一款适合自制采用普通电源变压器的MOS场效应管逆变器制作全过程
从原理图到实物,手把手教你制作一个逆变器
从原理图到实物,手把手教你制作一个逆变器这次我们采用了功率较大的三极管2N3055,而电阻只用了两个,且最好电阻的功率选大一点,这样电路的输出功率也会相应地增加……在之前我们发布过一些关于逆变器的文章都只是理论讲解很少去实践,其中一个很重要的原因就是没有材料,但也很想为大家去检测一下电路的可行性,自己动手制作成功的那个心情是买多少成品都无法比拟的,我们这次制作的主题仍然是怎么简单怎么来,这个电路经过改善已经测试成功,文章也会把测试结果分享给大家。
逆变器原理图上图是我们的逆变器原理图,这次我们采用了功率较大的三极管2N3055,而电阻只用了两个,且最好电阻的功率选大一点,这样电路的输出功率也会相应地增加,上图中用的是1W的400欧姆电阻,如果没有1W的也没关系,现在用到的最多的是1/4W的电阻,只要选择四个电阻并联大约是400Ω就可以了。
上图是不太容易见到的两个元件,第一张图片是带轴头的变压器,这里使用的变压器功率是10W,功率较小几乎驱动不了什么负载,大家做出来之后可以用LED灯去测试。
很多朋友想知道工作原理,这其实就是一个震荡电路,就是把直流电变成交流电,然后通过变压器升压变成220V,然后在输出端接上用电器即可,不过就这几个元件做出来的逆变器,输出波形肯定没有电网标准,但驱动电灯泡是足够的。
这是款12V的电源,输出功率可以达到65W,如果大家家里有更大功率的太阳能板或电源的话,可以直接使用,不过要注意电压需是12V,找到这些元件之后就可以连接电路了。
逆变器实际连接上图是实际连接电路图,大家可以看到电阻是用四个1/4W的电阻并联组成的,但是由于这款变压器的功率较低,这四个元件并联也属于大材小用,照着原理图把元件进行电气连接,最后检查无误后即可通电,但一定要注意,输出端电压已经超过人的安全电压,操作时要做好安全措施。
测试电路可行性在这里小编用万用表演示测试,是由于没有合适的用电器,且变压器的功率较低驱动不了大功率电器,所以用万用表代替用电器,测试输出电压。
MOS场效应管逆变器自制
MOS场效应管逆变器自制这里介绍的逆变器(见图1)主要由MOS场效应管。
该变压器的工作原理及制作过程:图1工作原理一、方波的产生这里采用CD4069构成方波信号发生器。
电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。
电路的震荡是通过电容C1充放电完成的。
其振荡频率为f=1/2.2RC。
图示电路的最大频率为:fmax=1/,最小频率为fmin=1/,实际值会略有差异。
其它多余的发相器,输入端接地避免影响其它电路。
图2二、场效应管驱动电路由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。
如图3所示。
图3三、场效应管电源开关电路场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS场效应管的工作原理。
MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。
它一般有耗尽型和增强型两种。
本文使用的是增强型MOS场效应管,其内部结构见图4。
它可分为NPN型和PNP型。
NPN型通常称为N沟道型,PNP型通常称P 沟道型。
由图可看出,对于N沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。
我们知道一般三极管是由输入的电流控制输出的电流。
但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。
图4为解释MOS场效应管的工作原理,我们先了解一下仅含一个P—N结的二极管的工作过程。
如图5所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。
这是因在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。
mos场效应管制作工艺的基本步骤
mos场效应管制作工艺的基本步骤
MOS场效应管的制作工艺基本步骤如下:
1. 衬底制备:选择合适的衬底材料,通常使用硅衬底。
对衬底进行清洗和平整化处理,以获得平整的表面。
2. 氧化层形成:在衬底上形成一层氧化层,可以使用湿氧化或干氧化等方法。
氧化层的厚度决定了MOS管的电性能。
3. 掩膜制备:使用光刻技术,在氧化层上涂覆一层光刻胶,并通过曝光和显影的步骤形成掩膜图案。
掩膜图案决定了MOS管的结构。
4. 离子注入:通过离子注入装置,将掺杂材料注入到衬底中,形成源极、漏极和栅极区域。
掺杂材料的选择和注入条件决定了MOS管的导电性能。
5. 退火处理:对衬底进行退火处理,以消除离子注入过程中产生的应力和缺陷。
6. 金属电极制备:使用蒸镀或溅射等方法,在MOS结构上形成金属电极,连接源极、漏极和栅极。
7. 清洗和测试:对制作完成的MOS管进行清洗和测试,以确保电性能和质量符合要求。
以上是MOS场效应管制作工艺的基本步骤,整个过程需要精密的设
备和技术,以确保制作出高性能的MOS管。
手把手教你做小型逆变器
手把手教你做小型逆变器[导读]我在这里教大家做的逆变器,和一般的逆变器不一样,这个逆变器是高频逆变器,一般用于驱动几百瓦的灯泡,能够轻易满足户外照明的用途。
逆变器想要大功率就要用IGBT,我这里主要关键词:ZVS逆变器场效应管逆变器(inverter)是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ正弦或方波)。
应急电源,一般是把直流电瓶逆变成220V交流的。
通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。
至于我在这里教大家做的逆变器,和一般的逆变器不一样,这个逆变器是高频逆变器,一般用于驱动几百瓦的灯泡,能够轻易满足户外照明的用途。
逆变器想要大功率就要用IGBT,我这里主要讲的是用场效应管做逆变器。
嗯,为什么不用三极管,而用场效应管呢?原因就是:(1)场效应管是电压控制器件,它通过VGS来控制ID;(2)场效应管的输入端电流极小,因此它的输入电阻很大。
(3)它是利用多数载流子导电,因此它的温度稳定性较好;(4)它组成的放大电路的电压放大系数要小于三极管组成放大电路的电压放大系数;(5)场效应管的抗辐射能力强;(6)由于不存在杂乱运动的少子扩散引起的散粒噪声,所以噪声低。
而且今天教大家做的逆变器,不能用三极管做,只能用场效应管或IGBT。
这个逆变电路就是大家熟悉的ZVS(软开关电路)如下图。
这个电路特别在高效率,深受电子爱好者的称赞,原因是场效应管发热很少,几乎不发热。
原因就是软开关,至于ZVS就不多说了。
准备以下零件:10K 1/4W 电阻 X2470欧 3W电阻 X21N4007二极管 X212V稳压管 X21200V 0.3μ电磁炉电容 X2磁环(电脑电源上有得拆) X11MM漆包线 1米1.2M漆包线数米接线端子2P(脚距5mm) 3个接线端子3P(脚距5mm) 2个零件如下图。
然后发给布线图,免得一些人迷惘不懂怎么布线。
然后开始制作,先焊接好接线端子。
irfz44n场效应管制作逆变器
irfz44n场效应管制作逆变器制作逆变器需要一定的电子电路设计和电气工程知识,同时需要谨慎处理电路和高电压设备,以确保安全性。
以下是使用IRFZ44N场效应管制作逆变器的一般步骤,但请注意,这仅供参考,具体设计和制作逆变器的电路需要根据具体要求进行调整:材料和元件:1.IRFZ44N场效应管(MOSFET):用于开关电流。
2.驱动电路:控制MOSFET的开关。
3.电感和电容:用于构建逆变器的LC滤波电路。
4.稳压器和电源:提供逆变器所需的电源电压。
制作步骤:1.设计逆变器电路:根据所需的输出波形和频率,设计适当的逆变器电路。
通常,逆变器电路包括驱动电路、MOSFET开关电路和输出LC滤波电路。
2.选择适当的元件:根据电路设计,选择合适功率和电压等级的IRFZ44N场效应管、电感、电容等元件。
3.绘制电路图:使用电路设计软件或纸笔绘制逆变器的电路图,包括连接MOSFET的驱动电路、输出电路和稳压电路。
4.制作电路板:根据电路图制作电路板,确保连接正确,避免电路中的短路和开路。
5.焊接元件:将选定的元件焊接到电路板上,确保焊点牢固而没有冷焊。
6.连接电源:连接电源,确保电源的电压和电流符合逆变器的要求。
7.测试和调试:运行逆变器,并使用示波器或多用途仪器检查输出波形。
调整电路以确保所需的逆变器性能。
8.安全考虑:在操作逆变器时,确保符合相关的安全标准。
避免触及高电压部分,使用绝缘手套和安全设备。
请注意,逆变器设计和制作需要一定的专业知识和技能。
如果您不熟悉这方面的工作,请寻求专业帮助,或者考虑购买商业上已经生产的逆变器。
安全第一,不当的操作可能会导致电击和设备损坏。
逆变器制作方法
逆变器制作方法逆变器是一种将直流电转换为交流电的电气设备,广泛应用于太阳能发电系统、风力发电系统、电动汽车和UPS电源等领域。
本文将介绍逆变器的制作方法,帮助您了解逆变器的工作原理和制作流程。
首先,我们需要准备以下材料和工具:1. 电子元件,MOS管、电容、电感、二极管等;2. 电路板,单层或双层电路板;3. 焊接工具,焊锡、焊台、焊接笔等;4. 测试工具,示波器、万用表等。
接下来,我们将按照以下步骤制作逆变器:1. 设计电路图,根据逆变器的功率和输出电压,设计逆变器的电路图。
电路图包括输入端的整流电路和输出端的逆变电路,通过合理的电路设计可以提高逆变器的效率和稳定性。
2. 制作电路板,根据设计的电路图,将电子元件焊接到电路板上。
注意保持焊接点的良好连接,避免出现焊接虚焊和短路现象。
3. 调试电路,将制作好的逆变器连接到电源和负载上,使用测试工具对逆变器进行调试。
通过调试可以检验逆变器的工作状态和输出波形,发现并解决电路中的问题。
4. 优化逆变器,根据调试结果对逆变器进行优化,可以调整电路参数和更换电子元件,以提高逆变器的性能和可靠性。
在制作逆变器的过程中,需要特别注意电路的安全性和稳定性,避免出现短路、过载和过压等问题。
另外,还需要对逆变器进行严格的测试和验收,确保逆变器符合相关的电气安全标准和技术要求。
总之,逆变器是一种重要的电气设备,制作逆变器需要一定的电路设计和焊接技术。
通过本文的介绍,相信您已经对逆变器的制作方法有了初步的了解,希望能够帮助您更好地掌握逆变器的制作技术,为相关领域的应用提供更多的可能性。
逆变器制作方法
逆变器制作方法步骤如下:一、主要部件的制作和采购1.S PWM主芯片2.主变压器主变压器是制作逆变器成功与否的关健,本机主变用的磁芯为EE55,材质PC40,我在杭州电子市场买到了一种质量很好的骨架,立式的,脚位11加11,脚粗1.2MM。
绕制数据:初级2T加2T,用10根0.93的线。
初级导线总面积为6.8平方MM,次级为0.93线一根,绕60T。
二、绕前准备先准备骨架,把骨架上22个引脚,剪去4个,下面红圈处就是表示已经剪去的脚。
上面二个独立的脚是高压绕组用的,远离下面的脚有利于绝缘,中间及下面的脚是低压绕组用的,左边是一个绕组2圈,右边是另一个绕组2圈。
三、绕制步骤A),先绕二分之一的高压绕组(次级),先在骨架上用高温胶带粘一层,这样做是为了防止导线打滑,用一根0.93线绕一层,约30圈(注意的是,高压绕组的线头要做好绝缘,我是套进一小段热缩套管,用打火机烤一下,就紧紧包在线头上了),再用胶带固定住线头,不要让它散出来,并在高压绕组的外面用高温胶带包三层。
B),下面就可以绕低压绕组了(初级),低压绕组分成二层绕,也就是每一层是2加2,用5根线并绕。
C),再继续绕高压绕组,绕完另外的30圈,要注意的是,这30圈要和里面的30圈绕向相同,这点很关健。
如果一层绕不下,就把剩下几圈再绕一层。
D),绕完高压绕组后,在外面用高温胶带包三层,就把低压绕组原先留在上面的线头折下来,准备焊在骨架的脚上。
去漆可以用脱漆剂,用棉签沾一点脱漆剂,抹在线头上,过一会儿,漆就掉下来了,就可以焊了。
D),再后在整个绕组的外面包几层高温胶带,尧好的线包外观要饱满平整。
E),现在可以插磁芯了,插磁芯之前要对磁芯的对接面做清洁处理,我是用胶带粘几下,把磁芯对接面的粉末全清洁干净,插入磁芯,用胶带扎紧,有条件的话对磁芯对接处用胶水做固定。
四、AC输出滤波磁环磁环是采用直径40MM的铁硅铝磁环,用1.18的线,在上面穿绕90圈,线长约4.5米,如果用导磁率为125的磁环,电感量大约在1.5mH,用导磁度为90的磁环,电感量大约在1mH左右。
逆变器制作全过程(新手必看)
逆变器制作全过程(新手必看)该机具有以下特点:1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。
2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB厂家的)。
3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你要什么有什么。
如果PCB没有做错,如果元器件没有问题,如果你对逆变器有一定的基础,我保证你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。
4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。
下面是样机的照片和工作波形:一、电路原理:该逆变器分为四大部分,每一部分做一块PCB板。
分别是“功率主板”;“SPWM驱动板”;“DC-DC驱动板”;“保护板”。
1.功率主板:功率主板包括了DC-DC推挽升压和H桥逆变两大部分。
该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到位,一对就可以输出600W,也可以用IRFP2907Z,输出能力差不多,价格也差不多。
主变压器用了EE55的磁芯,其实,就600W而言,用EE42也足够了,我是为了绕制方便,加上EE55是现存有的,就用了EE55。
关于主变压器的绕制,下面再详细介绍。
前级推挽部分的供电采用对称平衡方式,这样做有二个好处,一是可以保证大电流时的二个功率管工作状态的对称性,保证不会出现单边发热现象;二是可以减少PCB反面堆锡层的电流密度,当然,也可以大大减小因为电流不平衡引起的干扰。
irfz44n场效应管制作逆变器
irfz44n场效应管制作逆变器场效应管(MOSFET)是一种广泛应用于电子电路的半导体器件,其原理是利用栅极电压控制漏极电流。
在众多应用中,场效应管逆变器是一种常见的电源转换装置,可以将直流电源转换为交流电源。
接下来,我们将详细介绍如何制作一款场效应管逆变器,并对其进行测试与优化。
一、了解场效应管(MOSFET)的基本原理场效应管(MOSFET)由四个区域组成:源极(Source)、漏极(Drain)、栅极(Gate)和衬底(Substrate)。
在操作过程中,栅极电压控制着漏极电流,从而实现信号放大和开关功能。
二、制作逆变器所需的材料和工具1.场效应管(MOSFET)2.电容器3.电感器4.变压器5.整流二极管6.开关7.电阻器8.电位器9.电源10.线缆11.钳子12.焊锡和焊接工具13.镊子14.示波器(可选)三、逆变器制作过程详解1.按照电路图布局元件,将场效应管、电容器、电感器、变压器、整流二极管等元件连接在一起。
2.使用钳子和焊接工具,将元件焊接在印刷电路板上。
3.连接电源输入和输出线,注意遵循安全规范。
4.组装完成后,检查电路板上的元件连接是否正确,避免短路和故障。
5.给逆变器通电,观察电路板上的指示灯是否亮起。
若未亮起,检查电路连接是否正确。
6.使用示波器监测输出电压,调整电位器以获得合适的电压输出。
四、测试与优化逆变器性能1.使用示波器测试逆变器的输出电压、频率等参数,确保符合设计要求。
2.负载测试,观察输出电压是否稳定。
3.短时过载测试,检查逆变器是否能承受额定功率以上的负载。
4.优化电位器设置,使输出电压更稳定。
五、结论与展望通过以上步骤,我们成功制作了一款场效应管逆变器。
在实际应用中,场效应管逆变器具有较高的效率和稳定性,可广泛应用于各种电源转换场景。
逆变器的制作方法
逆变器的制作方法逆变器是一种将直流电转换为交流电的电子设备,广泛应用于太阳能发电系统、汽车电子设备等领域。
本文将介绍逆变器的制作方法。
逆变器的制作需要以下材料和工具:逆变器电路板、电子元件(如IGBT、电容器、电感器等)、焊锡工具、印刷电路板加工工具、电镀池、测试设备等。
制作逆变器的步骤如下:1. 设计电路图:根据逆变器的输入和输出要求,设计逆变器的电路图。
电路图应包括直流输入端、交流输出端、控制电路等部分。
2. 制作印刷电路板:将电路图转化为印刷电路板(PCB)设计文件,并使用印刷电路板加工工具将设计文件印制到铜板上。
然后使用电镀池将印制好的铜板进行电镀,形成电路连接。
3. 安装电子元件:在制作好的印刷电路板上安装电子元件。
首先将电子元件按照电路图的布局放置在印刷电路板上,然后使用焊锡工具将电子元件焊接到印刷电路板上。
根据需要,可以添加散热片、风扇等散热组件。
4. 连接输入输出端口:将直流输入端和交流输出端与逆变器的电路板连接。
通常直流输入端连接电池组或太阳能电池组,交流输出端连接需要供电的设备。
5. 连接控制电路:逆变器通常配有控制电路,用于监测输入和输出电流、电压以及保护逆变器的正常工作。
将控制电路与逆变器电路板连接,并设置合适的控制参数。
6. 进行初步测试:完成逆变器的装配后,进行初步的功能测试。
包括检查输入输出端的电流电压是否符合要求,是否能够正常转换电能。
7. 进行细致调试:根据初步测试的结果,对逆变器进行细致调试。
通过调整控制参数,进一步优化逆变器的性能,确保逆变器能够稳定可靠地工作。
8. 进行长时间负载测试:将逆变器连接到负载设备后,进行长时间的负载测试。
在负载测试中,检查逆变器的工作温度、电流电压波动情况,以及输出电压、频率是否稳定。
9. 进行安全性能测试:进行安全性能测试,包括过载保护、短路保护、过温保护等测试。
确保逆变器在异常情况下能够及时断电保护。
10. 进行环境适应性测试:在不同的环境条件下进行逆变器的测试,包括高温、低温、潮湿等条件。
简易逆变器制作方法
简易逆变器制作方法简介逆变器是一种电子器件,能够将直流电转换为交流电。
它在许多应用中都有广泛的用途,包括太阳能发电系统、逆变焊机等。
本文将介绍一种简易逆变器的制作方法,帮助初学者了解逆变器的原理,并通过实践制作出一个简单的逆变器电路。
材料准备在制作逆变器之前,我们需要准备以下材料和工具:•NPN功率晶体管(例如2N3055)•PNP功率晶体管(例如2N2955)•12V大电容(例如10000μF)•12-0-12V变压器•电阻(例如2.2Ω和10Ω)•电容(例如0.1μF)•电路板•钳子•锡焊工具•打孔器•导线•万用表制作步骤步骤1:准备电路板首先,我们需要准备一个电路板来制作我们的逆变器电路。
用打孔器将电路板打孔,以适应所需的元件,并确保电路板上没有导电物质。
步骤2:焊接元件将逆变器电路的元件焊接到电路板上。
首先,将功率晶体管和电容焊接到电路板上。
确保焊接良好,不要出现虚焊或短路现象。
步骤3:连接变压器将12-0-12V变压器连接到逆变器电路的输入端。
确保正确连接变压器的输入和输出。
步骤4:连接电阻和电容连接2.2Ω电阻和10Ω电阻,并将它们连接到逆变器电路的合适位置。
然后,连接0.1μF电容到逆变器电路上。
步骤5:连接输出端将逆变器电路的输出端连接到负载上,如灯泡或电器设备。
确保逆变器电路和负载正确连接,避免短路或过载。
步骤6:测试逆变器使用万用表测试逆变器电路的输出电压和电流。
确保逆变器电路正常工作且输出稳定。
注意事项在制作逆变器的过程中,应注意以下事项:•操作安全:在制作逆变器时,务必注意电流和电压的安全。
避免触摸裸露的导线和元件,以免触电。
•保护电路:在逆变器电路中使用适当的保护措施,例如保险丝或电流限制器,以防止电流过载和短路。
•负载选型:根据逆变器电路的功率和负载的要求,选择适当的负载设备。
确保负载设备的额定功率与逆变器电路能力相匹配。
•及时排查故障:如果逆变器电路不正常工作或输出不稳定,及时排查故障,检查元件的连接和焊接是否良好,并查找其他可能的故障原因。
适合采用普通电源变压器的自制MOS场效应管逆变器
适合采用普通电源变压器的自制MOS场效应管逆变器
这里介绍的逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。
其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。
下面介绍该变压器的工作原理及制作过程。
图1
工作原理
一、方波的产生
这里采用CD4069构成方波信号发生器。
电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。
电路的震荡是通过电容C1充放电完成的。
其振荡频率为f=1/2.2RC。
图示电路的最大频率为:
fmax=1/2.2x103x2.2x10—6=62.6Hz,最小频率为
fmin=1/2.2x4.3x103x2.2x10—6=48.0Hz。
由于元件的误差,实际值会略有差异。
其它多余的发相器,输入端接地避免影响其它电路。
图2
二、场效应管驱动电路。
由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。
如图3所示。
DIY精品自制1500W逆变器的过程
DIY精品自制1500W逆变器的过程好久一段时间没做逆变器了,最近不是很忙,就搞了台大机子玩玩,推挽接构,前级驱动用750056KHZ,驱动两路MOS管320516只,低高压保护,驱动两个EE42变压器,后级整流滤波后串联输出直流高压。
后级采用单硅输出。
与各烧友交流一下;给个意见呀;上图先;先搞变压器,EE42磁芯,两个,加骨架。
0.55线绕制。
初级10股并绕好后的变压器,包好高温胶纸。
装好磁芯,哈,一样像双胞胎,哈哈;测的初次电感量为17U,10M。
接下来,关断电感,用EI40骨架绕80T,擦入磁芯,敲掉两边。
关断电容用10只1U的并了搞好的家伙MOS管用3205,一共用16只,加工好的散热片,装上了MOS管了前后级滤波电容,一大堆,哈哈哈后级滤波大水塘先用洞洞板焊驱动前级电源输入线,粗大吧装好驱动板,划线排好零件,先排好变压器焊好前级滤波电容4700U8个并,3个40A保险并。
装焊上变压器焊好MOS管整机摆设,还挺整齐JJ的焊锡面用个电源空载试机,电流350MA,后级输出电压850V,做好的JJJJ的锡面改一下电源输入线,加上铜柱子。
8跟12AWG号线,顶住130多A的电流。
哈哈哈哈正负输入线,尽量减少线耗;用个电源空载试机,电流350MA,后级输出电压850V,空载G极波行空载D极波行找个大电源来试机,150A,猛吧负载30多个100W灯泡先带700W接下来1500W,哈哈哈,顶呱呱。
带了一个多小时,一切正常,成功了。
哈哈哈哈;带载D极波行带载G极波行单硅输出波行尖峰脉冲。
逆变器制作全过程
逆变器制作全过程逆变器是一种将直流电转换成交流电的电子设备。
它通常由多个组件组成,包括变压器、电容器、晶体管、二极管等等。
下面是逆变器制作的全过程。
第一步:设计与规划首先进行逆变器的设计与规划工作。
这包括确定逆变器的输入电压和输出电压,确定逆变器的功率等级,以及选择逆变器所需的组件和材料。
第二步:选购材料与组件根据设计的要求,选购所需的材料和组件。
这些材料和组件通常包括电子元器件如电容器、晶体管、二极管等,也包括其他组成部分如变压器、散热器等。
第三步:电路设计与布局根据逆变器的设计要求,进行电路设计与布局。
这包括电路的连线、电子元器件的布局和散热器的设置等。
第四步:组装电路板将电子元器件按照电路设计进行组装。
这可能涉及到对电子元器件进行焊接、插入和固定。
第五步:测试电路组装完毕的电路板需要进行测试。
测试的目的是确保电路板的所有功能正常,没有任何故障。
测试可以通过连接电路板到电源和负载进行。
第六步:调试如果测试发现了电路中的问题,就需要进行调试。
调试可以包括更换故障的组件、重新连接电路或调整电路的参数等。
第七步:安装逆变器外壳逆变器的电路板完成后,需要将其安装到逆变器外壳内。
这可以通过将电路板固定到外壳的螺丝孔或其他连接方式来实现。
第八步:测试逆变器完全组装好的逆变器需要进行测试,确保其工作正常。
测试可以涉及到连接逆变器到电源和负载,并观察其输出电压和电流的波形。
第九步:优化和改进根据测试结果,进行逆变器的优化和改进。
这可能涉及到更换组件、调整参数或重新设计电路。
第十步:维护和保养逆变器完成后,需要进行定期的维护和保养,以确保其长期的稳定运行。
这包括清洁、检查和更换故障的组件等。
总结:逆变器的制作过程涉及到多个步骤,包括设计与规划、选购材料与组件、电路设计与布局、组装电路板、测试电路、调试、安装逆变器外壳、测试逆变器、优化和改进以及维护和保养。
每一步都需要仔细操作和严格测试,以确保逆变器的性能和可靠性。
mos场效应管制作工艺的基本步骤
一、介绍mos场效应管MOS场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,简称MOSFET)是一种常用的场效应晶体管,被广泛应用于集成电路和功率放大器中。
它具有高输入电阻、低噪声系数、高频率特性和较高的可靠性,因此在电子行业中拥有广泛的应用。
二、MOS场效应管的制作工艺1. 基础工艺准备MOS场效应管的制作首先需要准备硅衬底,通常是n型或p型硅衬底。
在准备硅衬底之前,需要对硅片进行清洗、抛光和去除常见的杂质和附着物,以确保硅衬底表面的光洁度和平整度。
2. 渗透层制备接下来是为了增强氧化层和MOS栅极的定位而形成的渗透层的制备。
渗透层主要由P型或N型多晶硅薄膜组成,其厚度通常在200-300nm之间。
3. 氧化层生长氧化层的生长通常使用干法氧化或湿法氧化的方法。
干法氧化是通过高温下氧化气体的作用,在硅表面生长出氧化层;湿法氧化则是在加热的气氛中,采用水蒸气和氧气混合气体生长氧化层。
氧化层的厚度通常在20-300nm之间。
4. 光刻工艺在氧化层上,在所需要的位置上,通过光刻胶技术进行图案设计,然后投射紫外光,再通过显影和蚀刻等工艺将所需的图案转移到氧化层上。
5. 栅极制备在光刻工艺过程中形成的图案将作为掩膜,用于栅极的形成。
通常使用富勒烯等材料来用于栅极的制备。
6. 接触沟槽制备通过刻蚀技术,形成MOSFET的接触沟槽。
接触沟槽是用于源漏掺杂(通常为N+或P+掺杂)的区域。
7. 接触金属制备在接触沟槽中形成接触金属,通常使用铝或金属合金作为接触金属。
这一步骤需要经过金属蒸发或其他金属沉积工艺。
8. 清洗和退火对制备好的MOSFET晶体管进行清洗和热退火处理,来确保晶体管的结构完整和性能稳定。
三、总结MOS场效应管的制作工艺是一个复杂而精细的过程,需要多种材料和工艺的结合。
它的制备包括了硅片准备、渗透层制备、氧化层生长、光刻工艺、栅极制备、接触沟槽制备、接触金属制备和清洗和退火等基本步骤。
由MOS管、变压器搭建的逆变器电路及其制作过程
由MOS管、变压器搭建的逆变器电路及其制作过程逆变器,别称为变流器、反流器,是一种可将直流电转换为交流电的器件,由逆变桥、逻辑控制、滤波电路三大部分组成,主要包括输入接口、电压启动回路、MOS开关管、PWM控制器、直流变换回路、反馈回路、LC振荡及输出回路、负载等部分,可分为半桥逆变器、全桥逆变器等。
目前已广泛适用于空调、家庭影院、电脑、电视、抽油烟机、风扇、照明、录像机等设备中。
逆变变压器原理它的工作原理流程是控制电路控制整个系统的运行,逆变电路完成由直流电转换为交流电的功能,滤波电路用于滤除不需要的信号,逆变器的工作过程就是这样子的了。
其中逆变电路的工作还可以细化为:首先,振荡电路将直流电转换为交流电;其次,线圈升压将不规则交流电变为方波交流电;最后,整流使得交流电经由方波变为正弦波交流电。
详解逆变器电路工作原理这里介绍的逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。
其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。
下面介绍该逆变器的工作原理及制作过程。
2.工作原理这里我们将详细介绍这个逆变器的工作原理。
2.1.方波信号发生器(见图2)这里采用六反相器CD4069构成方波信号发生器。
电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。
电路的振荡是通过电容C1充放电完成的。
其振荡频率为f=1/2.2RC.图示电路的最大频率为:fmax=1/2.2&TImes;3.3&TImes;103&TImes;2.2&TImes;10-6=62. 6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz.由于元件的误差,实际值会略有差异。
其它多余的反相器,输入端接地避免影响其它电路。
由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V.如图3所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一款适合自制采用普通电源变压器的MOS场效应管逆
变器制作全过程
时间:2010-08-27来源:本站整理作者:电工之家
这里介绍的逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。
其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。
下面介绍该变压器的工作原理及制作过程。
图1
工作原理
一、方波的产生
这里采用CD4069构成方波信号发生器。
电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。
电路的震荡是通过电容C1充放电完成的。
其振荡频率为
f=1/2.2RC。
图示电路的最大频率为:fmax=1/2.2x103x2.2x10—6=62.6Hz,最小频率为fmin=1/2.2x4.3x103x2.2x10—6=48.0Hz。
由于元件的误差,实际值会略有差异。
其它多余的发相器,输入端接地避免影响其它电路。
图2
二、场效应管驱动电路。
由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。
如图3所示。
图3
三、场效应管电源开关电路。
场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS场效应管的工作原理。
MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。
它一般有耗尽型和增强型两种。
本文使用的是增强型MOS场效应管,其内部结构见图4。
它可分为 NPN型和PNP型。
NPN型通常称为N沟道型,PNP型通常称P沟道型。
由图可看出,对于N沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P 沟道的场效应管其源极和漏极则接在P型半导体上。
我们知道一般三极管是由输入的电流控制输出的电流。
但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。
图4
为解释MOS场效应管的工作原理,我们先了解一下仅含一个P—N结的二极管的工作过程。
如图5所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。
这是因在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。
同理,当二极管加上反向电压(P端接负极,N端接正极时,这时在P型
半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流流过,二极管截止。
图5
对于场效应管(图6),在栅极没有电压时,有前面的分析可知,在源极与漏极之间不会有电流流过,此时场效应管处于截止状态(图6a)。
当有一个正电压加在 N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N 沟道之间的P型半导体中(见图6b),从而形成电流,使源极和漏极之间导通。
我们也可以想象为两个N型半导体之间为一条沟,栅极电压的建立相当于为他们之间搭了一座桥梁,该桥梁的大小由栅压决定。
图8给出了P沟道场效应管的工作过程,其工作原理类似这里就不再重复。
图6
下面简述一下用C—MOS场效应管(增强型MOS场效应管)组成的应用电路的工作过程(见图8)。
电路将一个增强型P沟道MOS场校官和一个增强型N沟道 MOS场效应管组合在一起使用。
当输入端为底电平时,P沟道MOS场效应管导通,输出端与电源正极接通。
当输入端为高电平时,N沟道MOS场效应管导通,输出端与电源地接通。
在该电路中,P沟道MOS
场效应管和N沟道场效应管总是在相反的状态下工作,其相位输入端和输出端相反。
通过这种工作方式我们可以获得较大的电流输出。
同时由于漏电流的影响,使得栅压在还没有到0V,通常在栅极电压小于1V到2V时,MOS场效应管即被关断。
不同场效应管关断电压略有不同。
也以为如此,使得该电路不会因为两管同时导通而造成电源短路。
图8
图9
由以上分析我们可以画出原理图中MOS场效应管部分的工作过程(见图9)。
工作原理同前所述,这种低电压、大电流、频率为50Hz的交变信号通过变压器的低压绕组时,会在变压器的高压侧感应出高压交流电压,完成直流到交流的转换。
这里需要注意的是,在某些情况下,如振荡部分停止工作时,变压器的低压侧有时会有很大的电流通过,所以该电路的保险丝不能省略或短接。
电路板见图11。
所用元件可参考图12。
逆变器的变压器采用次级为12V、电流为10A、初级电压为220V的成品电源变压器。
P沟道MOS场效应管(2SJ471)最大漏极电流为30A,在场效应管导通时,漏—源极间电阻为25毫欧。
此时如果通过10A电流时会有2.5W的功率消耗。
N沟道MOS场效应管(2SK2956)最大漏极电流为50A,场效应管导通时,漏—源极间电阻为7毫欧,此时如果通过10A电流时消耗的功率为0.7W。
由此我们也可知在同样的工作电流情况下,2SJ471的发热量约为2SK2956的4倍。
所以在考虑散热器时应注意这点。
图13展示本文介绍的逆变器场效应管在散热器(100mm×100mm×17mm)上的位置分布和接
法。
尽管场效应管工作于开关状态时发热量不会很大,出于安全考虑这里选用的散热器稍偏大。
图11
图12
图13
四、逆变器的性能测试
这里测试用的输入电源采用内阻低、放电电流大(一般大于100AH)的12V汽车电瓶,可为电路提供充足的输入功率。
测试用负载为普通的电灯泡。
测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。
其测试结果见电压、电流曲线关系图(图15)。
可以看出,输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。
我们也可以通过计算找出输出电压和功率的关系。
但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。
以负载为60W的电灯泡为例:
图 15
图 16
假设灯泡的电阻不随电压变化而改变。
因为R灯=V2/W=2102/60=735Ω,所以在电压为208V 时,W=V2/R=2082 /735=58.9W。
由此可折算出电压和功率的关系。
通过测试,我们发现当输出功率约为100W时,输入电流为10A。
此时输出电压为200V。
图16 为不同负载时输出波形图,供大家制作是参考。
再给大家看看厂家做好的逆变器产品,只要我们大家肯动手,做出来并不比他们的差啊!。