高中数学 必修1 对数函数 总复习
高中数学必修一第四章指数函数与对数函数必练题总结(带答案)
高中数学必修一第四章指数函数与对数函数必练题总结单选题1、函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,√3,13,12中的一个,则a ,b ,c ,d 的值分别是( )A .54,√3,13,12B .√3,54,13,12 C .12,13,√3,54,D .13,12,54,√3,答案:C分析:根据指数函数的性质,结合函数图象判断底数的大小关系.由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而√3>54>12>13.故选:C .2、基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( ) A .1.2天B .1.8天 C .2.5天D .3.5天答案:B分析:根据题意可得I (t )=e rt =e 0.38t ,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t 1天,根据e 0.38(t+t 1)=2e 0.38t ,解得t 1即可得结果. 因为R 0=3.28,T =6,R 0=1+rT ,所以r =3.28−16=0.38,所以I (t )=e rt =e 0.38t ,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t 1天, 则e 0.38(t+t 1)=2e 0.38t ,所以e 0.38t 1=2,所以0.38t 1=ln2, 所以t 1=ln20.38≈0.690.38≈1.8天.故选:B.小提示:本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题. 3、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.4、已知函数f(x)={x −2,x ∈(−∞,0)lnx,x ∈(0,1)−x 2+4x −3,x ∈[1,+∞) ,若函数g(x)=f(x)−m 恰有两个零点,则实数m 不可能...是( )A .−1B .0C .1D .2 答案:D解析:依题意画出函数图象,函数g(x)=f(x)−m 的零点,转化为函数y =f(x)与函数y =m 的交点,数形结合即可求出参数m 的取值范围;解:因为f(x)={x −2,x ∈(−∞,0)lnx,x ∈(0,1)−x 2+4x −3,x ∈[1,+∞),画出函数图象如下所示, 函数g(x)=f(x)−m 的有两个零点,即方程g(x)=f(x)−m =0有两个实数根,即f(x)=m ,即函数y =f(x)与函数y =m 有两个交点,由函数图象可得m ≤0或m =1,故选:D小提示:函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 5、化简√−a 3·√a 6的结果为( ) A .−√a B .−√−a C .√−a D .√a 答案:A分析:结合指数幂的运算性质,可求出答案. 由题意,可知a ≥0,∴√−a3·√a6=(−a)13⋅a16=−a13⋅a16=−a13+16=−a12=−√a.故选:A.6、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I1I2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍.故选:B.7、下列说法正确的个数是()(1)49的平方根为7;(2)√a nn=a(a≥0);(3)(ab )5=a5b15;(4)√(−3)26=(−3)13.A.1B.2C.3D.4答案:A分析:(1)结合指数运算法则判断,49平方根应有两个;(2)正确;(3)应为a5b−5;(4)符号错误49的平方根是±7,(1)错;(2)显然正确;(ab )5=a5b−5,(3)错;√(−3)26=313,(4)错,正确个数为1个, 故选:A8、若ln2=a ,ln3=b ,则log 818=( ) A .a+3b a 3B .a+2b 3aC .a+2b a 3D .a+3b 3a答案:B分析:先换底,然后由对数运算性质可得. log 818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a 3a.故选:B 多选题9、已知函数f (x )=log 3(x 2−1),g (x )=x 2−2x +a ,∃x 1∈[2,+∞),∀x 2∈[13,3]有f (x 1)≤g (x 2),则实数a 的可能取值是( )A .12B .1C .52D .3 答案:CD分析:将问题转化为当x 1∈[2,+∞),x 2∈[13,3]时,f (x 1)min ≤g (x 2)min ,然后分别求出两函数的最小值,从而可求出a 的取值范围,进而可得答案∃x 1∈[2,+∞),∀x 2∈[13,3]有f (x 1)≤g (x 2)等价于当x 1∈[2,+∞),x 2∈[13,3]时,f (x 1)min ≤g (x 2)min .当x ∈[2,+∞)时,令t =x 2−1,则y =log 3t ,因为t =x 2−1在[2,+∞)上为增函数,y =log 3t 在定义域内为增函数,所以函数f (x )=log 3(x 2−1)在[2,+∞)上单调递增,所以f (x )min =f (2)=1. g (x )=x 2−2x +a 的图象开口向上且对称轴为x =1, ∴当x ∈[13,3]时,g (x )min =g (1)=a −1,∴1≤a −1,解得a ≥2. 故选:CD .10、已知x 1+log 3x1=0,x 2+log 2x2=0,则( )A.0<x2<x1<1B.0<x1<x2<1C.x2lgx1−x1lgx2<0D.x2lgx1−x1lgx2>0答案:BC分析:根据对数函数的性质可判断AB正误,由不等式的基本性质可判断CD正误.由x1=−log3x1>0可得0<x1<1,同理可得0<x2<1,因为x∈(0,1)时,恒有log2x<log3x所以x1−x2=log2x2−log3x1<0,即x1<x2,故A错误B正确;因为0<x1<x2<1,所以lgx1<lgx2<0,即0<−lgx2<−lgx1,由不等式性质可得−x1lgx2<−x2lgx1,即x2lgx1−x1lgx2<0,故C正确D错误.故选:BC小提示:关键点点睛:利用对数函数的真数大于零及对数函数的图象与性质可得0<x1<x2<1是解题的关键,根据不等式的基本性质可判断CD,属于中档题.11、已知函数f(x)=log a(x+1),g(x)=log a(1−x)(a>0,a≠1),则()A.函数f(x)+g(x)的定义域为(−1,1)B.函数f(x)+g(x)的图象关于y轴对称C.函数f(x)+g(x)在定义域上有最小值0D.函数f(x)−g(x)在区间(0,1)上是减函数答案:AB解析:求出函数f(x)+g(x)和f(x)−g(x)的解析式,再判断函数的定义域、奇偶性、借助复合函数的单调性与最值即可得出结论.解:∵f(x)=log a(x+1),g(x)=log a(1−x)(a>0,a≠1),∴f(x)+g(x)=log a(x+1)+log a(1−x),由x+1>0且1−x>0得−1<x<1,故A对;由f(−x)+g(−x)=log a(−x+1)+log a(1+x)=f(x)+g(x)得函数f(x)+g(x)是偶函数,其图象关于y轴对称,B对;∵−1<x<1,∴f(x)+g(x)=log a(1−x2),∵y=1−x2在[0,1)上单调递减,由复合函数的单调性可知,当0<a<1时,函数f(x)+g(x)在[0,1)上单调递增,有最小值f(0)+g(0)=log a(1−0)=0;当a>1时,函数f(x)+g(x)在[0,1)上单调递减,无最小值;故 C错;∵f(x)−g(x)=log a(x+1)−log a(1−x),当0<a<1时,f(x)=log a(x+1)在(0,1)上单调递减,g(x)=log a(1−x)在(0,1)上单调递增,函数f(x)−g(x)在(0,1)上单调递减;当a>1时,f(x)=log a(x+1)在(0,1)上单调递增,g(x)=log a(1−x)在(0,1)上单调递减,函数f(x)−g(x)在(0,1)上单调递增;故D错;故选:AB.小提示:本题主要考查函数奇偶性与单调性的性质应用,考查逻辑推理能力,属于中档题.填空题12、若f(x)=1+a3x+1(x∈R)是奇函数,则实数a=___________.答案:−2分析:利用f(0)=0可求得a,验证可知满足题意.∵f(x)定义域为R,且f(x)为奇函数,∴f(0)=1+a2=0,解得:a=−2;当a=−2时,f(x)=1−23x+1=3x−13x+1,∴f(−x)=3−x−13−x+1=1−3x1+3x=−f(x),∴f(x)为R上的奇函数,满足题意;综上所述:a=−2.所以答案是:−2.13、心理学家有时用函数L(t)=A(1−e−kt)测定在时间t(单位:min)内能够记忆的量L,其中A表示需要记忆的量,k表示记忆率.假设一个学生需要记忆的量为200个单词,此时L表示在时间t内该生能够记忆的单词个数.已知该生在5min内能够记忆20个单词,则k的值约为(ln0.9≈−0.105,ln0.1≈−2.303)______.答案:0.021分析:该生在5min内能够记忆20个单词,将A=200,L(5)=20带入即可得出结论. 由题意可知200(1−e−5k)=20,所以,e−5k=0.9,所以ln e−5k=ln0.9≈−0.105,解得k≈0.021.所以答案是:0.021.14、已知函数f(x)={e x−1,x≥0,ax2+x+a,x<0恰有2个零点,则a=__________.答案:12##0.5分析:先求得f(x)在[0,+∞)上恰有1个零点,则方程ax2+x+a=0有1个负根,a=0时不成立,a≠0时,由一元二次方程的性质分Δ=0和Δ>0讨论求解即可.当x≥0时,令f(x)=e x−1=0,解得x=0,故f(x)在[0,+∞)上恰有1个零点,即方程ax2+x+a=0有1个负根.当a=0时,解得x=0,显然不满足题意;当a≠0时,因为方程ax2+x+a=0有1个负根,所以Δ=1−4a2≥0.当Δ=1−4a2=0,即a=±12时,其中当a=12时,12x2+x+12=0,解得x=−1,符合题意;当a=−12时,−12x2+x−12=0,解得x=1,不符合题意;当Δ=1−4a2>0时,设方程ax2+x+a=0有2个根x1,x2,因为x1x2=1>0,所以x1,x2同号,即方程ax2+x+a=0有2个负根或2个正根,不符合题意.综上,a=12.所以答案是:0.5.解答题15、已知函数f(x)=log2(2x+1).(1)求不等式f(x)>1的解集;(2)若函数g(x)=log2(2x−1)(x>0),若关于x的方程g(x)=m+f(x)在[1,2]有解,求m的取值范围.答案:(1){x|x>0};(2)[log213,log235].分析:(1)由f(x)>1可得2x+1>2,从而可求出不等式的解集,(2)由g(x)=m+f(x),得m=g(x)−f(x)=log2(1−22x+1),再由x∈[1,2]可得log2(1−22x+1)的范围,从而可求出m的取值范围(1)原不等式可化为2x+1>2,即2x>1,∴x>0,所以原不等式的解集为{x|x>0}(2)由g(x)=m+f(x),∴m=g(x)−f(x)=log2(1−22x+1),当1≤x≤2时,25≤22x+1≤23,13≤1−22x+1≤35,m∈[log213,log235]。
全国通用2023高中数学必修一第四章指数函数与对数函数基础知识点归纳总结
全国通用2023高中数学必修一第四章指数函数与对数函数基础知识点归纳总结单选题1、定义在R 上的奇函数f(x)在(−∞,0]上单调递增,且f(−2)=−2,则不等式f(lgx)−f (lg 1x )>4的解集为( )A .(0,1100)B .(1100,+∞)C .(0,100)D .(100,+∞) 答案:D分析:利用函数为奇函数,将不等式转化为f(lgx)>f (2),再利用函数的单调性求解.因为函数f(x)为奇函数,所以f(−x)=−f (x ),又f(−2)=−2,f(2)=2,所以不等式f(lgx)−f (lg 1x )>4,可化为2f(lgx)>4=2f (2),即f(lgx)>f (2),又因为f(x)在(−∞,0]上单调递增,所以f(x)在R 上单调递增,所以lgx >2,解得x >100.故选:D.2、已知0<a <1,b <−1,则函数y =a x +b 的图像必定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:根据指数函数的图象结合图象的平移可得正确的选项.因为0<a <1,故y =a x 的图象经过第一象限和第二象限,且当x 越来越大时,图象与x 轴无限接近.因为b <−1,故y =a x 的图象向下平移超过一个单位,故y =a x +b 的图象不过第一象限.故选:A .3、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h 与其采摘后时间t (天)满足的函数关系式为ℎ=m ⋅a t .若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果在多长时间后失去50%新鲜度(已知lg2≈0.3,结果取整数)( )A .23天B .33天C .43天D .50天答案:B分析:根据题设条件先求出m 、a ,从而得到ℎ=120⋅2110t ,据此可求失去50%新鲜度对应的时间. {10%=m ⋅a 1020%=m ⋅a 20⇒{a 10=2,m =120,故a =2110,故ℎ=120⋅2110t , 令ℎ=12,∴2t 10=10,∴t 10lg2=1,故t =100.3≈33,故选:B.4、已知函数f(x)=9+x 2x ,g(x)=log 2x +a ,若存在x 1∈[3,4],对任意x 2∈[4,8],使得f(x 1)≥g(x 2),则实数a 的取值范围是( )A .(−∞,134]B .(134,+∞)C .(0,134)D .(1,4)答案:A分析:将问题化为在对应定义域内f(x 1)max ≥g(x 2)max ,结合对勾函数和对数函数性质求它们的最值,即可求参数范围.由题意知:f(x)在[3,4]上的最大值大于或等于g(x)在[4,8]上的最大值即可.当x ∈[3,4]时,f(x)=9x +x ,由对勾函数的性质得:f(x)在[3,4]上单调递增,故f(x)max =f(4)=94+4=254.当x ∈[4,8]时,g(x)=log 2x +a 单调递增,则g(x)max =g(8)=log 28+a =3+a ,所以254≥3+a ,可得a ≤134.故选:A5、已知函f (x )=log 2(√1+4x 2+2x)+3,且f (m )=−5,则f (−m )=( )A .−1B .−5C .11D .13答案:C分析:令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,则先判断函数g (−x )+g (x )=0,进而可得f (−x )+f (x )=6,即f (m )+f (−m )=6,结合已知条件即可求f (−m )的值.令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,因为g (x )+g (−x )=log 2(√1+4x 2+2x)+log 2(√1+4x 2−2x)=log 2(1+4x 2−4x 2)=0,所以f (−x )+f (x )=g (−x )+3+g (x )+3=6,则f (m )+f (−m )=6,又因为f (m )=−5,则f (−m )=11,故选:C.6、设函数f (x )=ln |2x +1|﹣ln |2x ﹣1|,则f (x )( )A .是偶函数,且在 (12,+∞)单调递增B .是奇函数,且在 (−12,12)单调递增C .是偶函数,且在(−∞,−12)单调递增D .是奇函数,且在 (−∞,−12)单调递增答案:B分析:先求出f (x )的定义域结合奇偶函数的定义判断f (x )的奇偶性,设t =|2x+12x−1|,则y =ln t ,由复合函数的单调性判断f (x )的单调性,即可求出答案.解:由{2x +1≠02x −1≠0 ,得x ≠±12. 又f (﹣x )=ln |﹣2x +1|﹣ln |﹣2x ﹣1|=﹣(ln |2x +1|﹣ln |2x ﹣1|)=﹣f (x ),∴f (x )为奇函数,由f (x )=ln |2x +1|﹣ln |2x ﹣1|=ln |2x+12x−1|, ∵2x+12x−1=1+22x−1=1+1x−12.可得内层函数t =|2x+12x−1|的图象如图,在(﹣∞,−12),(12,+∞)上单调递减,在(−12,12)上单调递增, 又对数式y =lnt 是定义域内的增函数,由复合函数的单调性可得,f (x )在(−12,12)上单调递增,在(﹣∞,−12),(12,+∞)上单调递减.故选:B .7、已知y 1=(13)x,y 2=3x ,y 3=10−x ,y 4=10x ,则在同一平面直角坐标系内,它们的图象大致为()A .B .C .D .答案:A分析:根据指数函数的单调性及图像特征进行比较,即可判断.y 2=3x 与y 4=10x 是增函数,y 1=(13)x与y 3=10−x =(110)x 是减函数,在第一象限内作直线x =1,该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选A .故选:A8、化简√a 3b 2√ab 23(a 14b 12)4⋅√b a 3 (a >0,b >0)的结果是( )A .b aB .a bC .a 2bD .b 2a 答案:B分析:直接利用根式与分数指数幕的互化及其化简运算,求解即可.√a 3b 2√ab 23(a 14b 12)4⋅√a 3=a 32b⋅a 16b 13(a 14b 12)4⋅a −13⋅b 13 =a 32+16−1+13b 1+13−2−13=ab −1=a b 故选:B 9、函数f (x )=√3−x +log 13(x +1)的定义域是( ) A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3]答案:C分析:由题可得{3−x ≥0x +1>0,即得. 由题意得{3−x ≥0x +1>0, 解得−1<x ≤3,即函数的定义域是(−1,3].故选:C.10、若函数y =(m 2−m −1)⋅m x 是指数函数,则m 等于( )A .−1或2B .−1C .2D .12答案:C分析:根据题意可得出关于实数m 的等式与不等式,即可解得实数m 的值.由题意可得{m 2−m −1=1m >0m ≠1,解得m =2. 故选:C.填空题11、方程lg (x 2−x −2)=lg (6−x −x 2)的解为 __________ .答案:x =−2分析:由题意知lg (x 2−x −2)=lg (6−x −x 2),可求出x 的值,再结合真数大于零进行检验,从而可求出最终的解.由lg (x 2−x −2)=lg (6−x −x 2),得x 2−x −2=6−x −x 2,所以x =±2,又因为x 2−x −2>0且6−x −x 2>0,所以x =−2;所以答案是:x =−2.12、已知函数f (x )的定义域是[-1,1],则函数f (log 2x )的定义域为____.答案:[12,2]分析:根据给定条件列出使函数f (log 2x )有意义的不等式组,再求出其解集即可.因函数f (x )的定义域是[-1,1],则在f (log 2x )中,必有−1≤log 2x ≤1,解不等式可得:{12≤x ≤2x >0,即12≤x ≤2, 所以函数f (log 2x )的定义域为[12,2].所以答案是:[12,2]13、函数f(x)=4+log a (x −1)(a >0且a ≠1)的图象恒过定点_________答案:(2,4)分析:令对数的真数为1,即可求出定点的横坐标,再代入求值即可;解:因为函数f(x)=4+log a(x−1)(a>0且a≠1),令x−1=1,解得x=2,所以f(2)=4+log a1=4,即函数f(x)恒过点(2,4);所以答案是:(2,4)解答题14、对于函数f(x),若其定义域内存在实数x满足f(−x)=−f(x),则称f(x)为“伪奇函数”.(1)已知函数f(x)=x−2x+1,试问f(x)是否为“伪奇函数”?说明理由;(2)若幂函数g(x)=(n−1)x3−n(n∈R)使得f(x)=2g(x)+m为定义在[−1,1]上的“伪奇函数”,试求实数m的取值范围;(3)是否存在实数m,使得f(x)=4x−m⋅2x+1+m2−3是定义在R上的“伪奇函数”,若存在,试求实数m的取值范围;若不存在,请说明理由.答案:(1)不是;(2)[−54,−1];(3)[1−√3,2√2].分析:(1)先假设f(x)为“伪奇函数”,然后推出矛盾即可说明;(2)先根据幂函数确定出g(x)的解析式,然后将问题转化为“2m=−(2x+2−x)在[−1,1]上有解”,根据指数函数的值域以及对勾函数的单调性求解出m的取值范围;(3)将问题转化为“2m2−6=−(4x+4−x)+2m(2x+2−x)在R上有解”,通过换元法结合二次函数的零点分布求解出m的取值范围.(1)假设f(x)为“伪奇函数”,∴存在x满足f(−x)=−f(x),∴−x−2−x+1=−x−2x+1有解,化为x2+2=0,无解,∴f(x)不是“伪奇函数”;(2)∵g(x)=(n−1)x3−n(n∈R)为幂函数,∴n=2,∴g(x)=x,∴f(x)=2x+m,∵f(x)=2x+m为定义在[−1,1]的“伪奇函数”,∴2−x+m=−2x−m在[−1,1]上有解,∴2m=−(2x+2−x)在[−1,1]上有解,令2x=t∈[12,2],∴2m=−(t+1t)在t∈[12,2]上有解,又对勾函数y=t+1t 在[12,1)上单调递减,在(1,2]上单调递增,且t=12时,y=52,t=2时,y=52,∴y min=1+1=2,y max=52,∴y=t+1t的值域为[2,52],∴2m∈[−52,−2],∴m∈[−54,−1];(3)设存在m满足,即f(−x)=−f(x)在R上有解,∴4−x−m⋅2−x+1+m2−3=−(4x−m⋅2x+1+m2−3)在R上有解,∴2m2−6=−(4x+4−x)+2m(2x+2−x)在R上有解,令2x+2−x=t∈[2,+∞),取等号时x=0,∴2m2−6=−(t2−2)+2mt在[2,+∞)上有解,∴t2−2mt+2m2−8=0在[2,+∞)上有解(*),∵Δ=4m2−4(2m2−8)≥0,解得m∈[−2√2,2√2],记ℎ(t)=t2−2mt+2m2−8,且对称轴t=m,当m∈[−2√2,2]时,ℎ(t)在[2,+∞)上递增,若(*)有解,则ℎ(2)=22−2mt+2m2−8≤0,∴m∈[1−√3,2],当m∈(2,2√2]时,ℎ(t)在[2,m)上递减,在(m,+∞)上递增,若(*)有解,则ℎ(m)=m2−2m2+2m2−8=m2−8≤0,即m2−8≤0,此式恒成立,∴m∈(2,2√2],综上可知,m∈[1−√3,2√2].小提示:关键点点睛:解答本题(2)(3)问题的关键在于转化思想的运用,通过理解“伪奇函数”的定义,将问题转化为方程有解的问题,利用换元的思想简化运算并完成计算.15、吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x万盒,需投入成本ℎ(x)万元,当产量小于或等于50万盒时ℎ(x)=180x+100;当产量大于50万盒时ℎ(x)=x2+60x+3500,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y(万元)关于产量x(万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?答案:(1)y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N(2)70万盒分析:(1)根据题意分0≤x≤50和x>50两种情况求解即可;(2)根据分段函数中一次与二次函数的最值求解即可.(1)当产量小于或等于50万盒时,y=200x−200−180x−100=20x−300,当产量大于50万盒时,y=200x−200−x2−60x−3500=−x2+140x−3700,故销售利润y(万元)关于产量x(万盒)的函数关系式为y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N (2)当0≤x≤50时,y≤20×50−300=700;当x>50时,y=−x2+140x−3700,当x=1402=70时,y=−x2+140x−3700取到最大值,为1200.因为700<1200,所以当产量为70万盒时,该企业所获利润最大.。
部编版高中数学必修一第四章指数函数与对数函数带答案知识点总结(超全)
(名师选题)部编版高中数学必修一第四章指数函数与对数函数带答案知识点总结(超全)单选题1、已知函数f (x )=log a (x −b )(a >0且a ≠1,a ,b 为常数)的图象如图,则下列结论正确的是( )A .a >0,b <−1B .a >0,−1<b <0C .0<a <1,b <−1D .0<a <1,−1<b <02、下列计算中结果正确的是( )A .log 102+log 105=1B .log 46log 43=log 42=12 C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33 3、若32是函数f (x )=2x 2−ax +3的一个零点,则f (x )的另一个零点为( ) A .1B .2C .(1,0)D .(2,0)4、Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I(t)=K1+e −0.23(t−53),其中K 为最大确诊病例数.当I (t ∗)=0.95K 时,标志着已初步遏制疫情,则t ∗约为( )(ln19≈3)A .60B .63C .66D .695、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h 与其采摘后时间t (天)满足的函数关系式为ℎ=m ⋅a t .若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果多长时间后失去40%新鲜度( )A .25天B .30天C .35天D .40天6、下列各组函数中,表示同一个函数的是( )A .y =1与y =x 0B .y =x 与y =(√x)2C .y =2log 2x 与y =log 2x 2D .y =ln 1+x 1−x 与y =ln (1+x )−ln (1−x )7、设f(x)=log 2(1x+a +1)是奇函数,若函数g(x)图象与函数f(x)图象关于直线y =x 对称,则g(x)的值域为( )A .(−∞,−12)∪(12,+∞)B .(−12,12)C .(−∞,−2)∪(2,+∞)D .(−2,2)8、已知0<a <1,b <−1,则函数y =a x +b 的图像必定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限多选题9、若函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,则必有( ).A .0<a <1B .a >1C .b >0D .b <010、(多选题)下列计算正确的是( )A .√(−3)412=√−33B .(a 23b 12)(−3a 12b 13)÷(13a 16b 56)=−9a a >0,b >0 C .√√93=√33D .已知x 2+x −2=2,则x +x −1=211、已知a ,b 均为正实数,若log a b +log b a =52,a b =b a ,则ab =( )A .12B .√22C .√2D .2填空题12、对数型函数f (x )的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.部编版高中数学必修一第四章指数函数与对数函数带答案(十三)参考答案1、答案:D分析:根据函数图象及对数函数的性质可求解.因为函数f (x )=log a (x −b )为减函数,所以0<a <1又因为函数图象与x 轴的交点在正半轴,所以x =1+b >0,即b >−1又因为函数图象与y 轴有交点,所以b <0,所以−1<b <0,故选:D2、答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确;对于B :log 46log 43=log 36,故B 错误; 对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A3、答案:A分析:由32是函数f (x )=2x 2−ax +3的一个零点,可得a 值,再利用韦达定理列方程解出f (x )的另一个零点. 因为32是函数f (x )=2x 2−ax +3的一个零点,所以f (32)=2×(32)2−a ×32+3=0,解得a =5.设另一个零点为x 0,则x 0+32=52,解得x 0=1,所以f (x )的另一个零点为1.故选:A .4、答案:C分析:将t =t ∗代入函数I (t )=K 1+e −0.23(t−53)结合I (t ∗)=0.95K 求得t ∗即可得解.∵I (t )=K 1+e −0.23(t−53),所以I (t ∗)=K 1+e −0.23(t ∗−53)=0.95K ,则e 0.23(t∗−53)=19,所以,0.23(t ∗−53)=ln19≈3,解得t ∗≈30.23+53≈66.故选:C.小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5、答案:B分析:根据给定条件求出m 及a 10的值,再利用给定公式计算失去40%新鲜度对应的时间作答.依题意,{10%=m ⋅a 1020%=m ⋅a 20,解得m =120,a 10=2,当ℎ=40%时,40%=120⋅a t , 即40%=120⋅a 10⋅a t−10,解得a t−10=4=(a 10)2=a 20,于是得t −10=20,解得t =30,所以采摘下来的这种水果30天后失去40%新鲜度.故选:B6、答案:D分析:分别计算每个选项中两个函数的定义域和对应关系,定义域和对应关系都相同的是同一个函数,即可得正确选项.对于A :y =1定义域为R ,y =x 0定义域为{x|x ≠0},定义域不同不是同一个函数,故选项A 不正确; 对于B :y =x 定义域为R ,y =(√x)2的定义域为{x|x ≥0},定义域不同不是同一个函数,故选项B 不正确; 对于C :y =2log 2x 的定义域为{x|x >0},y =log 2x 2定义域为{x|x ≠0},定义域不同不是同一个函数,故选项C 不正确;对于D :由1+x 1−x >0可得(x +1)(x −1)<0,解得:−1<x <1,所以y =ln 1+x 1−x 的定义域为{x|−1<x <1},由{1+x >01−x >0可得−1<x <1,所以函数y =ln (1+x )−ln (1−x )的定义域为{x|−1<x <1}且y =ln (1+x )−ln (1−x )=ln 1+x 1−x ,所以两个函数定义域相同对应关系也相同是同一个函数,故选项D 正确, 故选:D.7、答案:A分析:先求出f(x)的定义域,然后利用奇函数的性质求出a 的值,从而得到f(x)的定义域,然后利用反函数的定义,即可求出g(x)的值域.因为f(x)=log 2(1x+a +1),所以1x+a +1=1+x+a x+a >0可得x <−a −1或x >−a ,所以f(x)的定义域为{x|x <−a −1或x >−a},因为f(x)是奇函数,定义域关于原点对称,所以−a −1=a ,解得a =−12, 所以f(x)的定义域为(−∞,−12)∪(12,+∞), 因为函数g(x)图象与函数f(x)图象关于直线y =x 对称,所以g(x)与f(x)互为反函数,故g(x)的值域即为f(x)的定义域(−∞,−12)∪(12,+∞).故选:A .8、答案:A解析:根据指数函数的图象结合图象的平移可得正确的选项.因为0<a <1,故y =a x 的图象经过第一象限和第二象限,且当x 越来越大时,图象与x 轴无限接近.因为b <−1,故y =a x 的图象向下平移超过一个单位,故y =a x +b 的图象不过第一象限.故选:A .9、答案:BC分析:对底数a 分情况讨论即可得答案.解:若0<a <1,则y =a x −(b +1)的图像必过第二象限,而函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,所以a >1.当a >1时,要使y =a x −(b +1)的图像过第一、三、四象限,则b +1>1,即b >0.故选:BC小提示:此题考查了指数函数的图像和性质,属于基础题.10、答案:BC解析:根据根式运算和指数幂的运算法则求解判断.A. √(−3)412=√3412=√33,故错误;B. (a 23b 12)(−3a 12b 13)÷(13a 16b 56)=−9a23+12−16b 12+13−56=−9a ,故正确; C. √√93=916=(32)16=313=√33,故正确;D. 因为x 2+x −2=(x +x −1)2−2=2,所以(x +x −1)2=4,则x +x −1=±2,故错误; 故选:BC11、答案:AD分析:令t =log a b ,代入可求出t ,可得a 与b 的关系式,再代入a b =b a 即可求出a ,b 的值. 令t =log a b ,则t +1t =52, 所以2t 2−5t +2=0,即(2t −1)(t −2)=0,解得t =12或t =2,即log a b =12或log a b =2,所以a =b 2或a 2=b ,因为a b =b a ,代入得2b =a =b 2或b =2a =a 2,所以a =4,b =2或a =2,b =4,所以a b =2或a b =12.故选:AD.小提示:本题主要考查了对数的运算及性质,属于中档题.12、答案:f (x )=|log 2(x +1)|(答案不唯一,满足f (x )=|log a (x +b )|,a >1,b ≥1即可) 分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f (x )的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f (x )=|log 2(x +1)|.所以答案是:f (x )=|log 2(x +1)|(答案不唯一)。
高中数学必修一第四章指数函数与对数函数知识点总结全面整理(带答案)
高中数学必修一第四章指数函数与对数函数知识点总结全面整理单选题1、若函数f(x)=ln(ax+√x2+1)是奇函数,则a的值为()A.1B.-1C.±1D.0答案:C分析:根据函数奇函数的概念可得ln(−ax+√x2+1)+ln(ax+√x2+1)=0,进而结合对数的运算即可求出结果.因为f(x)=ln(ax+√x2+1)是奇函数,所以f(-x)+f(x)=0.即ln(−ax+√x2+1)+ln(ax+√x2+1)=0恒成立,所以ln[(1−a2)x2+1]=0,即(1−a2)x2=0恒成立,所以1−a2=0,即a=±1.当a=1时,f(x)=ln(x+√x2+1),定义域为R,且f(−x)+f(x)=0,故符合题意;当a=−1时,f(x)=ln(−x+√x2+1),定义域为R,且f(−x)+f(x)=0,故符合题意;故选:C.2、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I 1I 2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍. 故选:B.3、设a =log 2π,b =log 6π,则( ) A .a −b <0<ab B .ab <0<a −b C .0<ab <a −b D .0<a −b <ab 答案:D分析:根据对数函数的性质可得a −b >0,ab >0, 1b−1a <1,由此可判断得选项.解:因为a =log 2π>log 22=1,0=log 61<b =log 6π<log 66=1,所以a >1,0<b <1,所以a −b >0,ab >0,故排除A 、B 选项; 又1b −1a =a−b ab=log π6−log π2=log π3<log ππ<1,且ab >0,所以0<a −b <ab ,故选:D.4、如图所示,函数y =|2x −2|的图像是( )A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x−2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0.5、已知a=log20.6,b=log20.8,c=log21.2,则()A.c>b>a B.c>a>bC.b>c>a D.a>b>c答案:A分析:由对数函数得单调性即可得出结果.∵y=log2x在定义域上单调递增,∴log20.6<log20.8<log21.2,即c>b>a.故选:A.6、若n<m<0,则√m2+2mn+n2−√m2−2mn+n2等于()A.2m B.2n C.−2m D.−2n答案:C分析:根据根式的计算公式,结合参数范围,即可求得结果.原式=|m+n|−|m−n|,∵n<m<0,∴m+n<0,m−n>0,∴原式=−(m+n)−(m−n)=−2m.故选:C小提示:本题考查根式的化简求值,属简单题,注意参数范围即可.7、已知a=ln1,b=30.3,c=1og54,则a,b,c的大小关系是()3A.a<b<c B.b<a<c C.a<c<b D.c<a<b答案:C解析:分别将a,b,c与0,1比较大小,从而得到a,b,c的大小关系.<ln1=0,b=30.3>30=1,0=log51<c=1og54<log55=1,所以可知b>c>a 因为a=ln13故选:C8、方程log2x=log4(2x+3)的解为()C.3D.−1或3答案:C分析:根据对数运算性质化为同底的对数方程,结合对数真数大于零可求得结果.∵log2x=log4(2x+3)=12log2(2x+3)=log2√2x+3,∴{x>02x+3>0x=√2x+3,解得:x=3.故选:C.多选题9、甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,A点横坐标为12,B点坐标为(20,0),C点横坐标为128.则下面说法中正确的是()A.甲每分钟加工的零件数量是5个B.在60分钟时,甲比乙多加工了120个零件C.D点的横坐标是200D.y的最大值是216答案:ACD分析:甲每分钟加工的数量是600120=5,所以选项A正确;在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B错误;设D的坐标为(t,0),由题得△AOB∽△CBD,则有1220=128−20t−20,解可得t=200,所以选项C正确;当x=128时,y=216,所以y的最大值是216.所以选项D正确. 根据题意,甲一共加工的时间为(12−0)+(128−20)=120分钟,一共加工了600个零件,则甲每分钟加工的数量是600120=5,所以选项A 正确,设D 的坐标为(t,0),在区间(128,t)和(12,20 )上,都是乙在加工,则直线AB 和CD 的斜率相等, 则有∠ABO =∠CDB ,在区间(20,128)和(0,12)上,甲乙同时加工,同理可得∠AOB =∠CBD , 则△AOB ∽△CBD , 则有1220=128−20t−20,解可得t =200;即点D 的坐标是(200,0),所以选项C 正确; 由题得乙每分钟加工的零件数为600200=3个,所以甲每分钟比乙多加工5-3=2个,在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误; 当x =128时,y =(128−20)×2=216,所以y 的最大值是216.所以选项D 正确. 故选:ACD10、(多选题)下列各式既符合分数指数幂的定义,值又相等的是( ) A .(-1)13和(−1)26B .343和13-43C .212和414D .4−32和(12)−3答案:BC分析:根据分数指数幂的定义以及运算法则逐个验证与化简,即可判断选择.A 不符合题意,(-1)13和(−1)26不符合分数指数幂的定义,但(-1)13=√-13=-1,(-1)26=√(-1)26=1; B 符合题意,13-43=343.C 符合题意,414=√224=212;D 不符合题意,4−32和(12)−3均符合分数指数幂的定义,但4-32=1432=18,(12)−3 =23=8.故选:BC小提示:本题考查分数指数幂的定义以及运算法则,考查基本分析判断与化简能力,属基础题.11、已知a+a−1=3,则下列选项中正确的有()A.a2+a−2=7B.a3+a−3=16C.a12+a−12=±√5D.a32+a−32=2√5答案:AD分析:由a+1a =3(a>0),可得:a2+a−2=(a+1a)2−2;a3+a−3=(a+a−1)(a2+a−2−1);(a12+a−12)2=a+a−1+2;a√aa√a=(a+a−1)(a12+a−12)−(a12+a−12),即可判断出正误.解:∵a+1a=3,∴a2+a−2=(a+1a)2−2=32−2=7,因此A正确;a3+a−3=(a+a−1)(a2+a−2−1)=3×(7−1)=18,因此B不正确;∵(a12+a−12)2=a+a−1+2=3+2=5,a>0,解得a12+a−12=√5,因此C不正确;∵a√aa√a=(a+a−1)(a12+a−12)−(a12+a−12)=3√5−√5=2√5,因此D正确.故选:AD.填空题12、已知函数f(x)=ln(√1+x2−x)−1,若f(2x−1)+f(4−x2)+2>0,则实数x的取值范围为______. 答案:x<−1或x>3分析:令g(x)=f(x)+1=ln(√x2+1−x),分析出函数g(x)为R上的减函数且为奇函数,将所求不等式变形为g(x2−4)<g(2x−1),可得出关于x的不等式,解之即可.令g(x)=f(x)+1=ln(√x2+1−x),对任意的x∈R,√x2+1−x>|x|−x≥0,故函数g(x)的定义域为R,因为g(x)+g(−x)=ln(√x2+1−x)+ln(√x2+1+x)=ln(x2+1−x2)=0,则g(−x)=−g(x),所以,函数g(x)为奇函数,当x≤0时,令u=√1+x2−x,由于函数u1=√1+x2和u2=−x在(−∞,0]上均为减函数,故函数u=√1+x2−x在(−∞,0]上也为减函数,因为函数y=lnu在(0,+∞)上为增函数,故函数g(x)在(−∞,0]上为减函数,所以,函数g(x)在[0,+∞)上也为减函数,因为函数g(x)在R上连续,则g(x)在R上为减函数,由f(2x−1)+f(4−x2)+2>0可得g(2x−1)+g(4−x2)>0,即g(x2−4)<g(2x−1),所以,x2−4>2x−1,即x2−2x−3>0,解得x<−1或x>3.所以答案是:x<−1或x>3.13、若函数f(x)={2x+2,x≤1,log2(x−1),x>1在(−∞,a]上的最大值为4,则a的取值范围为________.答案:[1,17]分析:根据函数解析式画出函数图象,再根据指数函数、对数函数的性质判断函数的单调性,再求出f(x)= 4时x的值,即可得解.解:因为f(x)={2x+2,x≤1,log2(x−1),x>1,当x∈(−∞,1]时,易知f(x)=2x+2在(−∞,1]上单调递增,当x∈(1,+∞)时,f(x)=log2(x−1)在(1,+∞)上单调递增.作出f(x)的大致图象,如图所示.由图可知,f(1)=4,f(17)=log2(17−1)=4,因为f(x)在(−∞,a]上的最大值为4,所以a的取值范围为[1,17].所以答案是:[1,17]14、函数f(x)=4+log a(x−1)(a>0且a≠1)的图象恒过定点_________ 答案:(2,4)分析:令对数的真数为1,即可求出定点的横坐标,再代入求值即可;解:因为函数f(x)=4+log a(x−1)(a>0且a≠1),令x−1=1,解得x=2,所以f(2)=4+log a1=4,即函数f(x)恒过点(2,4);所以答案是:(2,4)解答题15、已知函数f(x)=ln(x+a)(a∈R)的图象过点(1,0),g(x)=x2−2e f(x).(1)求函数f(x)的解析式;(2)若函数y=f(x)+ln(2x−k)在区间(1,2)上有零点,求整数k的值;(3)设m>0,若对于任意x∈[1m,m],都有g(x)<−ln(m−1),求m的取值范围.答案:(1)f(x)=lnx;(2)k的取值为2或3;(3)(1,2).解析:(1)根据题意,得到ln(1+a)=0,求得a的值,即可求解;(2)由(1)可得y=ln(2x2−kx),得到2x2−kx−1=0,设ℎ(x)=2x2−kx−1,根据题意转化为函数y=ℎ(x)在(1,2)上有零点,列出不等式组,即可求解;(3)求得g(x)的最大值g(m),得出g(x)max<−ln(m−1),得到m2−2m<−ln(m−1),设ℎ(m)=m2−2m+ln(m−1)(m>1),结合ℎ(m)单调性和最值,即可求解.(1)函数f(x)=ln(x+a)(a∈R)的图像过点(1,0),所以ln(1+a)=0,解得a=0,所以函数f(x)的解析式为f(x)=lnx.(2)由(1)可知y=lnx+ln(2x−k)=ln(2x2−kx),x∈(1,2),令ln(2x2−kx)=0,得2x2−kx−1=0,设ℎ(x)=2x2−kx−1,则函数y=f(x)+ln(2x−k)在区间(1,2)上有零点,等价于函数y=ℎ(x)在(1,2)上有零点,所以{ℎ(1)=1−k<0ℎ(2)=7−2k>0,解得1<k<72,因为k∈Z,所以k的取值为2或3.(3)因为m>0且m>1m ,所以m>1且0<1m<1,因为g(x)=x2−2e f(x)=x2−2x=(x−1)2−1,所以g(x)的最大值可能是g(m)或g(1m),因为g(m)−g(1m )=m2−2m−(1m2−2m)=m2−1m2−(2m−2m)=(m−1m )(m+1m−2)=(m−1m)⋅(m−1)2m>0所以g(x)max=g(m)=m2−2m,只需g(x)max<−ln(m−1),即m2−2m<−ln(m−1),设ℎ(m)=m2−2m+ln(m−1)(m>1),ℎ(m)在(1,+∞)上单调递增,又ℎ(2)=0,∴m2−2m+ln(m−1)<0,即ℎ(m)<ℎ(2),所以1<m<2,所以m的取值范围是(1,2).小提示:已知函数的零点个数求解参数的取值范围问题的常用方法:1 、分离参数法:一般命题的情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f(x)中分离出参数,构造新的函数,求得新函数的最值,根据题设条件构建关于参数的不等式,从而确定参数的取值范围;2 、分类讨论法:一般命题的情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类的标准,在每个小区间内研究函数零点的个数是否符合题意,将满足题意的参数的各校范围并在一起,即为所求的范围.。
高一必修一对数函数知识点
高一必修一对数函数知识点对数函数是高中数学中的一个重要内容,它涉及到了指数函数和对数函数的关系。
对数函数的学习对于高中数学学习的深入理解和能力的发展非常重要。
本文将为大家介绍高一必修一对数函数的主要知识点,并通过示例来加深理解。
一、对数函数的定义和性质1. 对数函数的定义:对数函数y=loga(x)定义为y=a^x,其中a>0且a≠1。
其中,a称为底数,x称为指数,y称为对数。
2. 对数函数的性质:- 当x>0时,对数函数y=loga(x)是严格单调递增函数。
- 当0<a<1时,对数函数关于x轴对称。
- 当a>1时,对数函数关于y轴对称。
二、对数函数的图像和性质1. 对数函数的图像:对数函数的图像随着底数a的不同而变化,当底数a>1时,对数函数的图像呈现上升的指数形状;当0<a<1时,对数函数的图像呈现下降的指数形状。
2. 对数函数的常用性质:- 对数函数的定义域为(0, +∞),值域为(-∞, +∞)。
- 对数函数的图像经过点(1, 0),即loga(1) = 0。
- 对数函数在x=1时取到最小值,即loga(1) = 0。
- 对数函数在x→+∞时,值趋近于正无穷;在x→0+时,值趋近于负无穷。
三、对数函数的基本性质1. 对数函数的指数运算:- loga(xy) = loga(x) + loga(y)- loga(x/y) = loga(x) - loga(y)- loga(x^p) = p·loga(x)2. 对数函数的换底公式:- loga(x) = logb(x) / logb(a)四、对数方程和对数不等式1. 对数方程的求解:- 求解对数方程时,需要根据对数函数的性质来进行等式变形和求解。
2. 对数不等式的求解:- 求解对数不等式时,需要根据对数函数的性质来确定不等式的取值范围。
五、常用对数的计算常用对数是以10为底的对数,用logx表示。
对数函数-高中数学总复习课件
范围是(
)
A. [-1,2]
B. [0,2]
C. [1,+∞)
D. [0,+∞)
解析: 当 x ≤1时,由21- x ≤2得1- x ≤1,∴0≤ x ≤1;当 x >1
1
时,由1-log2 x ≤2得 x ≥ ,∴ x >1.综上, x 的取值范围为[0,+
2
∞).故选D.
1
log a (2 a )<0,所以0< a <1,且2 a >1,所以 < a <1.故 a 的取值
2
范围是
1
,1
2
.
目录
高中总复习·数学
解题技法
求解对数不等式的两种类型及方法
(1)log ax>log ab:借助 y =log ax的单调性求解,如果 a 的取值不确
定,需分 a >1与0< a <1两种情况讨论;
图象如图所示,又 f ( a )= f ( b )且0< a < b ,
∴0< a <1, b >1且 ab =1,∴ a 2< a ,当 a 2≤ x
≤ b 时,由图知, f ( x )max= f ( a 2)=|log2 a
2|=-2log
1
1
2 a =2,∴ a = 2 ,∴ b =2.∴ + b =4.
0< a <1,A正确.
目录
高中总复习·数学
(2)已知函数 f ( x )=|log2 x |,实数 a , b 满足0< a < b ,且 f
1
2
( a )= f ( b ),若 f ( x )在[ a , b ]上的最大值为2,则 +
b=
4 .
解析:∵ f ( x )=|log2 x |,∴ f ( x )的
高一数学对数函数知识点总结
1.对数(1)对数的定义:如果ab=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.(2)指数式与对数式的关系:ab=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①loga(MN)=logaM+logaN.②loga(M/N)=logaM-logaN.③logaMn=nlogaM.(M>0,N>0,a>0,a≠1)④对数换底公式:logbN=(logab/logaN)(a>0,a≠1,b>0,b≠1,N>0).2.对数函数(1)对数函数的`定义函数y=loga某(a>0,a≠1)叫做对数函数,其中某是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数那么要大于0且不为1对数函数的底数为什么要大于0且不为1呢在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的。
但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数(比方log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立 (比方,log(-2) 4^(-2) 就不等于(-2)某log(-2) 4;一个等于1/16,另一个等于-1/16(2)对数函数的性质:①定义域:(0,+∞).②值域:R.③过点(1,0),即当某=1时,y=0.④当a>1时,在(0,+∞)上是增函数;当0。
第7节对数函数--2025湘教版高中数学一轮复习课件(新高考新教材)
高考总复习2025第7节 对数函数课标解读1.通过具体实例,了解对数函数的概念.能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.2.知道对数函数y=log a x与指数函数y=a x互为反函数(a>0,且a≠1).1 强基础 固本增分知识梳理1.对数函数的概念函数y=log a x(a>0,且a≠1)叫作对数函数,其中x是自变量,定义域是 (0,+∞) .微点拨对数函数解析式y=log a x的三个特征:(1)底数a>0,且a≠1;(2)真数是自变量x且x>0;(3)系数为1.2.对数函数的图象与性质函数y =log a x (a >0,且a ≠1)图象a >10<a <1图象特征在y 轴右侧,过定点(1,0) 这是因为log a 1=0 当x 逐渐增大时,图象是上升的当x 逐渐增大时,图象是下降的函数y =log a x (a >0,且a ≠1)性质定义域(0,+∞)值域R 单调性在(0,+∞)上单调递增在(0,+∞)上单调递减函数值变化规律过定点(1,0),即x=1时,y=0当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>0微点拨1.对数值的符号规律:log a x>0⇔(a-1)(x-1)>0,log a x<0⇔(a-1)(x-1)<0 (其中a>0,a≠1,x>0).2.在直线x=1的右侧,当a>1时,底数越大,图象越靠近x轴;当0<a<1时,底数越小,图象越靠近x轴.也就是说,在第一象限内,不同底数的对数函数的图象从左到右底数逐渐增大.微拓展函数y =log a|x|与y =|log a x |(a >0,a ≠1)的性质函数y =log a |x |y =|log a x |a >10<a <1a >10<a <1定义域(-∞,0)∪(0,+∞)(0,+∞)值域R [0,+∞)奇偶性偶函数非奇非偶函数单调性在区间(0,+∞)上单调递增;在区间(-∞,0)上单调递减在区间(-∞,0)上单调递增;在区间(0,+∞)上单调递减在区间(0,1)上单调递减;在区间(1,+∞)上单调递增图象微思考如何确定对数型函数y=klog a(m x+n)+b(a>0,且a≠1,m≠0)图象所过的定点?3.反函数一般地,指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为 ,它们的定义域与值域正好互换.反函数微点拨1.只有在定义域上单调的函数才存在反函数.2.互为反函数的两个函数的图象关于直线y=x对称.常用结论2.对于函数f(x)=|log a x|(a>0,且a≠1),若f(m)=f(n)(m≠n),则必有m n=1.3.函数y=log a x(a>0,且a≠1)的图象与(a>0,且a≠1)的图象关于x轴对称,函数y=log a x(a>0,且a≠1)的图象与y=log a(-x)(a>0,且a≠1)的图象关于y轴对称.自主诊断题组一思考辨析(判断下列结论是否正确,正确的画“√”,错误的画“×”)1.函数f (x )=log 3(x -1)是对数函数.( )2.若log a x >1,则x >a.( )3.函数f (x )=log a (a x -1)(a >0,且a ≠1)在其定义域上单调递增.( )4.函数y =| |的单调递减区间是(1,+∞).( )× × √ ×题组二回源教材5.(湘教版必修第一册习题4.3第10题改编)函数y= 的定义域为 .6.(湘教版必修第一册习题4.3第11题改编)已知a=log36,b=log510,c=log714,D则a,b,c的大小关系是( )A.b<c<aB.b<a<cC.c<a<bD.c<b<a解析a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,因为log32>log52>log72,所以a>b>c.题组三连线高考7.(2021·新高考Ⅱ,7)已知a=log52,b=log83,c= ,则下列判断正确的是( )C A.c<b<a B.b<a<cC.a<c<bD.a<b <cB 解析(方法一)∵函数f(x)为偶函数,∴f(-x)=f(x).不妨令x=1,则有f(-1)=f(1),2 研考点 精准突破考点一考点二考点三考点一 对数函数的图象及其应用例1(1)(2024·浙江嘉兴模拟)若函数f (x )=log 2|a +x |的图象不经过第四象限,则实数a 的取值范围为 . [1,+∞) 解析 函数f (x )=log 2|a+x|的图象关于直线x=-a 对称,其定义域为{x|x ≠-a },作出函数f (x )=log 2|a+x|的大致图象(如图所示),由图象可知,要使函数f (x )=log 2|a+x|的图象不经过第四象限,则 解得a ≥1,所以实数a 的取值范围为[1,+∞).(1,3) (2)(2024·北京海淀模拟)不等式2log3x-(x-1)(x-2)>0的解集为 .[对点训练1](1)(2024·浙江杭州模拟)函数f(x)=log n(x+m)恒过定点(-2,0),则m 的值为( )CA.5B.4C.3D.2解析由函数f(x)=log n(x+m)恒过定点(-2,0),可得log n(-2+m)=0,所以-2+m=1,解得m=3,故选C.C(2)函数f(x)=x l n(x2+1)的图象大致为( )解析由题可知,函数f(x)的定义域为R,又f(-x)=-x ln[(-x)2+1]=-x ln(x2+1) =-f(x),故函数f(x)为奇函数,排除A,B,又f(1)=ln 2>0,因此排除D,故选C.考点二 对数函数的单调性及其应用(多考向探究预测)考向1求单调区间或参数取值范围例2(1)(2024·河北唐山模拟)函数f(x)=lg(x+1)+lg(3-x)的单调递增区间是 . (-1,1)解析由得-1<x<3,则函数f(x)的定义域为(-1,3),又f(x)=lg(x+1)+lg(3-x)=lg(x+1)(3-x)=lg(-x2+2x+3),令u=-x2+2x+3,则u(x)在区间(-1,1)上单调递增,在区间(1,3)上单调递减,又因为y=lg u在定义域上是增函数,所以f(x)的单调递增区间是(-1,1).变式探究1lg 4 (变结论)本例(1)中,若函数解析式不变,则函数f(x)的最大值为 . 解析由于f(x)的定义域为(-1,3),又f(x)=lg(-x2+2x+3),令u=-x2+2x+3,易知,u 有最大值4,因此函数f(x)的最大值为lg 4.变式探究2(变条件)本例(2)中,若函数解析式不变,则当函数的值域(-∞,-4]∪[0,+∞) 为R时,实数a的取值范围是 .解析当函数的值域为R时,u(x)=x2-ax-a应能取到所有正实数,所以Δ=a2+4a≥0,解得a≥0或a≤-4,故实数a的取值范围是(-∞,-4]∪[0,+∞).[对点训练2]若函数在(-2,+∞)单调递减,则实数a的取值范围是 (-∞,-6] .考向2比较对数值大小例3(1)(2024·湖南益阳模拟)已知 ,则a,b,c的大小关B系正确的是( )A.c>b>aB.c>a >bC.b >a>cD.a>c>b(2)设a=log26,b=log312,c=log515,则( )BA.a<b<cB.c<b<aC.b<a<cD.c<a<b解析a=log26=1+log23,b=log312=1+log34,c=log515=1+log53.因为log23>log22=1,log34>log33=1,0<log53<log55=1,所以a>c,b>c.又因为2log23=log29>log28=3,2log34=log316<log327=3,所以2log23>2log34,即log23>log34,a>b.所以a>b>c.规律方法比较对数值大小的方法若底数为同一常数可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论若底数不同,真数相同可以先用换底公式化为同底后,再进行比较若底数与真数都不同常借助1,0等中间量进行比较考向3解对数型不等式例4(1)(2024·广东河源模拟)定义在R上的偶函数f(x)在区间(-∞,0)上单调递D(2,+∞)规律方法求解对数不等式的两种类型及方法类型方法log a x>log a b借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论log a x>b需先将b化为以a为底的对数式的形式,再借助y=log a x的单调性求解考点三 与对数函数有关的综合问题例5(多选题)(2024·安徽蚌埠模拟)已知函数 ,则下列说法BD中正确的是( )A.函数f(x)的图象关于原点对称B.函数f(x)的图象关于y轴对称C.函数f(x)在区间[0,+∞)上单调递减D.函数f(x)的值域为[ ,+∞)[对点训练3]已知函数f(x)=l n|x-1|-l n|x+1|,若存在两个不同的实数x1,x2,使Bf(x1)=f(x2),则有( )A.x1x2=-1B.x1x2=1C.x1+x2<-2D.x1+x2>2递减,且y>1.所以当x∈(-∞,-1)时,函数f(x)单调递增,且f(x)>0;当x∈(-1,0)时,函数f(x)单调递减,且f(x)>0.作函数f(x)的图象知,由f(x1)=f(x2),则。
人教高中数学必修一第四章指数函数与对数函数知识点总结归纳
(名师选题)人教高中数学必修一第四章指数函数与对数函数知识点总结归纳单选题1、函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,√3,13,12中的一个,则a ,b ,c ,d 的值分别是( )A .54,√3,13,12B .√3,54,13,12 C .12,13,√3,54,D .13,12,54,√3,答案:C分析:根据指数函数的性质,结合函数图象判断底数的大小关系.由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而√3>54>12>13.故选:C .2、2021年10月16日,搭载神舟十三号载人飞船的长征二号F 遥十三运载火箭,在酒泉卫星发射中心成功发射升空,载人飞船精准进入预定轨道,顺利将3名宇航员送入太空,发射取得圆满成功.已知在不考虑空气阻力和地球引力的理想状态下,可以用公式v =v 0⋅ln Mm 计算火箭的最大速度v(m /s ),其中v 0(m /s )是喷流相对速度,m(kg )是火箭(除推进剂外)的质量,M(kg )是推进剂与火箭质量的总和,Mm 称为“总质比”.若某型火箭的喷流相对速度为1000m /s ,当总质比为625时,该型火箭的最大速度约为( )(附:lge ≈0.434,lg2≈0.301)A .5790m /sB .6219m /sC .6442m /sD .6689m /s 答案:C分析:根据对数的换底公式运算可得结果. v =v 0 ln M m =1000×ln625=1000×4lg5lg e=1000×4(1−lg2)lg e≈6442m/s .故选:C .3、下列函数中是偶函数且在区间(0,+∞)单调递减的函数是( ) A .f(x)=1|x |B .f(x)=(13)xC .f(x)=lg |x |D .f(x)=x −13 答案:A分析:利用幂指对函数的性质逐一分析给定四个函数的单调性和奇偶性,可得结论. 解:f(x)=1|x |是偶函数且在区间(0,+∞)上单调递减,满足条件;f(x)=(13)x是非奇非 偶函数,不满足条件;f(x)=lg |x |是偶函数,但在区间(0,+∞)上单调递增,不满足条件; f(x)=x −13是奇函数不是偶函数,不合题意. 故选:A .4、已知a =ln 13,b =30.3,c =1og 54,则a,b,c 的大小关系是( ) A .a <b <c B .b <a <c C .a <c <b D .c <a <b 答案:C解析:分别将a,b,c 与0,1比较大小,从而得到a,b,c 的大小关系.因为a =ln 13<ln1=0,b =30.3>30=1,0=log 51<c =1og 54<log 55=1,所以可知b >c >a 故选:C5、若2x −2y <3−x −3−y ,则( )A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y|>0D .ln|x −y|<0 答案:A分析:将不等式变为2x −3−x <2y −3−y ,根据f (t )=2t −3−t 的单调性知x <y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.由2x−2y<3−x−3−y得:2x−3−x<2y−3−y,令f(t)=2t−3−t,∵y=2x为R上的增函数,y=3−x为R上的减函数,∴f(t)为R上的增函数,∴x<y,∵y−x>0,∴y−x+1>1,∴ln(y−x+1)>0,则A正确,B错误;∵|x−y|与1的大小不确定,故CD无法确定.故选:A.小提示:本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到x,y的大小关系,考查了转化与化归的数学思想.6、已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=log2(x+2)+t,f(−6)=()A.−2B.2C.−4D.4答案:A分析:因f(x)是定义在R上的奇函数,所以f(0)=0,从而可求t,再由奇函数的定义即可求出f(−6)的值. 解:∵f(x)是定义在R上的奇函数,又当x≥0时,f(x)=log2(x+2)+t,∴f(0)=log2(0+2)+t=0,∴t=−1,∴当x≥0时,f(x)=log2(x+2)−1,∴f(−6)=−f(6)=−[log2(6+2)−1]=−(log223−1)=−2,故选:A.7、已知函数f(x)={2,x>mx2+4x+2,x≤m,若方程f(x)−x=0恰有三个根,那么实数m的取值范围是()A.[−1,2)B.[−1,2]C.[2,+∞)D.(−∞,−1]答案:A分析:由题意得,函数y=f(x)与函数y=x有三个不同的交点,结合图象可得出结果.解:由题意可得,直线y=x与函数f(x)=2(x>m)至多有一个交点,而直线y=x与函数f(x)=x2+4x+2(x≤m)至多两个交点,函数y=f(x)与函数y=x有三个不同的交点,则只需要满足直线y=x与函数f(x)=2(x>m)有一个交点直线y=x与函数f(x)=x2+4x+2(x≤m)有两个交点即可,如图所示,y=x与函数f(x)=x2+4x+2的图象交点为A(−2,−2),B(−1,−1),故有m≥−1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[−1,2).故选:A.8、已知函数f(x)=log a(x−b)(a>0且a≠1,a,b为常数)的图象如图,则下列结论正确的是()A.a>0,b<−1B.a>0,−1<b<0C.0<a<1,b<−1D.0<a<1,−1<b<0答案:D分析:根据函数图象及对数函数的性质可求解.因为函数f(x)=log a(x−b)为减函数,所以0<a<1又因为函数图象与x轴的交点在正半轴,所以x=1+b>0,即b>−1又因为函数图象与y轴有交点,所以b<0,所以−1<b<0,故选:D9、下列说法正确的个数是()(1)49的平方根为7;(2)√a nn=a(a≥0);(3)(ab )5=a5b15;(4)√(−3)26=(−3)13.A.1B.2C.3D.4答案:A分析:(1)结合指数运算法则判断,49平方根应有两个;(2)正确;(3)应为a5b−5;(4)符号错误49的平方根是±7,(1)错;(2)显然正确;(ab )5=a5b−5,(3)错;√(−3)26=313,(4)错,正确个数为1个,故选:A10、中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:C=Wlog2(1+SN),它表示:在受噪声干扰的信道中,最大信息传递速率C取决于信道带宽W、信道内信号的平均功率S、信道内部的高斯噪声功率N的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计,按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至5000,则C大约增加了()(附:lg2≈0.3010)A.20%B.23%C.28%D.50%答案:B分析:根据题意写出算式,再利用对数的换底公式及题中的数据可求解.将信噪比SN 从1000提升至5000时,C大约增加了Wlog2(1+5000)−Wlog2(1+1000)Wlog2(1+1000)=log25001−log21001log21001≈lg5000lg2−lg1000lg2lg1000lg2=lg53=1−lg23≈0.23=23%.故选:B. 填空题11、设x>0,y>0,若e x、e y的几何平均值为e(e是自然对数的底数),则x2、y2的算术平均值的最小值为__________.答案:1分析:利用指数的运算性质可得出x+y=2,再利用基本不等式可求得结果.由已知条件可得e x⋅e y=e x+y=e2,所以,x+y=2,因为x>0,y>0,由基本不等式可得x2+y2≥2xy,≥1,即2(x2+y2)≥x2+y2+2xy=(x+y)2=4,所以,x2+y22当且仅当x=y=1时,等号成立.因此,x2、y2的算术平均值的最小值为1.所以答案是:1.12、已知函数f(x)是指数函数,且f(2)=9,则f(1)=______.2答案:√3分析:依题意设f(x)=a x(a>0且a≠1),根据f(2)=9即可求出a的值,从而求出函数解析,再代入计算可得.解:由题意,设f(x)=a x(a>0且a≠1),因为f(2)=9,所以a2=9,又a>0,所以a=3,所以f(x)=3x,所以f(1)=√3.2所以答案是:√313、函数f(x)满足以下条件:①f(x)的定义域为R,其图像是一条连续不断的曲线;②∀x∈R,f(x)=f(−x);③当x1,x2∈(0,+∞)且x1≠x2,f(x1)−f(x2)>0;④f(x)恰有两个零点,请写出函数f(x)的一个解析x1−x2式________答案:f(x)=x2−1(答案不唯一)分析:由题意可得函数f(x)是偶函数,且在(0,+∞)上为增函数,函数图象与x轴只有2个交点,由此可得函数解析式因为∀x∈R,f(x)=f(−x),所以f(x)是偶函数,因为当x 1,x 2∈(0,+∞)且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2>0,所以f(x)在(0,+∞)上为增函数, 因为f(x)恰有两个零点,所以f(x)图象与x 轴只有2个交点,所以函数f(x)的一个解析式可以为f(x)=x 2−1, 所以答案是:f(x)=x 2−1 (答案不唯一) 14、计算:e ln2+(log 23)⋅(log 34)=________. 答案:4分析:根据换底公式,结合对数的运算性质进行求解即可. e ln2+(log 23)⋅(log 34)=2+lg3lg2×lg4lg3=2+log 24=2+2=4, 所以答案是:415、已知定义域为R 的函数f (x )=−12+12x +1则关于t 的不等式f(t 2-2t)+f(2t 2-1)<0的解集为________.答案:(−∞,−13)∪(1,+∞).分析:先判断出f (x )是奇函数且在R 上为减函数,利用单调性解不等式. 函数f (x )=−12+12x +1的定义域为R. 因为f (−x )=−12+12−x +1=−12+2x2x +1,所以f (−x )+f (x )=(−12+12−x +1)+(−12+12x +1)=−1+1=0,所以f (−x )=−f (x ), 即f (x )是奇函数.因为y =2x 为增函数,所以y =12x +1为减函数,所以f (x )=−12+12x +1在R 上为减函数. 所以f(t 2-2t)+f(2t 2-1)<0可化为f(t 2-2t)<-f(2t 2-1)=f(1-2t 2). 所以t 2-2t >1-2t 2,解得:t >1或t <-13. 所以答案是:(−∞,−13)∪(1,+∞). 解答题16、如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB的长为x米.(1)当AB的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD的面积为S平方米,当x为何值时,S有最大值,最大值是多少?答案:(1)15米;(2)当x为12.5米时,S有最大值,最大值是312.5平方米.分析:(1)设篱笆的一面AB的长为x米,则BC=(50−2x)m,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得S=x(50−2x),根据二次函数最值的求法求解即可.(1)设篱笆的一面AB的长为x米,则BC=(50−2x)m,由题意得,x(50−2x)=300,解得x1=15,x2=10,∵50−2x≤25,∴x≥12.5,∴x=15,所以,AB的长为15米时,矩形花园的面积为300平方米;(2)由题意得,S=x(50−2x)=−2x2+50x=−2(x−12.5)2+312.5,12.5≤x<25∴x=12.5时,S取得最大值,此时,S=312.5,所以,当x为12.5米时,S有最大值,最大值是312.5平方米.17、已知函数f(x)=log2(2x+1).(1)求不等式f(x)>1的解集;(2)若函数g(x)=log 2(2x −1)(x >0),若关于x 的方程g(x)=m +f(x)在[1,2]有解,求m 的取值范围. 答案:(1){x |x >0 };(2)[log 213,log 235].分析:(1)由f(x)>1可得2x +1>2,从而可求出不等式的解集,(2)由g(x)=m +f(x),得m =g (x )−f (x )=log 2(1−22x +1),再由x ∈[1,2]可得log 2(1−22x +1)的范围,从而可求出m 的取值范围(1)原不等式可化为2x +1>2,即2x >1,∴x >0, 所以原不等式的解集为{x |x >0 } (2)由g(x)=m +f(x), ∴m =g (x )−f (x )=log 2(1−22x +1),当1≤x ≤2时,25≤22x +1≤23,13≤1−22x +1≤35,m ∈[log 213,log 235]18、已知函数f (x )=log 12x +12x −172.(1)用单调性的定义证明:f (x )在定义域上是减函数; (2)证明:f (x )有零点; (3)设f (x )的零点在区间(1n+1,1n)内,求正整数n .答案:(1)证明见解析 (2)证明见解析 (3)10分析:(1)设0<x 1<x 2,则结合对数的运算法则可证得f (x 1)−f (x 2)=(log 12x 1−log 12x 2)+(12x 1−12x 2)>0,则f (x 1)>f (x 2),由此可得证.(2)结合函数的解析式有f (1)=−8<0,f (116)=72>0,且f (x )在区间(116 , 1)上连续不断,由零点存在定理可得证.(3)结合函数的解析式可得f (110)f (111)<0,由此可得答案.(1)因为f (x )的定义域为(0,+∞),设x 1,x 2是(0,+∞)内的任意两个不相等的实数,且x 1<x 2,则f (x 1)−f (x 2)=(log 12x 1−log 12x 2)+(12x 1−12x 2),因为x 2−x 1>0,x 1x 2>0, 所以log 12x 1−log 12x 2>0,12x 1−12x 2=x 2−x 12x 1x 2>0,所以f (x 1)>f (x 2),故f (x )在定义域(0,+∞)上是减函数. (2)因为f (1)=0+12−172=−8<0,f (116)=4+8−172=72>0,所以f (1)⋅f (116)<0,所以f (x )有零点. (3)f (111)=log 12111+112−172=log 211−3>log 28−3=0,f (110)=log 12110+5−172=log 210−72=log 25−52=log 2√25−log 2√32<0,所以f (110)f (111)<0,又f (x )在(0,+∞)上为减函数,所以f (x )的零点在区间(111,110)内,故n =10.。
高中数学必修一第四章指数函数与对数函数知识点总结归纳(带答案)
高中数学必修一第四章指数函数与对数函数知识点总结归纳单选题1、设4a =3b =36,则1a+2b =( )A .3B .1C .−1D .−3 答案:B分析:先求出a =log 436,b =log 336,再利用换底公式和对数的运算法则计算求解. 因为4a =3b =36,所以a =log 436,b =log 336, 则1a=log 364,2b=log 369,所以则1a +2b =log 364+log 369=log 3636=1. 故选:B.2、若x 1,x 2是二次函数y =x 2−5x +6的两个零点,则1x 1+1x 2的值为( )A .−12B .−13C .−16D .56 答案:D分析:解方程可得x 1=2,x 2=3,代入运算即可得解. 由题意,令x 2−5x +6=0,解得x =2或3, 不妨设x 1=2,x 2=3,代入可得1x 1+1x 2=12+13=56.故选:D.3、我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y (单位:万元)与处理量x (单位:吨)(x ∈[120,500])之间的函数关系可近似表示为y ={13x 3−80x 2+5040x,x ∈[120,144)12x 2−200x +80000,x ∈[144,500] ,当处理量x 等于多少吨时,每吨的平均处理成本最少( )A.120B.200C.240D.400答案:D分析:先根据题意求出每吨的平均处理成本与处理量之间的函数关系,然后分x∈[120,144)和x∈[144,500]分析讨论求出其最小值即可由题意得二氧化碳每吨的平均处理成本为S={13x2−80x+5040,x[120,144)1 2x−200+80000x,x∈[144,500],当x∈[120,144)时,S=13x2−80x+5040=13(x−120)2+240,当x=120时,S取得最小值240,当x∈[144,500]时,S=12x+80000x−200≥2√12x⋅80000x−200=200,当且仅当12x=80000x,即x=400时取等号,此时S取得最小值200,综上,当每月得理量为400吨时,每吨的平均处理成本最低为200元,故选:D4、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a(元/个)的取值范围应是()A.90<a<100B.90<a<110C.100<a<110D.80<a<100答案:A分析:首先设每个涨价x元,涨价后的利润与原利润之差为y元,结合条件列式,根据y>0,求x的取值范围,即可得到a的取值范围.设每个涨价x元,涨价后的利润与原利润之差为y元,则a=x+90,y=(10+x)⋅(400−20x)−10×400=−20x2+200x.要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A5、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,10b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.6、设f(x)={e x−1,x<3log3(x−2),x≥3,则f(f(11))的值是()A.1B.e C.e2D.e−1答案:B分析:根据自变量的取值,代入分段函数解析式,运算即可得解.由题意得f(11)=log3(11−2)=log39=2,则f(f(11))=f(2)=e2−1=e.故选:B.小提示:本题考查了分段函数求值,考查了对数函数及指数函数求值,属于基础题.7、已知实数a,b∈(1,+∞),且log2a+log b3=log2b+log a2,则()A.a<√b<b B.√b<a<b C.b<√a<a D.√a<b<a答案:B分析:对log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,结合y=x−1x 的单调性判断b<a,同理利用换底公式得log2a−1log2a<log3b−1log3b,即log2a>log3b,再根据对数运算性质得log2a>log2√b,结合y=log2x单调性,a>√b,继而得解.由log2a+log b3=log2b+log a2,变形可知log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,由函数f(x)=x−1x在(0,+∞)上单调递增知,log2a<log2b,即a<b,排除C,D;其次,因为log2b>log3b,得log2a+log b3>log3b+log a2,即log2a−log a2>log3b−log b3,同样利用f(x)=x−1x的单调性知,log2a>log3b,又因为log3b=log√3√b>log2√b,得log2a>log2√b,即a>√b,所以√b<a<b.故选:B.8、已知f(x)=a−x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是()A.a>0B.a>1C.a<1D.0<a<1答案:D分析:把f(-2),f(-3)代入解不等式,即可求得.因为f(-2)=a2,f(-3)=a3,f(-2)>f(-3),即a2>a3,解得:0<a<1.故选:D多选题9、某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=12x2-200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.以下判断正确的是()A.该单位每月处理量为400吨时,才能使每吨的平均处理成本最低B.该单位每月最低可获利20000元C.该单位每月不获利,也不亏损D.每月需要国家至少补贴40000元才能使该单位不亏损答案:AD分析:根据题意,列出平均处理成本表达式,结合基本不等式,可得最低成本;列出利润的表达式,根据二次函数图像与性质,即可得答案.由题意可知,二氧化碳每吨的平均处理成本为yx =12x+80000x−200≥2√12x⋅80000x−200=200,当且仅当12x=80000x,即x=400时等号成立,故该单位每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元,故A正确;设该单位每月获利为S元,则S=100x−y=100x−(12x2+80000−200x)=−12x2+300x−80000=−12(x−300)2−35000,因为x∈[400,600],所以S∈[−80000,−40000].故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损,故D正确,BC错误,故选:AD小提示:本题考查基本不等式、二次函数的实际应用,难点在于根据题意,列出表达式,并结合已有知识进行求解,考查阅读理解,分析求值的能力,属中档题.10、已知函数f(x)=log2(2x+8x)−2x,以下判断正确的是()A.f(x)是增函数B.f(x)有最小值C.f(x)是奇函数D.f(x)是偶函数答案:BD分析:由题设可得f(x)=log2(12x+2x),根据复合函数的单调性判断f(x)的单调情况并确定是否存在最小值,应用奇偶性定义判断奇偶性.由f(x)=log2(2x+23x)−log222x=log2(12x+2x),令μ=2x>0为增函数;而t=1μ+μ在(0,1)上递减,在(1,+∞)上递增;所以t在x∈(−∞,0)上递减,在x∈(0,+∞)上递增;又y=log2t在定义域上递增,则y在x∈(−∞,0)上递减,在x∈(0,+∞)上递增;所以f(x)在(−∞,0)上递减,在(0,+∞)上递增,故最小值为f(0)=1,f(−x)=log2(12−x +2−x)=log2(2x+12x)=f(x),故为偶函数.故选:BD11、为了得到函数y=ln(ex)的图象,可将函数y=ln x的图象()A.纵坐标不变,横坐标伸长为原来的e倍B.纵坐标不变,横坐标缩短为原来的1eC.向上平移一个单位长度D .向下平移一个单位长度 答案:BC分析:根据函数图像变换求得结果.解:由题意函数y =lnx 的图象纵坐标不变,横坐标缩短为原来的1e , 可得到函数y =ln (ex)的图象,则A 错误,B 正确; 因为y =ln (ex)=ln x +1,则将函数y =ln x 的图象向上平移一个单位可得到函数y =ln (ex)的图象, 则C 正确,D 错误. 故选:BC. 填空题12、已知函数f(x)={x +1,x ≤0,log 2x,x >0则函数y =f [f (x )]的所有零点之和为___________.答案:12分析:利用分段函数,分类讨论,即可求出函数y =f [f (x )]的所有零点,从而得解.解:x ⩽0时,x +1=0,x =−1,由f(x)=−1,可得x +1=−1或log 2x =−1,∴x =−2或x =12;x >0时,log 2x =0,x =1,由f(x)=1,可得x +1=1或log 2x =1,∴x =0或x =2; ∴函数y =f [f (x )]的所有零点为−2,12,0,2,所以所有零点的和为−2+12+0+2=12 所以答案是:12.13、对于实数a 和b ,定义运算“∗”:a ∗b ={a 2−ab,b 2−ab, a ≤ba >b ,设f(x)=(2x −1)∗(x −1),且关于x 的方程为f(x)=m(m ∈R )恰有三个互不相等的实数根,则m 的取值范围是___________. 答案:(0,14)分析:根据代数式2x −1和x −1之间的大小关系,结合题中所给的定义,用分段函数的形式表示函数f (x )的解析式,画出函数的图象,利用数形结合求出m 的取值范围. 由2x −1≤x −1可得x ≤0,由 2x −1>x −1可得x >0,所以根据题意得f (x )={(2x −1)2−(2x −1)(x −1),x ≤0(x −1)2−(2x −1)(x −1),x >0,即 f (x )={2x 2−x ,x ≤0x −x 2,x >0,作出函数f (x )的图象如图,当x >0时,f (x )=x −x 2开口向下,对称轴为x =12, 所以当x >0时,函数的最大值为f (12)=12−(12)2=14, 函数的图象和直线y =m (m ∈R )有三个不同的交点. 可得m 的取值范围是(0,14), 所以答案是:(0,14) 14、函数f(x)=x (12x −a +12)定义域为(﹣∞,1)∪(1,+∞),则满足不等式ax ≥f (a )的实数x 的集合为______. 答案:{x |x ≥1}分析:由题意可得a =2,f(x)=x (12x −2+12),f(a)=f(2)=2,由ax ≥f (a ),结合指数函数单调性可求x 解:由函数f(x)=x (12x −a +12)定义域为(﹣∞,1)∪(1,+∞),可知a =2 ∴f(x)=x (12x −2+12),f(a)=f(2)=2由ax≥f(a)可得,2x≥2∴x≥1所以答案是:{x|x≥1}解答题15、已知集合A={log52 ,log425,2},集合B={log25,log319}.记集合A中最小元素为a,集合B中最大元素为b.(1)求A∩B及a,b的值;(2)证明:函数f(x)=x+1x 在[2,+∞)上单调递增;并用上述结论比较a+b与52的大小.答案:(1)A∩B={log25},a=log52,b=log25;(2)证明见解析,a+b>52分析:(1)根据对数的运算性质以及对数函数的单调性即可解出;(2)根据单调性的定义即可证明函数f(x)=x+1x在[2,+∞)上单调递增,再根据单调性以及对数的性质log a b=1log b a即可比较出大小.(1)因为log425=log25,所以A={log52 ,log25,2},B={log25,−2},即A∩B={log25}.因为log52<log525=2=log24<log25,所以a=log52,b=log25.(2)设x1,x2为[2,+∞)上任意两个实数,且2≤x1<x2,则x1−x2<0,x1x2>1,f(x1)−f(x2)=(x1+1x1)−(x2+1x2)=x1−x2+1x1−1x2=(x1−x2)×x1x2−1x1x2<0,即f(x1)<f(x2),所以f(x)在[2,+∞)上单调递增.所以f(x)>f(2)=52,所以log52+log25=1log25+log25=f(log25)>52.。
高中数学必修一第四章指数函数与对数函数重点归纳笔记(带答案)
高中数学必修一第四章指数函数与对数函数重点归纳笔记单选题1、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a=5,b =log 83=13log 23,即23b=3,所以4a−3b=4a 43b=(2a )2(23b )2=5232=259.故选:C.2、设log 74=a,log 73=b ,则log 4936=( ) A .12a −b B .12b +a C .12a +b D .12b −a答案:C分析:根据对数的运算性质计算即可.解:log 4936=log 7262=log 76=log 72+log 73=12log 74+log 73=12a +b . 故选:C.3、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0 若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34)C .[0,916]D .(0,916) 答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0 与y =12x +m 的图像,然后通过数形结合求出答案.函数f (x )={−2x, x <0,−x 2+2x,x ≥0的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则函数f (x )的图像与直线y =12x +m 有三个交点,若直线y =12x +m 经过原点时,m =0,若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916. 故m ∈(0,916).故选:D .4、已知函数f(x)={a x ,x <0(a −2)x +3a,x ≥0,满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,则a 的取值范围是( )A .a ∈(0,1)B .a ∈[34,1)C .a ∈(0,13]D .a ∈[34,2) 答案:C分析:根据条件知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ≤1,求a 的范围即可.∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R 上是减函数,∴{0<a <1a −2<0(a −2)×0+3a ≤a 0,解得0<a ≤13, ∴a 的取值范围是(0,13].故选:C .5、已知函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点,则a 的取值范围是( )A .√e )B .(−∞,√e )C .√e)D .(0,√e )答案:B分析:f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为:f(−x)=x 2+e −x −12(x >0), 函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点, 即f(−x)=g(x)有解,通过数形结合即可得解. f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为: f(−x)=x 2+e −x −12(x >0),函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点,即f(−x)=g(x)有解,即x 2+e −x −12=x 2+ln(x +a),整理的:e −x −12=ln(x +a), y =e −x −12和y =ln(x +a)的图像存在交点,如图:临界值在x =0处取到(虚取),此时a =√e ,故当a <√e 时y =e −x −12和y =ln(x +a)的图像存在交点, 故选:B.6、已知函数f(x)={log 12x,x >0,a ⋅(13)x,x ≤0,若关于x 的方程f[f(x)]=0有且只有一个实数根,则实数a 的取值范围是( )A .(−∞,0)∪(0,1)B .(−∞,0)∪(1,+∞)C .(−∞,0)D .(0,1)∪(1,+∞) 答案:B分析:利用换元法设t =f (x ),则等价为f (t )=0有且只有一个实数根,分a <0,a =0,a >0 三种情况进行讨论,结合函数的图象,求出a 的取值范围. 令f(x)=t ,则方程f[f(x)]=0等价于f(t)=0,当a =0时,此时当x ≤0时,f (x )=a ⋅(13)x=0,此时函数有无数个零点,不符合题意;当a ≠0,则f(x)=a ⋅(13)x≠0,所以由f(t)=log 12t =0,得t =1,则关于x 的方程f[f(x)]=0有且只有一个实数根等价于关于x 的方程f(x)=1有且只有一个实数根,作出f(x)的图象如图:当a <0时,由图象可知直线y =1与y =f(x)的图象只有一个交点,恒满足条件; 当a >0时,要使直线y =1与y =f(x)的图象只有一个交点, 则只需要当x ≤0时,直线y =1与f(x)=a ⋅(13)x的图象没有交点, 因为x ≤0 时,f (x )=a ⋅(13)x∈[a,+∞),此时f (x ) 最小值为a , 所以a >1,综上所述,实数a 的取值范围是(−∞,0)∪(1,+∞), 故选:B.7、已知对数式log (a+1)24−a(a ∈Z )有意义,则a 的取值范围为( )A .(−1,4)B .(−1,0)∪(0,4)C .{1,2,3}D .{0,1,2,3} 答案:C分析:由对数的真数大于0,底数大于0且不等于1列出不等式组,然后求解即可. 由题意可知:{a +1>0a +1≠124−a >0 ⇔{a >−1a ≠0a <4 ,解之得:−1<a <4且a ≠0.∵a ∈Z ,∴a 的取值范围为{1,2,3}. 故选:C.8、若函数f (x )=ln(ax +√x 2+1)是奇函数,则a 的值为( ) A .1B .-1 C .±1D .0 答案:C分析:根据函数奇函数的概念可得ln(−ax +√x 2+1)+ln(ax +√x 2+1)=0,进而结合对数的运算即可求出结果.因为f (x )=ln(ax +√x 2+1)是奇函数,所以f (-x )+f (x )=0.即ln(−ax +√x 2+1)+ln(ax +√x 2+1)=0恒成立,所以ln [(1−a 2)x 2+1]=0,即(1−a 2)x 2=0 恒成立,所以1−a 2=0,即a =±1. 当a =1时,f (x )=ln(x +√x 2+1),定义域为R ,且f (−x )+f (x )=0,故符合题意; 当a =−1时,f (x )=ln(−x +√x 2+1),定义域为R ,且f (−x )+f (x )=0,故符合题意; 故选:C. 多选题9、如图,某池塘里的浮萍面积y (单位:m 2)与时间t (单位:月)的关系式为y =ka t (k ∈R 且k ≠0,a ≠1).则下列说法正确的是( )A.浮萍每月增加的面积都相等B.第6个月时,浮萍的面积会超过30m2C.浮萍面积从2m2蔓延到64m2只需经过5个月D.若浮萍面积蔓延到4m2,6m2,9m2所经过的时间分别为t1,t2,t3,则t1+t3=2t2答案:BCD分析:由题意结合函数图象可得{ka=1ka3=4,进而可得y=2t−1;由函数图象的类型可判断A;代入x=6可判断B;代入y=2、y=64可判断C;代入y=4、y=6、y=9,结合对数的运算法则即可得判断D;即可得解.由题意可知,函数过点(1,1)和点(3,4),则{ka=1ka3=4,解得{k=12a=2(负值舍去),∴函数关系式为y=12×2t=2t−1,对于A,由函数是曲线型函数,所以浮萍每月增加的面积不相等,故选项A错误;对于B,当x=6时,y=25=32>30,故选项B正确;对于C,令y=2得t=2;令y=64得t=7,所以浮萍面积从2m2增加到64m2需要5个月,故选项C正确;对于D,令y=4得t1=3;令y=6得t2=log212;令y=9得t3=log218;所以t1+t3=3+log212=log2144=2log212=2t2,故选项D正确.故选:BCD.小提示:本题考查了函数解析式的确定及函数模型的应用,考查了运算求解能力,合理转化条件是解题关键,属于基础题.10、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项. 依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD11、已知函数f(x)=lg(√x2−2x+2−x+1),g(x)=2x+62x+2则下列说法正确的是()A.f(x)是奇函数B.g(x)的图象关于点(1,2)对称C.若函数F(x)=f(x)+g(x)在x∈[1−m,1+m]上的最大值、最小值分别为M、N,则M+N=4D.令F(x)=f(x)+g(x),若F(a)+F(−2a+1)>4,则实数a的取值范围是(−1,+∞)答案:BCD分析:利用函数的奇偶性的定义,可判定A错误;利用图像的平移变换,可判定B正确;利用函数的图象平移和奇偶性,可得判定C正确;利用函数的单调性,可判定D正确.由题意函数f(x)=lg(√x2−2x+2−x+1)=lg(√(x−1)2+1−(x−1)),因为√(x−1)2+1−(x−1)>0恒成立,即函数f(x)的定义域为R,又因为f(0)=lg(√2+1)≠0,所以f(x)不是奇函数,所以A错误;将g (x )=2x +62x +2的图象向下平移两个单位得到y =2x +62x +2−2=2−2x 2+2x,再向左平移一个单位得到ℎ(x )=2−2x+12+2x+1=1−2x 1+2x,此时ℎ(−x )=1−2−x1+2−x =2x −12x +1=−ℎ(x ),所以ℎ(x )图象关于点(0,0)对称, 所以g (x )的图象关于(1,2)对称,所以B 正确;将函数f (x )的图象向左平移一个单位得m (x )=lg(√x 2+1−x), 因为m (−x )+m (x )=lg(√x 2+1+x)+lg(√x 2+1−x)=lg1=0, 即m(−x)=−m(x),所以函数m (x )为奇函数, 所以函数f (x )关于(1,0)点对称,所以F (x )若在1+a 处 取得最大值,则F (x )在1−a 处取得最小值,则F(1+a)+F(1−a)=f(1+a)+f(1−a)+g(1+a)+g(1−a)=0+4=4,所以C 正确; 由F(a)+F(−2a +1)>4,可得f(a)+f(1−2a)+g(a)+g(1−2a)>4, 由f (x )=lg(√(x −1)2+1−(x −1)), 设m (x )=lg(√x 2+1−x),t =√x 2+1−x , 可得t ′=√x 2+1−1<0,所以t =√x 2+1−x 为减函数,可得函数m (x )=lg(√x 2+1−x)为减函数,所以函数f (x )=lg(√(x −1)2+1−(x −1))为单调递减函数, 又由g (x )=2x +62x +2=1+42x +2为减函数,所以F (x )为减函数,因为F (x )关于点(1,2)对称,所以F (a )+F (−2a +1)>4=F(a)+F(2−a),即F(−2a +1)>F(2−a), 即−2a +1<2−a ,解得a >−1,所以D 正确. 故选:BCD.小提示:求解函数有关的不等式的方法及策略: 1 、解函数不等式的依据是函数的单调性的定义, 具体步骤:①将函数不等式转化为f(x 1)>f(x 2)的形式;②根据函数f (x )的单调性去掉对应法则“f ”转化为形如:“x 1>x 2”或“x 1<x 2”的常规不等式,从而得解. 2 、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解. 填空题12、若√4a 2−4a +1=√(1−2a )33,则实数a 的取值范围_________ .答案:(−∞,12]分析:由二次根式的化简求解由题设得√4a 2−4a +1=√(2a −1)2=|2a −1|,√(1−2a )33=1−2a ,所以|2a −1|=1−2a 所以1−2a ≥0,a ≤12.所以答案是:(−∞,12]13、已知10p =3,用p 表示log 310=_____. 答案:1p ##p −1分析:根据指数和对数的关系,以及换底公式,分析即得解. ∵10p =3,∴p =lg3,∴log 310=1g101g3=11g3=1p . 所以答案是:1p .14、对于任意不等于1的正数a ,函数f (x )=log a (2x +3)+4的图像都经过一个定点,这个定点的坐标是_______. 答案:(−1,4)分析:根据log a 1=0求得正确结论.依题意,当2x +3=1,即x =−1时,f (−1)=log a 1+4=4, 所以定点为(−1,4). 所以答案是:(−1,4)解答题15、已知函数f(x)=2x−12x.(1)判断f(x)在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x的不等式f(log2x)<f(1).答案:(1)f(x)在R上是增函数,证明见解析;(2)(0,2).分析:(1)由题可判断函数为奇函数且为增函数,利用定义法的步骤证明即可;(2)利用函数f(x)的单调性及对数函数的单调性即解.(1)∵f(−x)=2−x−2x=−(2x−12x)=−f(x),则函数f(x)是奇函数,则当x⩾0时,设0⩽x1<x2,则f(x1)−f(x2)=2x1−12x1−2x2+12x2=2x1−2x2+2x2−2x12x12x2=(2x1−2x2)2x12x2−12x12x2,∵0⩽x1<x2,∴1⩽2x1<2x2,即2x1−2x2<0,2x12x2>1,则f(x1)−f(x2)<0,即f(x1)<f(x2),则f(x)在[0,+∞)上是增函数,∵f(x)是R上的奇函数,∴f(x)在R上是增函数.(2)∵f(x)在R上是增函数,∴不等式f(log2x)<f(1)等价为不等式log2x<1,即0<x<2.即不等式的解集为(0,2).。
高中数学必修一第四章指数函数与对数函数高频考点知识梳理(带答案)
高中数学必修一第四章指数函数与对数函数高频考点知识梳理单选题1、已知函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点,则a 的取值范围是( )A .√e )B .(−∞,√e )C .√e )D .(0,√e ) 答案:B分析:f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为:f(−x)=x 2+e −x −12(x >0),函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点, 即f(−x)=g(x)有解,通过数形结合即可得解.f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为:f(−x)=x 2+e −x −12(x >0), 函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点, 即f(−x)=g(x)有解,即x 2+e −x −12=x 2+ln(x +a),整理的:e −x −12=ln(x +a),y =e −x −12和y =ln(x +a)的图像存在交点,如图:临界值在x =0处取到(虚取),此时a =√e , 故当a <√e 时y =e −x −12和y =ln(x +a)的图像存在交点,故选:B.2、下列各组函数中,表示同一个函数的是( )A .y =1与y =x 0B .y =x 与y =(√x)2C .y =2log 2x 与y =log 2x 2D .y =ln 1+x 1−x 与y =ln (1+x )−ln (1−x )答案:D分析:分别计算每个选项中两个函数的定义域和对应关系,定义域和对应关系都相同的是同一个函数,即可得正确选项.对于A :y =1定义域为R ,y =x 0定义域为{x|x ≠0},定义域不同不是同一个函数,故选项A 不正确; 对于B :y =x 定义域为R ,y =(√x)2的定义域为{x|x ≥0},定义域不同不是同一个函数,故选项B 不正确; 对于C :y =2log 2x 的定义域为{x|x >0},y =log 2x 2定义域为{x|x ≠0},定义域不同不是同一个函数,故选项C 不正确;对于D :由1+x 1−x >0可得(x +1)(x −1)<0,解得:−1<x <1,所以y =ln 1+x 1−x 的定义域为{x|−1<x <1},由{1+x >01−x >0可得−1<x <1,所以函数y =ln (1+x )−ln (1−x )的定义域为{x|−1<x <1}且y =ln (1+x )−ln (1−x )=ln1+x 1−x ,所以两个函数定义域相同对应关系也相同是同一个函数,故选项D 正确,故选:D.3、已知对数式log (a+1)24−a (a ∈Z )有意义,则a 的取值范围为( )A .(−1,4)B .(−1,0)∪(0,4)C .{1,2,3}D .{0,1,2,3}答案:C分析:由对数的真数大于0,底数大于0且不等于1列出不等式组,然后求解即可.由题意可知:{a +1>0a +1≠124−a >0 ⇔{a >−1a ≠0a <4 ,解之得:−1<a <4且a ≠0.∵a ∈Z ,∴a 的取值范围为{1,2,3}.故选:C.4、若函数f (x )=ln(ax +√x 2+1)是奇函数,则a 的值为( )A .1B .-1C .±1D .0答案:C分析:根据函数奇函数的概念可得ln(−ax +√x 2+1)+ln(ax +√x 2+1)=0,进而结合对数的运算即可求出结果.因为f (x )=ln(ax +√x 2+1)是奇函数,所以f (-x )+f (x )=0.即ln(−ax +√x 2+1)+ln(ax +√x 2+1)=0恒成立,所以ln [(1−a 2)x 2+1]=0,即(1−a 2)x 2=0 恒成立,所以1−a 2=0,即a =±1.当a =1时,f (x )=ln(x +√x 2+1),定义域为R ,且f (−x )+f (x )=0,故符合题意;当a =−1时,f (x )=ln(−x +√x 2+1),定义域为R ,且f (−x )+f (x )=0,故符合题意;故选:C.5、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h 与其采摘后时间t (天)满足的函数关系式为ℎ=m ⋅a t .若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果在多长时间后失去50%新鲜度(已知lg2≈0.3,结果取整数)( )A .23天B .33天C .43天D .50天答案:B分析:根据题设条件先求出m 、a ,从而得到ℎ=120⋅2110t ,据此可求失去50%新鲜度对应的时间.{10%=m ⋅a 1020%=m ⋅a 20⇒{a 10=2,m =120,故a =2110,故ℎ=120⋅2110t , 令ℎ=12,∴2t 10=10,∴t 10lg2=1,故t =100.3≈33,故选:B.6、已知函数f(x)=a x−2+1(a >0,a ≠1)恒过定点M(m,n),则函数g(x)=n −m x 不经过( )A .第一象限B .第二象限C .第三象限D .第四象限答案:C解析:利用指数函数的性质求出m ,n ,得出g(x)的解析式,从而得出结论.∵f(x)=a x−2+1(a>0,a≠1)恒过定点(2,2),∴m=n=2,∴g(x)=2−2x,∴g(x)为减函数,且过点(0,1),∴g(x)的函数图象不经过第三象限.故选:C.7、计算:2lg√5−lg4−12=()A.10B.1C.2D.lg5答案:B分析:应用对数的运算性质求值即可.2lg√5−lg4−12=lg(√5)2+lg√4=lg5+lg2=lg10=1.故选:B8、在同一平面直角坐标系中,一次函数y=x+a与对数函数y=log a x(a>0且a≠1)的图象关系可能是()A.B.C.D.答案:C分析:根据对数函数的图象以及直线方程与图象关系分别进行讨论即可.A.由对数图象知0<a<1,此时直线的纵截距a>1,矛盾,B.由对数图象知a>1,此时直线的纵截距0<a<1,矛盾,C.由对数图象知0<a<1,此时直线的纵截距0<a<1,保持一致,D.由对数图象知a>1,此时直线的纵截距a<0,矛盾,故选:C.多选题9、已知函数f(x)={e x−1,x≥m−(x+2)2,x<m(m∈R),则()A.对任意的m∈R,函数f(x)都有零点.B.当m≤−3时,对∀x1≠x2,都有(x1−x2)(f(x1)−f(x2))<0成立.C.当m=0时,方程f[f(x)]=0有4个不同的实数根.D.当m=0时,方程f(x)+f(−x)=0有2个不同的实数根.答案:AC分析:讨论m的取值范围即可判断函数零点个数,可判断A;当m≤−3时,由指数函数与二次函数的单调性可判断B;当m=0时,令t=f(x),由f(t)=0得t=0或t=−2,结合图象可判断C;当m=0时,方程f(x)+f(−x)=0,则f(x)=−f(−x),结合图象可判断D.当e x−1=0时,x=0;当−(x+2)2=0时,x=−2;所以当m>0时,函数f(x)只有1个零点,当−2<m≤0时,函数f(x)只有2个零点,m≤−2时,函数f(x)只有1个零点,故A正确;当m≤−3时,由指数函数与二次函数的单调性知,函数f(x)为单调递增函数,故B错;当m=0时,令t=f(x),由f(t)=0得t=0或t=−2,作出函数f(x)的图象如图所示,当t=f(x)=−2时,方程f[f(x)]=0有两个解;t=f(x)=0方程f[f(x)]=0有两个解;所以方程f[f(x)]=0有4个不同的实数根,故C正确;当m=0时,方程f(x)+f(−x)=0,则f(x)=−f(−x),如图所示,有1个不同的交点,则故D错误.故选:AC10、(多选)如图,某池塘里浮萍的面积y(单位:m2)与时间t(单位:月)的关系为y=at.关于下列说法正确的是()A.浮萍每月的增长率为1B.第5个月时,浮萍面积就会超过30m2C.浮萍每月增加的面积都相等D.若浮萍蔓延到2m2,3m2,6m2所经过的时间分别是t1,t2,t3,则t1+t2=t3答案:ABD解析:由图象过(1,2)点,可得函数关系式y=2t.再由2t+1−2t2t =2t(2−1)2t=1,可判断A;当t=5时,计算函数值可判断B;计算第二个月比第一个月增加量,和第三个月比第二个月增加量,比较可判断C;运用指数与对数互化得t1,t2,t3,可判断D.图象过(1,2)点,∴2=a1,即a=2,∴y=2t.∵2t+1−2t2t =2t(2−1)2t=1,∴每月的增长率为1,A正确.当t=5时,y=25=32>30,∴B正确.∵第二个月比第一个月增加y2-y1=22-2=2(m2),第三个月比第二个月增加y3-y2=23-22=4(m2)≠y2-y1,∴C不正确.∵2=2t1,3=2t2,6=2t3,∴t1=log22,t2=log23,t3=log26,∴t1+t2=log22+log23=log26=t3,D正确.故选:ABD.小提示:本题考查指数函数模型的实际应用,理解生活中的数据在数学的函数模型中的体现,属于中档题. 11、下列命题正确的是()A.若a>0,且a≠1,则∀x>0,y>0,log a(x+y)=log a x+log a yB.若a>0,且a≠1,则∃x>0,y>0,log a x⋅log a y=log a(xy)C.∀a>0,b>0,ln(ab)=lna+lnbD.∀a>1,b>0,a log a b=b答案:BCD分析:根据对数的运算法则即可判断.解:对于选项AC,由对数的运算性质知∀x>0,y>0有log a(xy)=log a x+log a y,而log a(x+y)≠log a x+ log a y,选项A错误,C正确;对于选项B,当x=y=1时,log a x⋅log a y=log a(xy)成立,选项B正确;对于选项D,由对数的概念可知选项D正确.故选:BCD.填空题12、已知f(x)是奇函数,且当x<0时,f(x)=−e ax.若f(ln2)=8,则a=__________.答案:-3分析:当x>0时−x<0,f(x)=−f(−x)=e−ax代入条件即可得解.因为f(x)是奇函数,且当x>0时−x<0,f(x)=−f(−x)=e−ax.又因为ln2∈(0,1),f(ln2)=8,所以e−aln2=8,两边取以e为底的对数得−aln2=3ln2,所以−a=3,即a=−3.小提示:本题主要考查函数奇偶性,对数的计算.渗透了数学运算、直观想象素养.使用转化思想得出答案.13、函数y=log a(kx−5)+b(a>0且a≠1)恒过定点(2,2),则k+b=______.答案:5分析:根据对数函数的图象与性质,列出方程组,即可求解.由题意,函数y =log a (kx −5)+b 恒过定点(2,2),可得{2k −5=1b =2,解得k =3,b =2,所以k +b =3+2=5. 所以答案是:5.14、计算:1634−8×(6449)−12−8×(87)−1= ________. 答案:−6分析:结合指数幂的运算性质,计算即可.由题意,1634−8×(6449)−12−8×(87)−1= (24)34−8×[(87)2]−12−8×78= 23−8×(87)−1−7=8−8×78−7=8−7−7=−6.所以答案是:−6.解答题15、设函数f (x )=log 3(9x )⋅log 3(3x ),且19≤x ≤9.(1)求f (3)的值;(2)若令t =log 3x ,求实数t 的取值范围;(3)将y =f (x )表示成以t(t =log 3x)为自变量的函数,并由此求函数y =f (x )的最大值与最小值及与之对应的x 的值.答案:(1)6;(2)[−2,2];(3)f(x)min =−14,此时x =−√39;f(x)max =12,此时x =9.分析:(1)根据题目函数的解析式,代入x =3计算函数值;(2)因为t =log 3x ,根据对数函数的单调性求出实数t 的取值范围;(3)根据换元法将函数转化为二次函数,借助二次函数的单调性求出函数取最大值,最小值,接着再求取最值时对应的x 的值.(1)f (3)=log 327⋅log 39=3×2=6;(2)t =log 3x ,又∵19≤x ≤9,∴−2≤log 3x ≤2,∴−2≤t ≤2,所以t 的取值范围为[−2,2];(3)由f (x )=(log 3x +2)(log 3x +1)=(log 3x)2+2log 3x +2=t 2+3t +2,令g (t )=t 2+3t +2=(t +32)2−14,t ∈[−2,2], ①当t =−32时,g(t)min =−14,即log 3x =−32,解得x =√39, 所以f(x)min =−14,此时x =−√39; ②当t =2时,g(t)max =g (2)=12,即log 3x =2⇒x =9,∴f(x)max =12,此时x =9.小提示:求函数最值和值域的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值;(5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.。
高中数学必修一第四章指数函数与对数函数知识点总结归纳完整版(带答案)
高中数学必修一第四章指数函数与对数函数知识点总结归纳完整版单选题1、已知函数y=a x、y=b x、y=c x、y=d x的大致图象如下图所示,则下列不等式一定成立的是()A.b+d>a+c B.b+d<a+c C.a+d>b+c D.a+d<b+c答案:B分析:如图,作出直线x=1,得到c>d>1>a>b,即得解.如图,作出直线x=1,得到c>d>1>a>b,所以b+d<a+c.故选:B2、如图所示,函数y=|2x−2|的图像是()A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x−2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0. 故选:B.3、在同一平面直角坐标系中,一次函数y =x +a 与对数函数y =log a x (a >0且a ≠1)的图象关系可能是( )A .B .C .D .答案:C分析:根据对数函数的图象以及直线方程与图象关系分别进行讨论即可. A .由对数图象知0<a <1,此时直线的纵截距a >1,矛盾, B .由对数图象知a >1,此时直线的纵截距0<a <1,矛盾, C .由对数图象知0<a <1,此时直线的纵截距0<a <1,保持一致, D .由对数图象知a >1,此时直线的纵截距a <0,矛盾, 故选:C .4、函数f(x)=2x −1x 的零点所在的区间可能是( )A .(1,+∞)B .(12,1)C .(13,12)D .(14,13)答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0,所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增,所以函数f(x)的零点所在的区间是(12,1),故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题. 5、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b 答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.6、若y =log 3a 2−1x 在(0,+∞)内为增函数,且y =a −x 也为增函数,则a 的取值范围是( ) A .(√33,1)B .(0,12)C .(√33,√63)D .(√63,1) 答案:D分析:根据函数单调性,列出不等式组{3a 2−1>10<a <1求解,即可得出结果.若y =log 3a 2−1x 在(0,+∞)内为增函数,则3a 2−1>1,由y =a −x 为增函数得0<a <1.解不等式组{3a 2−1>10<a <1,得a 的取值范围是(√63,1).故选:D.小提示:本题主要考查由对数函数与指数函数的单调性求参数,涉及不等式的解法,属于基础题型. 7、已知a =lg2,10b =3,则log 56=( ) A .a+b 1+a B .a+b 1−a C .a−b 1+a D .a−b1−a 答案:B分析:指数式化为对数式求b ,再利用换底公式及对数运算性质变形. ∵a =lg2, 10b =3, ∴b =lg3, ∴log 56=lg6lg5=lg2×3lg 102=lg2+lg31−lg2=a+b1−a .故选:B .8、定义在R 上的奇函数f(x)在(−∞,0]上单调递增,且f(−2)=−2,则不等式f(lgx)−f (lg 1x )>4的解集为( )A .(0,1100)B .(1100,+∞)C .(0,100)D .(100,+∞) 答案:D分析:利用函数为奇函数,将不等式转化为f(lgx)>f (2),再利用函数的单调性求解. 因为函数f(x)为奇函数,所以f(−x)=−f (x ),又f(−2)=−2,f(2)=2,所以不等式f(lgx)−f (lg 1x )>4,可化为2f(lgx)>4=2f (2),即f(lgx)>f (2),又因为f(x)在(−∞,0]上单调递增, 所以f(x)在R 上单调递增, 所以lgx >2, 解得x >100. 故选:D. 多选题9、下列化简结果中正确的有(m 、n 均为正数)( ) A .(1a m)n=a −mn B .√a n n=a C .a m n=a m a nD .(π−3.14)0=1答案:AD分析:A.由指数幂的运算判断; B.由根式的性质判断;C.由分数指数幂和根式的转化判断;D.由规定判断. A. (1a m )n=(a −m )n =a −mn ,故正确; B. √a n n={a,n 为奇数|a |,n 为偶数 ,故错误;C. a m n=√a m n,故错误; D. (π−3.14)0=1,故正确. 故选:AD10、设函数f (x )={|x 2+3x |,x ≤1log 2x,x >1,若函数f (x )+m =0有五个零点,则实数m 可取( )A .−3B .1C .−12D .−2答案:CD分析:函数f (x )+m =0有五个零点等价于y =f(x)与y =−m 有五个不同的交点,作出f(x)图像,利用图像求解即可函数f (x )+m =0有五个零点等价于y =f(x)与y =−m 有五个不同的交点,作出f(x)图像可知,当x =−32时,f (−32)=|(−32)2+3×(−32)|=94若y =f(x)与y =−m 有五个不同的交点, 则−m ∈(0,94), ∴m ∈(−94,0), 故选:CD .11、下列运算(化简)中正确的有( ). A .(a 16)−1⋅(a −2)−13=a 12B .(x a −1y)a⋅(4y −a )=4x C .[(1−√2)2]12−(1+√2)−1+(1+√2)0=3−2√2D .2a 3b 23⋅(−5a 23b 13)÷(4√a 4b 53)=−52a 73b −23答案:ABD分析:根据指数幂的运算法则逐一验证即可 对于A :(a 16)−1⋅(a−2)−13=a−16+23=a12,故A 正确;对于B :(xa −1y)a⋅(4y−a )=4x1a×a y a−a =4xy 0=4x ,故B 正确; 对于C :[(1−√2)2]12−(1+√2)−1+(1+√2)0=[(√2−1)2]12−1+√2+1=√2−1−(√2−1)+1=1,故C 错误;对于D :2a 3b 23⋅(−5a 23b 13)÷(4√a 4b 53)=[2×(−5)÷4]a3+23−43b23+13−53=−52a 73b −23,故D 正确;故选:ABD 填空题12、不等式2022x ≤1的解集为______. 答案:(−∞,0]分析:根据给定不等式利用指数函数单调性求解即可作答.依题意,不等式2022x ≤1化为:2022x ≤20220,而函数y =2022x 在R 上单调递增,解得x ≤0, 所以不等式2022x ≤1的解集为(−∞,0]. 所以答案是:(−∞,0]13、√a ⋅√a ⋅√a 3的分数指数幂表示为____________答案:a 34分析:本题可通过根式与分数指数幂的互化得出结果.√a ⋅√a ⋅√a 3=√a ⋅√a ⋅a 123=√a ⋅√a 323=√a ⋅a 12=√a 32=a 34, 所以答案是:a 34.14、函数f(x)=lg(kx)−2lg(x +1)仅有一个零点,则k 的取值范围为________. 答案:(−∞,0)∪{4}分析:由题意f(x)仅有一个零点,令y 1=kx 、y 2=(x +1)2,即y 1、y 2在f(x)定义域内只有一个交点,讨论k >0、k <0并结合函数图象,求k 的范围.由题意,f(x)=lg(kx)−2lg(x +1)=0,即lg(kx)=lg(x +1)2, ∴在f(x)定义域内,y 1=kx 、y 2=(x +1)2只有一个交点,当k>0时,即(0,+∞)上y1、y2只有一个交点;∴仅当y1、y2相切,即x2+(2−k)x+1=0中Δ=(2−k)2−4=0,得k=4或k=0(舍),∴当k=4时,(0,+∞)上y1、y2只有一个交点;当k<0时,即(−1,0)上y1、y2只有一个交点,显然恒成立.∴k∈(−∞,0)∪{4}.所以答案是:(−∞,0)∪{4}解答题(a>0,a≠1).15、已知函数f(x)=1−2a|x|+1(1)判断f(x)的奇偶性并证明;,求a的值.(2)若f(x)在[−1,1]上的最大值为13答案:(1)偶函数;证明见解析;(2)a=2.解析:(1)利用奇偶函数的定义证明;(2)讨论去绝对值,并分a>1和0<a<1两种情况讨论函数的单调性,求函数的最大值,建立方程,求a的值. 解:(1)f(x)的定义域为R,又f(−x)=1−2a|−x|+1=1−2a|x|+1=f(x)⇒f(−x)=f(x),所以f(x)为偶函数;(2)因为f(x)为偶函数,当0≤x≤1时,f(x)=1−2a|x|+1=1−2a x+1,若a∈(0,1),f(x)=1−2a x+1,函数单调递减,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a x+1,函数单调递增,f(x)max=f(1)=1−2a+1=13⇒a=2,当−1≤x<0,f(x)=1−2a|x|+1=1−2a−x+1,若a∈(0,1),f(x)=1−2a−x+1,函数单调递增,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a−x+1,函数单调递减,f(x)max=f(−1)=1−2a+1=13⇒a=2,综上,a=2.小提示:关键点点睛:本题考查指数型复合函数证明奇偶性以及根据函数的最值,求参数的取值范围,本题的关键是求函数的单调性,关键是利用函数是偶函数,先去绝对值,再利用复合函数的单调性求函数的单调性,从而确定函数的最值.。
对数函数知识点总结
对数函数知识点总结对数函数是高中数学中的重要知识点之一,它广泛应用于数学、物理、经济学等领域。
本文将对对数函数的定义、性质和应用进行详细总结,帮助读者全面了解对数函数。
一、对数函数的定义1. 对数函数的定义:对于任意正实数a(a≠1)和正实数x,称y=logₐx为以a为底x的对数,其中x被称为真数,a被称为底数,y被称为对数。
记作y=logaₐx。
2. 以10为底的对数函数:y=log₁₀x,通常将其简写为y=logx。
3. 自然对数函数:以e≈2.71828为底的对数函数,记作y=loge x或y=lnx。
二、对数函数的基本性质1. 对数函数与指数函数的互为反函数性质:对数函数y=logₐx与指数函数y=aˣ满足关系方程aˣ=x,x>0,a>0且a≠1。
2. 对数函数的定义域和值域:对数函数y=logₐx的定义域是(0,+∞),值域是(-∞,+∞)。
3. 对数函数的对称关系:对于任意正实数x和定义域内的正实数a,有对称关系logₐx=y↔aʸ=x。
4. 对数函数的性质:(1)等式性质:logₐx=logₐy→x=y;logₐx=logb x/lobb a;logₐ1=0;l ogₐa=1。
(2)倒数性质:loga(1/x)=-logₐx。
(3)指数性质:logₐxⁿ=nlogₐx。
(4)乘法性质:logₐ(xy)=logₐx+logₐy。
(5)除法性质:logₐ(x/y)=logₐx-logₐy。
三、对数函数的图像与性质1. 对数函数y=logₐx的图像特点:(1)定义域为(0,+∞),值域为(-∞,+∞)。
(2)过点(1,0)。
(3)随着x的增大,y增大,但增长速度逐渐减小。
(4)曲线在x轴的右侧均为上升曲线。
(5)曲线在x=1处有一垂直渐近线。
2. 自然对数函数y=lnx的图像特点:(1)定义域为(0,+∞),值域为(-∞,+∞)。
(2)过点(1,0)。
(3)随着x的增大,y增大,但增长速度逐渐减小。
高中数学人教版必修1专题复习—对数与对数函数(含答案)
必修1专题复习——对数与对数函数1.23log 9log 4⨯=( ) A .14 B .12C .2D .4 2.计算()()516log 4log 25⋅= ( )A .2B .1C .12 D .14 3.已知222125log 5,log 7,log 7a b ===则 ( ) A .3a b - B .3a b - C .3a bD .3ab4.552log 10log 0.25+=( ) A .0 B .1 C .2 D .45.已知31ln 4,log ,12===-x y z ,则( ) A.<<x z y B.<<z x y C.<<z y x D.<<y z x6.设3log 2a =,5log 2b =,2log 3c =,则( )(A )a c b >> (B )b c a >> (C )c b a >> (D )c a b >> 7.已知2log 3a =,12log 3b =,123c -=,则A.c b a >> B .c a b >> C.a b c >> D.a c b >> 8.已知a =312,b =l og 1312,c =l og 213,则( )A. a >b >cB.b >c >aC. c>b>acD. b >a >c 9.函数y =A .[1,2]B .[1,2)C .1(,1]2D .1[,1]210.函数)12(log )(21-=x x f 的定义域为( )A .]1,-(∞B .),1[+∞C .]121,(D .),(∞+2111.已知集合A 是函数)2ln()(2x x x f -=的定义域,集合B={}052>-x x ,则( )A .∅=B A B .R B A =C .A B ⊆D .B A ⊆ 12.不等式1)2(log 22>++-x x 的解集为( )A 、()0,2-B 、()1,1-C 、()1,0D 、()2,113.函数)1,0)(23(log ≠>-=a a x y a 的图过定点A ,则A 点坐标是 ( ) A 、(32,0) B 、(0,32) C 、(1,0) D 、(0,1) 14.已知函数log ()(,a y x c a c =+为常数,其中0,1)a a >≠的图象如右图,则下列结论成立的是( )A.1,1ac >> B.1,01a c ><<C.01,1a c <<>D.01,01a c <<<< 15.函数y =2|log 2x|的图象大致是( )16.若0a >且1a ≠,则函数2(1)y a x x =--与函数log a y x =在同一坐标系内的图像可能是( )17.在同一坐标系中画出函数x y a log =,xa y =,a x y +=的图象,可能正确的是( ).18.将函数2()log (2)f x x =的图象向左平移1个单位长度,那么所得图象的函数解析式为( )(A )2log (21)y x =+ (B )2log (21)y x =- (C )2log (1)1y x =++ (D )2log (1)1y x =-+19.在同一直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )20.函数)1ln()(2+=x x f 的图象大致是 ( )A .B .C .D . 21.若当R x ∈时,函数()xa x f =始终满足()10<<x f ,则函数xy a1log =的图象大致为( )22.(本题满分12分)已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数。
高一数学对数函数知识点
高一数学对数函数知识点一、对数函数的基本概念对数函数是数学中的一种基本函数,它与指数函数有着密切的关系。
在高一数学的学习中,对数函数的概念、性质和应用是重要的知识点。
对数函数可以定义为:如果a^b=c(其中a>0,且a≠1,b和c为实数),那么数b就称为以a为底c的对数,记作b=log_a c。
二、对数的运算法则对数的运算法则是解决对数问题的基础。
以下是几个基本的对数运算法则:1. 乘法变加法:log_a (xy) = log_a x + log_a y2. 除法变减法:log_a (x/y) = log_a x - log_a y3. 幂的对数:log_a (x^b) = b * log_a x4. 对数的换底公式:log_a x = log_c x / log_c a,其中c为新的底数。
掌握这些运算法则对于解决复杂的对数问题至关重要。
三、常用对数函数在高中数学中,最常用的对数函数是自然对数和常用对数。
1. 自然对数:以e(约等于2.71828)为底的对数称为自然对数,记作ln x。
自然对数在数学、物理和工程等领域有着广泛的应用。
2. 常用对数:以10为底的对数称为常用对数,记作log x。
常用对数在科学计数法中经常被使用。
四、对数函数的图像和性质对数函数的图像和性质是理解对数函数行为的关键。
对数函数y=log_a x具有以下性质:1. 函数图像总是通过点(1,0),因为任何底数的0次幂都等于1。
2. 对数函数是单调递增的,这意味着随着x的增加,y也会增加。
3. 当x>0时,函数有定义;当x<=0时,函数无定义。
4. 对数函数的图像是一条在y轴右侧的曲线,永远不会与x轴相交。
五、对数函数的应用对数函数在实际问题中有许多应用,例如:1. 复利计算:在金融领域,对数函数可以用来计算连续复利。
2. 地震强度:地震的强度常常用对数来表示,因为地震能量的增加与震级不是线性关系。
3. pH值计算:在化学中,pH值是衡量溶液酸碱度的指标,它是基于对数的计算。
高考数学一轮复习---对数函数知识点与题型
高考数学一轮复习---对数函数知识点与题型一、基础知识 1.对数函数的概念函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). y =log a x 的3个特征 (1)底数a >0,且a ≠1; (2)自变量x >0; (3)函数值域为R.2.对数函数y =log a x (a >0,且a ≠1)的图象与性质定义域:(0,+∞)3.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称.二、常用结论 对数函数图象的特点(1)对数函数的图象恒过点(1,0),(a,1),⎪⎭⎫⎝⎛-1,1a ,依据这三点的坐标可得到对数函数的大致图象. (2)函数y =log a x 与y =log 1ax (a >0,且a ≠1)的图象关于x 轴对称.(3)当a >1时,对数函数的图象呈上升趋势;当0<a <1时,对数函数的图象呈下降趋势.三、考点解析考点一 对数函数的图象及应用 例、(1)函数y =lg|x -1|的图象是( )(2)已知当0<x ≤14时,有x <log a x ,则实数a 的取值范围为________.变式练习1.[变条件]若本例(1)函数变为f (x )=2log 4(1-x ),则函数f (x )的大致图象是( )2.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.3.[变条件]若本例(2)变为不等式x 2<log a x (a >0,且a ≠1)对x ∈⎪⎭⎫ ⎝⎛210,恒成立,求实数a 的取值范围.考点二 对数函数的性质及应用 考法(一) 比较对数值的大小例、已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b考法(二) 解简单对数不等式例、已知不等式log x (2x 2+1)<log x (3x )<0成立,则实数x 的取值范围是________.考法(三) 对数型函数性质的综合问题例、已知函数f (x )=log 4(ax 2+2x +3),若f (1)=1,求f (x )的单调区间.跟踪训练 1.已知a =2-13,b =log 213,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a2.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则实数a 的取值范围是( )A.⎪⎭⎫ ⎝⎛210, B.]21,0( C.)21(∞+,D .(0,+∞) 3.已知a >0,若函数f (x )=log 3(ax 2-x )在[3,4]上是增函数,则a 的取值范围是________.课后作业1.函数y =log 3(2x -1)+1的定义域是( )A .[1,2]B .[1,2) C.)32[∞+,D.)32(∞+, 2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log2x B.12x C .log 12x D .2x -23.如果log 12x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x 4.函数f (x )=|log a (x +1)|(a >0,且a ≠1)的大致图象是( )5.若a =20.5,b =log π3,c =log 2sin2π5,则a ,b ,c 的大小关系为( ) A .b >c >a B .b >a >c C .c >a >b D .a >b >c6.设函数f (x )=log a |x |(a >0,且a ≠1)在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( ) A .f (a +1)>f (2) B .f (a +1)<f (2) C .f (a +1)=f (2) D .不能确定7.已知a >0,且a ≠1,函数y =log a (2x -3)+2的图象恒过点P .若点P 也在幂函数f (x )的图象上,则f (x )=________.8.已知函数f (x )=log a (x +b )(a >0,且a ≠1)的图象过两点(-1,0)和(0,1),则log b a =________. 9.函数f (x )=log a (x 2-4x -5)(a >1)的单调递增区间是________.10.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________________.11.求函数f (x )=log 2x ·log2(2x )的最小值.12.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域; (2)求f (x )在区间]320[,上的最大值.。
对数函数的图象与性质 高中数学必修一 总复习课件
0<x≤10,
已知函数 f(x)=-2x+6, x>10,
若 a,b,c 互不相等,
且 f(a)=f(b)=f(c),则 abc 的取值范围是__________.
A.(1,10) B.(5,6) C.(10,12) D.(20,24)
题 型 二 对数函数的图象与性质
【例 2】作出函数 y=log2|x+1|的图象,由图象指出函数的 单调区间,并说明它的图象可由函数 y=log2x 的图象经过怎 样的变换而得到.
作出函数y=log2x的图象,将其关于y轴对 称得到函数y=log2|x|的图象,再将图象 向左平移1个单位长度就得到函数
y=log2|x+1|的图象(如图所示).由图知,
函数 y=log2|x+1|的递减区间为(-∞, -1),
探究提高
递增区间为(-1,+∞).
作一些复杂函数的图象,首先应分析它可以从哪一个基
本函数的图象变换过来.一般是先作出基本函数的图象,通
过平移、对称、翻折等方法,得出所求函数的图象.
变式训练 2 |lg x|,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修1数学
——对数函数
第一部分:知识点归纳总结
1、对数的定义:若,则数b 叫做以a 为底N 的对数,记作log b
N
a =
2、常用对数与自然对数:对数log (a 0,a 1)N
a >≠,当底数(1)a=10时,叫做常用对数,记作N lg ;(2)
a=e <e=2.71828…> 时,叫做自然对数,记作ln N . 3、常用的结论:对数恒等式:log (0,1)N
a a
N a a =>≠;负数和零没有对数.log 1a = ;
log a a = ;log a N a = .
4、对数函数:函数log (a 0,a 1)x
a y =>≠叫做对数函数。
5、对数函数的图像特征和性质
6、对数的运算性质:如果0,0,0,0,a a M N >≠>>那么(1)()
log log log MN M N a
a a =+
(2)log log log ;M M N N
a
a a =- (3)log log ()n
M M a a n n R =∈
换底公式:log log
(01,0)log N N a b
b
a
a b a b N =>≠>、且、 7、对数函数与指数函数互为反函数,因为它们的图像关于直线y=x 对称。
01a << 1a >
图象
性质
定义域: 值域:
过定点 ,即1x =时,
0y =
在R 上是减函数
在R 上是增减函数
非奇非偶函数
第二部分:题型归纳强化
1、计算 【1】5
71log 7
-=______________ 【2】1
(lg9lg 2)2
100
-=_________________
【3】2
+
【4】lg8lg1.2
- 【5】2
(lg 5)lg 2lg 50+•
【6】n 3
927
248(log log log log )log +++⨯n
32…
2、运用换底公式log log
(01,0)log N N a b
b
a
a b a b N =>≠>、且、证明下列公式。
【1】1log log b
a a
b = 【2】log log log 1b
c a a b c = 【3】log log n
n b b a a
【4】log log m
n b b a a m
n =
【5】1log log b b a a
=-
3、化简
(1)3
532log 2
89
333
2log log log 5-+- (2)(1(12
2log log +
(3)lg 4lg9++
4、设918log ,185,b a ==用a ,b 表示45
36log 的值。
5、已知lg 2,lg35,a ==用,a b 表示12log 5= 。
6、求下列函数的定义域. (1)2log (32)
3
x y x -=
-;(2)(1)log (2)x y x +=-
7、比较下列各组数的大小;
(1)0.7log 1.3和0.7log 1.8 (2)3log 5和6log 4 (3)2log 3和5log 3
8、求函数212
log (32)y x x =+-的单调区间和值域.
9、若2
log (1)log (2)0a a a a +<<,则a 的取值范围是( )
A 、(0,1)
B 、(
12,1) C 、(0,12
) D 、(1,+∞)
10.9821
log ,log 34
a b c ===三个数的大小关系是( )
A.a c b <<
B. a b c <<
C. a c b <<
D. c b a <<
11、若函数()log (a f x x =是奇函数,求实数a 的值。
12.已知函数()log (1)(0x
a f x a a =->且1)a ≠.
(1)求()f x 的定义域; (2)讨论()f x 的单调性.。