟了新的途径。发展趋势二元光学是建立在衍射理论、计算机辅助设计和微细加工技术基础上的光学领域的前沿科学之一,超精细结构衍射元件的设计与加工是发展二元光学的关键技术。二元光学的发展不仅使光学系统的设计和加工工艺发生深刻的变革,而且其总体发展趋势是未来微光学、微电子学和微机械的集成技术和高性能的集成系统。

今后二元光学元件的研究将可能在以下方面发展。

一、具有亚波长结构的二元光学元件的研究(包括设计理论与制作技术) 这类元件的特征尺寸比波长还要小,其反射率、透射率、偏振特性和光谱特性等都显示出与常规二元光学元件截然不同的特征,因而具有许多独特的应用潜力,如可以作为抗反射元件、偏振元件、窄带滤波器和相位板。研究重点包括:建立正确和有效的理论模型设计超精细结构衍射元件;特殊波面变换的算法研究;发展波前工程学,以制作逼近临界尺寸的微小元件及开拓亚波长结构衍射元件的应用,推动微光学的发展。

二、二元光学的CAD软件包的开发至今尚未找到适合于不同浮雕衍射结构的简单而有效的理论模型,二元光学元件的设计仍缺乏像普通光学设计程序那样,可以求出任意面形、传递函数及系统像差、具有友好界面的通用软件包。但随着通用设计工具的发展,二元光学元件有可能成为通用的标准光学元件,而得到广泛的应用,并与常规光学结合,形成一代崭新的光学系统。

三、微型光机电集成系统是二元光学研究的总趋势微光电机械系统微光机械微电子机械微机械1991年,美国国家关键技术委员会向美国总统提交了《美国国家关键技术》报告,其中第8项为“微米级和纳米级制造”,即微工程技术,它主要包括微电子学、微机械学和微光学这三个相互关联相互促进的学科,是发展新一代计算机、先进机器人及智能化系统,促进机械、电子及仪器仪表工业实现集成化、微型化的核心技术。二元光学技术则是发展微光学的重要支柱,二元光学元件有可能直接刻蚀在集成电路芯片上,并在一块芯片上布置微光学阵列,甚至完全集成化的光电处理单元,这将导致包含各种全新的超密集传感系统的产生。

微光电子学微光学微电子学图示描述了微工程技术的三个学科相互交*相互影响形成的交*学科。在微光学取得令人注目的进展的同时,另一门前沿科学—— 微电子机械(MEM)学取得了飞速的发展,这种结合三维集成电路处理技术的微机械方法已成功地用于改善传感器和执行器的性能,降低费用。基于这种新技术设计的微传感器和微机械执行器,至少在一个维数上的尺寸已达到微米量级,其他维数也小于几个毫米,对军用、工业和消费产品都有潜在的应用市场。MEM和微光学技术的共同特征是它们都基于VLSI技术,两者的结合就能产生一个新的、更宽广的微光电机械系统,它已经在激光扫描、光学开关、动态微透镜和集成光电-机电装置等方面显示出诱人的前景和产品市场,并将进一步开拓到微分光仪、微干涉仪和小型在线机械检测系统等领域。在微机械、微电子支撑下的微光学系统也更易商品化,从而形成二元光学产业。具有多层结构的Amacronic焦平面预处理器是微光学、微电子学和微机械集成系统的典型应用,它以并行光学处理方式降低了对电子处理速度和带宽的要求,增强了集成系统的处理能力和灵活性。多层微光电机械装置的进一步发展甚至可以模仿生物视觉原理,这个方向的研究成果对于人类将有无法估量的意义。可以预见,光学工程师们能像今天的电子工程师们一样,坐在计算机终端前,通过按动鼠标或敲击键盘来设计组合二元光学元件以及各种光机电组合系统,这一天的到来为时不会太久。

基于液晶空间光调制器相位调制的波面转换

?激光元件与器件? 基于液晶空间光调制器相位调制的波面转换 范君柳1,冯秀舟2,方建兴2,朱爱敏1 1.苏州科技学院数理学院物理实验中心,苏州 215009; 2.苏州大学物理科学与技术学院,苏州 215006 提要:本文介绍了一种基于液晶空间光调制器(LCS LM )相位调制特性的波面转换方法,可将入射光变换成任意波面。测量了液晶空间光 调制器相位调制特性,得到相位和灰度的对应关系;分别以几何理论和G-S 算法为基础计算出衍射光学元件(DOE )的表面相位分布;将DOE 表面的相位分布转换为灰度分布显示在LCS LM 上,使得LCS LM 具有波面实时转换功能;并以高斯激光为入射光对其进行波面转换实验,实验结果证明了设计方法的准确性及可行性。 关键词:液晶空间光调制器;相位调制;波面转换中图分类号:O439,O436.1,O438 文献标识码:A 文章编号:0253-2743(2009)06-0007-02 Conversion of w ave front based on phase modulation of liquid crystal spatial light modulator FAN Jun -liu 1,FE NG X iu -zhou 2,FANGJian -xing 2,ZHU Ai -m in 1 1.Center of Physics Laboratory ,School of M athematical and Physical Sciences ,University of Science and T echnology of Suzhou ,Suzhou 215009,China ; 2.School of Physical Science and T echnology ,S oochow University ,Suzhou 215006,China Abstract :A method of wave -front conversion based on phase m odulation of liquid crystal spatial light m odulator (LCS LM )is proposed.W e obtain the rela 2tion between phase and scale through measuring the phase -m odulation characteristics of LCS LM.Phase distribution of diffractive optical element ’s (DOE )are calculated using geometrical theory and G-S alg orithm ,the LCS LM is capable of wave -front conversion by changing phase distribution into gray distribution which is displayed on LCS LM.Experiments of G auss beam ’s wave -front conversion prove the accuracy and feasibility of the design method. K ey w ords :liquid crystal spatial light m odulator ;phase m odulation ;wave -front conversion 收稿日期:2009-08-13 基金项目:苏州科技学院教学质量工程建设项目(2008YK A -03)资助。 作者简介:范君柳(1983-),男,助理实验师,主要从事信息光学和衍射光学的研究。 在激光技术的许多应用领域中,光束质量至关重要。例 如在激光加工、光学信息处理、存储与记录以及惯性约束核聚变(ICF )中往往需要使用形状各异甚至大小可变的激光光斑,而经常使用的单模激光光束的横截面上光强呈高斯分布,因此在实际应用中,根据不同的要求,人们常常需要将激光束波面进行转换,以达到改变激光束强度分布的目的。 目前主要有这样几种典型的光束波面变换方法:光楔列 阵(SW A )聚焦光学系统〔1〕、双折射透镜组〔2〕 、随机相位板及 二元光学元件(BOE )〔3〕 等方法。其中二元光学元件对入射光进行波面变换具有衍射效率高,光斑轮廓可调等优点,但是其质量水平受微精细加工技术发展水平的制约,且它的激光损伤阈值较低,在强激光系统的应用上还有困难。在本文中我们提出利用液晶空间光调制器(LCS LM )的相位调制特性〔4-8〕结合几何理论〔9,10〕和G-S 算法〔11,12〕实现对入射激光的波面变换,得到了预期的实验结果,该方法不仅成本、功耗低,尺寸小,重量轻,而且具有更大的设计自由度,通过算法的改变可以将入射光变换成任意波面。 1 理论分析 1.1 波面转换理论 波面转换通常需要衍射光学器件(Diffraction Optical E le 2ment -DOE )来实现,为了达到目标光强分布,需要设计器件表面的相位分布。而该设计过程是一个逆向过程,即已知输入光强分布和输出光强分布,来求解DOE 的相位分布,在这里我们主要利用几何理论和G-S (G erchberg -Saxton )算法来计算DOE 表面的相位分布。 我们首先运用这两种算法分别计算出DOE 的表面相位分布,然后在计算机上模拟入射高斯光经过具有如此表面相位分布的DOE 后的衍射结果(见图1)。其中图1(b )为运用几何理论将入射高斯光的波面转换成正方框形光束,图1(c )为运用G-S 算法将入射高斯光转换成椭圆光。模拟过程中,主要参数选取为:波长λ=532nm ,DOE 所在处光腰半径ω(z )=3.0mm ,DOE 衍射焦距选取为f =250mm ,物面与像面抽样点数均为800×800。1.2 LCS LM 的相位调制特性 对于由扭曲向列型液晶构成的液晶空间光调制器(Liq 2uid Crystal S patial Light M odulator -LCS LM )(结构如图2),运用 琼斯矩阵方法〔13〕 可得 T =cos γ〔cos (Ψ1-Ψ2+α)〕+αγ sin γ×sin (Ψ1-Ψ2+α)2 + β γsin γcos (Ψ1+Ψ2- α)(1)图1 计算模拟结果 图2 液晶空间光调制器结构图 7 范君柳等:基于液晶空间光调制器相位调制的波面转换 《激光杂志》2009年第30卷第6期 LASER JOURNA L (V ol.30.N o.6.2009)

光学树脂材料综述

摘要:我国眼镜片行业所用各种树脂消耗量大约为6000吨/年。然而,本土企业生产的光学树脂还不到总量的5%,中高端树脂市场基本还是空白。本文对传统光学树脂材料和新型光学树脂材料进行了综述。 关键词:光学树脂材料;树脂镜片 上世纪30年代以前,光学领域的主要材料是光学玻璃,其种类有将近240多种,折射率从1.4到2.8,可以选择的范围相当广。眼镜片对比重和抗冲击性能的要求都比较高,然而大部分光学玻璃比重较高,容易破碎。与光学玻璃相比,光学树脂具有质量轻、抗冲击和易加工成型等优点,一经推出,很快就替代了光学玻璃成为眼镜片的主流产品。国外对光学树脂的开发研究工作始于上世纪20年代,到目前为止已经生产出数十种不同规格的光学树脂,其中,日本、美国、德国和比利时等国家已有多种新型树脂商业化,他们在我国申请大量的专利,期望长久占有中国市场,赚取高额的垄断利润。与国外相比,国内树脂镜片生产厂家研发力量单薄,生产技术大多是通过国外引进,基本没有新型的树脂材料推出。上海伟星光学有限公司是一家以技术为导向的高新技术企业,积极打造自己的技术优势,通过不断的努力开发出新型的树脂材料,商品牌号PU-1、PU-2,并已经向国家专利局申请了专利。该技术填补了国内眼镜行业的空白,达到国际先进水平,该项技术将使得中国在光学树脂原料的生产领域占有一席之地。为了让更多的人对光学树脂有更深的了解,本文将分传统光学树脂材料和新型光学树脂材料两类,对光学树脂材料进行综述。 1 传统光学树脂材料 传统的光学树脂材料有聚甲基丙烯酸甲酯(PMAA)、聚苯乙烯(PS)、聚碳酸酯(PC)和聚双烯丙基二甘醇碳酸酯(CR-39)。其中甲基丙烯酸甲酯和苯乙烯的共聚物为一种新型的树脂,其名称为MS;苯乙烯和丙烯氰共聚为另外一种树脂,其名称为NAS。表1-1详细介绍了这些树脂的性能,并与光学玻璃进行了比较。 编者按:上海伟星光学有限公司依靠自身研发力量,目前已经成功开发出1.61和1.67高折射率聚胺酯树脂镜片单体,并申请两项专利。相关技术填补了国内眼镜行业的空白。伟星光学认为,这只是本土镜片公司走研发创新之路,拥有自主知识产权的第一步,离发达国家在镜片单体研发方面取得的成就还相距甚远。伟星公司开设此专栏,旨在与行业有识之士共同探讨本土企业树脂镜片如何创新——或自主研发、或与国外与国内相关机构合作、或与国外镜片企业达成技术合作,共同推动本土镜片在技术创新领域获得突破,实现产品升级。 光学树脂材料综述 文汪山献松 陈国贵 从表1中可以看出,从折射率角度而言,玻璃的折射率更高,传统光学树脂的折射率相对较低。光学玻璃在阿贝数、玻璃化温度和抗老化方面都有着很好的性能,但是其密度高、冲击强度低,这对于眼镜镜片而言将会带来两个致命的弱点:镜片太重而且容易破碎。基于对眼睛的保护,光学树脂塑料取代了光学玻璃成为眼镜片的主流材料。就传统树脂材料而言,PMMA具有较高的阿贝数和较低的双折射率,光透过时其色散程度很低,但是其折射率和冲击强度较低。CR-39是早期最成功的光学树脂,具有很高的阿贝数,较好的抗冲击强度,做成树脂镜片可以通过FDA测试(落球实验,美国镜片的检验标准),另外其变性温度很高,有利于镜片的后续加工。CR-39树脂是由美国PPG公司于1945年投放市场的,又名哥伦比亚树脂(Colulnbia Resin),是聚双烯丙基二甘醇碳酸酯的商品名称,单体的结构如下: 因为是烯丙基型双键,聚合活性低,需要高效引发剂如IPP、EHP引发才能聚合;由于是高度交联,其制品连续使用温度可以承受100℃,短暂工作温度可以达到150℃。随着新型树脂材料的不断推出,CR-39由于其折射率太低,在光学树脂领域所占的份额逐年降低,目前已经逐渐淡出中国的镜片市场。PC具有较高的折光指数,其优良的抗冲击性能受到了广大美国用户的肯定,占据着美国镜片市场的30%,但是在中国的市场份额较低,最主要的原因是该树脂镜片的阿贝数较低,抗老化性能不好,另外镜片基材较软,不耐磨损。PS尽管有较高的折射率,但是由于其阿贝数较低、抗老化性能差和抗冲击性能差等多种原因,很少单独作为光学镜片的树脂材料,往往都是和其他材料复合使用。目前,国内市场使用最多的是MS。MS 的折射率高于CR-39,阿贝数也比PC高,且该材料加工制备简单,价格比较便宜,受到了广大中国消费者的欢迎。NAS 的折射 性能nd νd b b(nm)T%T%UV IPS L H Td R%α ρSR% BK-71.52640.3 9292 565 0.0742.53 光学玻璃SF-21.64340.4 8989 428 8.83.85 光学塑料 PM M A 1.4958-12<209291~922~380~10090~1002.00.71.190.2~0.6 PS 1.5931-15>1009060~702~370~90940.20.81.060.1~0.5 PC 1.5830-1420~1009070~8080~100701300.40.71.20.5~0.8 N A S 1.5734~35-1420~1009070~802~370~90900.80.71.070.2~0.6 PM M A 1.5640-1420~10089882~370~95900.80.81.090.1~0.5 PM M A 1.5058 20~10091902~31001401.01.21.3214nd :折光指数, νd :阿贝数, β:折射率温度系数, b :双折射,T%UV : UV 照射2000小时后的透光率,IPS :冲击强度,LH :洛式硬度,Td :热变形温度, R%:饱和吸湿率, α:热膨胀系数, SR%:成型收缩率 表1 光学玻璃和光学树脂的性能比较 ■ 【伟星科技?树脂镜片创新论坛】 ■ 060 ■ China Glasses

二元光学

二元光学是基于光波衍射理论发展起来的一个新兴光学分支,是光学与微电子技术相互渗透、交*而形成的前沿学科。基于计算机辅助设计和微米级加工技术制成的平面浮雕型二元光学器件具有重量轻、易复制、造价低等特点,并能实现传统光学难以完成的微小、阵列、集成及任意波面变换等新功能,从而使光学工程与技术在诸如空间技术、激光加工、计算技术与信息处理、光纤通信及生物医学等现代国防科技与工业的众多领域中显示出前所未有的重要作用及广阔的应用前景。二元光学于20世纪90年代初在国际上兴起研究热潮,并同时引起学术界与工业界的极大兴趣及青睐。 随着近代光学和光电子技术的迅速发展,光电子仪器及其元件都发生了深刻而巨大的变化。光学零件已经不仅仅是折射透镜、棱镜和反射镜。诸如微透镜阵列、全息透镜、衍射光学元件和梯度折射率透镜等新型光学元件也越来越多地应用在各种光电子仪器中,使光电子仪器及其零部件更加小型化、阵列化和集成化。微光学元件是制造小型光电子系统的关键元件,它具有体积小、质量轻、造价低等优点,并且能够实现普通光学元件难以实现的微小、阵列、集成、成像和波面转换等新功能。 光学是一门古老的科学。自伽利略发明望远镜以来,光学已走过下几百年的漫长道路。60年代激光的出现,促进了光学技术的迅速发展,但基于折反射原理的传统光学元(器)件,如透镜、棱镜等人都是以机械的铣、磨、抛光等来制作的,不仅制造工艺复杂,而且元件尺寸大、重量大。在当前仪器走向光、机、电集成的趋势中,它们已显得臃肿粗大极不匹配。研制小型、高效、阵列化光学元件已是光学界刻不容缓的任务。80年代中期,美国MIT 林肯实验室威尔得坎普(Veldkamp)领导的研究组在设计新型传感系统中,率先提出了“二元光学”的概念,他当时描述道:“ 现在光学有一个分支,它几乎完全不同于传统的制作方式,这就是衍射光学,其光学元件的表面带有浮雕结构;由于使用了本来是制作集成电路的生产方法,所用的掩模是二元的,且掩模用二元编码形式进行分层,故引出了二元光学的概念。”随后二元光学不仅作为一门技术,而且作为一门学科迅速地受到学术界和工业界的青睐,在国际上掀起了一股二元光学的研究热潮。
二元光学元(器)件因其在实现光波变换上所具有的许多卓越的、传统光学难以具备的功能,而有利于促进光学系统实现微型化、阵列化和集成化,开辟了光学领域的新视野。关于二元光学概念的准确定义,至今光学界还没有统一的看法,但普遍认为,二元光学是指基于光波的衍射理论,利用计算机辅助设计,并用超大规模集成(VLSI)电路制作工艺,在片基上(或传统光学器件表面)刻蚀产生两个或多个台阶深度的浮雕结构,形成纯相位、同轴再现、具有极高衍射效率的一类衍射光学元件。它是光学与微电子学相互渗透与交*的前沿学科。二元光学不仅在变革常规光学元件,变革传统光学技术上具有创新意义,而且能够实现传统光学许多难以达到的目的和功能,因而被誉为“90年代的光学”。它的出现将给传统光学设计理论及加工工艺带来一次革命。二元光学元件源于全息光学元件(HOE)特别是计算全息元件(CGH)。可以认为相息图(Kinoform)就是早期的二元光学元件。但是全息元件效率低,且离轴再现;相息图虽同轴再现。但工艺长期未能解决,因此进展缓慢、实用受限。二元光学技术则同时解决了衍射元件的效率和加工问题。它以多阶相位结构近似相息图的连续浮雕结构。二元光学是微光学中的一个重要分支。微光学是研究微米、纳米级尺寸的光学元器件的设计、制作工艺及利用这类元器件实现光波的发射、传输、变换及接收的理论和技术的新学科。
微光学发展的两个主要分支是:
(1)基于折射原理的梯度折射率光学,
(2)基于衍射原理的二元光学。
二者在器件性能、工艺制作等方面各具特色。二元光学是微光学领域中最具活力、最有发展潜力的前沿学科分支。光学和电子学的发展都基于微细加工的两个关键技术:亚微米光刻和各向异性刻蚀技术。微电子学推动了二元光学学科的发展,而微电子工业的进步则得益于光刻水平的提高。此外,二元光学技术的发展又将促进微电子技术的发展与提高。例如,目前在大规模集成电路的制作中所采用的

非线性光学讲义

非线性光学 天津大学精仪学院光电一室 2013-3-25

非线性光学讲议 授课对象:光电子技术专业高年级本科生 课程要求:理解非线性光学的基本原理,掌握倍频、混频及光参量振荡等非线性光学频率变换的基本手段及其应用。了解激光束的自作用、受激散射、光学相位共轭及光学双稳态的原理和实验装置。 学时:32 学分:2

目录 绪论 (1) 第一章非线性光学极化率的经典描述 (5) 1.1极化率的色散特性 (5) 1.1.1介质中的麦克斯韦方程 (5) 1.1.2极化率的色散特性 (6) 1.1.3极化率的单位 (10) 1.2非线性光学极化率的经典描述 (11) 1.2.1一维振子的线性响应 (11) 1.2.2一维振子的非线性响应 (13) 1.3非线性极化率的性质 (16) 1.3.1真实性条件 (17) 1.3.2本征对易对称性 (17) 1.3.3完全对易性对称性 (18) 1.3.4空间对称性 (20) 第二章 电磁波在非线性介质内的传播 (23) 2.1介质中的波动方程一般形式 (23) 2.2线性介质中单色平面波的波动方程 (23) 2.3稳态情况下的非线性耦合波方程 (24) 2.4瞬态情况下的非线性耦合波方程 (26) 2.5门雷-罗威(Manley-Rowe)关系 (27) 第三章 光学二次谐波的产生及光混频 (28) 3.1光倍频及光混频的稳态小信号解 (28) 3.2相位匹配技术 (29) 3.3有效非线性系数 (43) 3.4光倍频及光混频高转换效率时的稳态解 (46) 3.5高斯光束的倍频 (47) 3.6典型倍频激光器技术 (48) 第四章 光学参量振荡及放大 (52) 4.1引言 (52) 4.2光学参量振荡的增益 (52) 4.3光学参量振荡的阈值 (54) 4.4光学参量振荡输出频率的调谐 (56) 4.5典型光学参量振荡技术 (59) 第五章 二阶非线性光学材料 (62) 第六章 克尔效应与自聚焦 (65) 6.1引言 (65) 6.2克尔效应 (65) 6.3自聚焦 (70) 第七章 受激散射 (73) 7.1引言 (73) 7.2受激喇曼散射 (73) 7.3受激布里渊散射 (79) 第八章 光学相位共轭 (81) 8.1相位共轭的特性 (81) 8.2获得相位共轭波的非线性光学方法 (81) 8.3非线性光学相位共轭的应用 (82) 第九章光学双稳态 (83)

光学遥感立体测绘技术综述及发展趋势

龙源期刊网 光学遥感立体测绘技术综述及发展趋势 作者:李洋 来源:《山东工业技术》2016年第01期 摘要:本文阐述了光学遥感立体测绘技术的概况,并对其未来发展的趋势展开了进一步 的探讨。 关键词:光学遥感;卫星测绘技术;发展趋势 DOI:10.16640/ki.37-1222/t.2016.01.083 0 引言 测绘卫星就是具备立体测图能力的卫星,主要任务是通过立体观测得到地面目标的物理、几何属性。其中采用光学传感器的高分辨率测绘卫星应用最为广泛,文章就此对光学遥感立体测绘技术的概况和发展趋势加以分析。 1 光学遥感立体测绘技术综述 光学遥感立体测绘技术主要包括测绘相机与时间同步技术、卫星定轨定姿技术、影像压缩及质量评价技术、几何定标及立体测图技术。 1.1 测绘相机与时间同步技术 具有特定交会角的正视、前视和后视三台独立的CCD扫描相机的组合体就是三线阵测绘相机[1]。卫星在飞行中,任意推扫就会形成三个不同视角且相互重叠的图像。测绘相机的镜 头相质优异、内方位元素稳定才能使立体测图保持在较高的精度范围。 测绘卫星进行CCD线阵推扫摄影的时候,几毫秒的差异就可能会导致定位出现几米的误差,测绘影像的定位精度大大降低。所以,测绘卫星应该增加具有高效载荷时间、高精度的系统,保证卫星在CCD推扫摄影上保持时间的一致,以达到测绘任务的有关要求。 1.2 卫星定轨定姿技术 为了保证卫星轨道的测量精度和姿态的确定精度,借助航天遥感影像精确定位地面目标的时候,通常需要地面控制点的辅助。如果在部分地区工作人员无法设立控制点,无控制点摄影测量的作用就凸显出来。三线阵测绘卫星需要在无控制点摄影测量时满足三个条件,进而才能完成立体测图以及定位目标任务。首先,借助设备定位测量卫星轨道,并提供三个外方位位置元素;其次,借助三线阵相机推扫摄影地面空间,构成三幅重叠的航带图像;最后,测量卫星

角反射器阵列作为伪相位共轭器件的保真度分析

第13卷 第3期强激光与粒子束V o l.13,N o.3 2001年5月H IGH POW ER LA SER AND PA R T I CL E B EAM S M ay,2001 文章编号: 1001—4322(2001)03—0287—04 角反射器阵列作为伪相位共轭器件的保真度分析① 侯 静1,2, 姜文汉1, 凌 宁1 (1.中国科学院光电技术研究所,四川成都610209; 2.国防科技大学理学院,湖南长沙410073) 摘 要: 研究了共光路共模块自适应光学系统中用角反射器阵列构成伪相位共轭器件,角反射器 阵列形成伪相位共轭波的能力,具体计算了不同单元数的角反射器阵列形成具有Zern ike多项式展开 的各阶像差的波面的相位共轭波的保真度。角反射器阵列的保真度决定于其单元数和阵列结构,对于不 同类型的像差保真度也是不同的。最后还对各种影响因素如衍射、二面角误差和面形误差等也进行了分 析。 关键词: 自适应光学; 共光路共模块; 角反射器阵列; 相位共轭; 伪相位共轭; 像差;  保真度 中图分类号: TN247 文献标识码: A 共光路共模块(comm on p ath comm on m ode)自适应光学系统[1~3]主要由激光器、共模块哈特曼波前传感器、波前校正器件、相位共轭器件、控制系统等组成,其中共模块哈特曼波前传感器中包括两个哈特曼传感器:一个用于探测主激光的波前像差,另一个用于探测信标光的波前像差。系统的主要像差来自于:(1)激光器内腔镜的制造误差及热变形和工作介质的不均匀性引起的像差;(2)发射通道中大气湍流和热晕;(3)分光镜的热变形及其他光学元件的制造误差、内部光路内的扰动引起的像差。因此一般自适应光学系统只能进行光束净化和校正大气湍流造成的波前畸变中的一项,而该系统具有光束净化、校正大气湍流、自准直、校正分光镜热变形、校正内部光路内的扰动引起的像差和降低了光学元件的制造要求等优点,实现这些功能其中一个重要的器件就是由角反射器阵列构成的伪相位共轭器件。利用角反射器阵列的后向反射特性,使之作为伪相位共轭器件,在70年代末80年代初就被提出并有实验验证[4~7]其伪相位共轭波有较好的波前畸变校正效果。相位共轭镜与角反射器阵列有本质的区别,前者是利用一些光学材料的特有性能,即非线性光学相位共轭来改变光束波前,产生理想的相位共轭波,但由于非线性相互作用而有一定的时间延迟,响应速度相对较慢;后者是将角反射器排为阵列利用其后向反射特性形成伪相位共轭波,这与相位共轭波也是有区别的,但角反射器阵列是实时响应,且所形成的伪相位共轭波在一定条件下仍是有效的。 本文对角反射器阵列形成具有像差的光波的相位共轭波的能力进行了研究,分析了角反射器阵列结构及二面角误差、面形误差等制造误差对伪相位共轭波波面面形的影响,这对共光路共模块系统的设计和分析是十分有用的。 1 角反射器阵列作为伪相位共轭器件的原理 角反射器具有空间定向反射特性,以任意方向入射的空间光线经过理想角反射器的三个反射面相继反射后,仍以入射光线严格平行的方向返回。如图1所示,从棱镜的底面看,可以看到三条棱线和其象将底面分割为六个区域。按照入射光线所处区域的不同,可以有六种不同的反射顺序。 对于单一的理想角反射器而言,出射波面是入射波面关于中心的完全倒置,即其所成像左右、上下都是反向的,这一点极易用一角反射器验证。设入射光波光强分布均匀而E1=exp[i<0(x,y)],如表1所示,对于有奇函数相位因子的入射光波,出射光波是入射光波的共轭。 任何像差的波面都可以将其细划分为许多足够小的区域,则在每一个小区域上可以近似认为是只 ①收稿日期:2000212227; 修订日期:2001203212 作者简介:侯 静(19752),女,博士生,主要研究方向为自适应光学和非线性光学;成都双流350信箱。

2 相位调制器的结构

2 相位调制器的结构 2.1 “lxl”形式的光相位调制器 传统的光学相位调制器 (体相位调制器或波导相位调制器),只有一条基本的光路,仅考虑单频光通过一个相位调制器的基本结构,即如图3所示的形式,我们称之为“lxl”形式的光相位调制器。 图3 相位调制器的基本结构图 当光信号通过相位调制器之后,输出光场的表达式为公式为: () () 0+2+=A =A m j t jf t j f t jf t LW LW out E e e ωπ (4) 本论文中,假设f(t)是单频正弦波信号,即: ()()() 00sin 2sin RF RF m m f t A f t A t π?ω?=+=+ (5) 2.1.1 体相位调制器 我们知道单轴晶体妮酸铿晶体 (3LiNbO ) 以及与之同类型的 3L iT aO 、3 BaTaO 酸铿等晶体,属于同一类晶体点群。它们光学均匀性好,不潮解,因此在光电子技术中经常使用。并且此类晶体在被施加外加电场之后,其折射率椭球就会发生“变形”。 以妮酸铿电光材料为例,将该晶体用于相位调制器,可以有以下几种基本的应用方式: 情况1:入射光沿 1 x 方向入射 精况1.l :入射光沿3x 方向偏振 情况1.2:入射光沿 2 x 方向偏振 情况2:入射光沿3x 方向入射 这里只讨论情况1.1,如下图(图4)所示:

图4 体相位调制器的基本结构图 如果入射光是万方向的线偏振光,外加电场信号V(t),则在该方向上的折射率变为: ' 3 23333 12 e e n n n n E γ==- (7) 光通过该调制器后的相位变化为: ()3 23312z e e V t n l n n l c c d ω ω?γ? ?= = - ??? (8) 体相位调制器是一种电光调制器,具有较大体积的分离器件。为了使通过的光波受到调制,需要改变晶体的光学性质,而这需要给整个晶体施加外加相当高的电压。 2.1.2 波导相位调制器 光波导相位调制器件可以把光波限制在微米量级的波导区中,并使其沿一定的方向传播。 光波导相位调制器是通过使用电光材料(如 lithium niobate(LN), lithium tantalate(LT),gallium arsenide(GaAs)等等)的电光特性以及一定的光波导结构,来实现光的相位调制的。 光波导相位调制器能使介质的介电张量(折射率)产生微小的变化,从而使两传播模式之间有一定的相位差,并且由于外场的作用导致波导中本征模传播特性的变化以及两不同模式之间的藕合。 以 3 LiNbO 晶体为例子,实际应用中常见的光波导相位调制器结构如下图(图5)所示:

光学三维测量技术综述精选文档

光学三维测量技术综述 精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

光学三维测量技术综述 1.引言 客观景物三维信息的获取是计算机辅助设计、三维重建以及三维成像技术中的基础环节,被测物体的三维信息的快速、准确的获得在虚拟现实、逆向工 程、生物与医学工程等领域有着广泛的应用[1]。 三维测量方法总的包括两大类,接触式以及非接触式。如图所示。 图三维测量方法分类 接触式的三维测量方法到目前为止已经发展了很长一段时间,这方面的技术理论已经非常完善和成熟,所以,在实际的测量中会有比较高的准确性。但 是尽管如此,依然会有一些缺点[2]: (1) 在测量过程中,接触式测量必须要接触被测物体,这就很容易造成被测物体表面的划伤。 (2) 接触式测量设备在经过长时间的使用之后,测量头有时会出现形变现象,这无疑会对整个测量结果造成影响。 (3) 接触式测量要依靠测量头遍历被测物体上所有的点,可见,其测量效率还是相当低的。 接触式三维测量技术发展已久,应用最广泛的莫过于三坐标测量机。该方法基于精密机械,并结合了当前一些比较先进技术,如光学、计算机等。并且该方法现在已经得到了广泛的应用,特别是在一些复杂物体的轮廓、尺寸等信息的精确测量上。在测量过程中,三坐标测量机的测量头在世界坐标系的三个坐标轴上都可以移动,而且测量头可以到达被测物体上的任意一个位置上,只要测量头能到达该位置,测量机就可以得到该位置的坐标,而且可以达到微米级的测量精度。但由于三坐标机测量系统成本较高,加之上述的一些缺点,广泛应用还不太现实。

非接触式三维测量技术一般通过利用磁学、光学、声学等学科中的物理量测量物体表面点坐标位置。核磁共振法、工业计算机断层扫描法、超声波数字化法等非光学的非接触式三维测量方法也都可以测量物体的内部及外部结构的表面信息,且不需要破坏被测物体,但是这种测量方法的精度不高。而光学三维轮廓测量由于其非接触性、高精度与高分辨率,在CAD /CAE、反求工程、在线检测与质量保证、多媒体技术、医疗诊断、机器视觉等领域得到日益广泛的 应用,被公认是最有前途的三维轮廓测量方法[3]。由于光不能深入物体内部,所 以光学三维测量只能测量物体表面轮廓,因此,本文中所言光学三维测量即指光学三维轮廓测量,此后不再单独解释。 光学三维测量技术总体而言可以分为主动式光学三维测量和被动式光学三维测量,根据具体的原理又可以分为双目立体视觉测量法、离焦测量法、飞行时间法、激光三角法、莫尔轮廓术和结构光编码法等。下面就刚刚提到的几种光学三维测量技术的原理进行逐一讲解。 2.测量原理 被动式光学三维测量 双目立体视觉测量法 双目成像采用视觉原理来获得同一场景的2幅不同图像。通过对物体上同一点在2幅图像上的2个像点的匹配和检测,可以得到该点的坐标信息。测量原理如图所示。设摄像机基线长为B,视差定义为D= P1- P2,其中P1、P2为空间点W(X,Y,Z)在2像面上的投影点,则由几何关系可得Z=Bf/ D。计算出物点的深度坐标后,其它2个坐标可以通过简单的几何透视关系得出。双目视觉成像原理简单,但由于需要在两幅图像中寻找对定点的匹配,实际计算过程较为复杂。 图双目立体视觉法三维测量原理图

2015非线性光学(复习)

2015非线性光学复习 绪论非线性光学进展 发展阶段,重要事件(时间),著作 第一章光与物质相互作用的经典理论 非简谐振子模型, 电极化强度 P(n), 极化率的一般性质 补充一晶体学基面础 晶系的划分,晶体的对称性,点群表及国际符号,点群国际符号对应方向 补充二晶体性质的数学描述 张量的基本知识,张量分量的坐标变换,对称矩阵及逆变换,坐标变换矩阵,宏观对称性对张量分量的约化 第三章光波在非线性介质传播的电磁理论 光波在晶体中传播特性,波法线菲涅耳方程,光在单轴晶体中的传播规律,折射率椭球及折射率曲面,耦合波方程,相位匹配概念及方法,相位匹配条件及偏振分析 第四章二阶非线性光学效应 线性电光效应,光学整流效应,谐波、和频及差频,有效非线性系数,光参量放大与振荡,参量振荡的频率调谐 第五章三阶非线性光学效应 自聚焦效应、三次谐波的产生,四波混频,双光子吸收,受激Raman散射 第七章四波混频与光学相位共轭 四波混频与光学相位共轭

第一章 非线性光学极化率的经典描述 线性光学过程的经典理论 1、光和物质相互作用的经典理论 组成物质的原子、分子,在入射光波电磁场作用下感生出电偶极矩, 运动产生电磁波辐射。 2、谐振模型 原子(分子)中电子在光频电磁场驱动下,作带阻尼的强迫运动。 3、光的散射与吸收、发射 非线性光学 可观察的非线性光学效应,通常要用激光,甚至脉冲强激光 1、非线性过程 A 、强光在介质中感应出非线性响应(本构方程) B 、介质反作用,非线性的改变光场(Maxwell eqs ) 耦合波方程组 2、电极化强度 P (n) (1.2-35~38) 3、非简谐振子模型 ω02 x + a x 2 + b x 3 + … 谐振子 非简谐振子 线性 二阶 三阶 … 非线性 4、非线性光学极化率的对称性 ㈠ 两个普遍关系 真实性条件: ),,;(),,;(1) (1)(11n n j j i n n j j i n n ωωωχωωωχσσ--=-* (E ,P 实数) 本征对易对称性: ),,;(),,;(1)(1)(11n n j j i n n j j i n n P ωωωχωωωχ σσ -=-∧ 算符∧ P 代表数对),(,),,(11n n j j ωω 的任何交换 ㈡ 透明(无损耗)介质: ① 完全对易对称性: 上式中的算符∧ P 还包括数对),(σωi 与其它数对的任何交换.这一对称性把同一阶的不同非线性光学效应的极化率分量之间建立关系. ② Kleinman 对称性: 当介质为弱色散时, 非线性光学极化率基本上与频率无关. 例如二阶非线性极化率),;() 2(βασωωωχ-ijk 若满足此 对称性时便有 =-=-=-),;(),;(),;() 2() 2() 2(βασβασβασωωωχωωωχωωωχjki jik ijk 它使极化率的独立分量数目大为减少. 简并度: 1212! (......)!!......! r r N M M M N M M M +++=

《光学》教学大纲

教学大纲 一、课程基本信息 课程名称:光学(Optics) 课程号:20201640 课程类别:基础课 学时:72 学分:4 二、教学内容及要求 绪论共1 学时 要求: 1.了解光学研究的内容。 2.了解光学发展简史。 3.了解现代光学的发展简况及其前景。 第一章几何光学的基本原理共8学时 要求: 1.了解几何光学是波动光学在光波长趋于零的情况下的近似。2.掌握费马原理。 3.掌握光在平面上反射和折射的规律,掌握棱镜的特性及其应用。4.掌握光导纤维原理并了解其在现代高新技术中的应用。 5.掌握薄透镜及其组合的成像特性。 6.掌握共轴球面系统成像的矩阵方法。 主要内容: 1.1 几何光学的基本定律 1.2 费马原理 1.3 成像的基本概念 1.4 光在平面上的反射和折射 1.5 光导纤维 1.6 棱镜 1.7 光在单球面上的折射和反射 1.8 薄透镜 1.9 共轴球面系统的逐次成像法 1.10 共轴球面系统傍轴成像的矩阵方法 第二章光阑、像差和成像光学仪器共5 学时 要求: 1.掌握孔径光阑和视场光阑的重要作用。 2.了解各种像差及其成因,熟悉复合物镜及目镜的消色差条件。3.掌握成像光学仪器的原理、结构及其特性。 主要内容: 2.1 光阑 2.2 像差

2.3 人眼的光学系统 2.4 放大镜和目镜 2.5 显微镜 2.6 望远镜 第三章光波及其在各向同性介质界面的反射和折射共6学时 要求: 1.掌握光波场的数学描述及其时空特性。 2.掌握光波的各种偏振态、偏振梯度场。 3.掌握光波在各向同性介质界面上的反射、折射的各种规律。 4.了解负折射率介质的光学特性。 主要内容: 3.1 光波 3.2 光波场的数学描述 3.3 波函数的复数表示复振幅 3.4 光波的偏振态 3.5 光在各向同性介质界面的反射和折射 *3.6 负折射率介质 第四章光的干涉共11 学时 要求: 1.掌握波的叠加原理。 2.掌握光波相干的条件。 3.掌握分波前干涉和分振幅干涉装置及其光程差计算方法、干涉现象的规律及其应用。4.掌握光场的时间相干性和空间相干性。 5.掌握迈克耳孙干涉仪的原理及应用。 6. 了解傅里叶变换光谱仪和光学相干层析术。 7.掌握多光束干涉的光强分布规律及其应用,了解法布里-珀罗干涉仪。 主要内容: 4.1 波的叠加和干涉 4.2 光波相干的条件和产生方法 4.3 杨氏实验 4.4 其它几种两光束分波前干涉装置 4.5 两束平行光的干涉 4.6 光源的光谱展宽对干涉条纹可见度的影响光场的时间相干性 4.7 光源的空间展宽对干涉条纹可见度的影响光场的空间相干性部分相干性 4.8 薄膜干涉(一):等倾干涉 4.9 薄膜干涉(二):等厚干涉 4.10 薄膜干涉(三):应用举例 4.11 迈克耳孙干涉仪 *4.12 傅里叶变换光谱仪光学相干层析术 4.13 多光束干涉 4.14 法布里—珀罗干涉仪

电光调制器

第三章电光调制器

内容 ?电光调制的基本原理 ?铌酸锂(LiNbO3)电光调制器?半导体电吸收调制器(EAM)

电光调制 电光调制:将电信息加载到光载波上,使光参量随着电参 量的改变而改变。光波作为信息的载波。 强度调制的方式 作为信息载体的光载波是一种电磁场:()() 0cos E t eA t ωφ=+r r 对光场的幅度、频率、相位等参数,均可进行调制。在模拟信号的调制中称为AM 、FM 和PM ;在数字信号的调制中称为ASK 、FSK 和PSK 。调制器:将连续的光波转换为光信号,使光信号随电信号的变化而变化。性能优良的调制器必须具备:高消光比、大带宽、低啁啾、低的偏置电 压。

电光调制的主要方式 直接调制:电信号直接改变半导体激光器的偏置电流,使输出激光强度随电信号而改变。 优点:采用单一器件 成本低廉 附件损耗小 缺点:调制频率受限,与激光器弛豫振荡有关 产生强的频率啁啾,限制传输距离 光波长随驱动电流而改变 光脉冲前沿、后沿产生大的波长漂移 适用于短距离、低速率的传输系统

电光调制的主要方式 外调制:调制信号作用于激光器外的调制器上,产生电光、热光或声光等物理效应,从而使通过调制器的激光束的光参量随信号 而改变。 优点:不干扰激光器工作,波长稳定 可对信号实现多种编码格式 高速率、大的消光比 低啁啾、低的调制信号劣化 缺点:额外增加了光学器件、成本增加 增加了光纤线路的损耗 目前主要的外调制器种类有:电光调制器、电吸收调制器

调制器调制器连续光源 光传输 NRZ 调制格式 其他调制格式: ?相位调制 ?偏振调制 ?相位与强度调制想结合光传输RZ 调制格式 脉冲光源电光调制 折射率的改变通过 电介质晶体Pockels 效应和半导体材料 中的电光效应 光吸收的改变通过半导体材料中的Franz-Keldysh效应量子阱半导体材料中的量子限制的Stark 效应光与物质相互作用 相位调制 偏振调制 (双折射材料) 强度调制强度调制通过-干涉仪结构-定向耦合

光学检测的综述

光学检测的综述 摘要 随着科学技术和工业的发展,测量检测技术在自动化生产、质量控制、机器人视觉、反求工程、CAD/CAM以及生物医学工程等方面的应用日益重要。传统的接触式测量技术存在测量力、测量时间长、需进行测头半径的补偿、不能测量弹性或脆性材料等局限性,因而不能满足现代工业发展的需要。 近年来由于光学非接触式测量技术克服了上述缺陷,其非接触、高效率、高准确度和易于实现自动化的特点,成为近年来测量技术研究的热点。本文介绍了多种基于各种测量原理的光学检测方法。 关键词:光学检测;三维测量; 数字相移; 1.光电检测技术 光电检测技术以激光、红外、光纤等现代光电器件为基础,通过对载有被检测物体信号的光辐射(发射、反射、衍射、折射、透射等)进行检测,即通过光电检测器件接收光辐射并转换为电信号。由输入电路、放大滤波等检测电路提取有用的信息,再经过A/D变换接口输入微型计算机运算、处理,最后显示或打印输出所需检测物体的几何量或物理量[1]。如图1所示光电检测系统的组成。 图1 光电检测系统 光电检测技术的特点: –高精度:从地球到月球激光测距的精度达到1米。 –高速度:光速是最快的。 –远距离、大量程:遥控、遥测和遥感。 –非接触式检测:不改变被测物体性质的条件下进行测量。 –寿命长:光电检测中通常无机械运动部分,故测量装置寿命长。 –数字化和智能化:强的信息处理、运算和控制能力。

光电检测的方法: 直接作用法 差动测量法 补偿测量法 脉冲测量法 光电检测系统 ◆主动系统/被动系统(按信息光源分) –主动系统 通过信息调制光源,或者光源发射的光受被测物体调制。如图2所示 图2 主动系统的组成框图 –被动系统 光信号来自被测物体的自发辐射。如图3所示 图3 被动系统的组成框图 ◆红外系统/可见光系统(按光源波长分)[2]

PZT型相位调制器1

OPE A K ? PZT-LSM 型相位调制器是一款光纤缠绕在压电陶瓷(PZT ) 上,利用PZT 压电效应所构成的相位调制器件,采用独特的多层缠绕方法,使得该产品具有高稳定性、高速调制特性,可选配多种类型光纤(见订购信息),可应用于开环相位调制解调、可变光纤延迟线、光纤干涉仪、& OTDR 、光纤震动校准等光学传感领域。该模块外形紧凑小巧,方便客户进行系统集成。低的电压驱动能力,适用于标准信号源驱动能力。 ? 极小封装尺寸。 ? 多种光纤类型可选(SM/PM )。 ? 高速调制速率。 ? 低电压驱动能力。 ? 独特缠绕方式。 应用领域 ? 光学(光纤)干涉仪 ? 相位调制器 ? 光纤延迟线 ? &OTDR ? 光纤传感

测试图谱 性能参数 最小值 典型值 最大值 备 注 1注:插入损耗在单模时含连接器损耗,保偏时不含连接器损耗。 性能指标 图1搭建等臂长马赫曾德干涉仪测试图谱 测试数据 图2 驱动频率29KHz 时,驱动电压与光纤膨胀量

订购参数 ESD Protection The laser diodes and photodiodes in the module can be easily destroyed by electrostatic discharge. Use wrist straps, grounded work surfaces, and anti-static techniques when operating this module. When not in use, the module shall be kept in a static-free environment. Laser Safety The module contains class 3B laser source per CDRH, 21CFR 1040.10 Laser Safety requirements. The module is Class IIIb laser products per IEC 60825-1:1993. 外形尺寸

光学三维测量技术综述

光学三维测量技术综述 1.引言 客观景物三维信息的获取是计算机辅助设计、三维重建以及三维成像技术中的基础环节,被测物体的三维信息的快速、准确的获得在虚拟现实、逆向工程、 生物与医学工程等领域有着广泛的应用[1]。 三维测量方法总的包括两大类,接触式以及非接触式。如图 1.1 所示。 图1.1 三维测量方法分类 接触式的三维测量方法到目前为止已经发展了很长一段时间,这方面的技术理论已经非常完善和成熟,所以,在实际的测量中会有比较高的准确性。但是尽 管如此,依然会有一些缺点[2]: (1) 在测量过程中,接触式测量必须要接触被测物体,这就很容易造成被测物体表面的划伤。 (2) 接触式测量设备在经过长时间的使用之后,测量头有时会出现形变现象,这无疑会对整个测量结果造成影响。 (3) 接触式测量要依靠测量头遍历被测物体上所有的点,可见,其测量效率还是相当低的。 接触式三维测量技术发展已久,应用最广泛的莫过于三坐标测量机。该方法基于精密机械,并结合了当前一些比较先进技术,如光学、计算机等。并且该方法现在已经得到了广泛的应用,特别是在一些复杂物体的轮廓、尺寸等信息的精确测量上。在测量过程中,三坐标测量机的测量头在世界坐标系的三个坐标轴上都可以移动,而且测量头可以到达被测物体上的任意一个位置上,只要测量头能到达该位置,测量机就可以得到该位置的坐标,而且可以达到微米级的测量精度。但由于三坐标机测量系统成本较高,加之上述的一些缺点,广泛应用还不太现实。 非接触式三维测量技术一般通过利用磁学、光学、声学等学科中的物理量测量物体表面点坐标位置。核磁共振法、工业计算机断层扫描法、超声波数字化法

相关文档
最新文档