13.二叉树的基本结构及存储方式
数据库技术知识数据结构的算法
数据库技术知识数据结构的算法对于将要参加计算机等级考试的考生来说,计算机等级考试的知识点辅导是非常重要的复习资料。
以下是收集的数据库技术知识数据结构的算法,希望大家认真阅读!1、数据:数据的基本单位是数据元素。
数据元素可由一个或多个数据项组成。
数据项是数据的不可分割的最小单位2、数据结构:数据的逻辑结构、数据的存储结构、数据的运算3、主要的数据存储方式:顺序存储结构(逻辑和物理相邻,存储密度大)和链式存储结构顺序存储结构:顺序存储计算公式Li=L0+(i-1)×K顺序结构可以进行随机存取;插人、删除运算会引起相应节点的大量移动链式存储结构:a、指针域可以有多个,可以指向空,比比顺序存储结构的存储密度小b、逻辑上相邻的节点物理上不一定相邻。
c、插人、删除等不需要大量移动节点4、顺序表:一般情况下,若长度为n的顺序表,在任何位置插入或删除的概率相等,元素移动的平均次数为n/2(插入)和(n-1)/2(删除)。
5、链表:线性链表(单链表和双向链表等等)和非线性链表线性链表也称为单链表,其每个一节点中只包含一个指针域,双链表中,每个节点中设置有两个指针域。
(注意结点的插入和删除操作)6、栈:“后进先出”(LIFO)表。
栈的应用:表达式求解、二叉树对称序周游、快速排序算法、递归过程的实现等7、队列:“先进先出”线性表。
应用:树的层次遍历8、串:由零个或多个字符组成的有限序列。
9、多维数组的顺序存储:10、稀疏矩阵的存储:下三角矩阵顺序存储其他常见的存储方法还有三元组法和十字链表法11、广义表:由零个或多个单元素或子表所组成的有限序列。
广义表的元素可以是子表,而子表的元素还可以是子表12、树型结构:非线性结构。
常用的树型结构有树和二叉树。
二叉树与树的区别:二叉树不是树的特殊情况,树和二叉树之间最主要的区别是:二叉树的节点的子树要区分左子树和右子树,即使在节点只有一棵子树的情况下也要明确指出该子树是左子树还是右子树。
二叉树的基本操作课件浙教版(2019)高中信息技术选修1(24张PPT)
A
B
D
C
E
F
G
头指针
二叉树的list实现
二叉树节点可以看成是一个三元组,元素是左、右子树和本节点数据。
Python的list可以用于组合这样的三个元素。
下面介绍用list构造二叉树的方法。
(1)空树用None表示。
(2)非空二叉树用包含三个元素的列表[d,l,r]表示,其中:d表示根节点的元素,l和r是两棵子树,采用与整个二叉树同样结构的list表示。
二叉树的遍历
在完成二叉树的建立操作后,就可以对二叉树的各个节点进行访问,即遍历操作。二叉树的遍历,是指按照一定的规则和次序访问二叉树中的所有节点,使得每个节点都被访问一次且仅被访问一次。按照不同的遍历方式对节点进行访问,其处理效率不完全相同。二叉树的遍历方式有很多,主要有前序遍历、中序遍历和后序遍历等。
1.数组实现
用数组来表示二叉树时,分为以下两种情况。
(1)完全二叉树从二叉树的根节点开始,按从上而下、自左向右的顺序对n个节点进行编号,根节点的编号为0,最后一个节点的编号为n-1。然后依次将二叉树的节点用一组连续的数组元素来表示,节点编号与数组的下标一一对应。如下图中图甲所示的完全二叉树所对应的一维数组表示如图乙所示。
A
B
C
A
B
C
甲 原二叉树
乙 补全后的二叉树
0
1
2
3
4
5
6
7
丙 数组实现示意图
A
B
C
对于完全二叉树而言,一维数组的表示方式既简单又节省存储空间。但对于一般的二叉树来说,采用一维数组表示时,结构虽然简单,却容易造成存储空间的浪费。
二叉树的存储结构及基本操作
二叉树的存储结构及基本操作二叉树是一种常见的数据结构,广泛应用于计算机科学领域。
二叉树具有其独特的存储结构和基本操作,下面将详细介绍。
一、二叉树的存储结构二叉树的存储结构通常有两种形式:顺序存储和链式存储。
1. 顺序存储顺序存储是将二叉树中的所有元素按照一定的顺序存储在一段连续的内存单元中,通常采用数组来表示。
对于任意一个节点i,其左孩子节点的位置为2*i+1,右孩子节点的位置为2*i+2。
这种存储方式的优点是访问速度快,但需要预先确定节点总数,且不易于插入和删除操作。
2. 链式存储链式存储是采用指针的方式将二叉树的节点链接起来。
每个节点包含数据元素以及指向左孩子节点和右孩子节点的指针。
链式存储方式的优点是易于插入和删除操作,但访问速度较慢。
二、二叉树的基本操作1. 创建二叉树创建二叉树的过程就是将数据元素按照一定的顺序插入到二叉树中。
对于顺序存储的二叉树,需要预先分配内存空间;对于链式存储的二叉树,可以直接创建节点对象并链接起来。
2. 遍历二叉树遍历二叉树是指按照某种规律访问二叉树中的所有节点,通常有前序遍历、中序遍历和后序遍历三种方式。
前序遍历的顺序是根节点-左孩子节点-右孩子节点;中序遍历的顺序是左孩子节点-根节点-右孩子节点;后序遍历的顺序是左孩子节点-右孩子节点-根节点。
对于顺序存储的二叉树,可以采用循环结构实现遍历;对于链式存储的二叉树,需要使用指针逐个访问节点。
3. 查找元素在二叉树中查找元素,需要根据一定的规则搜索所有节点,直到找到目标元素或搜索范围为空。
对于顺序存储的二叉树,可以采用线性查找算法;对于链式存储的二叉树,可以采用深度优先搜索或广度优先搜索算法。
4. 插入元素在二叉树中插入元素需要遵循一定的规则,保证二叉树的性质。
对于顺序存储的二叉树,插入操作需要移动大量元素;对于链式存储的二叉树,插入操作相对简单,只需修改指针即可。
5. 删除元素在二叉树中删除元素同样需要遵循一定的规则,保证二叉树的性质。
数据结构笔试复习
数据结构笔试复习⼀选择题1.下述哪⼀条是顺序存储结构的优点?()A.存储密度⼤ B.插⼊运算⽅便 C.删除运算⽅便 D.可⽅便地⽤于各种逻辑结构的存储表⽰2.数据结构在计算机内存中的表⽰是指( )。
A. 数据的物理结构B. 数据结构C. 数据的逻辑结构D. 数据元素之间的关系3.下⾯关于线性表的叙述中,错误的是哪⼀个?()A.线性表采⽤顺序存储,必须占⽤⼀⽚连续的存储单元。
B.线性表采⽤顺序存储,便于进⾏插⼊和删除操作。
C.线性表采⽤链接存储,不必占⽤⼀⽚连续的存储单元。
D.线性表采⽤链接存储,便于插⼊和删除操作。
4.若线性表最常⽤的操作是存取第i个元素及其前驱的值,则采⽤( )存储⽅式节省时间。
A. 单链表B. 双向链表C. 循环链表D. 顺序表5.线性表是具有n 个()的有限序列(n>0)。
A.表元素 B.字符 C.数据元素 D.数据项 E.信息项6.若某线性表最常⽤的操作是存取任⼀指定序号的元素和在最后进⾏插⼊和删除运算,则利⽤()存储⽅式最节省时间。
A.顺序表 B.双链表 C.带头结点的双循环链表 D.单循环链表7.某线性表中最常⽤的操作是在最后⼀个元素之后插⼊⼀个元素和删除第⼀个元素,则采⽤()存储⽅式最节省运算时间。
A.单链表 B.仅有头指针的单循环链表 C.双链表 D.仅有尾指针的单循环链表8.设⼀个链表最常⽤的操作是在末尾插⼊结点和删除尾结点,则选⽤( )最节省时间。
A. 单链表B.单循环链表C. 带尾指针的单循环链表D.带头结点的双循环链表9.若某表最常⽤的操作是在最后⼀个结点之后插⼊⼀个结点或删除最后⼀个结点。
则采⽤()存储⽅式最节省运算时间。
A.单链表 B.双链表 C.单循环链表 D.带头结点的双循环链表10. 链表不具有的特点是()A.插⼊、删除不需要移动元素 B.可随机访问任⼀元素C.不必事先估计存储空间 D.所需空间与线性长度成正⽐11、3个结点可构成_____棵不同形态的⼆叉树。
二叉树的储存结构的实现及应用
二叉树的储存结构的实现及应用二叉树是一种常见的数据结构,它在计算机科学和算法设计中广泛应用。
二叉树的储存结构有多种实现方式,包括顺序储存结构和链式储存结构。
本文将从这两种储存结构的实现和应用角度进行详细介绍,以便读者更好地理解二叉树的储存结构及其在实际应用中的作用。
一、顺序储存结构的实现及应用顺序储存结构是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一维数组中。
通常采用数组来实现顺序储存结构,数组的下标和节点的位置之间存在一定的对应关系,通过数学计算可以快速找到节点的父节点、左孩子和右孩子。
顺序储存结构的实现相对简单,利用数组的特性可以迅速随机访问节点,适用于完全二叉树。
1.1 实现过程在采用顺序储存结构的实现中,需要首先确定二叉树的深度,然后根据深度确定数组的长度。
通过数学计算可以得到节点间的位置关系,初始化数组并按照规定的顺序将二叉树节点逐一填入数组中。
在访问二叉树节点时,可以通过计算得到节点的父节点和子节点的位置,从而实现随机访问。
1.2 应用场景顺序储存结构适用于完全二叉树的储存和遍历,常见的应用场景包括二叉堆和哈夫曼树。
二叉堆是一种特殊的二叉树,顺序储存结构可以方便地实现它的插入、删除和调整操作,因此在堆排序、优先队列等算法中得到广泛应用。
哈夫曼树则是数据压缩领域的重要应用,通过顺序储存结构可以有效地构建和处理哈夫曼树,实现压缩编码和解码操作。
二、链式储存结构的实现及应用链式储存结构是通过指针将二叉树的节点连接起来,形成一个类似链表的结构。
每个节点包含数据域和指针域,指针域指向节点的左右孩子节点。
链式储存结构的实现相对灵活,适用于任意形态的二叉树,但需要额外的指针空间来存储节点的地址信息。
2.1 实现过程在链式储存结构的实现中,每个节点需要定义为一个包含数据域和指针域的结构体或类。
通过指针来连接各个节点,形成一个二叉树的结构。
在树的遍历和操作中,可以通过指针的操作来实现节点的访问和处理,具有较高的灵活性和可扩展性。
二叉树的顺序存储及基本操作
二叉树的顺序存储及基本操作二叉树的顺序存储是将树中的节点按照完全二叉树从上到下、从左到右的顺序依次存储到一个一维数组中,采用这种方式存储的二叉树也被称为完全二叉树。
一、在使用顺序存储方式时,可以使用以下公式来计算一个节点的左右子节点和父节点:
1. 左子节点:2i+1(i为父节点的在数组中的下标)
2. 右子节点:2i+2
3. 父节点:(i-1)/2(i为子节点在数组中的下标)
二、基本操作:
1. 创建二叉树:按照上述公式将节点存储到数组中。
2. 遍历二叉树:可采用递归或非递归方式,进行前序、中序、后序、层次遍历。
3. 插入节点:先将节点插入到数组末尾,然后通过比较节点和其父节点的大小,进行上浮操作直到满足二叉树的性质。
4. 删除节点:先将待删除节点和最后一个节点交换位置,然后通过比较交换后的节点和其父节点的大小,进行下沉操作直到满足二
叉树的性质。
5. 查找节点:根据节点值进行查找,可采用递归或非递归方式。
6. 修改节点:根据节点值进行查找,然后进行修改操作。
树-二叉树
信息学奥赛培训之『树——二叉树』树——二叉树为何要重点研究二叉树? 引 : 为何要重点研究二叉树 ? (1)二叉树的结构最简单,规律性最强; (2)可以证明,所有树都能转为唯一对应的二叉树,不失一般性。
一、二叉树基础1. 二叉树的定义 二叉树是一类非常重要的树形结构,它可以递归地定义如下: 二叉树 T 是有限个结点的集合,它或者是空集,或者由一个根结点以及分别称为左 子树和右子树的两棵互不相交的二叉树。
因此,二叉树的根可以有空的左子树或空的右子树,或者左、右子树均为空。
二叉树有 5 种基本形态,如图 1 所示。
图1 二叉树的 5 种基本形态在二叉树中,每个结点至多有两个儿子,并且有左、右之分。
因此任一结点的儿子 不外 4 种情况:没有儿子;只有一个左儿子;只有一个右儿子;有一个左儿子并且有一 个右儿子。
注意:二叉树与树和有序树 的区别 二叉树与度数不超过 2 的树不同,与度数不超过 2 的有序树也不同。
在有序树中,11如果将树中结点的各子树看成从左至右是有次序的,则称该树为有序树,否则称为无序树。
-1-信息学奥赛培训之『树——二叉树』虽然一个结点的儿子之间是有左右次序的,但若该结点只有一个儿子时,就无须区分其 左右次序。
而在二叉树中,即使是一个儿子也有左右之分。
例如图 2-1 中(a)和(b)是两棵 不同的二叉树。
虽然它们与图 2-2 中的普通树(作为无序树或有序树)很相似,但它们却 不能等同于这棵普通的树。
若将这 3 棵树均看作是有序树,则它们就是相同的了。
图2-1 两棵不同的二叉树图2-2 一棵普通的树由此可见,尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。
不是 ..2. 二叉树的性质图3 二叉树性质1: 在二叉树的第 i 层上至多有 2 i −1 结点(i>=1)。
性质2: 深度为 k 的二叉树至多有 2 k − 1 个结点(k>=1)。
性质3: 对任何一棵二叉树 T,如果其终端结点数为 n0,度为 2 的结点数为 n2,则 n0=n2+1。
408计算机学科专业基础综合考试大纲
408计算机学科专业基础综合考试大纲I考试性质计算机学科专业基础综合考试是为高等院校和科研院所招收计算机科学与技术学科的硕士研究生而设置的具有选拔性质的联考科目,其目的是科学、公平、有效地测试考生掌握计算机科学与技术学科大学本科阶段专业知识、基本理论、基本方法的水平和分析问题、解决问题的能力,评价的标准是高等院校计算机科学与技术学科优秀本科毕业生所能达到的及格或及格以上水平,以利于各高等院校和科研院所择优选拔,确保硕士研究生的招生质量。
II考查目标计算机学科专业基础综合考试涵盖数据结构、计算机组成原理、操作系统和计算机网络等学科专业基础课程。
要求考生比较系统地掌握上述专业基础课程的基本概念、基本原理和基本方法,能够综合运用所学的基本原理和基本方法分析、判断和解决有关理论问题和实际问题。
III考试形式和试卷结构一、试卷满分及考试时间本试卷满分为150分,考试时间为180分钟。
二、答题方式答题方式为闭卷、笔试。
三、试卷内容结构数据结构45分计算机组成原理45分操作系统35分计算机网络25分四、试卷题型结构单项选择题80分(40小题,每小题2分)综合应用题70分IV考查内容数据结构【考查目标】1.掌握数据结构的基本概念、基本原理和基本方法。
2.掌握数据的逻辑结构、存储结构及基本操作的实现,能够对算法进行基本的时间复杂度与空间复杂度的分析。
3.能够运用数据结构基本原理和方法进行问题的分析与求解,具备采用C或C++语言设计与实现算法的能力。
一、线性表(一)线性表的定义和基本操作(二)线性表的实现1.顺序存储2.链式存储3.线性表的应用二、栈、队列和数组(一)栈和队列的基本概念(二)栈和队列的顺序存储结构(三)栈和队列的链式存储结构(四)栈和队列的应用(五)特殊矩阵的压缩存储三、树与二叉树(一)树的基本概念(二)二叉树1.二叉树的定义及其主要特征2.二叉树的顺序存储结构和链式存储结构3.二叉树的遍历4.线索二叉树的基本概念和构造(三)树、森林1.树的存储结构2.森林与二叉树的转换3.树和森林的遍历(四)树与二叉树的应用1.二叉排序树2.平衡二叉树3.哈夫曼(Huffman)树和哈夫曼编码四、图(一)图的基本概念(二)图的存储及基本操作1.邻接矩阵法2.邻接表法3.邻接多重表、十字链表(三)图的遍历1.深度优先搜索2.广度优先搜索(四)图的基本应用1.最小(代价)生成树2.最短路径3.拓扑排序4.关键路径五、查找(一)查找的基本概念(二)顺序查找法(三)分块查找法(四)折半查找法(五)B树及其基本操作、B+树的基本概念(六)散列(Hash)表(七)字符串模式匹配(八)查找算法的分析及应用六、排序(一)排序的基本概念(二)插入排序1.直接插入排序2.折半插入排序(三)气泡排序(bubble sort)(四)简单选择排序(五)希尔排序(shell sort)(六)快速排序(七)堆排序(八)二路归并排序(merge sort)(九)基数排序(十)外部排序(十一)各种内部排序算法的比较(十二)排序算法的应用计算机组成原理【考查目标】1.理解单处理器计算机系统中各部件的内部工作原理、组成结构以及相互连接方式,具有完整的计算机系统的整机概念。
第6章树和二叉树
9
6.1.4 树的存储结构
3.孩子兄弟表示法 孩子兄弟表示法 在结点中设置两个指针域, 在结点中设置两个指针域,一个指针域指向该结 点的第一个孩子,另一个指针域指向其右兄弟。 点的第一个孩子,另一个指针域指向其右兄弟。
2
6.1.1树的定义 树的定义
结点的度:结点所拥有子树的个数称为结点的度。 结点的度:结点所拥有子树的个数称为结点的度。 子树 称为结点的度 树的度:树中所有结点的度的最大值称为树的度。 最大值称为树的度 树的度:树中所有结点的度的最大值称为树的度。 叶结点:度为零的结点称为叶结点。也称终端结点 终端结点或 叶结点:度为零的结点称为叶结点。也称终端结点或叶 子 分支结点:度不为零的结点称为分支结点。也称非终端 分支结点:度不为零的结点称为分支结点。也称非终端 结点。除根结点以外,分支结点也称为内部结点。 结点。除根结点以外,分支结点也称为内部结点。 孩子结点和双亲结点: 孩子结点和双亲结点:树中一个结点的子树的根结点称 为孩子结点。该结点就称为孩子结点的双亲结点。 为孩子结点。该结点就称为孩子结点的双亲结点。 兄弟结点:具有同一双亲的孩子结点互为兄弟结点。 兄弟结点:具有同一双亲的孩子结点互为兄弟结点。 结点的祖先:从根到该结点所经分支上的所有结点, 结点的祖先:从根到该结点所经分支上的所有结点,称 为结点的祖先。 为结点的祖先。
17
6.2.2 二叉树的性质
性质4 具有n( 性质 具有 (n>0)个结点的完全二叉树的深度 )个结点的完全二叉树的深度h= log 2 n + 1 证明: 证明: 根据完全二叉树的定义可知深度为h-1层及以上的结点构成 根据完全二叉树的定义可知深度为 层及以上的结点构成 满二叉树,因此由性质2得深度为 得深度为h的完全二叉树满足 满二叉树,因此由性质 得深度为 的完全二叉树满足 n>2h-1-1和n≤2h-1 和 整理后得到 2h-1≤n<2h 不等式两边取对数, 不等式两边取对数,得 h-1≤log2n<h 由于h为正整数 为正整数, 由于 为正整数,因此 h= log 2 n + 1
全国计算机等级考试二级Access知识总结
【ACCESS】全国计算机等级考试二级Access知识总结1. 算法的复杂度主要包括时间复杂度和空间复杂度。
2. 算法的时间复杂度是指执行算法所需要的计算工作量。
3. 算法的空间复杂度是指执行这个算法所需要的内存空间。
4. 一种数据的逻辑结构根据需要可以表示成多种存储结构。
而采用不同的存储结构,其数据处理的效率是不同。
5. 线性结构又称线性表,线性结构与非线性结构都可以是空的数据结构。
6. 线性表的顺序存储结构具有以下两个基本特点:①线性表中所有元素所占的存储空间是连续的;②线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。
7. 栈是一种特殊的线性表,在这种线性表的结构中,一端是封闭的,不允许进行插入与删除元素;另一端是开口的,允许插入与删除元素。
先进后出或后进先出。
8. 队列(queue)是指允许在一端进行插入、而在另一端进行删除的线性表。
后进后出或先进先出。
9. 队列的顺序存储结构一般采用循环队列的形式。
10. 元素变动频繁的大线性表不宜采用顺序存储结构,而是采用链式存储结构。
11. 在链式存储方式中,要求每个结点由两部分组成:一部分用于存放数据元素值,称为数据域;另一部分用于存放指针,称为指针域。
12. 树(tree)是一种简单的非线性结构。
属于层次模型。
13. 二叉树通常采用链式存储结构14. 二叉树的基本性质性质1在二叉树的第k层上,最多有2k-1(k≥1)个结点。
性质2深度为m的二叉树最多有2m-1个结点。
性质3在任意一棵二叉树中,度为0的结点(即叶子结点)总是比度为2的结点多一个。
15. 二叉树的遍历可以分为三种:前序遍历(中前后)、中序遍历(前中后)、后序遍历(前后中)。
16. 对于长度为n的有序线性表,在最坏情况下,二分查找只需要比较log2n次,而顺序查找需要比较n次。
17. 在最坏情况下,冒泡排序需要比较次数为n(n-1)/2。
18. 在最坏情况下,简单插入排序需要n(n-1)/2次比较。
数据结构自测题及解答
一、概念题(每空0.5分,共28分)1.树(及一切树形结构)是一种“________”结构。
在树上,________结点没有直接前趋。
对树上任一结点X来说,X是它的任一子树的根结点惟一的________。
2.由3个结点所构成的二叉树有种形态。
3.一棵深度为6的满二叉树有个分支结点和个叶子。
4.一棵具有257个结点的完全二叉树,它的深度为。
5.二叉树第i(i>=1)层上至多有______个结点;深度为k(k>=1)的二叉树至多有______个结点。
6.对任何二叉树,若度为2的节点数为n2,则叶子数n0=______。
7.满二叉树上各层的节点数已达到了二叉树可以容纳的______。
满二叉树也是______二叉树,但反之不然。
8.设一棵完全二叉树有700个结点,则共有个叶子结点。
9.设一棵完全二叉树具有1000个结点,则此完全二叉树有个叶子结点,有个度为2的结点,有个结点只有非空左子树,有个结点只有非空右子树。
10.一棵含有n个结点的k叉树,可能达到的最大深度为,最小深度为。
11.二叉树的基本组成部分是:根(N)、左子树(L)和右子树(R)。
因而二叉树的遍历次序有六种。
最常用的是三种:前序法(即按N L R次序),后序法(即按次序)和中序法(也称对称序法,即按L N R次序)。
这三种方法相互之间有关联。
若已知一棵二叉树的前序序列是BEFCGDH,中序序列是FEBGCHD,则它的后序序列必是。
12.中序遍历的递归算法平均空间复杂度为。
13.二叉树通常有______存储结构和______存储结构两类存储结构。
14.如果将一棵有n个结点的完全二叉树按层编号,则对任一编号为i(1<=i<=n)的结点X有:(1)若i=1,则结点X是______;若i〉1,则X的双亲PARENT(X)的编号为______。
(2)若2i>n,则结点X无______且无______;否则,X的左孩子LCHILD(X)的编号为______。
二叉树的存储结构
二叉树的存储结构二叉树是一种常见的数据结构,在计算机科学中被广泛应用。
它的存储结构有多种形式,包括顺序存储和链式存储。
下面将详细介绍这些存储结构。
1.顺序存储:顺序存储是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一个数组中。
对于完全二叉树来说,这种存储方式最为简单有效,可以节省空间。
但是对于一般的二叉树,由于节点的数量不固定,会浪费一定的存储空间。
具体的存储方式可以按照如下的规则进行:-对于二叉树的第i个节点(i从1开始计数),其左子节点存储在数组中的位置为2i,右子节点存储在位置为2i+1、根节点存储在位置为1、这种存储方式可以方便地根据节点的索引计算出其子节点的索引。
- 如果一些位置没有节点,则用一个特殊的标记(如null或者0)代替。
-这种存储方式要求节点按照其中一种顺序进行填充,通常采用层序遍历的方式进行填充。
-在进行节点遍历的时候,可以根据节点的索引来判断其父节点的位置,从而方便地进行遍历。
虽然顺序存储可以节省存储空间,但是在插入和删除节点时涉及到数组元素的移动,效率比较低。
2.链式存储:链式存储是通过节点之间的引用关系来实现。
每个节点包含一个数据域和两个指针域,分别指向其左子节点和右子节点。
链式存储充分利用了指针的特性,可以方便地进行插入和删除节点的操作。
同时,链式存储可以灵活地处理任意形状的二叉树,不需要事先确定节点的数量。
具体的链式存储方式有以下几种:-树的孩子兄弟表示法:每个节点包含两个指针,一个指向其第一个子节点,另一个指向其下一个兄弟节点。
这种表示方式适用于任意形状的二叉树,但是树的操作比较复杂。
-二叉链表表示法:节点包含三个指针,一个指向其左子节点,一个指向其右子节点,另一个指向其父节点。
这种表示方式适用于二叉树,可以方便地进行遍历和操作。
-线索二叉树:在二叉链表表示法的基础上,加入了线索信息。
节点的左指针指向其前驱,右指针指向其后继。
这种方式可以方便地进行中序遍历,节省了遍历时的存储开销。
自考软件基础(数据结构--树与二叉树)
B
C
D
E
F
G
H
I
J
第 5 /209页
第二节 二叉树
一、定义
南昌大学
二叉树是一种重要的树形结构,它的特点是:二叉树可以为空(节点个
数为0),任何一个节点的度都小于或等于2,并且,子树有左、右之分,
其次序不能任意颠倒。 二叉树有5种基本形态,如图10-2所示。
第 6 /209页
第二节 二叉树
南昌大学
struct node
{ datatype data; struct node *Lchild,*rchild:
};
第 15 /209页
第二节 二叉树
南昌大学
例10-5 写出图10-8a所示二叉树的链式存储结构。其链式结构如图10-8b 所示。可以看出:具有n个节点的二叉树链式存储共有2n个链,其中只 有n-1个用来存放该节点的左、右孩子,其余的n +1个指针域为空。
解:第一步:由后序遍历结果确定整个二叉树根为A,由中序结果确定
A的左、右子树。 后序遍历结果: 中序遍历结果:
第 24 /209页
第三节 二叉树的遍历
第二步:确定A的左子树。 1)后序遍历结果:
南昌大学
中序遍历结果:
2)确定B的右子树: ①后序遍历结果:
第 25 /209页
第三节 二叉树的遍历
②中序遍历结果:
南昌大学
第 9 /209页
第二节 二叉树
下面介绍两种特殊的二叉树。
南昌大学
(1) 满二叉树指深度为k,且有2k-1个节点的二叉树。或者说除叶子节点外,
其它节点的度都为2的二叉树。
(2) 完全二叉树一个满二叉树的最下层从右向左连续缺少n (n>=0)个节点 的二叉树。 图10-3为满二叉树和完全二叉树示例。
数据结构实验报告-树(二叉树)
实验5:树(二叉树)(采用二叉链表存储)一、实验项目名称二叉树及其应用二、实验目的熟悉二叉树的存储结构的特性以及二叉树的基本操作。
三、实验基本原理之前我们都是学习的线性结构,这次我们就开始学习非线性结构——树。
线性结构中结点间具有唯一前驱、唯一后继关系,而非线性结构中结点的前驱、后继的关系并不具有唯一性。
在树结构中,节点间关系是前驱唯一而后继不唯一,即结点之间是一对多的关系。
直观地看,树结构是具有分支关系的结构(其分叉、分层的特征类似于自然界中的树)。
四、主要仪器设备及耗材Window 11、Dev-C++5.11五、实验步骤1.导入库和预定义2.创建二叉树3.前序遍历4.中序遍历5.后序遍历6.总结点数7.叶子节点数8.树的深度9.树根到叶子的最长路径10.交换所有节点的左右子女11.顺序存储12.显示顺序存储13.测试函数和主函数对二叉树的每一个操作写测试函数,然后在主函数用while+switch-case的方式实现一个带菜单的简易测试程序,代码见“实验完整代码”。
实验完整代码:#include <bits/stdc++.h>using namespace std;#define MAX_TREE_SIZE 100typedef char ElemType;ElemType SqBiTree[MAX_TREE_SIZE];struct BiTNode{ElemType data;BiTNode *l,*r;}*T;void createBiTree(BiTNode *&T){ElemType e;e = getchar();if(e == '\n')return;else if(e == ' ')T = NULL;else{if(!(T = (BiTNode *)malloc(sizeof (BiTNode)))){cout << "内存分配错误!" << endl;exit(0);}T->data = e;createBiTree(T->l);createBiTree(T->r);}}void createBiTree2(BiTNode *T,int u) {if(T){SqBiTree[u] = T->data;createBiTree2(T->l,2 * u + 1);createBiTree2(T->r,2 * u + 2); }}void outputBiTree2(int n){int cnt = 0;for(int i = 0;cnt <= n;i++){cout << SqBiTree[i];if(SqBiTree[i] != ' ')cnt ++;}cout << endl;}void preOrderTraverse(BiTNode *T) {if(T){cout << T->data;preOrderTraverse(T->l);preOrderTraverse(T->r);}}void inOrderTraverse(BiTNode *T) {if(T){inOrderTraverse(T->l);cout << T->data;inOrderTraverse(T->r);}}void beOrderTraverse(BiTNode *T){if(T){beOrderTraverse(T->l);beOrderTraverse(T->r);cout << T->data;}}int sumOfVer(BiTNode *T){if(!T)return 0;return sumOfVer(T->l) + sumOfVer(T->r) + 1;}int sumOfLeaf(BiTNode *T){if(!T)return 0;if(T->l == NULL && T->r == NULL)return 1;return sumOfLeaf(T->l) + sumOfLeaf(T->r);}int depth(BiTNode *T){if(!T)return 0;return max(depth(T->l),depth(T->r)) + 1;}bool LongestPath(int dist,int dist2,vector<ElemType> &ne,BiTNode *T) {if(!T)return false;if(dist2 == dist)return true;if(LongestPath(dist,dist2 + 1,ne,T->l)){ne.push_back(T->l->data);return true;}else if(LongestPath(dist,dist2 + 1,ne,T->r)){ne.push_back(T->r->data);return true;}return false;}void swapVer(BiTNode *&T){if(T){swapVer(T->l);swapVer(T->r);BiTNode *tmp = T->l;T->l = T->r;T->r = tmp;}}//以下是测试程序void test1(){getchar();cout << "请以先序次序输入二叉树结点的值,空结点用空格表示:" << endl; createBiTree(T);cout << "二叉树创建成功!" << endl;}void test2(){cout << "二叉树的前序遍历为:" << endl;preOrderTraverse(T);cout << endl;}void test3(){cout << "二叉树的中序遍历为:" << endl;inOrderTraverse(T);cout << endl;}void test4(){cout << "二叉树的后序遍历为:" << endl;beOrderTraverse(T);cout << endl;}void test5(){cout << "二叉树的总结点数为:" << sumOfVer(T) << endl;}void test6(){cout << "二叉树的叶子结点数为:" << sumOfLeaf(T) << endl; }void test7(){cout << "二叉树的深度为:" << depth(T) << endl;}void test8(){int dist = depth(T);vector<ElemType> ne;cout << "树根到叶子的最长路径:" << endl;LongestPath(dist,1,ne,T);ne.push_back(T->data);reverse(ne.begin(),ne.end());cout << ne[0];for(int i = 1;i < ne.size();i++)cout << "->" << ne[i];cout << endl;}void test9(){swapVer(T);cout << "操作成功!" << endl;}void test10(){memset(SqBiTree,' ',sizeof SqBiTree);createBiTree2(T,0);cout << "操作成功!" << endl;}void test11(){int n = sumOfVer(T);outputBiTree2(n);}int main(){int op = 0;while(op != 12){cout << "-----------------menu--------------------" << endl;cout << "--------------1:创建二叉树--------------" << endl;cout << "--------------2:前序遍历----------------" << endl;cout << "--------------3:中序遍历----------------" << endl;cout << "--------------4:后序遍历----------------" << endl;cout << "--------------5:总结点数----------------" << endl;cout << "--------------6:叶子节点数--------------" << endl;cout << "--------------7:树的深度----------------" << endl;cout << "--------------8:树根到叶子的最长路径----" << endl;cout << "--------------9:交换所有节点左右子女----" << endl;cout << "--------------10:顺序存储---------------" << endl;cout << "--------------11:显示顺序存储-----------" << endl;cout << "--------------12:退出测试程序-----------" << endl;cout << "请输入指令编号:" << endl;if(!(cin >> op)){cin.clear();cin.ignore(INT_MAX,'\n');cout << "请输入整数!" << endl;continue;}switch(op){case 1:test1();break;case 2:test2();break;case 3:test3();break;case 4:test4();break;case 5:test5();break;case 6:test6();break;case 7:test7();break;case 8:test8();break;case 9:test9();break;case 10:test10();break;case 11:test11();break;case 12:cout << "测试结束!" << endl;break;default:cout << "请输入正确的指令编号!" << endl;}}return 0;}六、实验数据及处理结果测试用例:1.创建二叉树(二叉链表形式)2.前序遍历3.中序遍历4.后序遍历5.总结点数6.叶子结点数7.树的深度8.树根到叶子的最长路径9.交换所有左右子女10.顺序存储七、思考讨论题或体会或对改进实验的建议通过这次实验,我掌握了二叉树的顺序存储和链式存储,体会了二叉树的存储结构的特性,掌握了二叉树的树上相关操作。
二叉树
6-2-2 二叉树的基本操作与存储实现
1、二叉树的基本操作 Initiate(bt)
Create(x, lbt, rbt)
InsertL(bt, x, parent) InsertR(bt, x, parent) DeleteL(bt,parent) DeleteR(bt,parent)
Search(bt,x)
BiTree DeleteL(BiTree bt, BiTree parent){ BiTree p; if(parent==NULL||parent->lchild==NULL){ cout<<“删除出错”<<endl; return NULL; } p=parent->lchild; parent->lchild =NULL; delete p; return bt ; }
a b c e 0 1 2 3 4 5 a b c d e ^ 6 7 8 9 10 ^ ^ ^ f g
d
f
g
特点:结点间关系蕴含在其存储位置中。浪费空间, 适于存满二叉树和完全二叉树。
二、链式存储结构 1、二叉链表存储法
A
B C E G D B A ^
lchild data rchild
F
^ C ^ typedef struct BiTNode { DataType data; struct BiTNode *lchild, *rchild; }BiTNode, *BiTree; ^ E
二叉树的五种基本形态
A
A
A B
A
B 空二叉树
B
C 左、右子树 均非空
只有根结点 的二叉树
右子树为空
左子树为空
数据结构第六章:树和二叉树
性质2:深度为 的二叉树至多有 个结点(k≥ 性质 :深度为k的二叉树至多有2 k 1 个结点 ≥1)
证明:由性质 ,可得深度为k 证明:由性质1,可得深度为 的二叉树最大结点数是
(第i层的最大结点数 ) = ∑ 2 i 1 = 2 k 1 ∑
i =1 i =1
k
k
10
性质3:对任何一棵二叉树 ,如果其终端结点数(即 性质 :对任何一棵二叉树T,如果其终端结点数 即 叶节点)为 度为2的结点数为 的结点数为n 叶节点 为n0,度为 的结点数为 2,则n0=n2+1 证明: 为二叉树 中度为1的结点数 为二叉树T中度为 证明:n1为二叉树 中度为 的结点数 因为:二叉树中所有结点的度均小于或等于2 因为:二叉树中所有结点的度均小于或等于 所以:其结点总数n=n0+n1+n2 所以:其结点总数 又二叉树中,除根结点外, 又二叉树中,除根结点外,其余结点都只有一个 分支进入; 分支进入; 为分支总数, 设B为分支总数,则n=B+1 为分支总数 又:分支由度为1和度为 的结点射出,∴B=n1+2n2 分支由度为 和度为2的结点射出, 和度为 的结点射出 于是, 于是,n=B+1=n1+2n2+1=n0+n1+n2 ∴n0=n2+1
7
结点A的度:3 结点 的度: 的度 结点B的度:2 结点 的度: 的度 结点M的度:0 结点 的度: 的度 结点A的孩子: , , 结点 的孩子:B,C,D 的孩子 结点B的孩子 的孩子: , 结点 的孩子:E,F 树的度: 树的度:3 E K 结点A的层次: 结点 的层次:1 的层次 结点M的层次 的层次: 结点 的层次:4 L B F A C G H M
2022秋学期数据结构-期未复习(成人2022)-参考答案
2022秋学期数据结构-期未复习(成人2022)-参考答案一.判断题。
1.具有相同逻辑结构的数据可以采用不同的存储结构。
()2.算法分析的前提是算法的时空效率高。
()3.程序设计框图就是一种图形化的算法。
()4.线性表的顺序存储结构要比链式存储结构节省存储空间。
()5.任何一个链表都可以根据需要设置一个头结点。
()6.在长度为n的顺序表的第i 个位置插入一个数据元素,i的合法值为1<=i<=n.()7.双向链表的头结点指针要比线性链表的头结点指针占用更多的存储空间。
()8.n个元素进队列的顺序一定与它们出队列的顺序相同。
()9.n个元素进栈的顺序与它们出栈的顺序一定是相反的。
()10.采用循环链表作为存储结构的队列称为循环队列。
()11.在树型结构中,每一个结点都有而且只有一个前驱结点。
()12.在度为k的树中,每个结点最多有k-1个兄弟结点。
()13.二叉树就是度为2的有序树是二叉树。
()14.在结点数目一定的前提下,各种形态的二叉树中,完全二叉树具有最小深度。
()15.由二叉树的任何两种遍历序列都可以唯一确定一棵二叉树。
()16.在哈夫曼树中,权值相同的叶结点都在同一层上。
()17.分块索引查找的效率与文件中的记录被分成多少块有关。
()18.在利用线性探测法处理冲突的哈希表中,哈希函数值相同的关键字总是存放在一片地址连续的存储单元中。
()19.在序列中各元素已经基本有序的情况下,采用快速排序方法的时间效率最高。
()20.在各类方法中,简单排序的辅助空间都是1,而先进排序方法辅助空间都比较大。
()二.填空1.一般情况下,算法独立于具体的_计算机_,与具体的程序设计语言_无关。
2.数据结构中的算法,通常采用最坏时间复杂度和____________两种方法衡量其效率。
(平均时间复杂度)3.算法分析的前提是算法的__________。
(正确性)4.在一个长度为n的顺序表中插入第i个元素时,需移动________个元素。
数据结构 第六章-树
20
A B C D
E
F
G H
I J
A
E F H
G
B C
D A
I J
A
B C F
E H
G
B C D F
E G H I J
21
I
D
J
5. 二叉树转换成树和森林
二叉树转换成树 1. 加线:若p结点是双亲结点的左孩子,则将p的右孩 子,右孩子的右孩子,……沿分支找到的所有右孩 子,都与p的双亲用线连起来 2. 抹线:抹掉原二叉树中双亲与右孩子之间的连线 3. 调整:将结点按层次排列,形成树结构7Fra bibliotek6.3.2
树和森林的存储结构
树的存储结构有很多,既可以采用顺序存储结构, 也可以采用链式存储结构。但无论采用哪种存储方式, 都要求存储结构不仅能存储各结点本身的数据信息,还 要能惟一地反映树中各结点之间的逻辑关系。 双亲表示法 孩子链表表示法 孩子兄弟表示法
8
1.双亲表示法 除根外,树中的每个结点都有惟一的一个双亲结点,所以可以用一 组连续的存储空间存储树中的各结点。一个元素表示树中一个结点, 包含树结点本身的信息及结点的双亲结点的位臵。 A B E F C G H D I
}CTBox;
//树结构 typedef struct {CTBox nodes[MAX_TREE_SIZE]; int n, r; }Ctree
12
3. 孩子-兄弟表示法(树的二叉链表)
孩子兄弟表示法用二叉链表作为树的存储结构。将树中的多支关系用 二叉链表的双支关系体现。 ※ 结点的左指针指向它的第一个孩子结点
//孩子结点结构 typedef struct CTNode
1 2 3 4 5 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 1 2 6
1.顺序存储结构
2.链式存储结构
一、深度优先遍历 1.先序遍历 2.中序遍历 3.后序遍历 二、广度优先遍历
left
ltag
data
rtag
right
树的存储: 1.双亲表示法 2.孩子表示法 3.孩子兄弟表示法
1.一般树转换为二叉树 2.森林转换为二叉树 3.二叉树还原为一般树 4.二叉树还原为森林
定义
每个结点至多有两颗子树(即二叉树不存在度大 于2的结点),并且二叉树的子树有左右之分,其 次序不能任意颠倒,即如果将其左右字数颠倒, 就成为另一颗不同的二叉树。
满二叉树: 在一棵二叉树中所有分支结点都同时具有左孩子和右 孩子,并且所有叶子结点都在同一层上。
完全二叉树
完全二叉树只允许树的最后一层出现空结点,且最下 层的叶子结点集中在树的左部。
解决这类问题的关键在于利用倒推的方法推出原来牌的顺序。假设桌上摆 着13个空盒子,编 号为1至13,将黑桃A放入第一个盒子中,从下一个空盒 子开始对空盒子计数,当数到第二个空盒子时,将黑桃2放入空盒子中,然 后再从下一个空盒子开始对空盒子计数。顺序放入3,4,5等,直到全部放 入13张牌,注意在计数时要跳过非空的盒子,只对空盒子计数,最后得到 的牌在盒子中的顺序,就是魔术师手中原来牌的顺序。 计算机就是模拟 这种行之有效的倒推方法的。
在一次晚会上,一位魔术师掏出一叠扑克牌,取出其中13张黑 桃,预先洗好后,把牌面朝下,对观众说:“我不看牌,只数 一数就能知道每张牌是什么?”魔术师口中念一,将第一张牌 翻过来看正好是A;魔术师将黑桃A放到桌上,继续数手里的 余牌,第二次数1,2,将第一张牌放到这叠牌的下面,将第二 张牌翻开,正好是黑桃2,也把它放在桌子上。第三次数1,2, 3,前面二张牌放到这叠牌的下面,取出第三张牌,正好是黑 桃3,这样依次将13张牌翻出,准确无误。现在的问题是,魔 术师手中牌的原始顺序是怎样的?
欢迎访问我们的官方网站
北风网项目培训
数据结构与算法
(C#版本)
ቤተ መጻሕፍቲ ባይዱ第五讲 树
讲师:灰客
一、树的定义 树是n(n>=0)个结点的有限集。 二、空树 三、树的表示 1.树形表示法 2.括号表示法 3.文氏表示法 4.凹入表示法
树的基本术语 树的结点、结点的度、树的度、叶子或终端结点、非 终端节点或分支节点、孩子 和双亲、兄弟、祖先和子 孙、层数和堂兄弟、树的深度、有序树、无序树、森林