(完整word版)2018-2019人教版八年级(下)期末数学试卷.doc

合集下载

2018-2019学年新人教版初二下册期末数学试卷(含答案)

2018-2019学年新人教版初二下册期末数学试卷(含答案)

2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共16小题,共32.0分)1.要调查某校学生周日的睡眠时间,下列选项调查对象中最合适的是()A. 选取一个班级的学生B. 选取50名男生C. 选取50名女生D. 在该校各年级中随机选取50名学生2.若点P(m,m+3)在第二象限,则m的值可能是()A. 1B. 0C.D.3.下列关于变量x,y的关系,其中y不是x的函数的是()A. B.C. D.4.如图,小明为了体验四边形的不稳定性先用四根木条钉成一个矩形框架ABCD,又将一根橡皮筋拉直并连接在B,D两点之间,然后保持BC不动,将CD在BC上方绕点C顺时针旋转,观察所得四边形的变化,下列判断错误的()A. BD的长度增大B. 四边形ABCD的周长不变C. 四边形ABCD的面积不变D. 四边形ABCD由矩形变为平行四边形5.在平面直角坐标系中,一次函数y=1-x的图象是()A. B.C. D.6.如图,▱ABCD,BE平分∠ABC交AD于点E,∠AEB=25°,则∠C=()A. B. C. D.7.将点B(5,-1)向上平移3个单位长度得到点A(a+1,1-b),则()A. ,B. ,C. ,D. ,8.如图,是某班长绘制的5月份本班学生家庭用水量的统计图,由图可知该班学生家网5月份用水量所占比例最大的吨位是()A. 4吨B. 5吨C. 6吨D. 7吨9.若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()A. 减小2B. 增加2C. 减小4D. 增加410.如图,在平面直角坐标系中,直线m⊥n,若x轴∥m,y轴∥n,点A的标为(-4,2),点B的坐标为(2,-4),则坐标原点可能为()A.B.C.D.11.用一根长48cm的细铁丝围成一个等腰三角形,设三角形底边长为ycm,腰长为xcm,则y与x的函数关系式及x的取值范围是()A. B.C. D.12.如图,小明家相对于学校的位置下列描述最准确的是()A. 距离学校1200米处B. 北偏东方向上的1200米处C. 南偏西方向上的1200米处D. 南偏西方向上的1200米处13.若函数y=kx(k≠0)的图象过(2,-3),则关于此函数的叙述不正确的是()A. y随x的增大而增大B.C. 函数图象经过原点D. 函数图象过二、四象限14.某公司生产一种品牌的产品,近年的产销情况如图所示,直线l1和l2分别表示产量与年份、销量与年份的函数关系,则下列说法:①该产品产量与销售量均呈直线上升的趋势,应该按原计划继续生产;②该产品已经出现供大于求的趋势价格将趋跌;③该产品库存积压越来越大,应该压缩生产或设法促销;④该产品近年的产量一直大于销量,因此一直处于亏损状态.其中错误的是()A. ①②B. ①④C. ②③D. ③④15.数学课上探究“菱形的两条对角线互相垂直”时,甲乙两同学分别给出各自的证明:已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD则关于两人的证明过程,说法正确的是()A. 甲、乙两人都对B. 甲对,乙不对C. 乙对,甲不对D. 甲、乙两人都不对16.如图,等边△ABC中,A(1,0)B(2,0).将△ABC在x轴上按顺时针方向无滑动滚,翻滚1次后,C点落在点(3,0),则滚2018次后,△ABC的顶点中与点(2018,0)距离最近的是()A. 点AB. 点BC. 点CD. 不能确定二、填空题(本大题共4小题,共12.0分)17.根据如图的程序计算,当输出的结果y=5.5时,则输入x=______.18.如图,将一个n边形纸板,过相邻的两个顶点剪掉一个三角形,余下部分的角度和为:∠A1+∠A2+∠A3+…+∠A n-1+∠A n=2040°,若∠P=60°,则n的值为______.19.学习委员调查本班学生一周内课外阅读情况,按照课外阅读时间进行统计结果如下表:则表中a的值是______.20.一种大棚蔬菜处在0℃以下的气温条件下超过3.5小时,就会遭受冻害某日气象台发布了如下的降温预报:今日0时至次日5时气温将由3℃下降到-3℃;从次日5时至次日8时,气温又将由-3℃上升到5℃.若气温在上述两个时段内变化都是匀速的,那么0℃以下的气温条件将持续______时,你认为是否有必要对大棚蔬菜采取防冻措施?______(填“有”或“没有”)三、解答题(本大题共6小题,共56.0分)21.平面直角坐标系中,已知点A(-a,2a+3),B(1,a-2)(1)若点A在第一象限的角平分线上时,则a=______;(2)若点B到x轴的距离是到y轴的距离的2倍,则B点坐标为______;(3)若线段AB∥x轴,求点A,B的坐标及线段AB的长.22.如图1,在▱ABCD中,E,F分别为BC,AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)在(1)的基础上小明继续探究发现:如图2,连接BF,DE,分别交AE,CF于点G,H,得到的新四边形EHFG也是平行四边形.请补全小明的证明思路由(1)知:四边形AFCE是平行四边形,可得AE∥CF,要证明四边形EHFG为平行四边形,只要再证______由已知,BE=DF,又由______,所以四边形BEDF为平行四边形,进而可证得四边形EHFG为平行四边形.23.为节约用水,某市2017年对相关单位用水收费标准进行了调整,各单位每月应交的水费y(元)与当月用水量x(吨)之间关系如图所示.(1)若2月份用水量为40吨,则该月应交水费______元;(2)当x≥50时,求y与x的函数关系式;(3)政府为了节约用水,决定在2018年对每月用水量不超过150吨的单位给予一定的资金奖励,如果某单位要想获得奖励金,那么每月用于水费的支出最多为多少元?24.某商场今年前五个月销售总额共计600万元,如图1柱状图为该商场今年前五个月的月销售总额统计图(统计信息不全),折线图2表示该商场家电部各月销售额占商场当月销售额的百分比情况统计图.(1)请根据以上信息,将图1补充完整;(2)家电部5月份的销售额是______万元,小亮同学观察折线图后认为,家电部5月份的销售总额比4月份减少了,你同意他的看法吗?请说明理由;(3)在该商场家电部下设A,B,C,D,E五个卖区,如图3饼状图示在5月份,家电部各卖区销售额占5月份家电部销售额的百分比情况统计图,则______卖区销售额最高,该卖区占5月份商场销售总额的百分比是______,根据各卖区的销售信息,请你为商场的家电部提一条合理化建议.25.请根据学习函数的经验,对函数y=|x|+1的图象与性质进行探究.(1)在函数y=|x|+1中,自变量x的取值范围是______.(2)下表是x与y的对应值:①m=______;②若A(n,10),B(9,10)为该函数图象上不同的两点,则n=______;(3)在如图的直角坐标系中:①描出上表中各对对应值的坐标的点,并根据描出的各点,画出该函数的大致图象;②根据函数图象可得,该函数的最小值为______;③结合函数图象,写出该函数除②外的一条性质;(4)如图,若直线l:y1=2x-1与函数y=|x|+1的图象有交点,请求出交点坐标,并直接写出当y1≥y时x的取值范围.26.如图1,在平面直角坐标系中,分别以△OAB的边OB,AB为边向外作正方形ABCD和正方形OBEF,作BB1⊥x轴于点B1,作FF1垂直于x 轴于点F1,(1)若A(4,0)B(1,4),则①由△______≌△______,得点F的坐标为______;②求D点的坐标.(2)如图2,两正方形的中心分别是O1,O2,连接O1O2及FD,若A (4,0),B(m,n),且m>0,n>0(B点不在FD上),猜想O1O2与FD的关系,并给于证明;(3)如图3,取线段FD的中点M,若B(1,4),A(a,0),且满足2≤a≤8时,点M所经过的路径的长为______.答案和解析1.【答案】D【解析】解:要调查某校周日的睡眠时间,最合适的是随机选取该校50名学生.故选:D.根据调查数据要具有随机性,进而得出符合题意的答案.此题主要考查了调查收集数据的过程与方法,利用数据调查应具有随机性是解题关键.2.【答案】C【解析】解:∵点P(m,m+3)在第二象限,可得:,解得:-3<m<0,所以m的值可能是-1.5,故选:C.点在第二象限的条件是:横坐标是负数,纵坐标是正数.此题考查点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.【答案】D【解析】解:A、B、C当x取值时,y有唯一的值对应,故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.此题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x 叫自变量.4.【答案】C【解析】解:∵将CD在BC上方绕点C顺时针旋转,∴BD的长度增大,CD的长度不变,∵四边形ABCD的周长=2(BC+CD),且BC,CD的长度不变∴四边形ABCD的周长不变∵四边形ABCD的面积=×BC×(点D到BC的距离),且BC不变,点D到BC的距离在旋转的过程中随点D的位置的变化而变化,∴四边形ABCD的面积是变化的∵旋转中,AB=CD,AD=BC∴四边形ABCD是平行四边形故选:C.由旋转的性质和平行四边形的性质可求解.本题考查了旋转的性质,平行四边形的判定等知识,熟练运用旋转的性质是本题的关键.5.【答案】A【解析】解:一次函数y=-x+1,其中k=-1,b=1,其图象为:,故选:A.观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键.6.【答案】D【解析】解:∵BE平分∠ABC,∴∠ABC=2∠EBC,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠CBE=∠AEB=25°,∠ABC+∠C=180°,∴∠ABC=2∠CBE=50°,∴∠C=180°-50°=130°;故选:D.先根据角平分线的定义得到,∠ABC=2∠EBC,再根据平行四边形的性质得出AD∥BC,AB∥CD,即可得出∠CBE=∠AEB=25°,∠ABC+∠C=180°,得出∠ABC=2∠CBE=50°,即可得出∠C的度数.此题考查了平行四边形的性质、平行线的性质、角平分线的定义的运用,熟练掌握平行四边形的性质是关键.7.【答案】B【解析】解:由题意:,解得,故选:B.根据左减右加,上加下减的规律解决问题即可.本题考查坐标与图形变化-平移,解题的关键是熟练掌握平移的坐标变化的规律,属于中考常考题型.8.【答案】B【解析】解:由图知4吨和6吨对应的圆心角度数为90°,7吨对应的圆心角度数为60°,则5吨对应的圆心角度数为360°-(90°+90°+60°)=120°,故选:B.根据四个部分对应的圆心角度数和为360°求出5吨所对应的圆心角度数,从而得出答案.本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.9.【答案】D【解析】解:∵当x的值减小1,y的值就减小2,∴y-2=k(x-1)+b=kx-k+b,即y=kx-k+b+2.又∵y=kx+b,∴-k+b+2=b,即-k+2=0,∴k=2.当x的值增加2时,∴y=(x+2)k+b=kx+b+2k=kx+b+4,∴当x的值增加2时,y的值增加4.故选:D.先根据题意列出关于k的方程,求出k的值即可得出结论.本题考查的是一次函数的性质,先根据题意得出k的值是解答此题的关键.10.【答案】A【解析】解:设过A、B的直线解析式为y=kx+b,∵点A的坐标为(-4,2),点B的坐标为(2,-4),∴,解得:,∴直线AB为y=-x-2,∴直线AB经过第二、三、四象限,如图,由A、B的坐标可知坐标轴位置,故将点A沿着x轴正方向平移4个单位,再沿y轴负方向平移2个单位,即可到达原点位置,则原点为点O1.故选:A.先根据点A、B的坐标求得直线AB的解析式,再判断直线AB在坐标平面内的位置,最后得出原点的位置.本题主要考查了坐标与图形性质,解决问题的关键是掌握待定系数法以及一次函数图象与系数的关系.在一次函数y=kx+b中,k决定了直线的方向,b 决定了直线与y轴的交点位置.11.【答案】B【解析】解:∵三角形底边长为ycm,腰长为xcm,周长为48cm,∴2x+y=48 即y=48-2x由三角形三边关系可得:12<x<24故选:B.由三角形周长及三角形三边关系可求得.本题考察三角形三边的关系,为基础题型.12.【答案】C【解析】解:由图形知,小明家在学校的南偏西65°方向上的1200米处,故选:C.根据以正西,正南方向为基准,结合图形得出南偏西的角度和距离来描述物体所处的方向进行描述即可.此题主要考查了方向角,关键是掌握方向角的描述方法.13.【答案】A【解析】解:把点(2,-3)代入y=kx(k≠0)得:2k=-3,解得:k=-,函数的解析式为:y=-x,A.k=-<0,y随着x的增大而减小,即A项不正确,B.k=-,即B项正确,C.该函数是正比例函数,图象经过原点,即C项正确,D.函数图象过二、四象限,即D项正确,故选:A.把点(2,-3)代入y=kx(k≠0)得到关于k的一元一次方程,解之,即可得到该函数的解析式,根据正比例函数的性质,依次分析各个选项,即可得到答案.本题考查了一次函数图象上点的坐标特征,正比例函数的性质,正确掌握代入法和正比例函数的性质是解题的关键.14.【答案】B【解析】解:由图象可得,该产品产量与销售量均呈直线上升的趋势,该产品库存积压越来越大,应该压缩生产或设法促销,故①错误,③正确,该产品已经出现供大于求的趋势价格将趋跌,故②正确,由图象不能得到销售价格,故不能判断是否亏损,故④错误,故选:B.根据函数图象和一次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.15.【答案】A【解析】解:甲乙两同学分别给出各自的证明都是正确的,甲是利用全等三角形的性质证明∠AOB=∠AOD=90°的.乙是利用等腰三角形的三线合一的性质证明AC⊥BD的.故选:A.甲乙两同学分别给出各自的证明都是正确的,甲是利用全等三角形的性质证明∠AOB=∠AOD=90°的.乙是利用等腰三角形的三线合一的性质证明AC⊥BD的.本题考查菱形的性质,全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】C【解析】解:∵滚动第1次,落在x轴上的点C(3.0),即:C(1+2,0),滚动第2次,落在x轴上的点A(4.0),即:A(2+2,0),滚动第3次,落在x轴上的点B(5.0),即:B(3+2,0),滚动第4次,落在x轴上的点C(6.0),即:C(4+2,0),滚动第5次,落在x轴上的点A(7.0),即:A(5+2,0),∴滚动n次,落在x轴上的点,(n+2,0),∴(2018-2)÷3=672,∴经过(2018,0)的点是等边三角形ABC顶点中的C,故选:C.先找出点A,B,C落在x轴上横坐标的特点,找出规律,再确定出滚动次数进行计算.此题是等边三角形的性质,主要考查了从滚动中找出规律,根据规律确定坐标对应点是解本题的关键.17.【答案】0.5【解析】解:y=5.5时,x+5=5.5,解得x=0.5,-x+5=5.5,解得x=-0.5(舍去).故答案为:0.5.分别把y=5.5代入代数式,计算即可.本题考查的是求函数值.当已知函数解析式时,求函数值就是求代数式的值.18.【答案】14【解析】解:(2040°+180°-60°)=(n-2)×180°所以n=14,故答案为14.减去一个三角形,去掉180°,∠P=60°,所以原多边形内角和是2040°+120°=2160°,再根据内角和求解.本题考查了多边形的内角和定理,关键是确定n边形的内角和.19.【答案】15【解析】解:∵b+c=1-30%=70%,∴被调查的总人数为(10+25)÷70%=50(人),则a=50×30%=15(人),故答案为:15.先根据百分比之和为1求得b+c的值,再用第1、2组的人数和除以其所占百分比求得总人数,最后用总人数乘以第3组的百分比可得答案.本题主要考查统计表,解题的关键是掌握各分组的百分比之和为1,并根据小组人数及其对应百分比求得总人数.20.【答案】有【解析】解:∵0时至次日5时气温变化速度为=℃/h,∴0℃下降到-3℃所需时间为:(0-3)÷=h,∵次日5时至次日8时气温变化速度为=℃/h,∴气温又将由-3℃上升到0℃所需要的时间为:[0-(-3)]÷=∴0℃以下的气温条件将持续时间为:+=h>3.5,故需要对大棚蔬菜采取防冻措施.故答案为:,有.根据题意列算式即可求出答案.本题考查有理数的运算,解题的关键是熟练运用有理数的运算法则以及根据题意列出算式,本题属于中等题题型21.【答案】-1 (1,2)【解析】解:(1)∵点A在第一象限的角平分线上,∴-a=2a+3,解得:a=-1,故答案为:-1;(2)∵点B到x轴的距离是到y轴的距离的2倍,∴a-2=2,解得:a=4,∴点B的坐标为(1,2),故答案为:(1,2);(3)∵线段AB∥x轴,∴2a+3=a-2,解得:a=-5,∴点A(5,-7),B(1,-7),则AC=5-1=4.(1)根据第一象限的角平分线上点的横纵坐标相等得出关于a的方程,解之可得;(2)根据点B到x轴的距离是到y轴的距离的2倍得出关于a的方程,解之可得;(3)由AB∥x轴知纵坐标相等求出a的值,从而得出a的值,再得出点A,B的坐标,从而求得AB的长度.本题主要考查坐标与图形的性质,重点在于理解点到坐标轴的距离与点坐标之间的关系,关系清晰,则本题很容易求解.22.【答案】四边形BEDF为平行四边形BE∥DF【解析】(1)证明:∵四边形ABCD是平行四边形;∴AD=BC,AD∥BC,∴AF∥CE,∵BE=DF,∴AF=CE,∴四边形AECF是平行四边形;(2)解:由(1)知:四边形AFCE是平行四边形,可得AE∥CF,∵BE=DF,BE∥DF,∴四边形BEDF为平行四边形,∴BF∥DE,∴四边形EHFG为平行四边形.故答案为:四边形BEDF为平行四边形,BE∥DF.(1)由平行四边形的性质得出AD=BC,AD∥BC,AF∥CE,求出AF=CE,即可得出结论;(2)由(1)知:四边形AFCE是平行四边形,可得AE∥CF,再证出四边形BEDF为平行四边形,得出BF∥DE,即可得出结论.本题考查了平行四边形的判定与性质;熟记一组对边平行且相等的四边形是平行四边形是解题关键.23.【答案】160【解析】解:(1)由图可知,当x≤50时,每吨的价格为:200÷50=4元/吨,则2月份用水量为40吨,则该月应交水费:40×4=160(元),故答案为:160;(2)当x≥50时,设y与x的函数关系式y=kx+b,,得,即当x≥50时,y与x的函数关系式是y=6x-100;(3)将x=150代入y=6x-100,得y=6×150-100=800,答:每月用于水费的支出最多为800元.(1)根据函数图象中的数据可以求得x≤50时,每吨水的价格,从而可以求得2月份用水量为40吨应交的水费;(2)根据函数图象中的数据可以求得当x≥50时,y与x的函数关系式;(3)根据题意和(2)中的函数解析式可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】36 B8.4%【解析】解:(1)5月份的销售额=600-180-90-115-95=120(万元),统计图如图所示:(2)5月份家电销售额120×30%=36(万元),四月份家电的销售额=95×32%=30.4(万元),家电部5月份的销售总额比4月份多了,不同意他的看法.故答案为36.(3)B卖区销售额最高,=8.4%.D卖区销售额最差,应该加强管理.故答案为:B,8.4%.(1)根据总体等于个体之和即可解决问题.(2)分别求出4月份,5月份的家电销售额,即可判断.(3)利用扇形图3,即可判断.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.【答案】全体实数 4 -9 1【解析】解:(1)全体实数;(2)4和-9;(3)①图象如右图所示.②1,③函数关于y轴对称;(4)由两函数解析式组成方程组得:,解得:,∴两个函数图象有公共交点,其交点坐标为(2,3),由函数图象可知:当y1≥y时x的取值范围是x≥2.由图象和表格可知函数y=|x|+1的图象关于y轴对称,拐点坐标为(0,),本题考查了原函数图象和性质,又学习新函数的创新题,综合二元一次方程组求交点坐标和两函数值大小比较求自变量的范围,来研究两函数关系.26.【答案】OFF1BOB1(-4,1)3【解析】解:(1)①如图1中,∵FF1⊥x轴,BB1⊥x轴,四边形EBOF是正方形,∴∠OFF1=∠OB1B=∠BOF=90°,∴∠FOF1+∠BOB1=90°,∠BOB1+∠OBB1=90°,∴∠FOF1=∠OBB1,∵OF=OB,∴△OFF1≌△BOB1(AAS),∴FF1=OB1=1,OF1=BB1=4,∴F(-4,1),故答案为OFF1,BOB1,(-4,1).②作DH⊥OA于H.∵A(4,0)B(1,4),∴OA=4,BB1=4,OB1=1,AB1=3,同法可证△ABB1≌△DAH(AAS),∴AH=BB1=4,DH=AB1=3,∴OH=8,∴D(8,3),故答案为(8,3).(2)结论:O1O2∥DF,O1O2=DF.理由:如图2中,连接BF,BD.∵O1,O2是两正方形的中心,∴点O1在线段BF上,点O2在线段BD上,∵BO1=O1F,BO2=O2D,∴O1O2∥DF,O1O2=DF.(3)如图3中,作DH⊥OA于H.同法可证:△ABB1≌△DAH,可得D(a+4,a-1),∵F(-4,1),FM=DM,∴M(,),∵点A的运动轨迹是线段,∴点M的运动轨迹也是线段,当a=2时,M(1,1),当a=8时,M(4,4),∴点M的运动路径的长==3.故答案为3.(1)①证明△OFF1≌△BOB1(AAS)即可解决问题.②作DH⊥OA于H.理由全等三角形的性质解决问题即可.(2)结论:O1O2∥DF,O1O2=DF.如图2中,连接BF,BD.利用三角形的中位线定理解决问题即可.(3)如图3中,作DH⊥OA于H.利用a表示点M的坐标,判断出点M的运动轨迹是线段,求出线段的端点坐标即可.本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,三角形的中位线定理,勾股定理等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会探究规律寻找点的运动轨迹,属于中考压轴题.。

2018—2019学年人教版八年级下期末数学试卷含答案解析

2018—2019学年人教版八年级下期末数学试卷含答案解析

2018—2019学年八年级(下)期末数学试卷一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)若a>b,则下列各式中一定成立的是()A.a+2<b+2 B.a﹣2<b﹣2 C.>D.﹣2a>﹣2b2.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2 B.x2﹣4x+4=(x﹣2)2C.(x+1)(x﹣1)=x2﹣1 D.x﹣1=x(1﹣)3.(3分)下列所给图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.(3分)多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)25.(3分)已知一个多边形的内角和是360°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形6.(3分)下列多项式能用完全平方公式分解因式的有()A.m2﹣mn+n2B.x2+4x﹣4 C.x2﹣4x+4 D.4x2﹣4x+47.(3分)如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120° D.150°8.(3分)运用分式的性质,下列计算正确的是()A.=x4B.=﹣1 C.=D.=09.(3分)如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm10.(3分)若分式方程有增根,则m等于()A.3 B.﹣3 C.2 D.﹣211.(3分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则BC的长为()A.18 B.14 C.12 D.612.(3分)如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x 的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.13.(3分)如图,在菱形ABCD 中,对角线AC、BD 相交于点O,BD=8,BC=5,AE⊥BC 于点E,则AE的长等于()A.5 B.C.D.14.(3分)定义新运算“⊕”如下:当a>b时,a⊕b=ab+b;当a<b时,a⊕b=ab ﹣b,若3⊕(x+2)>0,则x的取值范围是()A.﹣1<x<1或x<﹣2 B.x<﹣2或1<x<2 C.﹣2<x<1或x>1 D.x<﹣2或x>215.(3分)在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2017OB2017.则点B2017的坐标()A.(22017,﹣22017)B.(22016,﹣22016)C.(22017,22017)D.(22016,22016)二、填空题(共6小题,每小题3分,满分18分)16.(3分)分式有意义的x的取值范围为.17.(3分)若m=2,则m2﹣4m+4的值是.18.(3分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA 于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于.19.(3分)不等式组(m≠4)的解集是x>4,那么m的取值范围是.20.(3分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为.21.(3分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①=.其中正确结论的是(只△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EFC填序号).三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.(7分)(1)分解因式:ax2﹣ay2.(2)解不等式组,并把不等式组的解集在数轴上表示出来.23.(7分)(1)如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF,求证:DE=BF.(2)先化简,再求值:(﹣)÷,其中a=6.24.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿X轴方向向左平移6个单位,画出平移后得到的△A1B1C1.(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2.(3)直接写出点A2、C2的坐标.25.(8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?26.(9分)探索发现:=1﹣;=﹣;=﹣…根据你发现的规律,回答下列问题:(1)=,=;(2)利用你发现的规律计算: +++…+(3)灵活利用规律解方程: ++…+=.27.(9分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系:(2)将正方形EFGH绕点E顺时针方向旋转①如图2,判断BH和AF的数量关系,并说明理由;②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.28.(9分)如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣6,8).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)直接写出线段BO的长:(2)求点D的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)若a>b,则下列各式中一定成立的是()A.a+2<b+2 B.a﹣2<b﹣2 C.>D.﹣2a>﹣2b【解答】解:(A)a+2>b+2,故A错误;(B)a﹣2>b﹣2,故B错误;(D)﹣2a<﹣2b,故D错误;故选:C.2.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2 B.x2﹣4x+4=(x﹣2)2C.(x+1)(x﹣1)=x2﹣1 D.x﹣1=x(1﹣)【解答】解:A、没把多项式转化成几个整式积的形式,故A不符合题意;B、把多项式转化成几个整式积的形式,故B符合题意;C、是整式的乘法,故C不符合题意;D、没把多项式转化成几个整式积的形式,故D不符合题意;故选:B.3.(3分)下列所给图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,不是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项错误;D、是中心对称图形,也是轴对称图形,故此选项正确.故选:D.4.(3分)多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【解答】解:∵x2﹣1=(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式x2﹣1与多项式x2﹣2x+1的公因式是:x﹣1.故选:A.5.(3分)已知一个多边形的内角和是360°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=360°,解得:n=4,故这个多边形是四边形.故选:A.6.(3分)下列多项式能用完全平方公式分解因式的有()A.m2﹣mn+n2B.x2+4x﹣4 C.x2﹣4x+4 D.4x2﹣4x+4【解答】解:A、m2﹣mn+n2不符合能用完全平方公式分解因式的式子的特点;B、x2+4x﹣4不符合能用完全平方公式分解因式的式子的特点;C、x2﹣4x+4能用完全平方公式分解因式;D、4x2﹣4x+4不符合能用完全平方公式分解因式的式子的特点.故选:C.7.(3分)如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120° D.150°【解答】解:旋转角是∠BAB′=180°﹣30°=150°.故选:D.8.(3分)运用分式的性质,下列计算正确的是()A.=x4B.=﹣1 C.=D.=0【解答】解:A、=x4,所以A选项计算正确;B、为最简分式,所以B选项的计算错误;C、为最简分式,所以C选项的计算错误;D、=1,所以D选项的计算错误;故选:A.9.(3分)如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∵▱ABCD的周长为40cm,∴AB+BC=20cm,∵BC=AB,∴BC=20×=8cm,故选:D.10.(3分)若分式方程有增根,则m等于()A.3 B.﹣3 C.2 D.﹣2【解答】解:分式方程去分母得:x﹣3=m,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m=﹣2,故选:D.11.(3分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则BC的长为()A.18 B.14 C.12 D.6【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为24,∴CD=9,∴BC=2CD=18.故选:A.12.(3分)如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x 的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.【解答】解:根据图象得,当x<﹣1时,x+m<kx﹣1.故选:D.13.(3分)如图,在菱形ABCD中,对角线AC、BD 相交于点O,BD=8,BC=5,AE⊥BC 于点E,则AE的长等于()A.5 B.C.D.【解答】解:∵四边形ABCD是菱形,BD=8,∴BO=DO=4,∠BOC=90°,在Rt△OBC中,OC===3,∴AC=2OC=6,∴AE×BC=BO×AC故5AE=24,解得:AE=.故选:C.14.(3分)定义新运算“⊕”如下:当a>b时,a⊕b=ab+b;当a<b时,a⊕b=ab ﹣b,若3⊕(x+2)>0,则x的取值范围是()A.﹣1<x<1或x<﹣2 B.x<﹣2或1<x<2 C.﹣2<x<1或x>1 D.x<﹣2或x>2【解答】解:当3>x+2,即x<1时,3(x+2)+x+2>0,解得:x>﹣2,∴﹣2<x<1;当3<x+2,即x>1时,3(x+2)﹣(x+2)>0,解得:x>﹣2,∴x>1,综上,﹣2<x<1或x>1,故选:C.15.(3分)在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2017OB2017.则点B2017的坐标()A.(22017,﹣22017)B.(22016,﹣22016)C.(22017,22017)D.(22016,22016)【解答】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,﹣4),B3(﹣8,8),B4(16,16),∵2017÷4=503…1,∴点B2017与B2同在一个象限内,∵﹣4=﹣22,8=23,16=24,∴点B2017(22017,﹣22017).故选:A.二、填空题(共6小题,每小题3分,满分18分)16.(3分)分式有意义的x的取值范围为x≠1.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.17.(3分)若m=2,则m2﹣4m+4的值是0.【解答】解:当m=2时,原式=4﹣8+4=0,故答案为:018.(3分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA 于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于2.【解答】解:作PE⊥OA于E,∵CP∥OB,∴∠OPC=∠POD,∵P是∠AOB平分线上一点,∴∠POA=∠POD=15°,∴∠ACP=∠OPC+∠POA=30°,∴PE=PC=2,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=2,故答案为:2.19.(3分)不等式组(m≠4)的解集是x>4,那么m的取值范围是m <4.【解答】解:不等式组的解集是x>4,得m≤4(m≠4),∴m<4,故答案为:m<4.20.(3分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为4.【解答】解:∵△ABC沿射线BC方向平移2个单位后得到△DEF,∴DE=AB=4,BC﹣BE=6﹣2=4,∵∠B=∠DEC=60°,∴△DEC是等边三角形,∴DC=4,故答案为:4.21.(3分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①=.其中正确结论的是①②△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EFC③④(只填序号).【解答】解:∵四边形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°,∵CD=3DE,∴DE=2,∵△ADE沿AE折叠得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB,∵在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴①正确;∵Rt△ABG≌Rt△AFG,∴BG=FG,∠AGB=∠AGF,设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得:CG2+CE2=EG2,∵CG=6﹣x,CE=4,EG=x+2∴(6﹣x)2+42=(x+2)2解得:x=3,∴BG=GF=CG=3,∴②正确;∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG∴AG∥CF,∴③正确;∵==,=ו3×4=,∴④正确,∴S△EFC故答案为①②③④.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.(7分)(1)分解因式:ax2﹣ay2.(2)解不等式组,并把不等式组的解集在数轴上表示出来.【解答】解:(1)原式=a(x2﹣y2)=a(x+y)(x﹣y);(2)由①解得x<2,由②解得x≥﹣2,不等式组的解集在数轴上表示如图;不等式组的解集为﹣2≤x<2.23.(7分)(1)如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF,求证:DE=BF.(2)先化简,再求值:(﹣)÷,其中a=6.【解答】(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形,∴DE=BF.(2)解:原式=×(a﹣2)=﹣,当a=6时,原式=﹣1.24.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿X轴方向向左平移6个单位,画出平移后得到的△A1B1C1.(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2.(3)直接写出点A2、C2的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△AB2C2即为所求;(3)由以上作图知,A2的坐标为(1,1)、C2的坐标为(1,﹣3).25.(8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?【解答】解:(1)设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+10)元,根据题意得:=,解得:x=60,经检验,x=60是原方程的解,∴x+10=70.答:每件乙种商品的价格为60元,每件甲种商品的价格为70元.(2)设购买y件甲种商品,则购买(50﹣y)件乙种商品,根据题意得:70y+60(50﹣y)≤3200,解得:x≤20.答:最多可购买20件甲种商品.26.(9分)探索发现:=1﹣;=﹣;=﹣…根据你发现的规律,回答下列问题:(1)=﹣,=﹣;(2)利用你发现的规律计算: +++…+(3)灵活利用规律解方程: ++…+=.【解答】解:(1)=﹣,=﹣;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)(﹣+﹣+…+﹣)=,(﹣)=﹣=,=,解得x=50,经检验,x=50为原方程的根.故答案为﹣,﹣.27.(9分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系:(2)将正方形EFGH绕点E顺时针方向旋转①如图2,判断BH和AF的数量关系,并说明理由;②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.【解答】解:(1)在正方形ABCD中,AE=B E,∠BEH=∠AEF=90°,∵四边形EFGH是正方形,∴EF=EH,∵在△BEH和△AEF中,,∴△BEH≌△AEF(SAS),∴BH=AF;(2)①BH=AF,理由:连接EG,∵四边形ABCD是正方形,∴AE=BE,∠BEA=90°,∵四边形EFGH是正方形,∴EF=EH,∠HEF=90°,∴∠BEA +∠AEH=∠HEF +∠AEH ,即∠BEH=∠AEF ,在△BEH 与△AEF 中,, ∴△BEH ≌△AEF ,∴BH=AF ;②如备用图,∵四边形ABDH 是平行四边形,∴AH ∥BD ,AH=BD ,∴∠EAH=∠AEB=90°,[来源:学*科*网]∵四方形ABCD 的边长为, ∴AE=BE=CE=DE=1,∴EH===,∴正方形EFGH 的边长为.28.(9分)如图,矩形ABCO 中,点C 在x 轴上,点A 在y 轴上,点B 的坐标是(﹣6,8).矩形ABCO 沿直线BD 折叠,使得点A 落在对角线OB 上的点E 处,折痕与OA 、x 轴分别交于点D 、F .(1)直接写出线段BO 的长:(2)求点D 的坐标;(3)若点N 是平面内任一点,在x 轴上是否存在点M ,使咀M 、N 、E 、O 为顶点的四边形是菱形?若存在,请直接写出满足条件的点M 的坐标;若不存在,请说明理由.【解答】解:(1)∵四边形ABCO是矩形,点B的坐标是(﹣6,8).∴∠BAD=∠OCB=90°,AB=OC=6,OA=BC=8,∴BO==10;(2)由折叠的性质得:BE=AB=6,∠BED=∠BAD=90°,DE=AD,∴OE=BO﹣BE=10﹣6=4,∠OED=90°,设D(0,a),则OD=a,DE=AD=OA﹣OD=8﹣a,在Rt△EOD中,由勾股定理得:DE2+OE2=OD2,即(8﹣a)2+42=a2,解得:a=5,∴D(0,5);(3)存在,点M的坐标为(4,0)或(﹣4,0)或(﹣,0)或(﹣,0);理由如下:①当OM、OE都为菱形的边时,OM=OE=4,∴M的坐标为(4,0)或(﹣4,0);②当OM为菱形的边,OE为对角线时,MN垂直平分OE,垂足为G,如图1所示:则OG=OE=2,则cos∠MOG=cos∠BOC,∴,即,解得:OM=,∴M(﹣,0);③当OM为菱形的对角线,OE为边时,如图2所示:同②得:M(﹣,0);综上所述,在x轴上存在点M,使以M、N、E、O为顶点的四边形是菱形,点M的坐标为(4,0)或(﹣4,0)或(﹣,0)或(﹣,0).。

2018-2019学年人教版八年级数学下册期末试卷(含答案)

2018-2019学年人教版八年级数学下册期末试卷(含答案)

期末质量评估试卷[时间:90分钟分值:120分] 一、选择题(每小题3分,共30分)1.下列二次根式中,最简二次根式是()A.- 2 B.12C.15 D.a22.下列说法错误的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相平分的四边形是平行四边形3.已知菱形的边长和一条对角线的长均为2 cm,则菱形的面积为() A.3 cm2 B.4 cm2C. 3 cm2 D.2 3 cm24.在平面直角坐标系中,将直线l1:y=-3x-2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为()A.y=-3x-9 B.y=-3x-2C.y=-3x+2 D.y=-3x+95.[2018·道外区三模]一组数据从小到大排列为1,2,4,x,6,9.这组数据的中位数是5,那么这组数据的众数为()A.4 B.5C.5.5 D.66.一个装有进水管和出水管的容器,从某时刻开始的4 min内只进水不出水,在随后的8 min内既进水又出水,假设每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图1所示,则每分钟的进水量与出水量分别是()A.5,2.5 B.20,10C.5,3.75 D.5,1.25图17.如图2,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=23,∠DAO=30°,则FC的长度为()图2A.1 B.2C. 2 D. 38.菱形OACB在平面直角坐标系中的位置如图3所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是()图3A.(3,1) B.(3,-1)C.(1,-3) D.(1,3)9.如图4,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA 上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()图4A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可能为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图5所示.根据图象所提供的信息,下列说法正确的是()图5A.甲队开挖到30 m时,用了2 hB.开挖6 h时,甲队比乙队多挖了60 mC.乙队在0≤x≤6的时段,y与x之间的关系式为y=5x+20D.当x为4 h时,甲、乙两队所挖河渠的长度相等二、填空题(每小题4分,共24分)11.为参加2018年宜宾市初中毕业生升学体育考试,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.43,2.39,2.43,2.40,2.43.这组数据的中位数和众数分别是.12.已知四边形ABCD是平行四边形,下列结论中错误的有.①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形.13.如图6,已知函数y=2x+b与函数y=kx-3的图象交于点P(4,-6),则不等式kx-3>2x+b的解集是.图614.[2018·武侯区模拟]如图7,将矩形纸片ABCD 沿直线AF 翻折,使点B 恰好落在CD 边的中点E 处,点F 在BC 边上,若CD =6,则AD = .图715.[2018·广安模拟]如图8,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE =23,则CE 的长为 .图816.在一条笔直的公路上有A ,B ,C 三地,C 地位于A ,B 两地之间.甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地.在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y (km)与甲车行驶的时间t (h )之间的函数关系如图9所示.有下列结论:①甲车出发2 h 时,两车相遇;②乙车出发1.5 h 时,两车相距170 km ;③乙车出发257h 时,两车相遇;④甲车到达C 地时,两车相距40 km.其中正确的结论是 .(填序号)图9三、解答题(共66分) 17.(10分)计算:(1)4+(π-2)0-|-5|+⎝ ⎛⎭⎪⎫23-2;(2)8+⎝ ⎛⎭⎪⎫14-1-(5+1)(5-1).18.(10分)如图10,已知▱ABCD 的对角线AC ,BD 交于点O ,且∠1=∠2.图10(1)求证:▱ABCD 是菱形;(2)F 为AD 上一点,连接BF 交AC 于点E ,且AE =AF ,求证:OA =12(AF +AB ).19.(10分)“岳池米粉”是四川岳池的传统特色小吃之一,距今有三百多年的历史,为了将本地传统小吃推广出去,县领导组织20辆汽车装运A ,B ,C 三种不同品种的米粉42 t 到外地销售,按规定每辆车只装同一品种米粉,且必须装满,每种米粉不少于2车.(1)设用x 息,求y 与x 的函数关系式,并求x 的取值范围;(2)设此次外售活动的利润为w 元,求w 与x 的函数关系式以及最大利润,并安排相应的车辆分配方案.20.(12分)《朗读者》自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展朗读比赛活动,九年级(1)班、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图11所示.图11(1)根据图示填写表格.(2)(3)如果规定成绩较稳定的班级胜出,你认为哪个班级能胜出?说明理由.21.(12分)(1)如图12,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC.(2)如图13,正方形ABCD中,∠PCG=45°,延长PG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,作FE⊥PC,垂足为E,交CG于点N,连接DN,求∠NDC的度数.22.(12分)如图15,在平面直角坐标系中,过点C(1,3),D(3,1)分别作x轴的垂线,垂足分别为A,B.(1)求直线CD和直线OD的解析式.(2)点M为直线OD上的一个动点,过点M作x轴的垂线交直线CD于点N,是否存在这样的点M,使得以A,C,M,N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由.(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中,设平移距离为2t,△AOC与△OBD重叠部分的面积记为S,试求S与t的函数关系式.图15参考答案期末质量评估试卷1.A 2.C 3.D 4.B 5.D 6.C7.A8.B9.D10.D11.2.40,2.4312.④13.x<414.3 315.53或316.②③④17.(1)14(2)2218.略19.(1)y=20-2x,x的取值为2,3,4,5,6,7,8,9.(2)w=-1 040x+33 600,最大利润是31 520元,相应的车辆分配方案为:用2辆车装运A种米粉,用16辆车装运B种米粉,用2辆车装运C种米粉.20.(1)8585100(2)九(1)班的成绩较好,理由略.(3)九(1)班的成绩更稳定,能胜出,理由略.21.(1)略(2)成立,理由略.(3)∠NDC=45°.22.(1)直线CD的解析式为y=-x+4,直线OD的解析式为y=1 3x.(2)存在,满足条件的点M的横坐标为34或214.(3)S=-16(t-1)2+13.。

2018-2019学年新人教版八年级第二学期期末数学试卷(含答案)

2018-2019学年新人教版八年级第二学期期末数学试卷(含答案)

2018-2019学年八年级(下)期末数学试卷
一、选择题(本大题共16小题,共32.0分)
1.要调查某校学生周日的睡眠时间,下列选项调查对象中最合适的是()
A. 选取一个班级的学生
B. 选取50名男生
C. 选取50名女生
D. 在该校各年级中随机选取50名学生
2.若点P(m,m+3)在第二象限,则m的值可能是()
A. 1
B. 0
C.
D.
3.下列关于变量x,y的关系,其中y不是x的函数的是()
A. B.
C. D.
4.如图,小明为了体验四边形的不稳定性先用四根
木条钉成一个矩形框架ABCD,又将一根橡皮筋
拉直并连接在B,D两点之间,然后保持BC不动,
将CD在BC上方绕点C顺时针旋转,观察所得四
边形的变化,下列判断错误的()
A. BD的长度增大
B. 四边形ABCD的周长不变
C. 四边形ABCD的面积不变
D. 四边形ABCD由矩形变为平行四边形
5.在平面直角坐标系中,一次函数y=1-x的图象是()
第1页,共25页。

人教版2018-2019学年八年级数学第二学期期末考试试卷及答案

人教版2018-2019学年八年级数学第二学期期末考试试卷及答案

2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确答案)1.当x=1时,下列式子无意义的是()A.B.C.D.2.“a是正数”用不等式表示为()A.a≤0B.a≥0C.a<0D.a>03.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.2,4,5B.6,8,11C.5,12,12D.1,1,4.如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C 的对应点C′落在AB边上,则旋转角为()A.40°B.70°C.80°D.140°5.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+16.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE7.不等式组的解集是x>4,那么m的取值范围是()A.m≤4B.m<4C.m≥4D.m>48.若关于x的分式方程﹣1=无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.59.如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC=10,BD=8,则△ADE的周长为()A.14B.16C.18D.2010.如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC=16,则MD等于()A.4B.3C.2D.1二、填空题(本大题共8个小题,每小题3分,共24分)11.分解因式:2m3﹣8m=.12.若一个正多边形的每个外角都等于36°,则它的内角和是.13.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=.14.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了cm.15.颖颖同学用20元钱去买方便面35包,甲种方便面每包0.7元,乙种方便面每包0.5元,则她最多可买甲种方便面包.16.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,垂足为A,交CD于D,若AD=8,则点P到BC的距离是.17.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,则平时每个粽子卖元.18.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为.三、(本大题共3个题,其中第19题8分,第20,21题各5分,共18分)19.(1)解不等式组:,并把解集在数轴上表示出来.(2)解方程:=﹣1.20.先化简,再求值:(1+)÷,其中x=﹣5.21.如图,在△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若DC=4,∠DAC=30°,求AD的长.四、(本大题共2个小题,每小题5分,共10分)22.利用对称性可以设计美丽的图案,在边长为1的正方形方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出上面所作的图形连同原四边形绕点O按顺时针方向旋转90°后的图形;(2)完成上述设计后,求出整个图案的面积.23.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?五、(本大题共2个小题,第24题5分,第25题6分,共11分)24.如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.25.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以下信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.六、(本大题共1个小题,共7分)26.如图,在▱ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=,且BF=DF,求旋转角度α的大小.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确答案)1.当x=1时,下列式子无意义的是()A.B.C.D.【分析】分式无意义则分式的分母为0,据此求得x的值即可.【解答】解:A、x=0分式无意义,不符合题意;B、x=﹣1分式无意义,不符合题意;C、x=1分式无意义,符合题意;D、x取任何实数式子有意义,不符合题意.故选:C.【点评】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.“a是正数”用不等式表示为()A.a≤0B.a≥0C.a<0D.a>0【分析】正数即“>0”可得答案.【解答】解:“a是正数”用不等式表示为a>0,故选:D.【点评】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.3.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.2,4,5B.6,8,11C.5,12,12D.1,1,【分析】根据勾股定理的逆定理,只需验证两小边的平方和是否等于最长边的平方即可.【解答】解:A、∵22+42=20≠52,∴不能构成直角三角形,故本选项不符合题意;B、∵62+82=100≠112,∴不能构成直角三角形,故本选项不符合题意;C、∵52+122=169≠122,∴不能构成直角三角形,故本选项不符合题意;D、∵12+12=2=()2,∴能够构成直角三角形,故本选项符合题意.故选:D.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C 的对应点C′落在AB边上,则旋转角为()A.40°B.70°C.80°D.140°【分析】根据旋转角的定义,旋转角就是∠ABC,根据等腰三角形的旋转求出∠ABC即可.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣∠A)=×140°=70°,∵△A′BC′是由△ABC旋转得到,∴旋转角为∠ABC=70°.故选:B.【点评】本题考查旋转的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键的理解旋转角的定义,属于中考常考题型.5.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+1【分析】对各多项式进行因式分解即可求出答案.【解答】解:(A)原式=(x+2)(x﹣2),结果中含有因式(x﹣2);(B)原式=x(x2﹣4x﹣12)=x(x+2)(x﹣6),结果中不含有因式(x﹣2);(C)原式=x(x﹣2),结果中含有因式(x﹣2);(D)原式=[(x﹣3)+1]2=(x﹣2)2,结果中含有因式(x﹣2);故选:B.【点评】本题考查因式分解,解题的关键是熟练运用因式分解的方法,本题属于基础题型.6.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE【分析】把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.【解答】解:添加:∠F=∠CDE,理由:∵∠F=∠CDE,∴CD∥AB,在△DEC与△FEB中,,∴△DEC≌△FEB(AAS),∴DC=BF,∵AB=BF,∴DC=AB,∴四边形ABCD为平行四边形,故选:D.【点评】本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.7.不等式组的解集是x>4,那么m的取值范围是()A.m≤4B.m<4C.m≥4D.m>4【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了结合不等式组的解集即可得答案.【解答】解:解不等式(x+2)﹣3>0,得:x>4,由不等式组的解集为x>4知m≤4,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键8.若关于x的分式方程﹣1=无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5【分析】方程无解即是分母为0,由此可得:原分式方程中的分母为0:x=0或x=3,解方程后x=﹣,分母2m+1=0,解出即可.【解答】解:﹣1=,方程两边都乘以x(x﹣3),得:x(x+2m)﹣x(x﹣3)=2(x﹣3),整理,得:(2m+1)x=﹣6,x=﹣,∵原分式方程无解,∴2m+1=0或﹣=3或﹣=0,解得:x=﹣0.5或x=﹣1.5,故选:D.【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型,分式方程无解,则分母为0.9.如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC=10,BD=8,则△ADE的周长为()A.14B.16C.18D.20【分析】由△DBC≌△EBA,可知AE=DC,推出AE+AD+DE=AD+CD+ED=AC+DE即可解决问题;【解答】解:∵△ABC,△DBE都是等边三角形,∴BC=BA,BD=BE,∠ABC=∠EBD,∴∠DBC=∠EBA,∴△DBC≌△EBA,∴AE=DC,∴AE+AD+DE=AD+CD+ED=AC+DE,∵AC=BC=10,DE=BD=8,∴△AED的周长为18,故选:C.【点评】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题时根据是正确寻找全等三角形解决问题,属于中考常考题型.10.如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC=16,则MD等于()A.4B.3C.2D.1【分析】延长BD交AC于H,根据等腰三角形的性质得到BD=DH,AH=AB=12,根据三角形中位线定理计算即可.【解答】解:延长BD交AC于H,∵AD平分∠BAC,BD⊥AD,∴BD=DH,AH=AB=12,∴HC=AC﹣AH=4,∵M是BC中点,BD=DH,∴MD=CH=2,故选:C.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题(本大题共8个小题,每小题3分,共24分)11.分解因式:2m3﹣8m=2m(m+2)(m﹣2).【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.若一个正多边形的每个外角都等于36°,则它的内角和是1440°.【分析】先根据多边形的外角和求多边形的边数,再根据多边形的内角和公式求出即可.【解答】解:∵一个正多边形的每个外角都等于36°,∴这个多边形的边数为=10,∴这个多边形的内角和=(10﹣2)×180°=1440°,故答案为:1440°.【点评】本题考查了多边形的内角与外角,能正确求出多边形的边数是解此题的关键,注意:多边形的外角和等于360°,边数为n的多边形的内角和=(n﹣2)×180°.13.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=﹣3.【分析】根据向右平移横坐标加,y轴上的点的横坐标为0列方程求解即可.【解答】解:∵点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,∴m+2+1=0,解得m=﹣3.故答案为:﹣3.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了2cm.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.15.颖颖同学用20元钱去买方便面35包,甲种方便面每包0.7元,乙种方便面每包0.5元,则她最多可买甲种方便面12包.【分析】设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据总价=单价×数量结合总价不超过20元,即可得出关于x的一元一次不等式,解之取其中的最大整数是解题的关键.【解答】解:设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据题意得:0.7x+0.5(35﹣x)≤20,解得:x≤12.5,∵x为整数,∴x≤12.故答案为:12.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.16.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,垂足为A,交CD于D,若AD=8,则点P到BC的距离是4.【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD ⊥CD ,∵BP 和CP 分别平分∠ABC 和∠DCB ,∴PA =PE ,PD =PE ,∴PE =PA =PD ,∵PA +PD =AD =8,∴PA =PD =4,∴PE =4.故答案为:4【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.17.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,则平时每个粽子卖 2 元.【分析】设平时每个粽子卖x 元,根据题意列出分式方程,解之并检验得出结论.【解答】解:设平时每个粽子卖x 元.根据题意得:解得:x =2经检验x =2是分式方程的解故答案为2元【点评】本题考查了分式方程的应用,解题的关键是找准等量关系,列出分式方程.18.如图,在△ABC 中,∠BAC =90°,AB =4,AC =6,点D 、E 分别是BC 、AD 的中点,AF ∥BC 交CE 的延长线于F .则四边形AFBD 的面积为 12 .【分析】由于AF ∥BC ,从而易证△AEF ≌△DEC (AAS ),所以AF =CD ,从而可证四边形AFBD 是平行四边形,所以S 四边形AFBD =2S △ABD ,又因为BD =DC ,所以S △ABC =2S △ABD ,所以S 四边形AFBD =S △ABC ,从而求出答案.【解答】解:∵AF ∥BC ,∴∠AFC =∠FCD ,在△AEF 与△DEC 中,∴△AEF ≌△DEC (AAS ).∴AF =DC ,∵BD =DC ,∴AF =BD ,∴四边形AFBD 是平行四边形,∴S 四边形AFBD =2S △ABD ,又∵BD =DC ,∴S △ABC =2S △ABD ,∴S 四边形AFBD =S △ABC ,∵∠BAC =90°,AB =4,AC =6,∴S △ABC =AB •AC =×4×6=12,∴S 四边形AFBD =12.故答案为:12【点评】本题考查平行四边形的性质与判定,涉及全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识,综合程度较高.三、(本大题共3个题,其中第19题8分,第20,21题各5分,共18分)19.(1)解不等式组:,并把解集在数轴上表示出来.(2)解方程:=﹣1.【分析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:(1)由①得:x <﹣1,由②得:x ≤2,∴不等式组的解集为x<﹣1,解集表示在数轴上为:;(2)分式方程去分母得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解分式方程,解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.20.先化简,再求值:(1+)÷,其中x=﹣5.【分析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=•=•=,当x=﹣5时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.21.如图,在△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若DC=4,∠DAC=30°,求AD的长.【分析】(1)根据角平分线的性质得到DE=DF,证明Rt△BDE≌Rt△CDF,根据全等三角形的性质得到∠B=∠C,根据等腰三角形的判定定理证明;(2)根据直角三角形的性质求出AC,根据勾股定理计算即可.【解答】(1)证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF,∴∠B=∠C,∴AB=AC;(2)解:∵AD平分∠BAC,BD=CD,∴AD⊥BC,∵∠DAC=30°,∴AC=2DC=8,∴AD==4.【点评】本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.四、(本大题共2个小题,每小题5分,共10分)22.利用对称性可以设计美丽的图案,在边长为1的正方形方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出上面所作的图形连同原四边形绕点O按顺时针方向旋转90°后的图形;(2)完成上述设计后,求出整个图案的面积.【分析】(1)直接利用旋转变换以及轴对称变换得出对应点位置进而得出答案.【解答】解:(1)如图所示:(2)一个四边形面积为:×5×1×2=5,整个图案面积为:5×4=20.【点评】此题主要考查了利用旋转设计图案以及利用轴对称设计图案,正确得出对应点位置是解题关键.23.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【分析】(1)可设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【解答】解:(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:1.5×=,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路=15﹣1.5a(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.【点评】本题主要考查分式方程及一元一次不等式的应用,找出题目中的等量(或不等)关系是解题的关键,注意分式方程需要检验.五、(本大题共2个小题,第24题5分,第25题6分,共11分)24.如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可.(2)想办法证明OM=MF=ME即可解决问题.【解答】解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵OB⊥OC,∴∠BOC=90°,∵∠EOM+∠COM=90°,∠EOM+∠OCB=90°,∴∠COM=∠OCB,∵EF∥BC,∴∠OFE=∠OCB,∴∠MOF=∠MFO,∴OM=MF,∵∠OEM+∠OFM=90°,∠EOM+∠MOF=90°,∴∠EOM=∠MEO,∴OM=EM,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.【点评】本题考查平行四边形的判定与性质,三角形的中位线,直角三角形的性质,解本题的关键是判定四边形DEFG是平行四边形.25.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以下信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【点评】本题主要考查了一次函数的应用,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.六、(本大题共1个小题,共7分)26.如图,在▱ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=,且BF=DF,求旋转角度α的大小.【分析】(1)由平行四边形的性质得出∠OAF=∠AOF,OA=OC,进而判断出△AOF≌△COE,即可得出结论;(2)先判断出∠BAC=∠AOF,得出AB∥EF,即可得出结论;(3)先求出AC=2,进而得出A=1=AB,即可判断出△ABO是等腰直角三角形,进一步判断出△BFD是等腰三角形,利用等腰三角形的三线合一得出∠BOF=90°,即可得出结论.【解答】(1)证明:在▱ABCD中,AD∥BC,∴∠OAF=∠OCE,∵OA=OC,∠AOF=∠COE,∴△AOF≌△COE(ASA),∴OE=OF;(2)解:当旋转角为90°时,四边形ABEF是平行四边形,理由:∵AB⊥AC,∴∠BAC=90°,∵∠AOF=90°,∴∠BAC=∠AOF,∴AB∥EF,∵AF∥BE,∴四边形ABEF是平行四边形;(3)解:在Rt△ABC中,AB=1,BC=,∴AC==2,∴OA=1=AB,∴△ABO是等腰直角三角形,∴∠AOB=45°,∵BF=DF,∴△BFD是等腰三角形,∵四边形ABCD是平行四边形,∴OB=OD,∴OF⊥BD(等腰三角形底边上的中线是底边上的高),∴∠BOF=90°,∴∠α=∠AOF=∠BOF﹣∠AOB=45°.【点评】此题是四边形综合题,主要考查了平行四边形的性质和判定,全等三角形的判定和性质,等腰三角形的判定和性质,等腰直角三角形的性质,旋转的性质,判断出△ABO是等腰直角三角形是解本题的关键.。

2018-2019学年人教版八年级(下册)期末数学考试试题及答案

2018-2019学年人教版八年级(下册)期末数学考试试题及答案

2018-2019学年八年级(下)期末数学试卷一、选择题(本题共10道小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列从左边到右边的变形,是因式分解的是()A.y2﹣2y+4=(y﹣2)2B.10x2﹣5x=5x(2x﹣1)C.a(x+y)=ax+ayD.t2﹣16+3t=(t+4)(t﹣4)+3t2.观察下列四个平面图形,其中是中心对称图形的个数是()A.1个B.2个C.3个D.4个3.小马虎在下面的计算中只作对了一道题,他做对的题目是()A.B.a3÷a=a2C.D.=﹣14.下列命题:①直角三角形两锐角互余;②全等三角形的对应角相等;③两直线平行,同位角相等:④对角线互相平分的四边形是平行四边形.其中逆命题是真命题的个数是()A.1B.2C.3D.45.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点6.如果点P(3﹣m,1)在第二象限,那么关于x的不等式(2﹣m)x+2>m的解集是()A.x>﹣1B.x<﹣1C.x>1D.x<17.如果解关于x的方程+1=(m为常数)时产生增根,那么m的值为()A.﹣1B.1C.2D.﹣28.炎炎夏日,甲安装队为A小区安装88台空调,乙安装队为B小区安装80台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,设乙队每天安装x台,根据题意,下面所列方程正确的是()A.=B.=C.=D.=9.如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点H,则图中△AHC′的面积等于()A.12﹣6B.14﹣6C.18﹣6D.18+610.如图,△ABC是等边三角形,P是形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=()A.18B.9C.6D.条件不够,不能确定二、填空题(本题共8道小题,每小题2分,共16分)11.分解因式:9a﹣a3=.12.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.13.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设.14.若关于x的分式方程=1的解为正数,那么字母a的取值范围是.15.已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=.16.若关于x的一元一次不等式组无解,则a的取值范围是.17.如图所示,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.18.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则S n=.(用含n的式子表示)三、解答题(共54分)19.(4分)解分式方程:﹣1=.20.(6分)解不等式组:,并求出它的整数解的和.21.(6分)先化简,再求值:(﹣x﹣1)÷,其中x=﹣.22.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB'C′;(2)画出△AB′C′向左平移4格后的△A′B″C″;(3)计算线段AB在变换到AB′的过程中扫过区域的面积.23.(8分)为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;(2)就对抗训练背心的件数讨论去哪家商店买合算?24.(6分)如图,在△ABC中,D、E分别是边AB、AC的中点,点F是BC延长线上一点,且CF=BC,连结CD、EF,那么CD与EF相等吗?请证明你的结论.25.(8分)某中学为打造书香校园,购进了甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元,乙型号书柜共花了18000元,乙型号书柜比甲型号书柜单价便宜了300元,购买乙型号书柜的数量是甲型号书柜数量的2倍.求甲、乙型号书柜各购进多少个?26.(10分)我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10道小题,每小题3分,共30分。

人教版2018-2019学年八年级(下册)期末数学测试题及答案

人教版2018-2019学年八年级(下册)期末数学测试题及答案

2018-2019学年八年级(下)期末数学试卷一、选择题(本题共10道小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列从左边到右边的变形,是因式分解的是()A.y2﹣2y+4=(y﹣2)2B.10x2﹣5x=5x(2x﹣1)C.a(x+y)=ax+ayD.t2﹣16+3t=(t+4)(t﹣4)+3t2.观察下列四个平面图形,其中是中心对称图形的个数是()A.1个B.2个C.3个D.4个3.小马虎在下面的计算中只作对了一道题,他做对的题目是()A.B.a3÷a=a2C.D.=﹣14.下列命题:①直角三角形两锐角互余;②全等三角形的对应角相等;③两直线平行,同位角相等:④对角线互相平分的四边形是平行四边形.其中逆命题是真命题的个数是()A.1B.2C.3D.45.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点6.如果点P(3﹣m,1)在第二象限,那么关于x的不等式(2﹣m)x+2>m的解集是()A.x>﹣1B.x<﹣1C.x>1D.x<17.如果解关于x的方程+1=(m为常数)时产生增根,那么m的值为()A.﹣1B.1C.2D.﹣28.炎炎夏日,甲安装队为A小区安装88台空调,乙安装队为B小区安装80台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,设乙队每天安装x台,根据题意,下面所列方程正确的是()A.=B.=C.=D.=9.如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点H,则图中△AHC′的面积等于()A.12﹣6B.14﹣6C.18﹣6D.18+610.如图,△ABC是等边三角形,P是形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=()A.18B.9C.6D.条件不够,不能确定二、填空题(本题共8道小题,每小题2分,共16分)11.分解因式:9a﹣a3=.12.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.13.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设.14.若关于x的分式方程=1的解为正数,那么字母a的取值范围是.15.已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=.16.若关于x的一元一次不等式组无解,则a的取值范围是.17.如图所示,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.18.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则S n=.(用含n的式子表示)三、解答题(共54分)19.(4分)解分式方程:﹣1=.20.(6分)解不等式组:,并求出它的整数解的和.21.(6分)先化简,再求值:(﹣x﹣1)÷,其中x=﹣.22.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB'C′;(2)画出△AB′C′向左平移4格后的△A′B″C″;(3)计算线段AB在变换到AB′的过程中扫过区域的面积.23.(8分)为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;(2)就对抗训练背心的件数讨论去哪家商店买合算?24.(6分)如图,在△ABC中,D、E分别是边AB、AC的中点,点F是BC延长线上一点,且CF=BC,连结CD、EF,那么CD与EF相等吗?请证明你的结论.25.(8分)某中学为打造书香校园,购进了甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元,乙型号书柜共花了18000元,乙型号书柜比甲型号书柜单价便宜了300元,购买乙型号书柜的数量是甲型号书柜数量的2倍.求甲、乙型号书柜各购进多少个?26.(10分)我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10道小题,每小题3分,共30分。

2018-2019学年人教版数学八年级下册期末测试卷(含答案)

2018-2019学年人教版数学八年级下册期末测试卷(含答案)

2018-2019学年八年级(下)期末数学试卷一、选择题:本大题共10小题,每小题3分.共30分.在每题所给出的四个选项中,只有一项符合题目要求1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.使有意义的x的取值范围是()A.x>﹣1B.x≥﹣1C.x≠﹣1D.x≤﹣13.下列计算正确的是()A.=±2B.+=C.÷=2D.=44.如图的阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是()A.16B.25C.144D.1695.如图,▱ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为()A.1B.2C.3D.46.如图是一次函数y=kx+b的图象,则一次函数的解析式是()A.y=﹣4x+3B.y=4x+3C.y=x+3D.y=﹣x+37.某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是()A.25B.26C.27D.288.如图,是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误9.已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=8,AB=6,则线段CE的长度是()A.3B.4C.5D.610.如图1,在菱形ABCD中,∠BAD=60°,AB=2,E是DC边上一个动点,F是AB边上一点,∠AEF=30°.设DE=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段EC B.线段AE C.线段EF D.线段BF二、填空题:本大题共5小题每小题3分,共15分11.如表记录了甲、乙、丙丁四名跳远运动员选拔赛成绩的平均数与方差:根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛应该选择.12.如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x=.13.五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A所在点的坐标是(﹣2,2),黑棋B所在点的坐标是(0,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是.14.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=8cm,P,Q分别从A,C同时出发,P 以1cm/的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,秒后四边形ABQP 是平行四边形.15.如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…依此类推,若正方形①的边长为64m,则正方形⑨的边长为cm.三、解答题:本大题共7小题共55分16.(6分)计算:4(﹣)﹣÷+(+1)2.17.(7分)为了对某市区全民阅读状况进行调查和评估,有关部门随机抽取了部分市民进行每天阅读时间情况的调查,并根据调查结果制做了如下尚不完整的频数分布表(被调查者每天的阅读时间均在0﹣120分钟之内)(1)被调查的市民人数为,表格中,m=,n=;(2)补全频数分布直方图;(3)某市区目前的常住人口约有118万人,请估计该市区每天阅读时间在60~120分钟的市民大约有多少万人?18.(7分)有一块薄铁皮ABCD,∠B=90°,各边的尺寸如图所示,若沿对角线AC剪开,得到的两块都是“直角三角形”形状吗?为什么?19.(7分)在平面直角坐标系xOy中,一次函数的图象经过点A(2,3)与点B(0,5).(1)求此一次函数的表达式;(2)若点P为此一次函数图象上一点,且△POB的面积为10,求点P的坐标.20.(8分)已知四边形ABCD是矩形,对角线AC和BD相交于点P,若在矩形的上方加一个△DEA,且使DE∥AC,AE∥BD.(1)求证:四边形DEAP是菱形;(2)若AE=CD,求∠DPC的度数.21.(9分)问题:探究函数y=|x|﹣2的图象与性质.小华根据学习函数的经验,对函数y=|x|﹣2的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)在函数y=|x|﹣2中,自变量x可以是任意实数;(2)如表是y与x的几组对应值①m=;②若A(n,2018),B(2020,2018)为该函数图象上不同的两点,则n=;(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并根据描出的点画出该函数的图象;根据函数图象可得:该函数的最小值为;该函数图象与x轴围成的几何图形的面积是;(4)已知直线y1=x﹣与函数y=|x|﹣2的图象交于C,D两点,当y1≥y时,试确定x的取值范围.22.(11分)在学习了正方形后,数学小组的同学对正方形进行了探究,聪明的你也加入探究吧:(1)如图1,在正方形ABCD中,点E为BC边上任意一点(点E不与B,C重合),点F在线段AE上,过点F的直线MN⊥AE,分别交AB,CD于点M,N.此时,①∠AEB与∠AMN有什么数量关系?(直接写出即可)②AE与MN之间又有什么数量关系?并说明理由;(2)如图2:当点F为AE中点时,其他条件不变,连接正方形的对角线BD,MN与BD交于点G,连接BF,此时有结论:BF=FG,请利用图2做出证明.(3)如图3:当点E为直线BC上的动点时,如果(2)中的其他条件不变,直线MN分别交直线AB,CD于点M,N,请你直接写出线段AE与MN之间的数量关系、线段BF与FG之间的数量关系.参考答案与试题解析一、选择题:本大题共10小题,每小题3分.共30分.在每题所给出的四个选项中,只有一项符合题目要求1.下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解答】解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.使有意义的x的取值范围是()A.x>﹣1B.x≥﹣1C.x≠﹣1D.x≤﹣1【分析】让被开方数为非负数列式求值即可.【解答】解:由题意得:x+1≥0,解得x≥﹣1.故选:B.【点评】考查二次根式有意义的条件;用到的知识点为:二次根式的被开方数是非负数.3.下列计算正确的是()A.=±2B.+=C.÷=2D.=4【分析】根据算术平方根定义、二次根式的加法、除法和二次根式的性质逐一计算即可得.【解答】解:A、=2,此选项错误;B、、不是同类二次根式,不能合并,此选项错误;C、=2÷=2,此选项正确;D、=2,此选项错误;故选:C.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握算术平方根定义、二次根式的加法、除法和二次根式的性质.4.如图的阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是()A.16B.25C.144D.169【分析】两个阴影正方形的面积和等于直角三角形另一未知边的平方.利用勾股定理即可求出.【解答】解:两个阴影正方形的面积和为132﹣122=25.故选:B.【点评】考查了正方形的面积以及勾股定理的应用.推知“正方形的面积和等于直角三角形另一未知边的平方”是解题的难点.5.如图,▱ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为()A.1B.2C.3D.4【分析】由平行四边形的性质得出BC=AD=5,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=5,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=3,∴CE=BC﹣BE=5﹣3=2,故选:B.【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出BE =AB是解决问题的关键.6.如图是一次函数y=kx+b的图象,则一次函数的解析式是()A.y=﹣4x+3B.y=4x+3C.y=x+3D.y=﹣x+3【分析】将点(﹣4,0)、(0,3)坐标代入一次函数y=kx+b求出k、b即可.【解答】解:设一次函数解析式为:y=kx+b,根据题意,将点A(﹣4,0)和点B(0,3)代入得:,解得:,∴一次函数解析式为:y=x+3.故选:C.【点评】本题考查的是待定系数法求一次函数的,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是()A.25B.26C.27D.28【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可.【解答】解:由图形可知,25出现了3次,次数最多,所以众数是25.故选:A.【点评】本题考查了众数的概念,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.8.如图,是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误【分析】首先证明△AOE≌△COF(ASA),可得AE=CF,再根据一组对边平行且相等的四边形是平行四边形可判定判定四边形AECF是平行四边形,再由AC⊥EF,可根据对角线互相垂直的四边形是菱形判定出AECF是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.【解答】解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:C.【点评】此题主要考查了菱形形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).9.已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=8,AB=6,则线段CE的长度是()A.3B.4C.5D.6【分析】在Rt△ABC中利用勾股定理可求出AC=10,设BE=a,则CE=8﹣a,根据折叠的性质可得出BE=FE=a,AF=AB=6,∠AFE=∠B=90°,进而可得出FC=4,在Rt△CEF中,利用勾股定理可得出关于a的一元二次方程,解之即可得出a值,将其代入8﹣a中即可得出线段CE 的长度.【解答】解:在Rt△ABC中,AB=6,BC=8,∴AC=10.设BE=a,则CE=8﹣a,根据翻折的性质可知,BE=FE=a,AF=AB=6,∠AFE=∠B=90°,∴FC=4.在Rt△CEF中,EF=a,CE=8﹣a,CF=4,∴CE2=EF2+CF2,即(8﹣a)2=a2+42,解得:a=3,∴8﹣a=5.故选:C.【点评】本题考查了翻折变换、矩形的性质、勾股定理以及解一元二次方程,在Rt△CEF中,利用勾股定理找出关于a的一元二次方程是解题的关键.10.如图1,在菱形ABCD中,∠BAD=60°,AB=2,E是DC边上一个动点,F是AB边上一点,∠AEF=30°.设DE=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段EC B.线段AE C.线段EF D.线段BF【分析】求出当点E与点D重合时,即x=0时EC、AE、EF、BF的长可排除C、D;当点E与点C重合时,即x=2时,求出EC、AE的长可排除A,可得答案.【解答】解:当点E与点D重合时,即x=0时,EC=DC=2,AE=AD=2,∵∠A=60°,∠AEF=30°,∴∠AFD=90°,在RT△ADF中,∵AD=2,∴AF=AD=1,EF=DF=AD cos∠ADF=,∴BF=AB﹣AF=1,结合图象可知C、D错误;当点E与点C重合时,即x=2时,如图,连接BD交AC于H,此时EC=0,故A错误;∵四边形ABCD是菱形,∠BAD=60°,∴∠DAC=30°,∴AE=2AH=2AD cos∠DAC=2×2×=2,故B正确.故选:B.【点评】本题主要考查动点问题的函数图象与菱形的性质、解直角三角形的应用,结合函数图象上特殊点的实际意义排除法求解是解此题的关键.二、填空题:本大题共5小题每小题3分,共15分11.如表记录了甲、乙、丙丁四名跳远运动员选拔赛成绩的平均数与方差:根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛应该选择丙.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵乙和丁的平均数最小,∴从甲和丙中选择一人参加比赛,∵丙的方差最小,∴选择丙参赛,故答案为:丙.【点评】此题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12.如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x=﹣4.【分析】方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标.【解答】解:由图知:直线y=kx+b与x轴交于点(﹣4,0),即当x=﹣4时,y=kx+b=0;因此关于x的方程kx+b=0的解为:x=﹣4.故答案为:﹣4【点评】本题主要考查了一次函数与一次方程的关系,关键是根据方程kx+b=0的解其实就是当y =0时一次函数y=kx+b与x轴的交点横坐标解答.13.五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A所在点的坐标是(﹣2,2),黑棋B所在点的坐标是(0,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是(3,3).【分析】根据题意可以画出相应的平面直角坐标系,从而可以得到点C的坐标.【解答】解:由题意可得,如右图所示的平面直角坐标系,故点C的坐标为(3,3),故答案为:(3,3).【点评】本题考查坐标确定位置,解题的关键是明确题意,建立合适的平面直角坐标系.14.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=8cm,P,Q分别从A,C同时出发,P以1cm/的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,秒后四边形ABQP 是平行四边形.【分析】根据一组对边平行且相等的四边形是平行四边形可得当AP=BQ时,四边形ABQP是平行四边形,因此设x秒后四边形ABQP是平行四边形,进而表示出AP=xcm,CQ=2xcm,QB=(8﹣2x)cm再列方程解出x的值即可.【解答】解:设x秒后,四边形ABQP是平行四边形,∵P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,∴AP=xcm,CQ=2xcm,∵BC=8cm,∴QB=(8﹣2x)cm,当AP=BQ时,四边形ABQP是平行四边形,∴x=8﹣2x,解得:x=.故答案为:.【点评】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定方法.15.如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…依此类推,若正方形①的边长为64m,则正方形⑨的边长为4cm.【分析】第一个正方形的边长为64cm,则第二个正方形的边长为64×cm,第三个正方形的边长为64×()2cm,依此类推,通过找规律求解.【解答】解:根据题意:第一个正方形的边长为64cm;第二个正方形的边长为:64×=32 cm;第三个正方形的边长为:64×()2cm,…此后,每一个正方形的边长是上一个正方形的边长的,所以第9个正方形的边长为64×()9﹣1=4cm,故答案为4.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题:本大题共7小题共55分16.(6分)计算:4(﹣)﹣÷+(+1)2.【分析】先根据二次根式的乘除法则和完全平方公式计算,然后合并即可.【解答】解:原式=4﹣4﹣+3+2+1=2﹣8﹣4+4+2=2﹣6.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(7分)为了对某市区全民阅读状况进行调查和评估,有关部门随机抽取了部分市民进行每天阅读时间情况的调查,并根据调查结果制做了如下尚不完整的频数分布表(被调查者每天的阅读时间均在0﹣120分钟之内)(1)被调查的市民人数为1000,表格中,m=100,n=0.05;(2)补全频数分布直方图;(3)某市区目前的常住人口约有118万人,请估计该市区每天阅读时间在60~120分钟的市民大约有多少万人?【分析】(1)根据0≤x<30的频数和频率先求出总人数,用总人数乘以60≤x<90的频率求出m,用90≤x≤120的频数除以总人数求出n;(2)根据(1)求出的总人数,补全统计图即可;(3)用常住人口数乘以阅读时间在60~120 分钟的人数的频率即可得出答案.【解答】解:(1)根据题意得:被调查的市民人数为=1000(人),m=1000×0.1=100,n==0.05;故答案为:1000,100,0.05;(2)根据(1)补图如下:(3)根据题意得:118×(0.1+0.05)=17.7(万人)估计该市区每天阅读时间在60~120分钟的市民大约有17.7万人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.(7分)有一块薄铁皮ABCD,∠B=90°,各边的尺寸如图所示,若沿对角线AC剪开,得到的两块都是“直角三角形”形状吗?为什么?【分析】先在△ABC中,由∠B=90°,可得△ABC为直角三角形;根据勾股定理得出AC2=AB2+BC2=8,那么AD2+AC2=9=DC2,由勾股定理的逆定理可得△ACD也为直角三角形.【解答】解:都是直角三角形.理由如下:连结AC.在△ABC中,∵∠B=90°,∴△ABC为直角三角形;∴AC2=AB2+BC2=8,又∵AD2+AC2=1+8=9,而DC2=9,∴AC2+AD2=DC2,∴△ACD也为直角三角形.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.也考查了勾股定理.19.(7分)在平面直角坐标系xOy中,一次函数的图象经过点A(2,3)与点B(0,5).(1)求此一次函数的表达式;(2)若点P为此一次函数图象上一点,且△POB的面积为10,求点P的坐标.【分析】(1)设一次函数的表达式为y=kx+b,把点A和点B的坐标代入求出k,b的值即可,(2)根据(1)所求的解析式设点P的横坐标为a,纵坐标用含a的式子表示出,再根据△POB的面积为10,列出关于a的等式,解之即可.【解答】解:(1)设一次函数的表达式为y=kx+b,把点A(2,3)和点B(0.5)代入得:,解得:,此一次函数的表达式为:y=﹣x+5,(2)设点P的坐标为(a,﹣a+5),∵B(0,5),∴OB=5,又∵△POB的面积为10,∴×|a|=10,∴|a|=4,∴a=±4,∴点P的坐标为(4,1)或(﹣4,9).【点评】本题考查了待定系数法求一次函数的解析式和一次函数图象上点的坐标特征,解题的关键:(1)掌握待定系数法的基本步骤,(2)根据等量关系列出一元一次方程.20.(8分)已知四边形ABCD是矩形,对角线AC和BD相交于点P,若在矩形的上方加一个△DEA,且使DE∥AC,AE∥BD.(1)求证:四边形DEAP是菱形;(2)若AE=CD,求∠DPC的度数.【分析】(1)由条件可证得四边形DEAP为平行四边形,结合矩形的对角线相等且平分可得PA=PD,可证得结论;(2)由(1)的结论结合条件可证得△PDC为等边三角形,可求得∠DPC的度数.【解答】(1)证明:∵DE∥AC,AE∥BD,∴四边形DEAP为平行四边形,∵ABCD为矩形,∴AP=AC,DP=BD,AC=BD,∴AP=PD,PD=CP,∴四边形DEAP为菱形;(2)解:∵四边形DEAP为菱形,∴AE=PD,∵AE=CD,∴PD=CD,∵PD=CP,∴△PDC为等边三角形,∴∠DPC=60°.【点评】本题主要考查菱形的判定和性质,掌握菱形的判定和性质是解题的关键,即①有一组邻边相等的平行四边形是菱形,②对角线互相垂直的平行四边形是菱形,③四条边都相等的四边形是菱形.21.(9分)问题:探究函数y=|x|﹣2的图象与性质.小华根据学习函数的经验,对函数y=|x|﹣2的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)在函数y=|x|﹣2中,自变量x可以是任意实数;(2)如表是y与x的几组对应值①m=1;②若A(n,2018),B(2020,2018)为该函数图象上不同的两点,则n=﹣2020;(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并根据描出的点画出该函数的图象;根据函数图象可得:该函数的最小值为﹣2;该函数图象与x轴围成的几何图形的面积是4;(4)已知直线y1=x﹣与函数y=|x|﹣2的图象交于C,D两点,当y1≥y时,试确定x的取值范围.【分析】(2)①把x =3代入y =|x |﹣2,即可求出m ;②把y =2018代入y =|x |﹣2,即可求出n ;(3)画出该函数的图象即可求解;(4)在同一平面直角坐标系中画出函数y 1=x ﹣与函数y =|x |﹣2的图象,根据图象即可求出y 1≥y 时x 的取值范围.【解答】解:(2)①把x =3代入y =|x |﹣2,得m =3﹣2=1.故答案为:1;②把y =2018代入y =|x |﹣2,得2018=|x |﹣2,解得x =﹣2010或2020,∵A (n ,2018),B (2020,2018)为该函数图象上不同的两点,∴n =﹣2020.故答案为:﹣2020;(3)该函数的图象如图,由图可得,该函数的最小值为﹣2;该函数图象与x 轴围成的几何图形的面积是×4×2=4;故答案为:﹣2;4;(4)在同一平面直角坐标系中画出函数y1=x﹣与函数y=|x|﹣2的图象,由图形可知,当y1≥y时x的取值范围是﹣1≤x≤3.故答案为:﹣1≤x≤3.【点评】本题考查了一次函数的图象与性质,一次函数图象上点的坐标特征.正确画出函数的图象,利用数形结合思想是解题的关键.22.(11分)在学习了正方形后,数学小组的同学对正方形进行了探究,聪明的你也加入探究吧:(1)如图1,在正方形ABCD中,点E为BC边上任意一点(点E不与B,C重合),点F在线段AE上,过点F的直线MN⊥AE,分别交AB,CD于点M,N.此时,①∠AEB与∠AMN有什么数量关系?(直接写出即可)②AE与MN之间又有什么数量关系?并说明理由;(2)如图2:当点F为AE中点时,其他条件不变,连接正方形的对角线BD,MN与BD交于点G,连接BF,此时有结论:BF=FG,请利用图2做出证明.(3)如图3:当点E为直线BC上的动点时,如果(2)中的其他条件不变,直线MN分别交直线AB,CD于点M,N,请你直接写出线段AE与MN之间的数量关系、线段BF与FG之间的数量关系.【分析】(1)作辅助线,构建平行四边形PMND,再证明△ABE≌△DAP,即可得出结论;(2)连接AG、EG、CG,构建全等三角形和直角三角形,证明AG=EG=CG,再根据四边形的内角和定理得∠AGE=90°,在Rt△ABE和Rt△AGE中,利用直角三角形斜边上的中线等于斜边的一半得BF=AE,FG=AE,则BF=FG;(3)AE=MN,证明△AEB≌△NMQ;BF=FG,同理得出BF和FG分别是直角△AEB和直角△AGE斜边上的中线,则BF=AE,FG=AE,所以BF=FG.【解答】证明:(1)①∠AEB=∠AMN.理由如下:在图1中,过点D作PD∥MN交AB于P,则∠DPA=∠AMN,∵正方形ABCD,∴AB=AD,AB∥DC,∠DAB=∠B=90°,∴四边形PMND是平行四边形且PD=MN,∵∠B=90°,∴∠BAE+∠BEA=90°,∵MN⊥AE于F,∴∠BAE+∠AMN=90°,∴∠BEA=∠AMN=∠APD,又∵AB=AD,∠B=∠DAP=90°,∴△ABE≌△DAP(ASA),∴∠AEB=∠DPA.又∵∠DPA=∠AMN,∴∠AEB=∠AMN;②AE=MN.理由如下:由①知,PD=MN且△ABE≌△DAP,则AE=PD=MN,即AE=MN;(2)在图2中,连接AG、EG、CG,由正方形的轴对称性△ABG≌△CBG,∴AG=CG,∠GAB=∠GCB,∵MN⊥AE于F,F为AE中点,∴AG=EG,∴EG=CG,∠GEC=∠GCE,∴∠GAB=∠GEC,由图可知∠GEB+∠GEC=180°,∴∠GEB+∠GAB=180°,又∵四边形ABEG的内角和为360°,∠ABE=90°,∴∠AGE=90°,在Rt△ABE和Rt△AGE中,AE为斜边,F为AE的中点,∴BF=AE,FG=AE,∴BF=FG;(3)AE与MN的数量关系是:AE=MN,理由是:如图3,过N作NQ⊥AB于Q,∵∠NMQ=∠AMF,∠AMF=∠AEB,∴∠AEB=∠NMQ,∵AB=BC=QN,∠ABE=∠NQM=90°,∴△AEB≌△NMQ,∴AE=MN;BF与FG的数量关系是:BF=FG,理由是:如图4,连接AG、EG、CG,同理得:∠GAD=∠GCD,∠GEC=∠GCE,∵∠GCE+∠GCD=90°,∴∠GAD+∠GEC=90°,∵AD∥EC,∴∠DAE+∠AEC=180°,∴∠AEG+∠EAG=90°,∴∠AGE=90°,在Rt△ABE和Rt△AGE中,AE为斜边,F为AE的中点,∴BF=AE,FG=AE,∴BF=FG.【点评】本题是四边形的综合题,考查了正方形、全等三角形、平行四边形的性质和判定,在有中点和直角三角形的前提条件下,可以利用直角三角形斜边上的中线等于斜边的一半来证明两条线段相等.。

新人教版2018-2019八年级下学期数学期末试卷及其答案

新人教版2018-2019八年级下学期数学期末试卷及其答案

2018—2019学年度(下)学期期末教学质量检测八年级数学试卷参考答案考试时间:90分钟 试卷满分:100分一、选择题(每小题2分,共20分)1.D 2.B 3.A 4.B 5.C 6.C 7.B 8.D 9.C 10.A二、填空题(每小题2分,共16分)11.2x ≥-且1x ≠ 12.相等的角为对顶角 13.2cm 14.2516.12 17.x <-2 18.(2017,0) 三、解答题(19题8分,20题8分,共计16分)19. (1)解:-------------------------------------------------------------------------------------------4 (227a + 26=+. -------------------------------------------------2 当1a =时, 原式=1165652=+=+. ----------------------------4 20. 解:(1)如图1------------------------------------------------------------2(((5⎛-÷⨯ ⎝=-÷=-⨯=(2)如图2----------------------------------------------------------------4(3)如图3,连接AC ,由勾股定理得则AC 2=BC 2=10,AB 2=20---------------------------------------------------------5 ∴AC 2+BC 2=AB 2∴∠ACB=90°,-------------------------------------------------------------6 又AC=BC=,------------------------------------------------------------7 ∴∠ABC=∠BAC=45°.-------------------------------------------------------8四、解答题(21题8分,22题8分,共计16分)21.解:(1)补全条形统计图,如下图.------------------------------------------------------------------------4(2)86;92. ----------------------------------------------------------6(3)甲校:从平均分或从中位数上比较,甲校比乙校数学学业水平更好些乙校:从众数上比较,乙校比甲校数学学业水平更好些 ---------------822. (1)∵四边形ABCD 是矩形∴AD ∥BC ,----------------------1∴∠DEF =∠EFB (2)由折叠可知∠BEF =∠DEF (3)∴∠BEF =∠EFB.∴BE =BF (4)(2)∵四边形ABCD 是矩形∴∠A =90°由折叠知BE=ED,设BE=ED=x ,则AE=9-x----------------------------------------5 第22题图在Rt △ABE 中,由勾股定理得AE 2+AB 2=BE 2---------------------------------------6 ∴()22293x x -+=--------------------------------------------------------7 解得x=5∴BE=5---------------------------------------------------------------------8五、解答题(8分)23. 解:(1)由题意可得,8x +6y +5(20﹣x ﹣y )=120,---------------------------------------------------------------2 化简,得y =﹣3x+20,-------------------------------------------------------------------------------------3 即y 与x 的函数关系式为y =﹣3x+20;---------------------------------------------------4 (2)由题意可得,15×8x +14×6(﹣3x+20)+8×[120﹣8x ﹣6(﹣3x+20)]=1420,----------------6 解得,x =5,-------------------------------------------------------------------------------------7 ∴y =20﹣3×5=5,20﹣x ﹣y =10,答:加工甲、乙、丙三种型号配件的人数分别是5人、5人、10人.-------------8六、解答题(8分)24.解:(1)当40≤x ≤58时,设y 与x 的函数解析式为y =k 1x +b 1,由图象可得 第24题图,---------------------------------------------------------------------------1解得.-------------------------------------------------------------------------------2∴y=﹣2x+140.---------------------------------------------------------------------------------3当58<x≤71时,设y与x的函数解析式为y=k2x+b2,由图象得,------------------------------------------------------------------------------4解得,-----------------------------------------------------------------------------------5∴y=﹣x+82,------------------------------------------------------------------------------------6综上所述:y=;(2)设人数为a,当x=48时,y=﹣2×48+140=44,∴(48﹣40)×44=52+100a,------------------------------------------------------------7解得a=3;答:该店的员工有3人.----------------------------------------------------------------------------8七、解答题(8分) 25.(1)证明:延长EO 交AB 于H---------------------------------------------------------------------1 ∵四边形ABCD 为矩形∴CD ∥AB ,OD =OB-----------------------------------------------------------------------------2 ∴∠ODE =∠OBH ,∠OED =∠OHB ,-------------------------------------------------------3 ∴△ODE ≌△OBH (AAS )-------------------------------------------------------------------4 ∴DE =BH ,OE =OH------------------------------------------------------------------------------5 又OF ⊥OE∴EF=FH-------------------------------------------------------------------------------------------6 ∴BF -DE=BF -BH =FH=EF-----------------------------------------------------------------------7(2)八、解答题(8分)26.解:(1)令x=0,得y=4,∴B (0,4)令y=0,得x=4,∴A (4,0)-----------------------------------------------------------2 第25题图第26题图(2)设P (x ,y )y <0时,显然不成立①x <0,y >4时,∵△PBO 与△P AC 面积相等 ∴()1134()34222x y x ⨯⨯-=⨯⨯=-+-----------------------------------------------3解得x=-12,y=16∴P (-12,16)----------------------------------------------------------------------------------------4 ②当0≤x <4,0<y ≤4时∵△PBO 与△P AC 面积相等 ∴()113434222x y x ⨯⨯=⨯⨯=-+-----------------------------------------------------5 解得1216,77x y == ∴P 1216(,)77--------------------------------------------------------------------------------------------6 所以满足条件的点P 的坐标是(-12,16)或1216(,)77 (3)△PCO 周长的最小值是6---------------------------------------------------------------------8。

人教版2018--2019学年度第二学期八年级期末考试数学试卷

人教版2018--2019学年度第二学期八年级期末考试数学试卷
19.(本题7分)计算:
(1) (2)
20.(本题7分)甲、乙两人在相同的情况下各打靶 次,每次打靶的成绩如下(单位:环):
甲: , , , , , , , , , ;
乙: , , , , , , , , , .
请你运用所学的统计知识做出分析,从三个不同角度评价甲、乙两人的打靶成绩.
21.(本题7分)如图,Rt△ABC中,∠C=90°,AC=6,BC=8,D为BC上一点,将AC沿AD折叠,使点C落在AB上的E点,求CD的长.
分析上述数据,请你估计这两台机床的性能_______比较稳定(填“甲”或“乙”或“无法确定”) .
14.(本题4分)饮料每箱24瓶,售价48元,买饮料的总价y (元)与所买瓶数x之间的函数________.
15.(本题4分)将函数y= 的图象向上平移_____个单位后,所得图象经过点(0,3).
16.(本题4分)标本-1,-2,0,1,2,方差是______.
故选:C.
考点:最简二次根式.
2.C
【解析】
【分析】
根据平行四边形的性质可知,平行四边形的对角相等,邻角互补,∠A与∠B是邻角,所以互补,故由已知可求解.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠B+∠A=180°,
∵∠A=55°,
∴∠B=180°-∠A=125°.
故选C.
【点睛】
本题考查了平行四边形的性质,由平行四边形的对边平行,得出平行四边形的邻角互补是解题的关键.
A.明明的速度是80米 分B.第二次相遇时距离B地800米
C.出发25分时两人第一次相遇D.出发35分时两人相距2000米
评卷人
得分
二、填空题(计32分)

人教版2018-2019学年八年级下学期期末数学试卷(含答案)

人教版2018-2019学年八年级下学期期末数学试卷(含答案)

2018-2019学年八年级下期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列各式中,能与合并的二次根式是()A. B. C. D.2.下列各组数中,能构成直角三角形的一组是()A. 2,3,4B. 5,8,11C. 1,1,D. 5,12,133.如图,下列条件中,不能确定四边形ABCD是平行四边形的是()A. ,B.,C. ,D. ,4.方程x2-2x+3=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 有一个实数根5.如图,在△ABC中,点D、E分别是边AB、AC的中点,若DE=4,则BC的长为()A. 4B. 6C. 8D. 106.已知一组数据:3,5,7,8,9,9.下列说法正确的是()A. 平均数是7B. 中位数是7C. 中位数是8D. 众数是97.若x,y为实数,且|x+2|+=0,则y x的值为()A. B. C. D.8.如图,在正方形ABCD的边BC的延长线上取一点E,使CE=AC,连接AE交CD于F,则∠AFC等于()A. B. C. D.9.已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3x+b上,则y1、y2、y3的值大小关系是()A. B. C. D.10.已知4是关于x的方程x2-5mx+12m=0的一个根,且这个方程的两个根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A. 14B. 16C. 12或14D. 14或16二、填空题(本大题共6小题,共18.0分)11.若二次根式在实数范围内有意义,则x的取值范围是______.12.甲、乙、丙三人进行100测试,每人10次的百米测试成绩的平均数为13秒,方差分别是S甲2=0.55,S乙2=0.60,S丙2=0.50,则成绩最稳定的是______.13.若x2-2x=3,则3x2-6x+1值为______.14.把直线y=-2x+1沿y轴向下平移3个单位长度,所得到的解析式是______.15.直角三角形的两边为3和4,则该三角形的第三边为______.16.如图,矩形ABCD对角线AC、BD交于点O,AB=6,BC=8,点P为AD边上的一个动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF=______.三、解答题(本大题共9小题,共72.0分)17.解方程:x2-6x+5=0.18.计算:()-1×(-)0+-|-|19.参加足球联赛的每两队之间都要进行两场比赛,共要比赛132场,共有多少个球队参加比赛?20.如图,矩形ABCD的对角线AC、BD相交于点O,把△AOD沿AD翻折,得到△AED.求证:四边形AODE是菱形.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:(2)如果研究报告、小组展示、答辩按照5:3:2的权重确定各小组的成绩,哪个小组的成绩最高?为什么?22.如图,折叠矩形一边AD,使点D落在BC边的点F处,已知AB=4,BC=5.求(1)BF的长;(2)EF的长.23.如图,直线AC:y1=2x+3与直线BC:y2=-2x-1.(1)求两直线与y轴交于点A、B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.24.A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城运往C、D两乡运肥料的费用分别是每吨20元和25元,从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现在C乡需要肥料240吨,D乡需要肥料260吨,设A城运往C乡的肥料量为x吨,总运费为y元.(1)写出总运费y元关于与x之间的关系式;(2)当总费用为10200元,求从A、B城分别调运C、D两乡各多少吨?(3)怎样调运化肥,可使总运费最少?最少运费是多少?25.如图①,正方形ABCD中,M是AB的中点,E是延长线上一点.MN⊥DM,且交∠CBE的平分线于N.(1)若点F是AD的中点,求证:MD=MN;(2)若将上述条件中的“M是AB的中点”改为“M是AB上的任意一点”,其它条件不变.如图②所示,则结论“MD=MN”是否成立.若成立,给出证明;若不成立,请说明理由.答案和解析1.【答案】B【解析】解:A、不能与合并,故本选项不符合题意;B、=2,能与合并,故本选项符合题意;C、不能与合并,故本选项不符合题意;D、不能与合并,故本选项不符合题意;故选:B.先化成最简二次根式,再判断即可.本题考查了同类二次根式和二次根式的性质等知识点,能理解同类二次根式的定义是解此题的关键.2.【答案】D【解析】解:A、22+32≠42,不能构成直角三角形,故此选项错误;B、82+52≠112,不能构成直角三角形,故此选项错误;C、12+12≠2,不能构成直角三角形,故此选项错误;D、52+122=132,能构成直角三角形,故此选项正确.故选:D.根据勾股定理的逆定理对四个答案进行逐一判断即可.本题考查的是勾股定理的逆定理,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.3.【答案】A【解析】【分析】本题考查平行四边形的判定,解题的关键是记住平行四边形的判定方法,属于中考基础题.根据平行四边形的判定方法即可判定;【解答】解:A.由AB=CD,AD∥BC,无法判断四边形ABCD是平行四边形,四边形ABCD可能是等腰梯形;故本选项符合题意;B.由AB=CD,AB∥CD,可以判定四边形ABCD是平行四边形,故本选项不符合题意;C.由AB∥CD,AD∥BC,可以判定四边形ABCD是平行四边形,故本选项不符合题意;D.由AB=CD,AD=BC,可以判定四边形ABCD是平行四边形,故本选项不符合题意;故选A.4.【答案】C【解析】解:∵a=1,b=-2,c=3,∴△=b2-4ac=(-2)2-4×1×3=-8<0,所以方程没有实数根.故选:C.把a=1,b=-2,c=3代入△=b2-4ac进行计算,然后根据计算结果判断方程根的情况.本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.5.【答案】C【解析】解:∵D、E分别是AB、AC的中点.∴DE是△ABC的中位线,∴BC=2DE,∵DE=4,∴BC=2×4=8.故选:C.根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有DE=BC,从而求出BC.本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.6.【答案】D【解析】解:这组数据中9出现2次,次数最多,所以众数为9,平均数为=,中位数为=,故选:D.根据平均数、众数和中位数的定义求解.此题考查了平均数、中位数、众数和方差,熟练掌握定义和计算公式是解题的关键.7.【答案】B【解析】解:由题意得,x+2=0,y-3=0,解得,x=-2,y=3,则y x=,故选:B.根据非负数的性质可求出x、y的值,再将它们代入y x中求解即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.【答案】A【解析】解:∵四边形ABCD为正方形,∴∠ACD=90°,∴∠DCE=90°,又∵AC是正方形ABCD的对角线,∴∠ACF=45°,∴∠ACE=∠DCE+∠ACF=135°,∵CE=CA,∴∠FAC=∠E=(180°-135°)=22.5°∴∠AFD=∠FAC+∠ACF=22.5°+45°=67.5°,∴∠AFC=180°-67.5°=112.5°,故选:A.由图知∠AFD=∠FAC+∠ACF,即求出∠FAC,∠ACF的值,可知∠AFD的度数,进而可求出∠AFC的度数.本题考查正方形的性质、等腰三角形的性质、三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.【答案】B【解析】解:∵直线y=-3x+b,k=-3<0,∴y随x的增大而减小,又∵-2<-1<1,∴y1>y2>y3.故选:B.先根据直线y=-3x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.10.【答案】D【解析】解:把x=4代入方程x2-5mx+12m=0得16-20m+12m=0,解得m=2,则方程为x2-10x+24=0,(x-4)(x-6)=0,所以x1=4,x2=6,因为这个方程的两个根恰好是等腰三角形ABC的两条边长,所以这个等腰三角形三边分别为4、4、6;4、6、6,所以△ABC的周长为14或16.故选:D.先把x=4代入方程x2-5mx+12m=0得m=2,则方程为x2-10x+24=0,利用因式分解法解方程得到x1=4,x2=6,再利用等腰三角形的性质和三角形三边的关系确定三角形三边长,然后计算对应的三角形周长.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.11.【答案】x≥1【解析】解:∵式子在实数范围内有意义,∴x-1≥0,解得x≥1.故答案为:x≥1.先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是二次根式有意义的条件,即被开方数大于等于0.12.【答案】丙【解析】解:∵S丙2<S甲2<S乙2,∴成绩最稳定的是丙,故答案为:丙.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.本题考查方差的定义.一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.【答案】10【解析】解:当x2-2x=3时,原式=3(x2-2x)+1=10故答案为:10将x2-2x=3整体代入原式即可求出答案.本题考查代数式求值,解题的关键是熟练运用整体的思想,本题属于基础题型.14.【答案】y=-2x-2【解析】解:根据平移的规则可知:直线y=-2x+1向下平移3个单位长度后所得直线的解析式为:y=-2x+1-3,即y=-2x-2.故答案为:y=-2x-2.根据函数图象的平移规则“上加、下减”,即可得出直线平移后的解析式.本题考查了一次函数图象与几何变换,解题的关键是熟记函数平移的规则“上加、下减”.15.【答案】5或【解析】解:设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得:32+42=x2,所以x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理得:32+x2=42,所以x=;所以第三边的长为5或.故答案为:5或.本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.16.【答案】【解析】解:连接OP,在直角△ABD中,AB=6,AD=8,∴BD==10,∴AO=OD=5,∵△AOD的面积是×矩形ABCD的面积=×8×6=12即△ODP的面积+△AOP的面积=12,∴AO•PE+OD•PF=3,∴×5(PE+PF)=12,解得:PE+PF=.故答案为.连接OP,首先求得△AOD的面积,根据△AOD的面积=△ODP的面积+△AOP的面积=AO•PE+OD•PF,即可求解.本题考查矩形的性质、勾股定理,三角形的面积等知识,解题的关键是学会用面积法解决问题,属于中考常考题型.17.【答案】解:分解因式得:(x-1)(x-5)=0,x-1=0,x-5=0,x1=1,x2=5.【解析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.18.【答案】解:原式=3×1+3-=3+2.【解析】直接利用负指数幂的性质以及零指数幂的性质和二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.【答案】解:设共有x个队参加比赛,根据题意得:2×x(x-1)=132,整理得:x2-x-132=0,解得:x=12或x=-11(舍去).故共有12个队参加比赛.【解析】设共有x个队参加比赛,根据每两队之间都进行两场比赛结合共比了90场即可得出关于x的一元二次方程,解之即可得出结论.本题考查了一元二次方程的应用,根据每两队之间都进行两场比赛结合共比了132场列出关于x的一元一次方程是解题的关键.20.【答案】解:四边形AODE为菱形,理由如下:由翻折的性质可得:AE=AO,DE=DO又∵矩形的对角线互相平分,∴AO=DO∴AE=AO=DE=DO∴四边形AODE为菱形.【解析】由把△AOD沿AD翻折得到△AED,可得AE=AO,DE=DO,又结合矩形性质可得AO=DO,由此可判断四边形AODE为菱形.本题主要考查的是矩形的性质、菱形的判定定理,熟练掌握相关知识是解题的关键.21.【答案】解:(1)∵甲==83(分)、乙==82(分)、丙==84(分),∴从高分到低分确定小组的排名顺序为:丙、甲、乙;(2)甲==85.3(分)、乙==82.0(分)、==82.3(分),丙∴甲组成绩最高.【解析】(1)根据算术平均数的定义计算可得;(2)根据加权平均数的定义计算可得.本题主要考查平均数,解题的关键是掌握算术平均数和加权平均数的定义.22.【答案】解:(1)由翻折的性质可知AD=AF=5,∴BF===3.(2)∵BC=5,BF=3,∴FC=2.设EF=x,则DE=EF=x,EC=4-x,在Rt△EFC中,x2=22+(4-x)2,解得:x=.∴EF=.【解析】(1)由翻折的性质可知AF=5,然后在Rt△ABF中,依据勾股定理求解即可;(2)先求得FC=2,然后设EF=x,则DE=EF=x,EC=4-x,在Rt△EFC中,依据勾股定理列出求解即可本题主要考查的是翻折的性质、勾股定理的应用,依据勾股定理列出关于x 的方程是解题的关键.23.【答案】解:(1)在y=2x+3中,令x=0,解得:y=3,则A点的坐标为(0,3),在y=-2x-1中,令x=0,解得y=-1,B点的坐标为(0,-1);(2)∵,解得.∴C点的坐标为(-1,1);(3)∵A点的坐标为(0,3),B点的坐标为(0,-1),∴AB=4,又∵C点的坐标为(-1,1),∴S△ABC=×4×1=2.【解析】(1)在两个一次函数解析式中,令x=0,求得y的值,即可得到点A和B的坐标;(2)求两个一次函数的解析式组成的方程组,求得点C的坐标;(3)求出AB的长,利用三角形面积公式即可求解.本题考查了两直线相交问题以及三角形的面积,解决问题的关键是认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.24.【答案】解:(1)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和[260-(200-x)]=(60+x)吨.由总运费与各运输量的关系可知,反映y与x之间的函数关系为y=20x+25(200-x)+15(240-x)+24(60+x)化简,得y=4x+10040(0≤x≤200)(2)将y=10200代入得:4x+10040=10200,解得:x=40,∴200-x=200-40=160,240-x=200,60+x=100,∴从A城运往C乡的肥料量为40吨,A城运往D乡的肥料量为160吨,B城运往C的肥料量分别为200吨,B城运往D的肥料量分别为100吨.(3)∵y=4x+10040,∴k=4>0,∴y随x的增大而增大,∴当x=0时,y最小=10040∴从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.【解析】(1)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和(60+x)吨,然后根据总运费和运输量的关系列出方程式,就可以求出解析式;(2)将y=10200代入(1)中的函数关系式可求得x的值;(3)根据(1)的解析式,由一次函数的性质就看由求出结论.本题考查了一次函数的解析式的运用,一次函数的性质的运用.解答时求出一次函数的解析式是关键.25.【答案】解:(1)如图,取AD的中点F,连接FM.∵∠FDM+∠DMA=∠BMN+∠DMA=90°,∴∠FDM=∠BMN,∵AF=AD=AB=AM=MB=DF,∵BN平分∠CBE,即∠NBE=∠CBE=45°,又∵AM=AF,∴∠AFM=45°,∴∠DFM=∠MBN=135°.∵DF=MB,在△DFM和△MBN中,∴△DFM≌△MBN(ASA).∴DM=MN.(2)结论“DM=MN”仍成立.证明如下:如图,在AD上截取AF'=AM,连接F'M.∵DF'=AD-AF',MB=AB-AM,AD=AB,AF'=AM,∴DF'=MB.∵∠F'DM+∠DMA=∠BMN+∠DMA=90°,∴∠F'DM=∠BMN.又∠DF'M=∠MBN=135°,在△DF'M和△MBN中,∴△DF'M≌△MBN(ASA).∴DM=MN.【解析】(1)要证MD=MN,就要构建△DFM≌△MBN,只需取AD的中点F,连接FM,依据正方形的性质可证△DFM≌△MBN,进而得出DM=MN.(2)只需在AD上截取AF'=AM,其证法与(1)相同.本题综合考查了利用正方形的性质和全等三角形的判定的知识.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.。

2018-2019学年 人教版八年级数学下学期期末测试题(含答案)

2018-2019学年 人教版八年级数学下学期期末测试题(含答案)

2018-2019学年 八年级(下)期末数学试卷一、精心选一选:本大题共10小题,每小题4分,共40分;每小题给出的四个选项中有且只有一个选项是符合题目要求的,答对的得4分,答错、不答或答案超过一个的一律得0分 1.下列关系式中,不是函数关系的是( )A .y =(x <0)B .y =±(x >0)C .y =(x >0) D .y =﹣(x >0)2.计算的结果是( )A .3B .﹣3C .9D .﹣93.在Rt △ABC 中,∠C =90°.如果BC =3,AC =5,那么AB =( )A .B .4C .4或D .以上都不对4.的倒数是( )A .B .C .﹣3D .5.甲和乙一起练习射击,第一轮10枪打完后两人的成绩如图所示.设他们这10次射击成绩的方差为S 甲2、S 乙2,下列关系正确的是( )A .S 甲2<S 乙2B .S 甲2>S 乙2C .S 甲2=S 乙2D .无法确定6.设正比例函数y =mx 的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m =( ) A .2B .﹣2C .4D .﹣47.如图,要测定被池塘隔开的A ,B 两点的距离.可以在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,连接DE .现测得AC =30m ,BC =40m ,DE =24m ,则AB =( )A.50m B.48m C.45m D.35m8.若bk<0,则直线y=kx+b一定通过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限9.直角三角形中,两条直角边的边长分别为6和8,则斜边上的中线长是()A.10B.8C.6D.510.如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC 的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y (cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动3秒时,PQ的长是()A.2cm B.3cm C.4cm D.5cm二、细心填一填:本大题共6小题,每小题4分,共24分,请填在答题卡的相应位置上11.当x时,二次根式有意义.12.若数据a1、a2、a3的平均数是3,则数据2a1、2a2、2a3的平均数是.13.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为米.14.如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是.15.根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为﹣,则输出的结果为16.如图,直线y=﹣x+4分别与x轴,y轴相交于点A,B,点C在直线AB上,D是坐标平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是.三、耐心做一做:本大题共9小题,共86分,请解答在答题卡的相应位置上,解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)计算:×+÷﹣|﹣2|18.(8分)在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.19.(8分)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.20.(8分)已知函数y=x+(x>0),它的图象犹如老师的打钩,因此人称对钩函数.下表是y 与x的几组对应值:请你根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行探究.(1)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:(3)当a≤x≤4时,y的取值范围为2≤y≤4,则a的取值范围为.21.(8分)如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.22.(10分)如图,四边形ABCD是平行四边形,对角线AC与BD交于点O,点E是BC边上一点,只用一把无刻度的直尺在AD边上作点F,使得DF=BE.(1)如图1,①请画出满足题意的点F,保留痕迹,不写作法;②依据你的作图,证明:DF=BE.(2)如图2,若点E是BC边中点,请只用一把无刻度的直尺作线段FG,使得FG∥BD,分别交AD、AB于点F、点G.23.(10分)为迎接:“国家卫生城市”复检,某市环卫局准备购买A,B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中买A型垃圾箱不超过16个.①求购买垃圾箱的总花费w(元)与A型垃圾箱x(个)之间的函数关系式;②当买A型垃圾箱多少个时总费用最少,最少费用是多少??24.(12分)已知:如图,直线y=﹣x+6与坐标轴分别交于A、B两点,点C是线段AB上的一个动点,连接OC,以OC为边在它的左侧作正方形OCDE连接BE、CE.(1)当点C横坐标为4时,求点E的坐标;(2)若点C横坐标为t,△BCE的面积为S,请求出S关于t的函数解析式;(3)当点C在线段AB上运动时,点E相应随之运动,请求出点E所在的函数解析式.25.(14分)已知:直线l:y=2kx﹣4k+3(k≠0)恒过某一定点P.(1)求该定点P的坐标;(2)已知点A、B坐标分别为(0,1)、(2,1),若直线l与线段AB相交,求k的取值范围;(3)在0≤x≤2范围内,任取3个自变量x1,x2、x3,它们对应的函数值分别为y1、y2、y3,若以y1、y2、y3为长度的3条线段能围成三角形,求k的取值范围.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、精心选一选:本大题共10小题,每小题4分,共40分;每小题给出的四个选项中有且只有一个选项是符合题目要求的,答对的得4分,答错、不答或答案超过一个的一律得0分1.下列关系式中,不是函数关系的是()A.y=(x<0)B.y=±(x>0)C.y=(x>0)D.y=﹣(x>0)【分析】在运动变化过程中,有两个变量x和y,对于x的每一个值y都有唯一确定的值与之对应,那么y是x的函数,x是自变量.【解答】解:A当x<0时,对于x的每一个值,y=都有唯一确定的值,所以y=(x<0)是函数.B当x>0时,对于x的每一个值,y=±有两个互为相反数的值,而不是唯一确定的值,所以y =±(x>0)不是函数.C当x>0时,对于x的每一个值,y=都有唯一确定的值,所以y=(x>0)是函数.D当x>0时,对于x的每一个值,y=﹣都有唯一确定的值,所以y=﹣(x>0)是函数.故选:B.【点评】准确理解函数的概念,用函数的概念作出正确的判断.2.计算的结果是()A.3B.﹣3C.9D.﹣9【分析】根据二次根式的性质=|a|进行计算即可.【解答】解:原式=|﹣3|=3,故选:A.【点评】此题主要考查了二次根式的性质,关键是掌握=|a|.3.在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=()A.B.4C.4或D.以上都不对【分析】直接利用勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,求出答案即可.【解答】解:∵在Rt△ABC中,∠C=90°.BC=3,AC=5,∴AB==.故选:A.【点评】此题主要考查了勾股定理,正确掌握勾股定理是解题关键.4.的倒数是()A.B.C.﹣3D.【分析】利用倒数定义得到结果,化简即可.【解答】解:的倒数为=.故选:D.【点评】此题考查了分母有理化,熟练掌握运算法则是解本题的关键.5.甲和乙一起练习射击,第一轮10枪打完后两人的成绩如图所示.设他们这10次射击成绩的方差为S甲2、S乙2,下列关系正确的是()A.S甲2<S乙2B.S甲2>S乙2C.S甲2=S乙2D.无法确定【分析】结合图形,乙的成绩波动比较大,则波动大的方差就大.【解答】解:从图看出:甲选手的成绩波动较小,说明它的成绩较稳定,乙的波动较大,则其方差大,故选:A.【点评】此题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣4【分析】直接根据正比例函数的性质和待定系数法求解即可.【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选:B.【点评】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x的增大而减小.7.如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选:B.【点评】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.8.若bk<0,则直线y=kx+b一定通过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限【分析】根据题意讨论k和b的正负情况,然后可得出直线y=kx+b一定通过哪两个象限.【解答】解:由bk<0,知①b>0,k<0;②b<0,k>0,①当b>0,k<0时,直线经过第一、二、四象限,②b<0,k>0时,直线经过第一、三、四象限.综上可得函数一定经过一、四象限.故选:D.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9.直角三角形中,两条直角边的边长分别为6和8,则斜边上的中线长是()A.10B.8C.6D.5【分析】利用勾股定理求出斜边的长度,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:两条直角边的边长分别为6和8,根据勾股定理得,斜边==10,所以,斜边上的中线的长=×10=5.故选:D.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,是基础题,熟练掌握性质是解题的关键.10.如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC 的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y (cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动3秒时,PQ的长是()A.2cm B.3cm C.4cm D.5cm【分析】根据运动速度乘以时间求得路程,可得点P的位置,根据线段的和差,可得CP的长,最后根据勾股定理,可得PQ的长度.【解答】解:由题可得:点P运动3秒时,P点运动了6cm,此时,点P在BC上,∴CP=8﹣6=2cm,Rt△PCQ中,由勾股定理,得PQ==2cm,故选:A.【点评】本题考查了动点问题的函数图象,依据点P的位置,利用勾股定理进行计算是解题关键.二、细心填一填:本大题共6小题,每小题4分,共24分,请填在答题卡的相应位置上11.当x≥时,二次根式有意义.【分析】根据二次根式的被开方数为非负数即可得出x的范围.【解答】解:由题意得:2x﹣3≥0,解得:x≥.故答案为:≥.【点评】本题考查二次根式有意义的条件,比较简单,注意掌握二次根式的被开方数为非负数这个知识点.12.若数据a1、a2、a3的平均数是3,则数据2a1、2a2、2a3的平均数是6.【分析】根据平均数的公式进行计算即可.【解答】解:∵数据a1、a2、a3的平均数是3,∴a1+a2+a3=9,∴(2a1+2a2+2a3)÷3=18÷3=6,故答案为:6.【点评】本题考查了算术平均数,掌握平均数的公式是解题的关键.13.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为1500米.【分析】根据已知条件得到∠BAC=90°,AB=900米,AC=1200米,由勾股定理即可得到结论.【解答】解:根据题意得:∠BAN=75°,SAC=15°,∴∠BAC=90°,∵AB=900米,AC=1200米,在Rt△ABC中,BC===1500米,故答案为:1500【点评】本题考查了解直角三角形的应用﹣方向角问题及勾股定理,会识别方向角是解题的关键.14.如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是AB=CD (答案不唯一).【分析】由AB∥DC,AB=DC证出四边形ABCD是平行四边形,即可得出AD=BC.【解答】解:添加条件为:AB=DC(答案不唯一);理由如下:∵AB∥DC,AB=DC,∴四边形ABCD是平行四边形,∴AD=BC.【点评】本题考查了平行四边形的判定与性质;熟记平行四边形的判定方法,证明四边形是平行四边形是解决问题的关键.15.根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为﹣,则输出的结果为﹣【分析】由所给变量x的值所处的取值范围可确定函数关系式,从而可代入解得.【解答】解:∵当x=﹣时,y=x﹣1,∴y =﹣﹣1=﹣故答案为:﹣.【点评】本题主要考查了由分段函数的取值范围所确定的函数关系式.16.如图,直线y =﹣x +4分别与x 轴,y 轴相交于点A ,B ,点C 在直线AB 上,D 是坐标平面内一点,若以点O ,A ,C ,D 为顶点的四边形是菱形,则点D 的坐标是 (2,﹣2)或(6,2) .【分析】设点C 的坐标为(x ,﹣ x +4).分两种情况,分别以C 在x 轴的上方、C 在x 轴的下方做菱形,画出图形,根据菱形的性质找出点C 的坐标即可得出D 点的坐标.【解答】解:∵一次函数解析式为线y =﹣x +4,∴B (0,4),A (4,0), 如图一∵四边形OADC 是菱形,设C (x ,﹣x +4),∴OC =OA ==4,整理得:x 2﹣6x +8=0,解得x 1=2,x 2=4,∴C (2,2),∴D (6,2); 如图二,∵四边形OADC 是菱形,设C (x ,﹣x +4),∴AC =OA ==4,整理得:x 2﹣8x +12=0,解得x 1=2,x 2=6,∴C (6,﹣2),∴D (2,﹣2);故答案为(2,﹣2)或(6,2).【点评】本题考查了一次函数图象上点的坐标特征以及菱形的性质,解题的关键是确定点C、D的位置.本题属于中档题,难度不大,在考虑菱形时需要分类讨论.三、耐心做一做:本大题共9小题,共86分,请解答在答题卡的相应位置上,解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)计算:×+÷﹣|﹣2|【分析】先根据二次根式的乘法、除法法则计算、去绝对值符号,再合并同类二次根式即可得.【解答】解:原式=2+﹣(2﹣)=3﹣2+=4﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及绝对值的性质.18.(8分)在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是40.(直接写出结果)(2)这次调查获取的样本数据的众数是30,中位数是50.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.【分析】(1)根据条形统计图中的数据可以求得这次调查获取的样本容量;(2)根据条形统计图中的数据可以得到这次调查获取的样本数据的众数和中位数;(3)根据条形统计图中的数据可以得到该校本学期计划购买课外书的总花费.【解答】解:(1)样本容量是:6+12+10+8+4=40,故答案为:40;(2)由统计图可得,这次调查获取的样本数据的众数是30,中位数是50,故答案为:30,50;(3)×1000=50500(元),答:该校本学期计划购买课外书的总花费是50500元.【点评】本题考查众数、中位数、加权平均数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8分)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.【分析】(1)根据“矩形的定义”证明结论;(2)连结AP.当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法来求GH的值.【解答】(1)证明∵AC=9 AB=12 BC=15,∴AC2=81,AB2=144,BC2=225,∴AC2+AB2=BC2,∴∠A=90°.∵PG⊥AC,PH⊥AB,∴∠AGP=∠AHP=90°,∴四边形AGPH是矩形;(2)存在.理由如下:连结AP.∵四边形AGPH是矩形,∴GH=AP.∵当AP⊥BC时AP最短.∴9×12=15•AP.∴AP=.【点评】本题考查了矩形的判定与性质.解答(2)题时,注意“矩形的对角线相等”和“面积法”的正确应用.20.(8分)已知函数y=x+(x>0),它的图象犹如老师的打钩,因此人称对钩函数.下表是y 与x的几组对应值:请你根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行探究.(1)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:(3)当a≤x≤4时,y的取值范围为2≤y≤4,则a的取值范围为1≤a≤4.【分析】(1)根据描出的点,画出该函数的图象即可;(2)①当x=1时,求得y有最小值2;②根据函数图象即可得到结论;(3)根据x取不同值时,y所对应的取值范围即可得到结论.【解答】解:(1)函数图象如图所示;(2)①当x=1时,y有最小值2;②当x<1时,y随x的增大而减小;故答案为:x=1时,y有最小值2,当x<1时,y随x的增大而减小;(3)当a≤x≤4时,y的取值范围为2≤y≤4,则a的取值范围为1≤a≤4,故答案为:1≤a≤4.【点评】本题考查了反比例函数的性质,函数图象的画法,画出函数图象是解本题的关键.21.(8分)如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.【分析】(1)由尺规作∠BAF的角平分线的过程可得,AB=AF,∠BAE=∠FAE,根据平行四边形的性质可得∠FAE=∠AEB,然后证明AF=BE,进而可得四边形ABEF为平行四边形,再由AB =AF可得四边形ABEF为菱形;(2)根据菱形的性质可得AE⊥BF,BO=FB=3,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8.【点评】此题主要考查了菱形的性质和判定,关键是掌握一组邻边相等的平行四边形是菱形,菱形对角线互相垂直且平分.22.(10分)如图,四边形ABCD是平行四边形,对角线AC与BD交于点O,点E是BC边上一点,只用一把无刻度的直尺在AD边上作点F,使得DF=BE.(1)如图1,①请画出满足题意的点F,保留痕迹,不写作法;②依据你的作图,证明:DF=BE.(2)如图2,若点E是BC边中点,请只用一把无刻度的直尺作线段FG,使得FG∥BD,分别交AD、AB于点F、点G.【分析】(1)①连接AC,BD于O,连接EO并延长交AD于F,即可得到结果;②根据平行四边形的性质和已知条件易证△DFO≌△BEO即可得到结论;(2)连接EO并延长交AD于点F,连接BF交AO于点H,连接DH交AB于点G,连接GF,则线段GF为所求.【解答】解:(1)如图,连接EO并延长交AD于F,则点F即为所求;(2)连接BF,∵四边形ABCD是平行四边形,∴AD∥BC,OD=OB,∴∠FDO=∠EBO,∠DFO=∠BEO,在△DFO和△BEO中,,∴△DFO≌△BEO,∴DF=BE;(3)如图2所示,线段FG就是所求的线段.【点评】本题考查了平行四边形的判定和性质以及全等三角形的判断和性质,熟练掌握平行四边形的判定和性质是解题的关键.23.(10分)为迎接:“国家卫生城市”复检,某市环卫局准备购买A,B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中买A型垃圾箱不超过16个.①求购买垃圾箱的总花费w(元)与A型垃圾箱x(个)之间的函数关系式;②当买A型垃圾箱多少个时总费用最少,最少费用是多少??【分析】(1)设每个A型垃圾箱m元,每个B型垃圾箱n元,根据“购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元”,即可得出关于m、n的二元一次方程组,解之即可得出结论;(2)①设购买x个A型垃圾箱,则购买(30﹣x)个B型垃圾箱,根据总价=单价×购进数量,即可得出w关于x的函数关系式;②利用一次函数的性质解决最值问题.【解答】解:(1)设每个A型垃圾箱m元,每个B型垃圾箱n元,根据题意得:,解得:.答:每个A型垃圾箱100元,每个B型垃圾箱120元.(2)①设购买x个A型垃圾箱,则购买(30﹣x)个B型垃圾箱,根据题意得:w=100x+120(30﹣x)=﹣20x+3600(0≤x≤16且x为整数).②∵w=﹣20x+3600中k=﹣20<0,∴w随x值增大而减小,∴当x=16时,w取最小值,最小值=﹣20×16+3600=3280.答:买16个A型垃圾箱总费用最少,最少费用是3280元.【点评】本题考查了二元一次方程组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)①根据各数量间的关系,找出w关于x的函数关系式;②利用一次函数的性质,解决最值问题.24.(12分)已知:如图,直线y=﹣x+6与坐标轴分别交于A、B两点,点C是线段AB上的一个动点,连接OC,以OC为边在它的左侧作正方形OCDE连接BE、CE.(1)当点C横坐标为4时,求点E的坐标;(2)若点C横坐标为t,△BCE的面积为S,请求出S关于t的函数解析式;(3)当点C在线段AB上运动时,点E相应随之运动,请求出点E所在的函数解析式.【分析】(1)作CF⊥OA于F,EG⊥x轴于G.只要证明△CFO≌△OGE即可解决问题;(2)只要证明△EOB≌△COA,可得BE=AC,∠OBE=∠OAC=45°,推出∠EBC=90°,即EB⊥AB,由C(t,﹣t+6),可得BC=t,AC=BE=(6﹣t),根据S=•BC•EB,计算即可;(3)由(1)可知E(t﹣6,t),设x=6﹣t,y=t,可得y=x+6.【解答】解:(1)作CF⊥OA于F,EG⊥x轴于G.∴∠CFO=∠EGO=90°,令x=4,y=﹣4+6=2,∴C(4,2),∴CF=2,OF=4,∵四边形OCDE是正方形,∴OC=OE,OC⊥OE,∵OC⊥OE,∴∠COF+∠EOG=90°,∠COF+∠OCF=90°,∴∠EOG=∠OCF,∴△CFO≌△OGE,∴OG=OF=4,OG=CF=2,∴G(﹣2,4).(2)∵直线y=﹣x+6交y轴于B,∴令x=0得到y=6,∴B(0,6),令y=0,得到x=6,∴A(6,0),∴OA=OB=6,∠OAB=∠OBA=45°,∵∠AOB=∠EOC=90°,∴∠EOB=∠COA,∵OE=OC,∴△EOB≌△COA,∴BE=AC,∠OBE=∠OAC=45°,∴∠EBC=90°,即EB⊥AB,∵C(t,﹣t+6),∴BC=t,AC=BE=(6﹣t),∴S=•BC•EB=×t•(6﹣t)=﹣t2+6t.(3)当点C在线段AB上运动时,由(1)可知E(t﹣6,t),设x=6﹣t,y=t,∴t=x+6,∴y=x+6.【点评】本题考查一次函数综合题、全等三角形的判定和性质、正方形的性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.25.(14分)已知:直线l:y=2kx﹣4k+3(k≠0)恒过某一定点P.(1)求该定点P的坐标;(2)已知点A、B坐标分别为(0,1)、(2,1),若直线l与线段AB相交,求k的取值范围;(3)在0≤x≤2范围内,任取3个自变量x1,x2、x3,它们对应的函数值分别为y1、y2、y3,若以y1、y2、y3为长度的3条线段能围成三角形,求k的取值范围.【分析】(1)对题目中的函数解析式进行变形即可求得点P的坐标;(2)根据题意可以得到相应的不等式组,从而可以求得k的取值范围;(3)根据题意和三角形三边的关系,利用分类讨论的数学思想可以求得k的取值范围.【解答】解:(1)∵y=2kx﹣4k+3=2k(x﹣2)+3,∴y=2kx﹣4k+3(k≠0)恒过某一定点P的坐标为(2,3),即点P的坐标为(2,3);(2)∵点A、B坐标分别为(0,1)、(2,1),直线l与线段AB相交,直线l:y=2kx﹣4k+3(k ≠0)恒过某一定点P(2,3),∴,解得,k;(3)当k>0时,直线y=2kx﹣4k+3中,y随x的增大而增大,∴当0≤x≤2时,﹣4k+3≤y≤3,∵以y1、y2、y3为长度的3条线段能围成三角形,∴,得k<,∴0<k<;当k<0时,直线y=2kx﹣4k+3中,y随x的增大而减小,∴当0≤x≤2时,3≤y≤﹣4k+3,∵以y1、y2、y3为长度的3条线段能围成三角形,∴3+3>﹣4k+3,得k>﹣,∴﹣<k<0,由上可得,﹣<k<0或0<k<.【点评】本题考查一次函数图象与系数的关系、一次函数图象上点的坐标特征、三角形三边关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.。

2018-2019学年新课标人教版八年级数学第二学期期末测试卷(附答案)

2018-2019学年新课标人教版八年级数学第二学期期末测试卷(附答案)

2018-2019学年八年级(下)期末数学试卷A •对我国初中学生视力状况的调查B .对一批节能灯管使用寿命的调查C .对量子科学通信卫星上某种零部件的调查对角线相等的四边形是矩形对角线互相平分且相等的四边形是矩形对角线相等且互相垂直的四边形是矩形 D.5.y = x+b 的图象大致是、正确选择(本大题共 10个小题;每小题3分,共30分。

各题均为单选) 1.F 列调查中,最适宜采用普查方式的是(,若将线段 AB 平移至A 1B 1,则a+b 的值为(在直角坐标系中,点 M , N 在同一个正比例函数图象上的是(A . M (2,- 3), N (- 4, 6)B . M (- 2, 3), N (4, 6) 4.C . M (- 2, - 3), N (4,- 6) F 列各种判定矩形的说法正确的是(M (2, 3), N (-4, 6)B. 有三个角相等的四边形是矩形D •对“最强大脑”节目收视率的调查(0, 1) 3.0,且AC+BD = 16, CD= 6,则厶ABO的周长是()C • 20D •2210 •如图,四边形ABCD是菱形,AC= 8, DB = 6, DH丄AB于H,贝U DH等于(6•今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A •这1000名考生是总体的一个样本B.近4万名考生是总体C •每位考生的数学成绩是个体D • 1000名学生是样本容量7.平面直角坐标系中,已知?ABCD的三个顶点坐标分别是A ( m, n), B (2, - 1), C (- m,-n),则点D的坐标是( )A •(- 2, 1)B •(- 2, - 1)C •(- 1,- 2)D •(- 1, 2)8 .某校八年级登山小组以akm/h的速度开始登山,走了一段时间后休息了一会儿由于山路逐渐变陡,所以休息后就以bkm/h的速度继续前进.一段时间后到达山顶,吃午饭并原地活动午休后,又以ckm/h的速度下山(b v a v c),中间再也没有休息过,一直返回山脚.此次登山活动整个过程中所走的路程s (km)与所用时间t (h)之间的函数关系的图象大致是下列中的(二、准确填空(本大题共8个小题,每小题3分,共24 分)11 .为了了解参加某运动会2500名运动员的年龄情况,从中抽取了100名运动员的年龄,在这个问题中,样本是________ .12 .在直角坐标系中,已知点A的坐标为(2, 3).若将OA绕原点旋转180°,得到OA i,则点A1的坐标为_______ .13 .已知一等腰三角形的面积为20cm2.设它的底边长为x (cm),则底边上的高y ( cm)与x的函数关系式为________ .14 .已知关于 x , y 的方程组" 的解为 ,写出一次函数 y =- x+1和y =-= ::1二的II y=23 3图象交点P 的坐标是 _________ . 15 .如图所示,小华从 A 点出发,沿直线前进 10米后左转24°,再沿直线前进 10米,又向左转16 .将一次函数 y = 2x - 1的图象向上平移 3个单位,所得的直线不经过第17 .如图,在?ABCD 中,AB = 6, BC = 8,/C 的平分线交 AD 于E ,交BA 的延长线于 F ,贝U AE+AF 的值等于 .18 .如图,已知? OABC 的顶点A 、C 分别在直线x = 1和x = 4 上, O 是坐标原点,则对角线 OB 长 的最小值为 ______________.三、简答与计算(本大题共 4个小题,每小题7分,共28分)佃•( 7分)有一块10公顷的成熟麦田,用一台收割速度为0.5公顷/时的小麦收割机来收割. (1) 求收割的面积 y (公顷)与收割时间 x (h )之间的函数关系式.24°,…,照这样走下去,他第一次回到出发地A 点时,一共走的路程是 _______ 象限.F(2) 求收割完这块麦田的时间.20.( 7分)如图,在? ABCD 中,已知 AD > AB .(1) 实践与操作:作/ BAD 的平分线交 BC 于点E ,在AD 上截取AF = AB ,连接EF ;(要求:尺规作图,保留作图痕迹,不写作法)21.( 7分)如图,如图等腰直角厶 ABC 的直角边与正方形 MNPQ 的边长均为10cm,边CA 与边 MN 在同一直线上,点 A 与点M 重合,让△ ABC 沿MN 方向以1cm/s 的速度匀速运动,运动到 点A 与N 重合时停止,设运动的时间为t ,运动过程中△ ABC 与正方形MNPQ 的重叠部分面积为S ,(1)试写出S 关于t 的函数关系式,并指出自变量 t 的取值范围. (2) 当MA = 2cm 时,重叠部分的面积是多少?22. (7分)我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形•如图,E 、F 、G 、H 分别是四边形 ABCD 各边的中点.(1) 求证:四边形 EFGH 是平行四边形; (2)如果我们对四边形 ABCD 的对角线AC 与BD 添加一定的条件,则可使四边形EFGH 成为特殊的平行四边形,请你经过探究后直接填写答案:① 当AC = BD 时,四边形EFGH 为 __________ ;② 当AC ______ B D 时,四边形 EFGH 为矩形;③ 当AC = BD 且AC 丄BD 时,四边形 EFGH 为 __________ .ABEF 的形状,并给予证明.四. 解答与证明(本大题共 4个小题,共38分)23.( 9分)已知一次函数 y = 2x+4(1) 在如图所示的平面直角坐标系中,画出函数的图象;(2) 求图象与x 轴的交点A 的坐标,与y 轴交点B 的坐标;(3) 在(2)的条件下,求出△ AOB 的面积;(4) 利用图象直接写出:当 y v 0时,x 的取值范围. y/ 543 1t 1 £1 1 Illy 5 4 -3 <2 -1 234 5^ -1 -2-3-4-524. (9分)在平面直角坐标系中, △ ABC 顶点坐标分别为:A (2, 5)、B ( - 2, 3)、C( 0, 2).线段DE 的端点坐标为D (2, - 3), E (6,- 1).(1) __________________ 线段AB 先向 ___________________ 平移 ________ 个单位,再向 平移 个单位与线段 ED 重合;(2) 将厶ABC 绕点P 旋转180°后得到的厶DEF ,使AB 的对应边为 DE ,直接写出点 P 的坐标, 并画出△ DEF ;(3) 求点C 在旋转过程中所经过的路径 I 的长.25. ( 10分)某街道决定从备选的五种树种选购一种进行栽种,为了更好地了解社情民意,工作人 员在街道辖区范围内随机抽去了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其(1)________________________________ 这次参与调查的居民人数为 ;(2) 请将条形统计图补充完整;(3) 请计算扇形统计图中“枫树”所在扇形的圆心角度数;(4) 已知街道辖区内现有居民 8万人,请估计这 8万人中最喜欢玉兰树的有多少人?26.( 10分)暑假期间,小刚一家乘车去离家 380公里的某景区旅游,他们离家的距离 y ( km )与 汽车行驶时间x ( h )之间的函数图象如图所示. (1) 从小刚家到该景区乘车一共用了多少时间?(2) 求线段AB 对应的函数解析式;(3) 小刚一家出发 2.5小时时离目的地多远?请根据所给信x(h)2018-2019学年八年级(下)期末数学试卷参考答案与试题解析、正确选择(本大题共10个小题;每小题3分,共30分。

2018-2019学年下学期人教版八年级期末考试数学试题(含答案)

2018-2019学年下学期人教版八年级期末考试数学试题(含答案)

2018-2019学年八年级下学期期末考试数学试题一、选择题(本大题共10小题,共20.0分)1.若分式的值为零,则x的值为()A. B. C. 2 D. 32.若y2-4y+m=(y-2)2,则m的值为()A. B. C. 2 D. 43.不等式组的解集为()A. B. C. D.4.如图所示,△ABC的边AC的垂直平分线DE交边AB于点D,交边AC于点E,若∠A=50°,则∠BDC的度数为()A. 50B.C.D.5.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A. B. C. D.6.如图,在△ABC中,∠ACB=90°,点D,E,F分别是边AB,BC,CA的中点,若EF=3,则CD的长是()A. 3B. 2C.D. 17.如图,EF过▱ABCD的对角线的交点O,交AD于点E,交BC于点F.若▱ABCD的周长为10,OE=1,线则四边形EFCD的周长为()A. 8B. 7C. 6D. 58.如图所示,甲、乙是两张画有图形的透明胶片,把其中一张通过平移、旋转后与另一张重合,形成的图形不可能是()A. B. C. D.9.如图,AD是△ABC的角平分线,DE,DF分别是△ABD,△ACD的高,连接EF,交AD于点O,则下面四个结论:①OA=OD;②AD EF;③当AE=6时,四边形AEDF的面积为36;④AE2+DF2=AF2+DE2.其中正确的是()A. ②③B. ②④C. ①③④D. ②③④10.如图,在△AOB中,已知∠AOB=90°,AO=3,BO=4.将△AOB绕顶点O按顺时针方向旋转α(0°<α<90°)到△A1OB1处,此时线段OB1与边AB的交点为点D,则在旋转过程中,线段B1D长的最大值为()A.B. 5C.D.二、填空题(本大题共6小题,共12.0分)11.▱ABCD的边AB=6,则边CD的长为______.12.因式分解:1-9b2=______.13.一个凸多边形的内角和是其外角和的2倍,则这个多边形是______边形.14.如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE CD于点E,GF BC于点F,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F,若小敏行走的路程为310m,小聪行走的路程为460m,则AB 长为______m.15.若关于x的分式方程+=4的解为正数,则a的取值范围为______.16.如图,点D在△ABC的边AB上,连接CD,若△ACD为等腰三角形,∠BCD=∠A=48°,则∠ACB的度数为______.三、计算题(本大题共3小题,共24.0分)17.计算:(m+2-)•18.定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2.(1)(-2018)⊕(-2019)=______;(2)若(-3p+5)⊕8=8,求p的负整数值.19.某超市在2016年和2017年都销售一种礼盒.2016年,该超市用3500元购进了这种礼盒且全部售完;2017年,这种礼盒的进价比2016年下降了11元/盒,该超市用2400元购进了与2016年相同数量的这种礼盒也全部售完,这两年该礼盒的售价均为60元/盒.(1)2016年这种礼盒的进价是多少元盒?(2)求这两年销售该种礼盒的总利润为多少?四、解答题(本大题共6小题,共44.0分)20.解不等式:4x+5>2(x+1)21.如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在下面每个图形中,选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形.22.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,已知DE∥BC,∠ADE=∠EFC.求证:四边形BDEF是平行四边形.23.若一个长方形的面积S=x3+2x2+x(x>0),且一条边a=(x+1)2,求另一条边b的长.24.如图,在矩形ABCD中,AB=6,BC=4,动点P在边AB上,连接CP,将△CPB沿CP所在的直线翻折得到△CPE,延长PE交CD的延长线于点F.(1)求证:FC=FP;(2)当BP=1时,求DF的长.上一点,过点E作ED AC于点D,过点D作DF BC于点F.①若AE=7,求BF的长;②连接EF,若EF AB,求AE的长;(2)已知正方形ABCD的边长为10,点E是边AB上一点,过点E作∠AEF=60°交边AD于点F,再过点F作∠DFG=60°交边CD于点G,继续过点G作∠CGH=60°交边BC于点H,连接EH,若∠BHE=60°,请直接写出AE的长.答案和解析1.【答案】D【解析】解:由题意得:x-3=0,且2x+3≠0解得:x=3,故选:D.根据分式值为零的条件可得x-3=0,且2x+3≠0,再解即可.此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.2.【答案】D【解析】解:y2-4y+m=(y-2)2=y2-4y+4,则m=4.故选:D.直接利用完全平方公式将原式变形进而得出答案.此题主要考查了完全平方公式,正确记忆公式是解题关键.3.【答案】C【解析】解:解不等式①得:x≤1,解不等式②得:x<3,∴不等式组的解集为x≤1,故选:C.先求出每个不等式的解集,再求出每个解集的公共部分即可.本题考查了解一元一次不等式组的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.4.【答案】B【解析】解:∵△ABC的边AC的垂直平分线DE交边AB于点D,交边AC于点E,∴AD=DC,∴∠A=∠ACD,∵∠A=50°,∴∠ACD=50°,∴∠BDC=∠A+∠ACD=50°+50°=100°,故选:B.根据线段垂直平分线的性质得出AD=DC,推出∠A=∠ACD=50°,根据三角形外角的性质得出即可.本题考查了等腰三角形的性质、线段垂直平分线的性质、三角形外角的性质等知识点,能根据线段垂直平分线的性质得出AD=DC是解此题的关键.5.【答案】C【解析】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.根据平行四边形的性质.菱形的判定方法即可一一判断.本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.6.【答案】A【解析】解:∵点D,E,F分别是边AB,BC,CA的中点,EF=3,∴AB=6,∵在△ABC中,∠ACB=90°,CD是斜边的中线,∴CD=3,故选:A.根据三角形的中位线定理得出AB,再利用直角三角形斜边上的中线等于斜边的一半求得CD的长即可.本题考查了直角三角形的性质以及三角形的中位线定理,求得AB的长是本题的关键.7.【答案】B【解析】解:∵四边形ABCD是平行四边形,周长为10,∴AB=CD,BC=AD,OA=OC,AD∥BC,∴CD+AD=5,∠OAE=∠OCF,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴OE=OF=1,AE=CF,则EFCD的周长=ED+CD+CF+EF=(DE+CF)+CD+EF=AD+CD+EF=5+2=7.故选:B.先利用平行四边形的性质求出AB=CD,BC=AD,AD+CD=5,可利用全等的性质得到△AEO≌△CFO,求出OE=OF=1,即可求出四边形的周长.本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.8.【答案】B【解析】解:把甲平移,使甲乙的中心重合可得到A选项中的图形;把甲绕其中心逆时针旋转90度后平移,使甲乙的中心重合可得到C选项中的图形;把甲绕其中心旋转180度后平移,使甲乙的中心重合可得到D选项中的图形.故选:B.把乙图形不变,然后旋转甲,再进行平移可对各选项进行判断.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平移的性质.9.【答案】B【解析】解:根据已知条件不能推出OA=OD,∴①错误;∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD EF,∴②正确;当AE=6时,∵无法知道DE的长,∴四边形AEDF的面积不能确定,故③错误,∵AE=AF,DE=DF,∴AE2+DF2=AF2+DE2,∴④正确;∴②④正确,故选:B.根据角平分线性质求出DE=DF,证△AED≌△AFD,推出AE=AF,再一一判断即可.本题考查了全等三角形的性质和判定,正方形的判定,角平分线性质的应用,能求出Rt△AED≌Rt△AFD是解此题的关键.10.【答案】D【解析】解:因为OB1的长度是定值,所以当OD最短即可OD AB时,B1D长的取最大值.∵如图,在△AOB中,已知∠AOB=90°,AO=3,BO=4,∴AB===5,则OA•OB=AB•OD,OD===.由旋转的性质知:OB1=OB=4,∴B1D=OB1-OD=4-=.即线段B1D长的最大值为.故选:D.因为OB1的长度是定值,所以当OD最短即可OD AB时,B1D长的取最大值,所以利用等面积法求得OD的长度即可.考查了旋转的性质和勾股定理,根据题意得到“当OD AB时,B1D长的取最大值”是解题的难点.11.【答案】6【解析】解:∵四边形ABCD是平行四边形,∴AB=CD=6,故答案为:6.根据平行四边形的性质:对边相等解答即可.本题考查了平行四边形的性质,熟记平行四边形的各种性质是解题的关键.12.【答案】(1+3b)(1-3b)【解析】解:原式=(1+3b)(1-3b).故答案为:(1+3b)(1-3b).直接利用平方差公式分解因式得出答案.此题主要考查了平方差公式分解因式,熟练应用公式是解题关键.13.【答案】6【解析】解:设多边形边数为n.则360°×2=(n-2)•180°,解得n=6.故答案为:6.多边形的外角和是360度,多边形的内角和是它的外角和的2倍,则多边形的内角和是720度,根据多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.本题主要考查了多边形内角和公式及外角的特征,求多边形的边数,可以转化为方程的问题来解决.14.【答案】150【解析】解:连接GC,如下图∵四边形ABCD为正方形于是可得:AD=CD,∠ADG=∠CDG=45°,DG=DG∴△ADG≌△CDG(SAS)∴AG=GC而GE CD,GF BC∴四边形GECF是矩形∴GC=EF∴AG=EF又∵GE CD,∠BDC=45°∴△DEG是等腰直角三角形,即GE=DE若设小敏行走的路程为m,小聪行走的路程为n,则m=BA+AG+GE,n=BA+AD+DE+EF=2BA+DE+EF由AG=EF,GE=DE∴n-m=(2BA+DE+EF)-(BA+AG+GE)=AB即AB=n-m=460-310=150故答案为150.设小敏行走的路程为m,小聪行走的路程为n,则m=BA+AG+GE,n=BA+AD+DE+EF.可连接GC,通过证明△ADG≌△CDG,可得AG=GC=EF,而DE=GE,于是可得AB=n-m,即可得AB的长度.本题考查了正方形与矩形的性质,能准确发现小敏与小聪的路程差的意义是解决问题的关键.15.【答案】a<6且a≠2【解析】解:方程两边同乘(x-1)得:2-a=4(x-1),解得:x=,∵x>0且x-1≠0,∴,解得:a<6且a≠2,故答案为:a<6且a≠2.方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a的式子,解为正数且最简公分母不为零,得到关于a的一元一次不等式,解之即可.本题考查分式方程的解和解一元一次不等式,根据不等量关系列出一元一次不等式是解题的关键.16.【答案】114°或96°【解析】解:当AC=AD时,∠ACD=∠ADC=(180°-∠A)=66°,∴∠ACB=∠ACD+∠BCD=114°;当DA=DC时,∠ACD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°;当CA=CD时,∠ADC=∠A=48°,∵∠ADC=∠BCD+∠B,∴∠ADC>∠BCD=48°,∴该情况不合适,舍去.故答案为:114°或96°.分AC=AD、DA=DC、CA=CD(当CA=CD时,利用三角形的外角性质找出该情况不符合题意)三种情况考虑,根据等腰三角形的性质结合三角形内角和定理,可求出∠ACD的度数,再利用∠ACB=∠ACD+∠BCD即可求出结论.本题考查了等腰三角形的性质、三角形内角和定理以及三角形的外角性质,分AC=AD、DA=DC、CA=CD三种情况考虑是解题的关键.17.【答案】解:原式=(-)•=•=-2(m+3)=-2m-6.【解析】先计算括号内分式的减法,再计算乘法即可得.本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.18.【答案】-2018【解析】解:(1)∵-2018>-2019,∴(-2018)⊕(-2019)=-2018,故答案为:-2018;(2)∵(-3p+5)⊕8=8,∴-3p+5≤8,解得:p≥-1,∴p的负整数值为-1.(1)根据定义运算可得.(2)先根据题中所给的条件得出关于p的不等式,求出p的取值范围即可.本题考查的是解一元一次不等式,根据题意得出关于p的不等式是解答此题的关键.19.【答案】解:(1)设2016年这种礼盒的进价为x元/盒根据题意得:解得:x=35经检验x=35是分式方程的解答2016年这种礼盒的进价是35元/盒(2)购买盒数:这两年销售该种礼盒的总利润为:100×(60-35)+100×[60-(35-11)]=2500+3600=6100答总利润为6100元.【解析】(1)设2016年这种礼盒的进价为x元/盒,根据该超市用2400元购进了与2016年相同数量的这种礼盒,列出分式方程,解之并检验,可得结论.(2)根据总利润=2014年利润+2016年利润,列出式子计算可得.本题考查了一元二次方程的应用以及分式方程的应用,解题的关键是找准等量关系,列出分式方程.20.【答案】解:4x+5>2x+2,4x-2x>2-5,2x>-3,x>-.【解析】依次去括号、移项、合并同类项即可得.本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的基本步骤.21.【答案】解:(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形,答案如图所示;【解析】根据中心对称图形,画出所有可能的图形即可.本题考查中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【答案】证明:∵DE∥BC,∴∠ADE=∠B,∵∠ADE=∠EFC,∴∠EFC=∠B,∴EF∥AB,∴四边形BDEF是平行四边形.【解析】想办法证明EF∥AB即可解决问题;本题考查平行四边形的判定、平行线的性质和判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.【答案】解:∵S=x(x2+2x+1)=x(x+1)2∴另一条边b的长为:x(x+1)2÷(x+1)2=x,故另一边为x【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.24.【答案】解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FCP=∠BPC.由翻折的性质可知:∠FCP=∠EPC,∴∠BPC=∠EPC,∴FC=FP.(2)∵四边形ABCD是矩形,∴CD=AB=6.由翻折的性质可得到CE=BC=,EP=BP=1,∠CEP=∠CBP=∠CEF=90°.设DF=x,则CF=CD+DF=6+x,EF=FP-EP=6+x-1=5+x.在Rt△CEF中,由勾股定理得:CE2+EF2=CF2,即42+(5+x)2=(6+x)2,解得:x=,∴DF=.【解析】(1)首先依据平行线的性质和翻折的性质证明∠BPC=∠EPC,然后依据等角对等边的性质进行证明即可;(2)设DF=x,则CF=6+x,EF=5+x,然后在Rt△CEF中,依据勾股定理列方程求解即可.本题主要考查的是翻折的性质、勾股定理的应用,熟练掌握相关知识是解题的关键.25.【答案】解:(1)①∵△ABC是等边三角形∴AB=AC=BC=10,∠A=60°=∠B=∠C且DE AC,DF BC∴∠AED=∠FDC=30°∵AE=7,DE AC,∠EAD=30°∴AD=,∴CD=且DF BC,∠CDF=30°∴CF=∴BF=②如图1连接EF∵EF AB,ED AC,DF BC,∠A=∠B=∠C=60°∴∠AED=∠CDF=∠EFB=30°,∴∠EDF=∠DFE=∠DEF=60°∴△DEF是等边三角形,∴DE=DF=EF且∠A=∠B=∠C,∠AED=∠CDF=∠EFB=30°∴△ADE≌△BEF≌△DCF∴AD=CF=BE,AE=BF=CD∵∠EFB=30°,EF AB∴BF=2BE即AE=2BE∵AE+BE=10∴BE=,AE=(2)∵ABCD为正方形∴∠A=∠B=∠C=∠D=90°,AB=AD=CD=BC∵∠AEF=∠DFG=∠HGC=∠EHB=60°∴∠GHC=∠BEH=∠AFE=∠FGD=30°,BE=BH,AF=AE ∴∠FEH=∠EHG=∠HGF=∠EFG=90°∴EFGH是矩形∴EH=FG,EF=HG,∵∠A=∠C=90°,EF=HG,∠AEF=∠HGC=60°∴△AEF≌△HGC∴AE=CG,AF=CH同理可得AF=CH设AE=a,∴AF=a,∴∴BH=10-a,∵BE=BH=10-3a,∵AE+BE=10∴10a-3a+a=10∴a=5-5∴AE=5-5【解析】(1)①根据直角三角形中,30°所对的直角边是斜边的一半,可依次求AD,FC的长,则BF的长可求②先证△EDF是等边三角形,再证△ADE≌△BEF≌△DFC,可得AE=BF=CD,BE=CF=AD,即可求AE的长(2)先证EFGH是矩形,可得EF=HG,EH=FG,根据三角函数可求AF= AE,BE=BH,即可求AE的长度.本题考查了等边三角形的性质和判定,正方形的性质,锐角三角函数,关键是灵活运用这些性质解决问题.。

人教版2018-2019学年初二(下册)期末数学测试卷及答案

人教版2018-2019学年初二(下册)期末数学测试卷及答案

2018-2019学年八年级(下)期末数学试卷一、选择题(本题共10道小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.小马虎在下面的计算中只作对了一道题,他做对的题目是()A.B.a3÷a=a2C.D.=﹣12.下列命题:①直角三角形两锐角互余;②全等三角形的对应角相等;③两直线平行,同位角相等:④对角线互相平分的四边形是平行四边形.其中逆命题是真命题的个数是()A.1B.2C.3D.43.观察下列四个平面图形,其中是中心对称图形的个数是()A.1个B.2个C.3个D.4个4.下列从左边到右边的变形,是因式分解的是()A.y2﹣2y+4=(y﹣2)2B.10x2﹣5x=5x(2x﹣1)C.a(x+y)=ax+ayD.t2﹣16+3t=(t+4)(t﹣4)+3t5.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点6.如果点P(3﹣m,1)在第二象限,那么关于x的不等式(2﹣m)x+2>m的解集是()A.x>﹣1B.x<﹣1C.x>1D.x<17.如果解关于x的方程+1=(m为常数)时产生增根,那么m的值为()A.﹣1B.1C.2D.﹣28.炎炎夏日,甲安装队为A小区安装88台空调,乙安装队为B小区安装80台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,设乙队每天安装x台,根据题意,下面所列方程正确的是()A.=B.=C.=D.=9.如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点H,则图中△AHC′的面积等于()A.12﹣6B.14﹣6C.18﹣6D.18+610.如图,△ABC是等边三角形,P是形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=()A.18B.9C.6D.条件不够,不能确定二、填空题(本题共8道小题,每小题2分,共16分)11.分解因式:9a﹣a3=.12.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.13.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设.14.若关于x的分式方程=1的解为正数,那么字母a的取值范围是.15.已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=.16.若关于x的一元一次不等式组无解,则a的取值范围是.17.如图所示,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.18.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则S n=.(用含n的式子表示)三、解答题(共54分)19.(4分)解分式方程:﹣1=.20.(6分)解不等式组:,并求出它的整数解的和.21.(6分)先化简,再求值:(﹣x﹣1)÷,其中x=﹣.22.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB'C′;(2)画出△AB′C′向左平移4格后的△A′B″C″;(3)计算线段AB在变换到AB′的过程中扫过区域的面积.23.(8分)为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;(2)就对抗训练背心的件数讨论去哪家商店买合算?24.(6分)如图,在△ABC中,D、E分别是边AB、AC的中点,点F是BC延长线上一点,且CF=BC,连结CD、EF,那么CD与EF相等吗?请证明你的结论.25.(8分)某中学为打造书香校园,购进了甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元,乙型号书柜共花了18000元,乙型号书柜比甲型号书柜单价便宜了300元,购买乙型号书柜的数量是甲型号书柜数量的2倍.求甲、乙型号书柜各购进多少个?26.(10分)我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10道小题,每小题3分,共30分。

2018-2019学年度人教版八年级数学下册期末试卷(含详细答案)

2018-2019学年度人教版八年级数学下册期末试卷(含详细答案)

无为县2018~2019学年度第二学期期末中小学学习质量评价·八年级数学试题·本卷共8大题,计23小题,满分150分,考试时间120分钟.祝你考出好成绩.一、选择题(本大题10小题,每小题4分,共40分)每小题都给出代号为A、B 、C 、D 的四个选项中,其中只有一个是正确的,请把正确选项的代号写在本大题后的表格内,每一小题,选对得4分,不选、选错或选出的代号超过一个的一律得0分.1.下列式子属于最简二次根式的是( ) A B C 0a >) D 2.下列各曲线表示的y 与x 的关系中,y 不是x 的函数的是( )A . B. C. D.3.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的( ) A .众数B .平均数C .方差D .中位数4.如图,在□ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB=7,EF=3,则BC 长为( ) A .11 B .14 C .9 D .10 5.若a +|a |=0,则22)2(a a +-等于( )A .2-2aB .2a - 2C .-2D .2 6.当k <0时,一次函数y =kx -k 的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限7. 我国古代用勾、股和弦分别表示直角三角形的两条直角边和斜边,如图由四个全等的直角三角形和一个小正方形拼成一个大正方形,数学家邹元治利用该图证明了勾股定理,现已知大正方形面积为9,小正方形面积为5,则每个直角三角形中勾与股的差的平方为( )8.2022年将在北京——张家口举办冬季奥运会,很多学校开设了相关的课程 如表记录了某校4名同学短道速滑(速度滑冰)选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( ) A. 队员1 B. 队员2 C. 队员3 D. 队员4 9.如图,函数y =kx (k ≠0)和142y x =-+的图象相交于点A (3,m ), 则不等式kx ≥142x -+的解集为( )A .x ≥3B .x ≤3C .x ≤2D .x ≥210.如图1,在矩形ABCD 中,动点E 从点B 出发,沿BADC 方向运动至点C 处停止,设点E 运动的路程为x ,△BCE 的面积为y ,如果y 关于x 的函数图象如图2所示,则矩形ABCD 的周长为( )A. 20B. 21C. 14D. 7 二、填空题(每题5分,共20分)11.数据1,4,5,6,4,5,4的众数是 . 12.有意义,则x 的取值范围为 . 13.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的 中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的 度数为 .14.过某矩形的两个相对的顶点作平行线,再沿着平行线剪下 两个直角三角形,剩余的图形为如图所示的□ABCD ,AB =4, BC =6,∠ABC =60°,则原来矩形的面积是 .第9题图第13题图BD三、(本大题共2小题,每小题8分,满分16分)15.计算:.3624)25)(25(----+16.先化简,再求值:22121(1)24x x x x ++-÷+-,其中1x .四、(本大题共2小题,每小题8分,满分16分)17.如图,在□ABCD 中,AC ,BD 相交于点O ,点E 在AB 上,点F 在CD 上,EF 经过点O .求证:四边形BEDF 是平行四边形.18.如图,A 点的纵坐标为3,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B . (1)求该一次函数的解析式.(2)若该一次函数的图象与x 轴交于D 点,求△BOD 的面积.五、(本大题共2小题,每小题10分,满分20分)19.某草莓种植大户,今年从草莓上市到销售完需要20天,售价为15元/千克,成本y(元/千克)与第x天成一次函数关系,当x=10时,y=7,当x=15时,y=6.5.(1)求成本y(元/千克)与第x天的函数关系式并写出自变量x的取值范围;(2)求第几天每千克的利润w(元)最大?最大利润是多少?(利润=售价-成本)20.垫球是排球运动的一项重要技术.下列图表中的数据分别是甲、乙、丙三个运动员十次垫球测试的成绩.规则为每次测试连续垫球10个,每垫球到位1个记1分.(1)写出运动员甲测试成绩的众数和中位数;(2)试从平均数和方差两个角度综合分析,若在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.81)21.(12分)某校数学兴趣小组根据学习函数的经验,对函数112y x=+的图象和性质进行了探其中m=.(2)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象:(3)当2<y≤3时,x的取值范围为.22.(12分)芜湖方特海洋王国暑假期间推出了两套优惠方案:①购买成人票两张以上(包括两张),则儿童票按6折出售;②成人票和儿童票一律按8.5折出售,已知成人票是350元/张,儿童票是240元/张,张华准备暑假期间带家人到芜湖方特海洋王国游玩,准备购买8张成人票和若干张儿童票.(1)请分别写出两种优惠方案中,购买的总费用y(元)与儿童人数x(人)之间的函数关系式;(2)对x的取值情况进行分析,说明选择哪种方案购票更省钱.23.(14分)如图,四边形ABCD 为正方形.在边AD 上取一点E ,连接BE ,使∠AEB =60°. (1)利用尺规作图(保留作图痕迹):分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ,则∠AEB =60°;(2)在前面的条件下,取BE 中点M ,过点M 的直线分别交边AB 、CD 于点P 、Q . ①当PQ ⊥BE 时,求证:BP =2AP ;②当PQ =BE 时,延长BE ,CD 交于N 点,猜想NQ 与MQ 的数量关系,并说明理由.BAE(备用图)BAE(备用图)BA无为县2018~2019学年度第二学期期末中小学学习质量评价八年级数学参考答案及评分标准一、选择题(本大题共10个小题,每小题4分,满分40分)每个小题给出A 、B 、C 、D 四个选项,其中只有一个是正确的,请请把正确选项写在题后的括号内.不选、错选或多选的(不论是否写在括号内)一律得0分.1.B2.C3.D4.A5.A6.C7.D8.B9.A 10. C二、填空题( 本大题共4个小题,每小题5分,满分20分)11. 4 12. -≠≥且10x x 13. 140°14. (只写出一个正确结果得2分,写了错误结果不得分)15.解:( + )( - )- -| -3| =5-2-2 -3+ = -16.解:原式=21(2)(2)2(1)x x x x x ++-⨯++…………………(2分) =21x x -+ …………………(4分)当12-=x 时,原式=8分)17.证明:∵在□ABCD 中,AC ,BD 相交于点O , ∴DC ∥AB ,OD =OB . (2)分∴∠FDO =∠EBO ,∠DFO =∠BEO . ∴△ODF ≌△OBE . (6)分 ∴OF =OE . (7)分 ∴四边形BEDF 是平行四边形. (8)分18.解:(1)把x =1代入y =2x 中,得y =2, 所以点B 的坐标为(1,2), 设一次函数的解析式为y =kx +b ,把A (0,3)和B (1,2)代入,得3123b k k b b ==-⎧⎧⎨⎨+==⎩⎩,解得,分(2)在y=﹣x+3中,令y=0,则0=﹣x+3,解得x=3,则D的坐标是(3,0),所以S△BOD=132=32⨯⨯.………………………………………………………8分19..解:(1)设y=kx+b,由题意可得:10715 6.5k bk b+=⎧⎨+=⎩,解得:0.18kb=-⎧⎨=⎩∴y=—0.1x+8 (0<x≤20)………………………………………(5分)(2)设第x天每千克的利润为w(元),则w=15—y=15—(—0.1x+8)=0.1x+7∵0.1>0,∴第x天每千克的利润为w(元/千克)随着x的增大而增大,∴当x=20时,w最大=0.1×20+7=9(元/千克)即求第20天每千克的利润最大,最大利润9元/千克.………………(10分)20、解:(1)甲运动员测试成绩中7出现最多,故甲的众数为7;甲成绩重新排列为:5、6、7、7、7、7、7、8、8、8,∴甲的中位数为=7,∴甲测试成绩的众数和中位数都是7分; (5)分(2)x甲=×(7+6+8+7+7+5+8+7+8+7)=7,x乙=×(6+6+7+7+7+7+7+7+8+8)=7,x丙=×(5×2+6×4+7×3+8×1)=6.3,∵x甲=x乙,S甲2>S乙2,∴选乙运动员更合适.……………………………………10分21.解:(1)在中,令x=﹣2,则y=2,∴m=2,……………………………………4分故答案为:2;(2)如图所示:……………………………………8分(3)由图可得,当2<y≤3时,x的取值范围为﹣4≤x<﹣2,2<x≤4.故答案为:﹣4≤x<﹣2,2<x≤4.(写对一个给2分) (12)分22.解:(1)当选择方案①时,y=350×8+0.6×240x=144x+2800当选择方案②时,y=(350×8+240)x×0.85=204x+2380 (4)分(2)当方案①费用高于方案②时144x+2800>204x+2380解得x<7 ……………………………………6分当方案①费用等于方案②时144x+2800=204x+2380 解得x=7当方案①费用低于方案②时144x+2800<204x+2380 解得x>7 (10)分故当0<x<7时,选择方案②当x=7时,两种方案费用一样.当x>7时,选择方案① (12)分23.解:(1)如图1,分别以点B、C为圆心,BC长为半径作弧交正方形内部于点T,连接BT 并延长交边AD于点E;…………………………………4分①连接PE,如图2,∵点M是BE的中点,PQ⊥BE∴PQ垂直平分BE.∴PB=PE,∴∠PEB=∠PBE=90°﹣∠AEB=90°﹣60°=30°,∴∠APE=∠PBE+∠PEB=60°,∴∠AEP=90°∠APE=90°﹣60°=30°,∴∠APE=∠PBE+∠PEB=60°,∴∠AEP=90°∠APE=90°﹣60°=30°,∴BP=EP=2AP.…………………………………8分②数量关系为:NQ=2MQ或NQ=MQ. (10)分理由如下,分两种情况:I、如图3所示,过点Q作QF⊥AB于点F交BC于点G,则QF=CB.∵正方形ABCD中,AB=BC,∴FQ=AB.在Rt△ABE和Rt△FQP中,∵∴△ABE≌△FQP(HL).∴∠FQP=∠ABE=30°.又∵∠MGO=∠AEB=60°,∴∠GMO=90°,∵CD∥AB.∴∠N=∠ABE=30°.∴NQ=2MQ.…………………………………12分II、如图4所示,过点Q作QF⊥AB于点F交BC于点G,则QF=CB.同理可证△ABE≌△FQP.此时∠FPQ=∠AEB=60°.又∵∠FPQ=∠ABE+∠PMB,∠N=∠ABE=30°.∴∠EMQ=∠PMB=30°.∴∠N=∠EMQ,∴NQ=MQ.…………………………………14分说明:各解答题方法不唯一,合理即可给分.。

人教版2018-2019学年八年级(下册)期末数学试卷附答案

人教版2018-2019学年八年级(下册)期末数学试卷附答案

2018-2019学年八年级(下)期末数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案填在答题纸的表格中(每小题3分,共30分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cmC.2cm,5cm,6cm D.5cm,12cm,13cm3.平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等4.下列各图中,不是函数图象的是()A.B.C.D.5.某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5.这组数据的众数是()A.3B.3.5C.4D.56.若代数式有意义,则实数x的取值范围是()A.x>1B.x≠2C.x≥1且x≠2D.x≥﹣1且x≠27.一次函数y=﹣3x+5的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,菱形ABCD的对角线AC=6,BD=8,则ABCD的周长为()A.4B.4C.20D.409.如图,在△ABC中,三边a,b,c的大小关系是()A.a<b<c B.c<a<b C.c<b<a D.b<a<c10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.12二.填空题(每小题3分,共24分)11.计算:﹣=.12.将直线y=﹣4x+3向下平移4个单位,得到的直线解析式是.13.若已知a,b为实数,且+=b+4,则a+b=.14.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为.15.如图,在Rt△ABC中,∠C=90°,AB=10cm,D为AB的中点,则CD=cm.16.在正方形ABCD中,E在BC上,BE=2,CE=1,P是BD上的动点,则PE和PC的长度之和最小是.17.商店某天销售了11件衬衫,其领口尺寸统计如下表:则这11件衬衫领口尺寸的众数是cm,中位数是cm.18.若a1=1﹣,a2=1﹣,a3=1﹣,…;则a2013的值为.(用含m的代数式表示)三.解答题(19题每题3分,20-24每题8分,25-26每题10分)19.计算:(1)(﹣2)2+5÷﹣9(2)÷×20.如图,四边形ABCD中,∠ADC=90°,AD=4cm,CD=3cm,AB=13cm,BC=12cm,求这个四边形的面积?21.如图,在平行四边形中,AE⊥BC于E,AF⊥CD于F,∠EAF=60°,BE=2,DF=3,求AB,BC的长及平行四边形ABCD的面积?22.已知y﹣2与x+1成正比例函数关系,且x=﹣2时,y=6.(1)写出y与x之间的函数关系式;(2)求当x=﹣3时,y的值;(3)求当y=4时,x的值.23.如图,过正方形ABCD的顶点D作DE∥AC交BC的延长线于点E.(1)判断四边形ACED的形状,并说明理由;(2)若BD=8cm,求线段BE的长.24.我国是世界上严重缺水的国家之一为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量单位:t,并将调查结果绘成了如下的条形统计图:(1)求这10个样本数据的平均数、众数和中位数;(2)根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7t的约有多少户?25.国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台.(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?26.如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.(1)求证:△ABD≌△FBC;(2)如图(2),求证:AM2+MF2=AF2.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案填在答题纸的表格中(每小题3分,共30分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.【点评】本题考查最简二次根式的定义,被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cmC.2cm,5cm,6cm D.5cm,12cm,13cm【分析】欲判断是否为直角三角形,需验证两小边的平方和是否等于最长边的平方.【解答】解:A、32+42=52,能构成直角三角形,不符合题意;B、22+22=(2)2,能构成直角三角形,不符合题意;C、22+52≠62,不能构成直角三角形,符合题意;D、52+122=132,能构成直角三角形,不符合题意.故选:C.【点评】此题主要考查了勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.3.平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等【分析】根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,继而即可得出答案.【解答】解:平行四边形的对角相等,对角线互相平分,对边平行且相等.故选:D.【点评】此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键.4.下列各图中,不是函数图象的是()A.B.C.D.【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的定义和函数图象可以判断哪个选项中的图象不是函数图象.【解答】解:由函数的定义可知,对于每一个自变量的x的取值,都有唯一的y值与其对应,选项A中当x取一个正数时,有两个y值与其对应,故选项A中的图象不是函数图象,而其它选项中,对于每一个自变量的x的取值,都有唯一的y值与其对应,故是函数图象,故选:A.【点评】本题考查函数图象,解答本题的关键是明确函数的定义,利用“一一对应”进行判断.5.某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5.这组数据的众数是()A.3B.3.5C.4D.5【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可.【解答】解:在这一组数据中3.5出现了3次,次数最多,故众数是3.5.故选:B.【点评】本题考查了众数的定义,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.6.若代数式有意义,则实数x的取值范围是()A.x>1B.x≠2C.x≥1且x≠2D.x≥﹣1且x≠2【分析】根据被开方数大于等于0,分母不等于0列不等式求解即可.【解答】解:由题意得,x+1≥0且(x﹣2)2≠0,解得x≥﹣1且x≠2.故选:D.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.7.一次函数y=﹣3x+5的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】一次项系数﹣3<0,则图象经过二、四象限;常数项5>0,则图象还过第一象限.【解答】解:∵﹣3<0,∴图象经过二、四象限;∵5>0,∴直线与y轴的交点在y轴的正半轴上,图象还过第一象限.所以一次函数y=﹣3x+5的图象经过一、二、四象限,不经过第三象限.故选:C.【点评】一次函数的图象经过第几象限,取决于x的系数及常数是大于0或是小于0.可借助草图分析解答.8.如图,菱形ABCD的对角线AC=6,BD=8,则ABCD的周长为()A.4B.4C.20D.40【分析】由菱形的性质可求得OA、OB,在Rt△AOB中利用勾股定理可求得AB,则可求得其周长.【解答】解:∵四边形ABCD为菱形,∴AO=AC=3,BO=BD=4,且AC⊥BD,∴AB==5,∴菱形ABCD的周长=4AB=20,故选:C.【点评】本题主要考查菱形的性质,掌握菱形的对角线互相垂直平分是解题的关键.9.如图,在△ABC中,三边a,b,c的大小关系是()A.a<b<c B.c<a<b C.c<b<a D.b<a<c【分析】先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.【解答】解:根据勾股定理,得a==;b==;c==.∵5<10<13,∴b<a<c.故选:D.【点评】本题考查了勾股定理及比较无理数的大小,属中学阶段的基础题目.10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.12【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故选:C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二.填空题(每小题3分,共24分)11.计算:﹣=.【分析】先化简=2,再合并同类二次根式即可.【解答】解:=2﹣=.故答案为:.【点评】本题主要考查了二次根式的加减,属于基础题型.12.将直线y=﹣4x+3向下平移4个单位,得到的直线解析式是y=﹣4x﹣1.【分析】根据上加下减的法则可得出平移后的函数解析式.【解答】解:将直线y=﹣4x+3向下平移4个单位得到直线l,则直线l的解析式为:y=﹣4x+3﹣4,即y=﹣4x﹣1.故答案是:y=﹣4x﹣1【点评】本题考查了一次函数图象与几何变换的知识,难度不大,掌握上加下减的法则是关键.13.若已知a,b为实数,且+=b+4,则a+b=1.【分析】根据二次根式有意义的条件可得,解不等式组可得a=5,进而可得b的值,然后可得答案.【解答】解:由题意得:,解得:a=5,则b+4=0,b=﹣4,a+b=5﹣4=1,故答案为:1.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为x<1.【分析】由图知:①当x>1时,y>0;②当x<1时,y<0;因此当y<0时,x<1;由此可得解.【解答】解:根据图示知:一次函数y=kx+b的图象x轴、y轴交于点(1,0),(0,﹣2);即当x<1时,函数值y的范围是y<0;因而当不等式kx+b<0时,x的取值范围是x<1.故答案为:x<1【点评】本题主要考查的是关于一次函数与一元一次不等式的题目,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.15.如图,在Rt△ABC中,∠C=90°,AB=10cm,D为AB的中点,则CD=5cm.【分析】此题直接根据直角三角形中斜边上的中线等于斜边的一半就可以求出CD.【解答】解:∵在Rt△ABC中,∠C=90°,AB=10cm,D为AB的中点,∴CD=AB=5cm.故答案为:5.【点评】本题主要考查了直角三角形的性质:斜边上的中线等于斜边的一半.16.在正方形ABCD中,E在BC上,BE=2,CE=1,P是BD上的动点,则PE和PC的长度之和最小是.【分析】连接AC、AE,由正方形的性质可知A、C关于直线BD对称,故AE的长即为PE+PC的最小值,再根据勾股定理求出AE的长即可.【解答】解:如图所示:连接AC、AE,∵四边形ABCD是正方形,∴A、C关于直线BD对称,∴AE的长即为PE+PC的最小值,∵BE=2,CE=1,∴BC=AB=2+1=3,在Rt△ABE中,∵AE===,∴PE与PC的和的最小值为.故答案为:.【点评】本题考查的是轴对称﹣最短路线问题及正方形的性质,熟知“两点之间,线段最短”是解答此题的关键.17.商店某天销售了11件衬衫,其领口尺寸统计如下表:则这11件衬衫领口尺寸的众数是39cm,中位数是40cm.【分析】根据中位数的定义与众数的定义,结合图表信息解答.【解答】解:同一尺寸最多的是39cm,共有4件,所以,众数是39cm,11件衬衫按照尺寸从小到大排列,第6件的尺寸是40cm,所以中位数是40cm.故答案为:39,40.【点评】本题考查了中位数与众数,确定中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数;众数是出现次数最多的数据,众数有时不止一个.18.若a1=1﹣,a2=1﹣,a3=1﹣,…;则a2013的值为m.(用含m的代数式表示)【分析】把a1代入求出a2,把a2代入求出a3,依此类推得到一般性规律,即可确定出所求式子的值.【解答】解:a1=1﹣,a2=1﹣=1﹣=1﹣=﹣,a3=1﹣=1+m﹣1=m,a4=1﹣…,∵2013÷3=671,∴a2013=m,故答案为:m.【点评】此题考查了分式的混合运算,弄清题中的规律是解本题的关键.三.解答题(19题每题3分,20-24每题8分,25-26每题10分)19.计算:(1)(﹣2)2+5÷﹣9(2)÷×【分析】(1)先利用完全平方公式和二次根式的除法法则运算,然后化简后合并即可;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=5﹣4+4+5﹣9=5﹣4+4+5﹣9=;(2)原式==.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.如图,四边形ABCD中,∠ADC=90°,AD=4cm,CD=3cm,AB=13cm,BC=12cm,求这个四边形的面积?【分析】连接AC,利用勾股定理求出AC的长,在△ABC中,判断它的形状,并求出它的面积,最后求出四边形ABCD的面积.【解答】解:连接AC ,∵AD =4cm ,CD =3cm ,∠ADC =90°,∴AC ===5(cm )∴S △ACD =CD •AD =6(cm 2).在△ABC 中,∵52+122=132即AC 2+BC 2=AB 2,∴△ABC 为直角三角形,即∠ACB =90°,∴S △ABC =AC •BC =30(cm 2).∴S 四边形ABCD =S △ABC ﹣S △ACD=30﹣6=24(cm 2).答:四边形ABCD 的面积为24cm 2.【点评】本题考查了勾股定理、勾股定理的逆定理及三角形的面积公式.掌握勾股定理及其逆定理,连接AC ,说明△ABC 是直角三角形是解决本题的关键.21.如图,在平行四边形中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF =60°,BE =2,DF =3,求AB ,BC 的长及平行四边形ABCD 的面积?【分析】根据AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF =60°,可以得到∠C 的度数,由四边形ABCD 是平行四边形可以得到∠B 、∠D 的度数,然后根据解直角三角形的相关知识可以求得AB 、BC 的长,根据特殊角的三角函数可以求得AE 的长,由平行四边形的面积等于底乘以高,可以求得四边形ABCD 的面积.【解答】解:∵AE ⊥BC 于E ,AF ⊥CD 于F ,∴∠AEC =∠AFC =90∵∠EAF =60°,∴∠C =360﹣∠AEC ﹣∠AFC ﹣∠EAF =120,∴∠B =60°∴∠BAE =30°,∴AB=2BE=4;cm.∵∠D=∠B=60°,∴∠DAF=30°.∴AD=2DF=6cm.∴BC=AD=6cm在Rt△ADF中,AF==3(cm),∴ABCD的面积=CD•AF=4×3=12(cm2).【点评】本题考查平行四边形的性质、平行四边形的面积,30°角所对的直角边和斜边的关系,解题的关键是明确题意,找出所求问题需要的条件.利用数形结合的思想解答问题.22.已知y﹣2与x+1成正比例函数关系,且x=﹣2时,y=6.(1)写出y与x之间的函数关系式;(2)求当x=﹣3时,y的值;(3)求当y=4时,x的值.【分析】(1)根据y﹣2与x+1成正比例关系设出函数的解析式,再把当x=﹣2时,y=6代入函数解析式即可求出k的值,进而求出y与x之间的函数解析式.(2)根据(1)中所求函数解析式,将x=﹣3代入其中,求得y值;(3)利用(1)中所求函数解析式,将y=4代入其中,求得x值.【解答】解:(1)依题意得:设y﹣2=k(x+1).将x=﹣2,y=6代入:得k=﹣4所以,y=﹣4x﹣2.(2)由(1)知,y=﹣4x﹣2,∴当x=﹣3时,y=(﹣4)×(﹣3)﹣2=10,即y=10;(3)由(1)知,y=﹣4x﹣2,∴当y=4时,4=(﹣4)×x﹣2,解得,x=﹣.【点评】本题考查了待定系数法求一次函数的解析式、函数值.利用待定系数法求一次函数的解析式,通常先设出一次函数的关系式y=kx+b(k≠0),将已知两点的坐标代入求出k、b的值,再根据一次函数的性质求解.23.如图,过正方形ABCD的顶点D作DE∥AC交BC的延长线于点E.(1)判断四边形ACED的形状,并说明理由;(2)若BD=8cm,求线段BE的长.【分析】(1)根据正方形的对边互相平行可得AD∥BC,即为AD∥CE,然后根据两组对边互相平行的四边形是平行四边形解答;(2)根据正方形的四条边都相等,平行四边形的对边相等可得BC=AD=CE,再根据正方形的边长等于对角线的倍求出BC,然后求出BE即可.【解答】解:(1)四边形ACED是平行四边形.理由如下:∵四边形ABCD是正方形,∴AD∥BC,即AD∥CE,∵DE∥AC,∴四边形ACED是平行四边形;(2)由(1)知,BC=AD=CE=CD,∵BD=8cm,∴BC=BD=×8=4cm,∴BE=BC+CE=4+4=8cm.【点评】本题考查了正方形的性质,平行四边形的判定与性质,比较简单,熟练掌握各图形的性质是解题的关键.24.我国是世界上严重缺水的国家之一为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量单位:t,并将调查结果绘成了如下的条形统计图:(1)求这10个样本数据的平均数、众数和中位数;(2)根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7t的约有多少户?【分析】(1)根据条形统计图,即可知道每一名同学家庭中一年的月均用水量.再根据加权平均数的计算方法、中位数和众数的概念进行求解;(2)首先计算样本中家庭月均用水量不超过7t的用户所占的百分比,再进一步估计总体.【解答】解:(1)观察条形图,可知这组样本数据的平均数是:∴这组样本数据的平均数为6.8(t).∵在这组样本数据中,6.5出现了4次,出现的次数最多,∴这组数据的众数是6.5(t).∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是6.5,有,∴这组数据的中位数是6.5(t).(2)∵10户中月均用水量不超过7t的有7户,有50×=35.∴根据样本数据,可以估计出小刚所在班50名同学家庭中月均用水量不超过7t的约有35户.【点评】本题考查的是条形统计图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.掌握平均数、中位数和众数的计算方法.25.国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台.(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?【分析】(1)根据表格中三种家电的进价表示三种家电的总进价,小于等于170000元列出关于x 的不等式,根据x为正整数,即可解答;(2)设商店销售完这批家电后获得的利润为y元,则y=(2300﹣2000)2x+(1800﹣1600)x+(1100﹣1000)(100﹣3x)=500x+10000,结合(1)中x的取值范围,利用一次函数的性质即可解答.【解答】解:(1)根据题意,得:2000•2x+1600x+1000(100﹣3x)≤170000,解得:x,∵x为正整数,∴x至多为26,答:商店至多可以购买冰箱26台.(2)设商店销售完这批家电后获得的利润为y元,则y=(2300﹣2000)2x+(1800﹣1600)x+(1100﹣1000)(100﹣3x)=500x+10000,∵k=500>0,∴y随x的增大而增大,∵x且x为正整数,∴当x=26时,y有最大值,最大值为:500×26+10000=23000,答:购买冰箱26台时,能使商店销售完这批家电后获得的利润最大,最大利润为23000元.【点评】此题属于一次函数的综合题,涉及的知识有:一元一次不等式的应用,不等式解集中的正整数解,以及一次函数的图象与性质,此类题常常以实际生活为情景,考查利润等热点问题,解答时要审清题中的等量关系及不等关系,从表格中提取有用的信息,达到解决问题的目的.26.如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.(1)求证:△ABD≌△FBC;(2)如图(2),求证:AM2+MF2=AF2.【分析】(1)根据四边形ABFG、BCED是正方形得到两对边相等,一对直角相等,根据图形利用等式的性质得到一对角相等,利用SAS即可得到三角形全等;(2)根据全等三角形的性质和勾股定理即可得到结论.【解答】解:(1)∵四边形ABFG、BCED是正方形,∴AB=FB,CB=DB,∠ABF=∠CBD=90°,∴∠ABF+∠ABC=∠CBD+∠ABC,即∠ABD=∠CBF,在△ABD和△FBC中,,∴△ABD≌△FBC(SAS);(2)∵△ABD≌△FBC,∴∠BAD=∠BFC,∴∠AMF=180°﹣∠BAD﹣∠CNA=180°﹣(∠BFC+∠BNF)=180°﹣90°=90°,∴AM2+MF2=AF2.【点评】此题考查了全等三角形的判定与性质,正方形的性质,勾股定理,熟练掌握全等三角形的判定定理是解题的关键.。

2018-2019学年人教版初二数学下册期末考试试题(含答案)

2018-2019学年人教版初二数学下册期末考试试题(含答案)

2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共16小题,共32.0分)1.今年我市有近5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A. 这1000名考生是总体的一个样本B. 近5万名考生是总体C. 每位考生的数学成绩是个体D. 1000名学生是样本容量2.在平面直角坐标系中,点A,点B关于y轴对称,点A的坐标是(2,-8),则点B的坐标是()A. (−2,−8)B. (2,8)C. (−2,8)D. (8,2)3.在下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.4.在平面直角坐标系中,一次函数y=x-1的图象是()A. B. C. D.5.如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A. B. C. D.6.下列命题中正确的是()A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是矩形C. 对角线相等的平行四边形是矩形D. 对角线互相垂直的平行四边形是矩形7. 一个多边形的内角和等于1080°,这个多边形的边数为( )A. 9B. 6C. 7D. 88. 一次函数y =k 1x +b 1的图象与y =k 2x +b 2的图象相交于点P (-2,3),则方程组{y =k 2x +b 2y=k 1x+b 1的解是( ) A. {y =3x=−2 B. {y =−2x=3 C. {y =3x=2 D. {y =−3x=−29. 已知:线段AB ,BC ,∠ABC =90°.求作:矩形ABCD .以下是甲、乙两同学的作业:甲:1.以点C 为圆心,AB 长为半径画弧;2.以点A 为圆心,BC 长为半径画弧;3.两弧在BC 上方交于点D ,连接AD ,CD ,四边形ABCD 即为所求(如图1).乙:1.连接AC ,作线段AC 的垂直平分线,交AC 于点M ;2.连接BM 并延长,在延长线上取一点D ,使MD =MB ,连接AD ,CD ,四边形ABCD 即为所求(如图2).对于两人的作业,下列说法正确的是( )A. 两人都对B. 两人都不对C. 甲对,乙不对D. 甲不对,乙对10. 若点(m ,n )在函数y =2x +1的图象上,则2m -n 的值是( )A. 2B. −2C. 1D. −111. 如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为( )A. 14B. 15C. 16D. 1712.一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集是()A. x≥2B. x≤2C. x≥4D. x≤413.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是()A. 梯形B. 矩形C. 菱形D. 正方形14.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A. B.C. D.15.如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是()A. 3B. 245C. 5D. 891616.将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为()cm2.A. 14B. n4C. n−14D. 14n二、填空题(本大题共4小题,共12.0分)17.函数y=√x−1x−2中,自变量x的取值范围是______.18.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行______米.19.已知:如图,在矩形ABCD中,AE⊥BD于E,对角线AC、BD相交于点O,且BE:ED=1:3,AB=6cm,则AC的长度为______cm.20.如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为______.三、解答题(本大题共6小题,共56.0分)21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.22.如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到点P2,点P2恰好在直线1上,(1)求直线l所表示的一次函数的表达式:(2)请判断点P3(6,9)是否在直线l上,并说明理由.23.为响应习总书记足球进校园的号召,某学校积极开展与足球有关的宣传与实践活动.学生会体育部为了解本校学生对足球运动的态度,随机抽取了部分学生进行调查,并绘制了如下的统计图表(部分信息未给出).态度频数(人数)频率非常喜欢 5 0.05喜欢0.35一般50 n不喜欢10合计m l(1)在上面的统计表中m=______,n=______.(2)请你将条形统计图补充完整;(3)该校共有学生1200人,根据统计信息,估计爱好足球运动(包括喜欢和非常喜欢)的学生有多少人?24.如图,直线l1的解析式为y=-x+2,l1与x轴交于点B,直线l2:y=kx+5与直线l1交于点C(-1,m),且与x轴交于点A.(1)求点C的坐标及k的值;(2)求△ABC的面积.25.某公司在推销一种新产品时,在规定时期内为推销员提供了两种获取推销费的方法:方式A:每推销1千克新产品,可获20元推销费;方式B:公司付给推销员300元的基本工资,并且每推销1千克新产品,还可获10元推销费.设推销产品数量为x(千克),推销员按方式A获取的推销费为y A(元),推销员按方式B获取的推销费为y B(元).(1)分别写出y A(元)、y B(元)与x(千克)的函数关系式;(2)在所给坐标系中,分别画出它们的函数图象,并根据图象回答:推销员应如何选择获取推销费的方式能更合算?26. (1)如图,三角形ABC 中,AB =AC =4,三角形ABC 的面积为10,P 为底边BC 上一点,PE ⊥AB ,PF ⊥AC 垂足分别为E 、F .易证PE +PF =5.解题过程如下:如图,连接AP ,∵PE ⊥AB ,PF ⊥AC ,∴S △ABP =12AB •PE =2PE ,S △ACP =12AC •PF =42PF =2PF∵S △ABP +S △ACP =S △ABC∴2PE +2PF =10∴2(PE +PF )=10,故PE +PF =5(2)如图1和图2,在边长为5的菱形ABCD 中,对角线BD =8,点P 是直线BD 上的动点,PE ⊥AB 于E ,PF ⊥AD 于F .①对角线AC的长是______;菱形ABCD的面积是______;②如图1,当点P在对角线BD上运动时,PE+PF的值是否会发生变化?请说明理由;③如图2,当点P在对角线BD的延长线上时,PE+PF的值是否会发生变化?若不变,请说明理由;若变化,请探究PE、PF之间的数量关系,并说明理由.④当点P在对角线DB的延长线上时,PE+PF的值是否会发生变化?若变化.请直接写出PE,PF之间的数量关系.答案和解析1.【答案】C【解析】解:A、1000名考生的数学成绩是样本,故A选项错误;B、近5万名考生的数学成绩是总体,故B选项错误;C、每位考生的数学成绩是个体,故C选项正确;D、1000是样本容量,故D选项错误,故选:C.总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.据此判断即可.本题考查了总体、个体、样本和样本容量的知识,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2.【答案】A【解析】解:∵点A,点B关于y轴对称,点A的坐标是(2,-8),∴点B的坐标是(-2,-8),故选:A.根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了关于y轴的对称点的坐标,关键是掌握点的坐标特点.3.【答案】C【解析】解:A、不是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.当轴对称图形的对称轴是偶数条时,一定也是中心对称图形;偶数边的正多边形既是轴对称图形,也是中心对称图形;奇数边的正多边形只是轴对称图形.4.【答案】B【解析】解:一次函数y=x-1,其中k=1,b=-1,其图象为,故选:B.观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键.5.【答案】C【解析】解:由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、B;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除D选项.故选:C.由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的性质来判断.本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.6.【答案】C【解析】解:A、对角线相等的四边形不一定是矩形,等腰梯形的对角线也相等,故此选项错误;B、对角线互相垂直的四边形不一定是矩形,例如菱形,菱形的对角线互相垂直,故此选项错误;C、对角线相等的平行四边形是矩形,故此选项正确;D、对角线互相垂直的平行四边形是菱形,故此选项错误.故选:C.根据矩形的判定方法:对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)可以选出答案.此题主要考查了矩形的判定,关键是熟练掌握矩形的判定方法:对角线相等且相互平分的四边形为矩形是解题关键.7.【答案】D【解析】解:设这个多边形边数为n,则1080°=(n-2)•180°,解得n=8.故选:D.多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.8.【答案】A【解析】解:∵一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P(-2,3),∴方程组的解是.故选:A.根据二元一次方程组的解即为两直线的交点坐标解答.本题主要考查了一次函数与二元一次方程组的关系,函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.9.【答案】A【解析】解:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选:A.先由两组对边分别相等的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确;先由对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.本题考查了作图-复杂作图的应用及矩形的判定,从两位同学的作图语句中获取正确信息及熟练掌握矩形的判定定理是解题的关键.10.【答案】D【解析】解:将点(m,n)代入函数y=2x+1得,n=2m+1,整理得,2m-n=-1.故选:D.将点(m,n)代入函数y=2x+1,得到m和n的关系式,再代入2m-n即可解答.本题考查了一次函数图象上点的坐标特征,要明确,一次函数图象上的点的坐标符合函数解析式.11.【答案】C【解析】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选:C.根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.12.【答案】B【解析】解:不等式ax+b≥0的解集为x≤2.故选:B.利用函数图象,写出函数图象不在x轴下方所对应的自变量的范围即可.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.13.【答案】C【解析】解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,∴EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,∴EH=FG=BD,EF=HG=AC,∵AC=BD∴EH=FG=FG=EF,则四边形EFGH是菱形.故选C.因为四边形的两条对角线相等,根据三角形的中位线定理,可得所得的四边形的四边相等,则所得的四边形是菱形.本题利用了中位线的性质和菱形的判定:四边相等的四边形是菱形.14.【答案】A【解析】解:①当mn>0,m,n同号,同正时y=mx+n过1,3,2象限,同负时过2,4,3象限;②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或2,4,1象限.故选:A.根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.15.【答案】C【解析】解:∵矩形ABCD,∴∠BAD=90°,由折叠可得△BEF≌△BAE,∴EF⊥BD,AE=EF,AB=BF,在Rt△ABD中,AB=CD=6,BC=AD=8,根据勾股定理得:BD=10,即FD=10-6=4,设EF=AE=x,则有ED=8-x,根据勾股定理得:x2+42=(8-x)2,解得:x=3,则DE=8-3=5,故选:C.由ABCD为矩形,得到∠BAD为直角,且三角形BEF与三角形BAE全等,利用全等三角形对应角、对应边相等得到EF⊥BD,AE=EF,AB=BF,利用勾股定理求出BD的长,由BD-BF求出DF的长,在Rt△EDF中,设EF=x,表示出ED,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出DE 的长.此题考查了翻折变换,矩形的性质,以及勾股定理,熟练掌握定理及性质是解本题的关键.16.【答案】C【解析】解:图中的正方形,过ABCD的中心O作OM⊥CD于M,作ON⊥BC于N,则易证△OEM≌△OFN,则四边形OECF的面积就等于正方形OMCN的面积,如正方形ABCD的边长是1,则OMCN的面积是,因而本题的图形中的每个阴影部分的面积都相等,都是,有n个正方形,则重合部分由n-1个,则总面积是.故选:C.过ABCD的中心O作OM⊥CD于M,作ON⊥BC于N,则易证△OEM≌△OFN,根据已知可求得一个阴影部分的面积,从而就不难求得n个正方形重叠形成的重叠部分的面积和.本题的阴影很多,能够认识到每个阴影部分等于是小正方形的面积是解题的关键.17.【答案】x≥1且x≠2【解析】解:根据题意得:,解得:x≥1且x≠2.故答案为:x≥1且x≠2.根据二次根式的性质和分式的意义,被开方数大于等于0,可知x-1≥0;分母不等于0,可知:x-2≠0,则可以求出自变量x的取值范围.本题考查了函数自变量的范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.18.【答案】80【解析】解:通过读图可知:小明家距学校800米,小明从学校步行回家的时间是15-5=10(分),所以小明回家的速度是每分钟步行800÷10=80(米).故答案为:80.先分析出小明家距学校800米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.19.【答案】12【解析】解:设BE=x,则ED=3x,∵∠ABE+∠BAE=90°,∠ABD+∠ADB=90°,∴∠BAE=∠ADE,∵∠AEB=∠AED,∴△ABE∽△DBA,∴=,∴AB2=BE×BD,即36=x(x+3x),解得x=3,BD=3×(1+3)=12,故AC=BD=12.根据相似三角形的判断得出△ABE∽△DBA解答即可.本题涉及到相似三角形的判定与性质,也可以利用直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项得出.20.【答案】6【解析】解:设BE与AC交于点P,连接BD,∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的边长为6,∴AB=6.又∵△ABE是等边三角形,∴BE=AB=6.故所求最小值为6.故答案为:6.由于点B与D关于AC对称,所以连接BD,交AC于P点.此时PD+PE的最小值=BE,而BE是等边△ABE的边,BE=AB,由正方形ABCD的边长为6,可求出AB的长,从而得出结果.此题主要考查轴对称--最短路线问题,要灵活运用对称性解决此类问题.21.【答案】证明:∵E是BC的中点,∴CE=BE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠DCB=∠FBE,在△CED和△BEF中,{∠DCB=∠FBE amp; CE=BE amp;∠CED=∠BEF amp;,∴△CED≌△BEF(ASA),∴CD=BF,∴AB=BF.【解析】根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED和△BEF全等,根据全等三角形对应边相等可得CD=BF,从而得证.本题考查了全等三角形的判定与性质,平行四边形的性质,熟记性质并确定出三角形全等的条件是解题的关键.22.【答案】解:(1)根据题意可得P2(3,3).设直线l所表示的一次函数的表达式为y=kx+b(k≠0),∵点P1(2,1),P2(3,3)在直线l上,∴{3k+b=32k+b=1,k=2.解得{b=−3∴直线l所表示的一次函数的表达式为y=2x-3.(2)把坐标(6,9)代入解析式,∵2×6-3=9,∴点P3(6,9)是在直线l上.【解析】(2,(1)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),把点P1(3,3)代入直线方程,利用方程组来求系数的值;1),P2(2)把点(6,9)代入(1)中的函数解析式进行验证即可.本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及一次函数图象的几何变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.23.【答案】100 0.5【解析】解:(1)由题意抽取的总人数为m人.由题意=0.05,解得m=100,n==0.5,故答案为100,0.5(2)喜欢的人数为100×0.35=35,条形图如图所示,(3)1200×(0.05+0.35)=480人答:计爱好足球运动(包括喜欢和非常喜欢)的学生约为480人.(1)根据频数的定义,即可判断;(2)条形图如图所示;(3)用样本估计总体的思想,即可解决问题.本题考查条形统计图、频数分布表、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】解:(1)∵直线l1的解析式为y=-x+2经过点C(-1,m),∴m=1+2=3,∴C(-1,3),∵经过点C(-1,3),∴-k+5=3,解得k=2,∴直线l2的解析式为y=2x+5;(2)当y=0时,2x+5=0,解得x=-2.5,则A(-2.5,0),当y=0时,-x+2=0,解得x=2,则B(2,0),△ABC的面积:1×(2+2.5)×3=6.75.2【解析】(1)首先利用待定系数法求出C点坐标,然后再根据C点坐标求出直线l2的解析式;(2)首先根据两个函数解析式计算出A、B两点坐标,然后再利用三角形的面积公式计算出△ABC的面积即可.此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.25.【答案】解:(1)由题意得出:yA=20x,y B=300+10x;(2)由y A=20x,当x=0,则y=0,当x=10,则y=200,画出图象即可,由y B=300+10x,当x=0,则y=300,当x=10,则y=400,在图象内描出各点,画出图象即可.当20x=300+10x,解得:x=30,故当推销30千克时,两种方式推销费相同,当超过30千克时,方式A合算,当低于30千克时,方式B合算.【解析】(1)根据:每推销1千克新产品,可获20元推销费,得出yA=20x,再利用公司付给推销员300元的基本工资,并且每推销1千克新产品,还可获10元推销费,yB=300+10x即可得出函数关系式;(2)先根据yA 、yB与x之间的函数关系式分别取两个点,连接即可;根据两个图象的交点坐标,即可判断哪种推销方式较为合算.本题主要考查了利用待定系数法求解一次函数关系式,解题过程中应注意数形结合,使求解过程变得简单.26.【答案】6 24【解析】解:①如图1,连接AC交BD于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD=4,在Rt△ABO中,AO==3,∴AC=2AO=6,=×AC×BD=24,S菱形ABCD故答案为:6,24;②当点P在对角线BD上运动时,PE+PF的值不会发生变化,理由如下:如图,延长EP交CD于点F',∵PE⊥AB,PF⊥AD,∴∠BEP=∠PFD=90°,在菱形ABCD中,AB∥CD,∠ADB=∠CDB,∴∠PEB=∠PF'D=∠PFD=90°,又∵PD=PD,∴△PFD≌△PF'D(AAS),∴PF=PF',∴PE+PF=PE+PF'=EF',=AB•EF'=24,∵S菱形ABCD∵AB=5,∴EF'=,∴PE+PF=;③当点P在对角线BD的延长线上时,PE+PF的值会发生变化,如图3,延长CD交PE于点F',则∠DF'P=∠DFP=90°,∵∠ADB=∠CDB,∠F'DP=∠CDB,∠FDP=∠ADB,∴∠F'DP=∠FDP,又∵DP=DP,∴△PFD≌△PF'D(AAS),∴PF=PF',∵PE-PF'=EF',∴PE-PF=EF',由②知EF'=,∴PE-PF=;④当点P在对角线DB的延长线上时,PE+PF的值会发生变化,如图4,延长CB交PF于点E',理由同③,可证△PBE'≌△PBE(AAS),∴PE'=PE,∵PF-PE'=E'F=,∴PF-PE=.①连接AC交BD于点O,利用勾股定理求出AO的长,得出AC的长,根据菱形面积公式可求出菱形的面积;②延长EP交CD于点F',证明△PFD与△PF'D全等,可得出PE+PF的值等于EF',即菱形的高,利用面积法求出菱形的高即可;③延长CD交PE于点F',证明△PFD与△PF'D全等,可得出PE-PF的值等于EF',即菱形的高;④延长CB交PF于点E',证明△PBE'与△PBE全等,可得出PF-PE的值等于EF',即菱形的高.本题考查了菱形的性质,菱形的面积公式,全等三角形等,解题的关键是理解在点的运动过程中所存在的不变关系.。

人教版2018-2019学年八年级(下册)期末数学测试卷及答案

人教版2018-2019学年八年级(下册)期末数学测试卷及答案

2018-2019学年八年级(下)期末数学试卷一、选择题(本题共10道小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.小马虎在下面的计算中只作对了一道题,他做对的题目是()A.B.a3÷a=a2C.D.=﹣12.下列命题:①直角三角形两锐角互余;②全等三角形的对应角相等;③两直线平行,同位角相等:④对角线互相平分的四边形是平行四边形.其中逆命题是真命题的个数是()A.1B.2C.3D.43.观察下列四个平面图形,其中是中心对称图形的个数是()A.1个B.2个C.3个D.4个4.下列从左边到右边的变形,是因式分解的是()A.y2﹣2y+4=(y﹣2)2B.10x2﹣5x=5x(2x﹣1)C.a(x+y)=ax+ayD.t2﹣16+3t=(t+4)(t﹣4)+3t5.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点6.如果点P(3﹣m,1)在第二象限,那么关于x的不等式(2﹣m)x+2>m的解集是()A.x>﹣1B.x<﹣1C.x>1D.x<17.如果解关于x的方程+1=(m为常数)时产生增根,那么m的值为()A.﹣1B.1C.2D.﹣28.炎炎夏日,甲安装队为A小区安装88台空调,乙安装队为B小区安装80台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,设乙队每天安装x台,根据题意,下面所列方程正确的是()A.=B.=C.=D.=9.如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点H,则图中△AHC′的面积等于()A.12﹣6B.14﹣6C.18﹣6D.18+610.如图,△ABC是等边三角形,P是形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=()A.18B.9C.6D.条件不够,不能确定二、填空题(本题共8道小题,每小题2分,共16分)11.分解因式:9a﹣a3=.12.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.13.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设.14.若关于x的分式方程=1的解为正数,那么字母a的取值范围是.15.已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=.16.若关于x的一元一次不等式组无解,则a的取值范围是.17.如图所示,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.18.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则S n=.(用含n的式子表示)三、解答题(共54分)19.(4分)解分式方程:﹣1=.20.(6分)解不等式组:,并求出它的整数解的和.21.(6分)先化简,再求值:(﹣x﹣1)÷,其中x=﹣.22.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB'C′;(2)画出△AB′C′向左平移4格后的△A′B″C″;(3)计算线段AB在变换到AB′的过程中扫过区域的面积.23.(8分)为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;(2)就对抗训练背心的件数讨论去哪家商店买合算?24.(6分)如图,在△ABC中,D、E分别是边AB、AC的中点,点F是BC延长线上一点,且CF=BC,连结CD、EF,那么CD与EF相等吗?请证明你的结论.25.(8分)某中学为打造书香校园,购进了甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元,乙型号书柜共花了18000元,乙型号书柜比甲型号书柜单价便宜了300元,购买乙型号书柜的数量是甲型号书柜数量的2倍.求甲、乙型号书柜各购进多少个?26.(10分)我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10道小题,每小题3分,共30分。

(完整word版)2018-2019人教版八年级(下)期末数学试卷.doc

(完整word版)2018-2019人教版八年级(下)期末数学试卷.doc

2018-2019 人教版八年级(下)期末数学试卷一、本大题共有10 小题,每小题 3 分,共 30 分)1.( 3 分)若代数式在实数范围内有意义,则x 的取值范围是()A .x≥﹣ 2B .x>﹣ 2C. x≥ 2D. x≤ 22.( 3 分)下列各组数据中能作为直角三角形的三边长的是()A .1, 2, 2B .1, 1,C. 4, 5, 6D. 1,,2 3.( 3 分)下面给出的四边形ABCD 中,∠ A、∠ B、∠ C、∠ D 的度数之比,其中能判定四边形 ABCD 是平行四边形的条件是()A .3: 4: 3: 4B .3: 3: 4:4C. 2: 3: 4: 5D. 3: 4: 4: 3 4.( 3 分)甲、乙、丙、丁四人进行射击测试,每人10 次射击的平均成绩恰好是9.4 环,方差分别是S 甲2= 0.90,S 乙2= 1.22,S 丙2= 0.43,S 丁2= 1.68,在本次射击测试中,成绩最稳定的是()A .甲B .乙C.丙D.丁5.( 3 分)如果直线 y= kx+b 经过一、二、四象限,则有()A .k> 0, b>0B .k> 0, b<0C. k< 0, b> 0D. k< 0, b< 0 6.( 3 分)如图,在? ABCD 中,已知AD = 12cm, AB= 8cm, AE 平分∠ BAD 交 BC 边于点E,则 CE 的长等于()A .8cmB .6cm C. 4cm D. 2cm7.( 3 分)小华周末坚持体育锻炼.某个周末他跑步到离家较远的和平公园,打了一会儿篮球后散步回家.下面能反映当天小华离家的距离y 与时间x 的函数关系的大致图象是()A .B.C.D.8.( 3 分)某中学随机地了50 名学生,了解他一周在校的体育,果如下表所示:(小) 5 6 7 8人数10 15 20 550 名学生一周在校的平均体育是()A .6.2 小B .6.4 小C. 6.5 小D. 7 小9.( 3 分)直y= kx+6 和直 y=( k+1 )x+6( k 是正整数)及x 成的三角形面S k( k= 1,2, 3,⋯, 8), S1+S2+S3+⋯ +S8的是()A .B .C. 16D. 1410.(3 分)如,矩形ABCD 中, AB= 2,BC=6,P矩形内一点,接PA,PB,PC,PA+PB+PC 的最小是()A .4+3B .2C. 2+6D. 4二、填空(本大共有 6 小,每小 3 分,共 18 分)下列各不需要写出解答程,将直接填写在答卷的指定位置11.(3 分)算: 3的果是.12.( 3 分)函数y= 6x+5 的象是由直y= 6x 向平移个位度得到的.13.( 3 分)数据5,5, 6, 6, 6, 7, 7 的众数14.( 3 分)如,在 ? ABCD 中, AE⊥ BC 于点 E, F DE 的中点,∠ B= 66°,∠ EDC =44°,∠ EAF 的度数.15.( 3 分)如,菱形ABCD 的面120cm 2,正方形AECF 的面50cm2,菱形的cm.16.( 3 分)对于点P( a, b),点 Q( c, d),如果 a﹣ b= c﹣ d,那么点 P 与点 Q 就叫作等差点.例如:点 P( 4, 2),点 Q(﹣ 1,﹣ 3),因 4﹣ 2=﹣ 1﹣(﹣ 3)= 2,则点 P 与点Q 就是等差点.如图在矩形 GHMN 中,点 H( 2,3),点 N(﹣ 2,﹣ 3),MN ⊥ y 轴, HM ⊥ x 轴,点 P 是直线 y= x+b 上的任意一点(点P 不在矩形的边上),若矩形GHMN 的边上存在两个点与点P 是等差点,则 b 的取值范围为.三、解下列各题(本大题共8 小题,共72 分下列各题需要在答题卷的指定位置写出文字说明、证明过程、演算步骤或画出图形17.( 8 分)计算:( 1)﹣+(2)(+)÷18.( 8 分)如图, ? ABCD 的对角线 AC, BD 相交于点O,△ OAB 是等边三角形.(1)求证: ? ABCD 为矩形;(2)若 AB =4,求 ?ABCD 的面积.19.( 8 分)“大美武汉,畅游江城”.某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:( 1)求被调查的学生总人数;( 2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;( 3)若该校共有1200 名学生,请估计“最想去景点B“的学生人数.20.( 8 分)如图,直线l1: y1=﹣x+b 分别与x 轴、 y 轴交于点A、点 B,与直线l2: y2 = x 交于点 C( 2, 2).(1)若 y1< y2,请直接写出 x 的取值范围;(2)点 P 在直线 l1: y1=﹣ x+b 上,且△ OPC 的面积为 3,求点 P 的坐标?21.( 8 分)如图,矩形ABCD 中,点 E, F 分别在边 AB 与 CD 上,点 G、H 在对角线 AC 上,第 4页(共 22页)(1)求证:四边形 EGFH 是平行四边形;(2)若 EG= EH, AB= 8,BC=4.求 AE 的长.22.( 10 分)某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤ x≤ 70,且为整数),函数 y 与自变量x 的部分对应值如表x 单位:台)102030y(单位:万元 / 台)605550(1)求 y 与 x 之间的函数关系式;(2)市场调查发现,这种机器每月销售量 z(台)与售价 a(万元 /台)之间满足如图所示的函数关系.①该厂第一个月生产的这种机器 40 台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)② 若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?23.( 10 分)已知,在四边形ABCD 中,点 E、点 F 分别为 AD 、BC 的中点,连接EF.( 1)如图 1, AB∥ CD,连接 AF 并延长交DC 的延长线于点G,则 AB 、 CD 、EF 之间的数量关系为;( 2)如图 2,∠ B= 90°,∠ C= 150°,求 AB、 CD 、EF 之间的数量关系?( 3)如图 3,∠ ABC=∠ BCD= 45°,连接AC、 BD 交于点 O,连接 OE,若 AB=,CD= 2,BC=6,则OE=.24.( 12 分)在平面直角坐标系中,点A, B 分别是 x 轴正半轴与y 轴正半轴上一点,OA=m,OB= n,以 AB 为边在第一象限内作正方形ABCD .(1)若 m=4, n= 3,直接写出点 C 与点 D 的坐标;(2)点 C 在直线 y= kx(k> 1 且 k 为常数)上运动.①如图 1,若 k= 2,求直线 OD 的解析式;②如图 2,连接 AC、BD 交于点 E,连接 OE,若 OE= 2OA,求 k 的值.2018-2019 人教版八年级(下)期末数学试卷参考答案与试题解析一、你一定能选对 !(本大题共有 10 小题,每小题 3 分,共 30 分)下列各题均有四个备选答案,其中有且只有一个是正确的,请将正确答案的代号在答题卡上将对应的答案标号涂黑1.( 3 分)若代数式在实数范围内有意义,则 x 的取值范围是( )A .x ≥﹣ 2B .x >﹣ 2C . x ≥ 2D . x ≤ 2【解答】 解:根据题意得: x ﹣ 2≥ 0, 解得 x ≥2. 故选: C .2.( 3 分)下列各组数据中能作为直角三角形的三边长的是( )A .1, 2, 2B .1, 1,C . 4, 5, 6D . 1,, 2【解答】 解: A 、∵ 12+22= 5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;2 2 2,∴此组数据不能作为直角三角形的三边长,故本选项错误;B 、∵ 1 +1 = 2≠( )C 、∵ 42+52= 41≠ 62,∴此组数据不能作为直角三角形的三边长,故本选项错误;222,∴此组数据能作为直角三角形的三边长,故本选项正确.D 、∵ 1 +( ) = 4= 2 故选: D .3.( 3 分)下面给出的四边形 ABCD 中,∠ A 、∠ B 、∠ C 、∠ D 的度数之比,其中能判定四 边形 ABCD 是平行四边形的条件是( )A .3: 4: 3: 4B .3: 3: 4:4C . 2: 3: 4: 5D . 3: 4: 4: 3【解答】 解:根据平行四边形的两组对角分别相等,可知 A 正确.故选: A .4.( 3 分)甲、乙、丙、丁四人进行射击测试,每人10 次射击的平均成绩恰好是 9.4 环,方差分别是 S 甲 2= 0.90,S 乙 2= 1.22,S 丙 2= 0.43,S 丁 2= 1.68,在本次射击测试中,成绩最稳定的是()A .甲B .乙C .丙D .丁【解答】解:∵ 0.43< 0.90< 1.22<1.68,∴丙成绩最稳定,故选: C.5.( 3 分)如果直线 y= kx+b 经过一、二、四象限,则有()A .k> 0, b>0B .k> 0, b<0C. k< 0, b> 0D. k< 0, b< 0【解答】解:由一次函数y= kx+b 的图象经过第一、二、四象限,又由 k<0 时,直线必经过二、四象限,故知k< 0.再由图象过一、二象限,即直线与y 轴正半轴相交,所以b> 0.故选: C.6.( 3 分)如图,在? ABCD 中,已知AD = 12cm, AB= 8cm, AE 平分∠ BAD 交 BC 边于点E,则 CE 的长等于()A .8cmB .6cm C. 4cm D. 2cm【解答】解:∵四边形ABCD 是平行四边形,∴BC= AD= 12cm,AD∥BC,∴∠ DAE=∠ BEA,∵ AE 平分∠ BAD ,∴∠ BAE=∠ DAE ,∴∠ BEA=∠ BAE ,∴BE= AB= 8cm,∴CE= BC﹣ BE= 4cm;故选: C.7.( 3 分)小华周末坚持体育锻炼.某个周末他跑步到离家较远的和平公园,打了一会儿篮球后散步回家.下面能反映当天小华离家的距离y 与时间x 的函数关系的大致图象是()A .B.C.D.【解答】解:象分三个段,第一段:跑步到离家的和平公园,在个段,离家的距离随的增大而增大;第二段:打了一会儿球,一段离家的距离不随的化而改;第三段:散步回家,一段,离家的距离随的增大而减小,并且段的速度小于第一段的速度.故: B.8.( 3 分)某中学随机地了50 名学生,了解他一周在校的体育,果如下表所示:(小)5678人数101520 550 名学生一周在校的平均体育是()A .6.2 小B .6.4 小C. 6.5 小D. 7 小【解答】解:根据意得:(5× 10+6× 15+7× 20+8×5)÷ 50=( 50+90+140+40 )÷ 50=320÷ 50=6.4(小).故 50 名学生一周在校的平均体育是 6.4 小.故: B.9.( 3 分)直y= kx+6 和直 y=( k+1 )x+6( k 是正整数)及x 成的三角形面S ( k= 1,2, 3,⋯, 8), S +S +S +⋯ +S 的是()k 1 2 38A .B .C. 16 D. 14【解答】解:立两直解析式成方程,得:,解得:,∴两直的交点是(0, 6).∵直 y= kx+6 与 x 的交点(,0),直 y=( k+1)x+6 与 x 的交点(,0),∴ S k=× 6× | ()|=18(),∴ S1 2 38+S +S +⋯ +S= 18×( 1+ + +⋯ +),= 18×( 1),= 18×=16.故: C.10.(3 分)如,矩形ABCD 中, AB= 2,BC=6,P矩形内一点,接PA,PB,PC,PA+PB+PC 的最小是()A .4+3B .2C. 2+6D. 4【解答】解:将△ BPC 点 C 逆旋60°,得到△ EFC ,接PF、 AE、 AC,AE 的即所求.由旋的性可知:△PFC 是等三角形,∴PC=PF,∵ PB= EF ,∴PA+PB+PC= PA+PF+EF ,∴当 A、 P、F 、 E 共, PA+PB +PC 的最小,∵四边形ABCD 是矩形,∴∠ ABC= 90°,∴tan∠ ACB ==,∴∠ ACB= 30°, AC=2AB= 4,∵∠ BCE= 60°,∴∠ ACE= 90°,∴ AE==2,故选: B.二、填空题(本大题共有 6 小题,每小题 3 分,共 18 分)下列各题不需要写出解答过程,请将结论直接填写在答题卷的指定位置11.(3 分)计算: 3﹣的结果是2.【解答】解: 3﹣=2.故答案为: 2.12.( 3 分)函数 y=﹣ 6x+5 的图象是由直线y=﹣ 6x 向上平移5个单位长度得到的.【解答】解:函数y=﹣ 6x+5 的图象是由直线y=﹣ 6x 向上平移 5 个单位长度得到的.故答案为上,5.13.( 3 分)数据 5,5, 6, 6, 6, 7, 7 的众数为 6【解答】解:数据5, 5,6, 6, 6, 7, 7 的众数为: 6;故答案为: 614.( 3 分)如图,在 ? ABCD 中, AE⊥ BC 于点 E, F 为 DE 的中点,∠ B= 66°,∠ EDC =44°,则∠ EAF 的度数为68°.【解答】解:∵四边形ABCD 是平行四边形,∴∠ B=∠ ADC= 66°, AD∥ BC,∵AE⊥BC,∴ AE⊥ AD ,∴∠ EAD = 90°,∵ EF = FD ,∴ FA = FD = EF ,∵∠ EDC = 44°,∴∠ ADF =∠ FAD = 22°, ∴∠ EAF =90°﹣ 22°= 68°,故答案为 68°15.( 3 分)如图,菱形 ABCD 的面积为 120cm 2,正方形 AECF 的面积为 50cm 2,则菱形的边长为 13 cm .【解答】 解:因为正方形 AECF 的面积为 50cm 2,所以 AC = cm ,因为菱形 ABCD 的面积为 120cm 2,所以 BD = cm ,所以菱形的边长= cm .故答案为: 13.16.( 3 分)对于点 P ( a , b ),点 Q ( c , d ),如果 a ﹣ b = c ﹣ d ,那么点 P 与点 Q 就叫作等差点.例如:点 P ( 4, 2),点 Q (﹣ 1,﹣ 3),因 4﹣ 2=﹣ 1﹣(﹣ 3)= 2,则点 P 与点 Q 就是等差点.如图在矩形 GHMN 中,点 H ( 2,3),点 N (﹣ 2,﹣ 3),MN ⊥ y 轴, HM⊥ x 轴,点 P 是直线 y = x+b 上的任意一点(点P 不在矩形的边上) ,若矩形 GHMN 的边上存在两个点与点P 是等差点,则 b 的取值范围为﹣ 5< b <5 .第14页(共 22页)根据等差点的定义可知,当直线y= x+b 与矩形 MNGH 有两个交点时,矩形GHMN 的边上存在两个点与点P 是等差点,当直线 y= x+b 经过点 G(﹣ 2, 3)时, b=5,当直线 y= x+b 经过点 M( 2,﹣ 3)时, b=﹣ 5,∴满足条件的 b 的范围为:﹣5< b<5.故答案为﹣ 5< b< 5三、解下列各题(本大题共8 小题,共72 分下列各题需要在答题卷的指定位置写出文字说明、证明过程、演算步骤或画出图形17.( 8 分)计算:( 1)﹣+( 2)(+)÷【解答】解:( 1)﹣+=3 ﹣ 2 +=2 ;( 2)(+)÷=+=4+.18.( 8 分)如图, ? ABCD 的对角线 AC, BD 相交于点O,△ OAB 是等边三角形.(1)求证: ? ABCD 为矩形;(2)若 AB =4,求 ?ABCD 的面积.【解答】解( 1)∵△ AOB 为等边三角形∴∠ BAO = 60°=∠ AOB, OA= OB∵四边形 ABCD 是平行四边形∴OB= OD,∴OA= OD∴∠ OAD= 30°,∴∠ BAD= 30°+60 °= 90°∴平行四边形ABCD 为矩形;(2)在 Rt△ ABC 中,∠ ACB= 30°,∴AB= 4, BC= AB= 4∴ ? ABCD 的面积= 4 ×4= 1619.( 8 分)“大美武汉,畅游江城”.某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:( 1)求被调查的学生总人数;( 2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;( 3)若该校共有1200 名学生,请估计“最想去景点B“的学生人数.【解答】解:( 1)被调查的学生总人数为8÷20% = 40(人);(2)最想去 D 景点的人数为 40﹣ 8﹣ 14﹣ 4﹣ 6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为× 360°=72°;(3) 1200×=420,所以估计“最想去景点B“的学生人数为420 人.20.( 8 分)如图,直线l1: y1=﹣x+b 分别与x 轴、 y 轴交于点A、点 B,与直线l2: y2 = x 交于点 C( 2, 2).(1)若 y1< y2,请直接写出 x 的取值范围;(2)点 P 在直线 l1: y1=﹣ x+b 上,且△ OPC 的面积为 3,求点 P 的坐标?【解答】解:( 1)∵直线 l 1: y1=﹣x+b 与直线 l2: y2=x 交于点 C( 2,2),∴当 y1<y2时, x> 2;( 2)将( 2, 2)代入 y1=﹣x+b,得 b= 3,∴y1=﹣ x+3,∴A( 6, 0),B( 0,3),设 P( x,﹣ x+3 ),则当 x< 2 时,由× 3× 2﹣×3× x=3,解得 x=0,∴ P( 0, 3);当 x> 2 时,由× 6× 2﹣×6×(﹣x+3)= 3,解得 x=4,∴﹣x+3= 1,∴ P( 4, 1),第17页(共 22页)21.( 8 分)如图,矩形 ABCD 中,点 E , F 分别在边上, AG =CH , BE = DF .( 1)求证:四边形 EGFH 是平行四边形;( 2)若 EG = EH , AB = 8,BC =4.求 AE 的长.【解答】 解:( 1)∵矩形 ABCD 中, AB ∥ CD ,∴∠ FCH =∠ EAG ,又∵ CD =AB , BE =DF ,∴ CF = AE ,又∵ CH =AG ,∴△ AEG ≌△ CFH ,∴ GE = FH ,∠ CHF =∠ AGE , ∴∠ FHG =∠ EGH ,∴ FH ∥ GE ,∴四边形 EGFH 是平行四边形;( 2)如图,连接 EF ,AF ,∵ EG = EH ,四边形 EGFH 是平行四边形,∴四边形 GFHE 为菱形,∴ EF 垂直平分 GH ,又∵ AG =CH ,∴ EF 垂直平分 AC ,∴ AF = CF = AE ,设 AE = x ,则 FC = AF = x , DF = 8﹣x ,在 Rt △ADF 中, AD 2+DF 2= AF 2,∴ 42+(8﹣ x ) 2= x 2,解得 x =5,∴ AE = 5.AB 与 CD 上,点 G 、H 在对角线 AC22.( 10 分)某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤ x≤ 70,且为整数),函数 y 与自变量x 的部分对应值如表x 单位:台)102030y(单位:万元 / 台)605550(1)求 y 与 x 之间的函数关系式;(2)市场调查发现,这种机器每月销售量 z(台)与售价 a(万元 /台)之间满足如图所示的函数关系.①该厂第一个月生产的这种机器40 台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)② 若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?【解答】解:( 1)设 y 与 x 的函数关系式为y=kx+b,,得,即 y 与 x 的函数关系式为y=﹣ 0.5x+65( 10≤ x≤70,且为整数);( 2)① 设 z 与 a 之间的函数关系式为z=ma+n,,得,∴ z 与 a 之间的函数关系式为z=﹣ a+90 ,当 z= 40 时, 40=﹣ a+90,得 a= 50,当 x= 40 时, y=﹣ 0.5× 40+65= 45,40× 50﹣ 40× 45= 2000﹣ 1800= 200(万元),答:该厂第一个月销售这种机器的总利润为200 万元;②设每台机器的利润为w 万元,w=(﹣ x+90)﹣(﹣ 0.5x+65 )=﹣x+25,∵ 10≤x≤ 70,且为整数,∴当x= 10 时, w 取得最大值,答:每个月生产10 台这种机器才能使每台机器的利润最大.23.( 10 分)已知,在四边形ABCD 中,点 E、点 F 分别为 AD 、BC 的中点,连接EF.(1)如图 1, AB∥ CD,连接 AF 并延长交 DC 的延长线于点 G,则 AB 、 CD 、EF 之间的数量关系为 2EF =AB+CD ;(2)如图 2,∠ B= 90°,∠ C= 150°,求 AB、 CD 、EF 之间的数量关系?( 3)如图 3,∠ ABC=∠ BCD= 45°,连接AC、 BD 交于点 O,连接 OE,若 AB=,CD= 2,BC=6,则OE=.【解答】解:( 1)结论: AB +CD= 2EF,理由:如图 1 中,∵点 E、点 F 分别为 AD 、 BC 的中点,∴BC= FC, AE=ED,∵ AB∥ CD ,∴∠ ABF =∠ GCF ,∵∠ BFA=∠ CFG ,∴△ ABF ≌△ CFG (ASA),∴AB=CG,AF =FG,∵ AE= ED , AF = FG,∴2EF= DG =DC+CG=DC+AB ;故答案为 2EF =AB+CD.第20页(共 22页)( 2)如图 2 中,作 CK ⊥ BC ,连接 AF ,延长 AF 交 CK 于 K .连接 DK ,作 DH ⊥ CK 于H .∵∠ ABF =∠ KCF , BF =FC ,∠ AFB =∠ CFK ,∴△ AFB ≌△ KFC ,∴ AB = CK , AF = FK ,∵∠ BCD = 150°,∠ BCK = 90°,∴∠ DCK = 120°,∴∠ DCH = 60°,∴ CH = CD , DH =CD ,在 Rt △DKH 中, DK 2= DH 2+KH 2=(CD )2 +( AB+ CD )2= AB 2+CD 2+AB?CD ,∵ AE = ED , AF = FK ,∴ EF = DG ,∴ 4EF 2= DK 2,∴ 4EF 2= AB 2+CD 2+AB?CD .( 3)如图 3 中,以点 B 为原点, BC 为 x 轴,建立平面直角坐标系如图所示.由题意: A ( 1, 1), B ( 6, 0),D (4, 2),∵ AE = ED ,∴ E ( , ),∵中线 AC 的解析式为 y =﹣,中线 BD 的解析式为 y = x ,由,解得 ,∴ O (,),∴ OE == ,故答案为.24.( 12 分)在平面直角坐标系中,点A, B 分别是 x 轴正半轴与y 轴正半轴上一点,OA=m,OB= n,以 AB 为边在第一象限内作正方形ABCD .(1)若 m=4, n= 3,直接写出点 C 与点 D 的坐标;(2)点 C 在直线 y= kx(k> 1 且 k 为常数)上运动.①如图 1,若 k= 2,求直线 OD 的解析式;②如图 2,连接 AC、BD 交于点 E,连接 OE,若 OE= 2OA,求 k 的值.【解答】解:( 1)∵ OA= m, OB= n,以 AB 为边在第一象限内作正方形ABCD ,∴ C( n, m+n),D ( m+n, m),把 m= 4, n=3 代入可得:C( 3, 7),D ( 7,4),( 2)① 设 C(a, 2a),由题意可得:,解得: m= n= a,∴D( 2a, a),∴直线 OD 的解析式为:y=x,②由 B( 0, n),D (m+n,m),可得: E(),OE=2OA,∴,可得:( m+n)2= 16m2,∴m+n= 4m, n=3m,∴C( 3m, 4m),∴直线 OC 的解析式为:y=x,可得: k=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019 人教版八年级(下)期末数学试卷一、本大题共有10 小题,每小题 3 分,共 30 分)1.( 3 分)若代数式在实数范围内有意义,则x 的取值范围是()A .x≥﹣ 2B .x>﹣ 2C. x≥ 2D. x≤ 22.( 3 分)下列各组数据中能作为直角三角形的三边长的是()A .1, 2, 2B .1, 1,C. 4, 5, 6D. 1,,2 3.( 3 分)下面给出的四边形ABCD 中,∠ A、∠ B、∠ C、∠ D 的度数之比,其中能判定四边形 ABCD 是平行四边形的条件是()A .3: 4: 3: 4B .3: 3: 4:4C. 2: 3: 4: 5D. 3: 4: 4: 3 4.( 3 分)甲、乙、丙、丁四人进行射击测试,每人10 次射击的平均成绩恰好是9.4 环,方差分别是S 甲2= 0.90,S 乙2= 1.22,S 丙2= 0.43,S 丁2= 1.68,在本次射击测试中,成绩最稳定的是()A .甲B .乙C.丙D.丁5.( 3 分)如果直线 y= kx+b 经过一、二、四象限,则有()A .k> 0, b>0B .k> 0, b<0C. k< 0, b> 0D. k< 0, b< 0 6.( 3 分)如图,在? ABCD 中,已知AD = 12cm, AB= 8cm, AE 平分∠ BAD 交 BC 边于点E,则 CE 的长等于()A .8cmB .6cm C. 4cm D. 2cm7.( 3 分)小华周末坚持体育锻炼.某个周末他跑步到离家较远的和平公园,打了一会儿篮球后散步回家.下面能反映当天小华离家的距离y 与时间x 的函数关系的大致图象是()A .B.C.D.8.( 3 分)某中学随机地了50 名学生,了解他一周在校的体育,果如下表所示:(小) 5 6 7 8人数10 15 20 550 名学生一周在校的平均体育是()A .6.2 小B .6.4 小C. 6.5 小D. 7 小9.( 3 分)直y= kx+6 和直 y=( k+1 )x+6( k 是正整数)及x 成的三角形面S k( k= 1,2, 3,⋯, 8), S1+S2+S3+⋯ +S8的是()A .B .C. 16D. 1410.(3 分)如,矩形ABCD 中, AB= 2,BC=6,P矩形内一点,接PA,PB,PC,PA+PB+PC 的最小是()A .4+3B .2C. 2+6D. 4二、填空(本大共有 6 小,每小 3 分,共 18 分)下列各不需要写出解答程,将直接填写在答卷的指定位置11.(3 分)算: 3的果是.12.( 3 分)函数y= 6x+5 的象是由直y= 6x 向平移个位度得到的.13.( 3 分)数据5,5, 6, 6, 6, 7, 7 的众数14.( 3 分)如,在 ? ABCD 中, AE⊥ BC 于点 E, F DE 的中点,∠ B= 66°,∠ EDC =44°,∠ EAF 的度数.15.( 3 分)如,菱形ABCD 的面120cm 2,正方形AECF 的面50cm2,菱形的cm.16.( 3 分)对于点P( a, b),点 Q( c, d),如果 a﹣ b= c﹣ d,那么点 P 与点 Q 就叫作等差点.例如:点 P( 4, 2),点 Q(﹣ 1,﹣ 3),因 4﹣ 2=﹣ 1﹣(﹣ 3)= 2,则点 P 与点Q 就是等差点.如图在矩形 GHMN 中,点 H( 2,3),点 N(﹣ 2,﹣ 3),MN ⊥ y 轴, HM ⊥ x 轴,点 P 是直线 y= x+b 上的任意一点(点P 不在矩形的边上),若矩形GHMN 的边上存在两个点与点P 是等差点,则 b 的取值范围为.三、解下列各题(本大题共8 小题,共72 分下列各题需要在答题卷的指定位置写出文字说明、证明过程、演算步骤或画出图形17.( 8 分)计算:( 1)﹣+(2)(+)÷18.( 8 分)如图, ? ABCD 的对角线 AC, BD 相交于点O,△ OAB 是等边三角形.(1)求证: ? ABCD 为矩形;(2)若 AB =4,求 ?ABCD 的面积.19.( 8 分)“大美武汉,畅游江城”.某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:( 1)求被调查的学生总人数;( 2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;( 3)若该校共有1200 名学生,请估计“最想去景点B“的学生人数.20.( 8 分)如图,直线l1: y1=﹣x+b 分别与x 轴、 y 轴交于点A、点 B,与直线l2: y2 = x 交于点 C( 2, 2).(1)若 y1< y2,请直接写出 x 的取值范围;(2)点 P 在直线 l1: y1=﹣ x+b 上,且△ OPC 的面积为 3,求点 P 的坐标?21.( 8 分)如图,矩形ABCD 中,点 E, F 分别在边 AB 与 CD 上,点 G、H 在对角线 AC 上,第 4页(共 22页)(1)求证:四边形 EGFH 是平行四边形;(2)若 EG= EH, AB= 8,BC=4.求 AE 的长.22.( 10 分)某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤ x≤ 70,且为整数),函数 y 与自变量x 的部分对应值如表x 单位:台)102030y(单位:万元 / 台)605550(1)求 y 与 x 之间的函数关系式;(2)市场调查发现,这种机器每月销售量 z(台)与售价 a(万元 /台)之间满足如图所示的函数关系.①该厂第一个月生产的这种机器 40 台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)② 若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?23.( 10 分)已知,在四边形ABCD 中,点 E、点 F 分别为 AD 、BC 的中点,连接EF.( 1)如图 1, AB∥ CD,连接 AF 并延长交DC 的延长线于点G,则 AB 、 CD 、EF 之间的数量关系为;( 2)如图 2,∠ B= 90°,∠ C= 150°,求 AB、 CD 、EF 之间的数量关系?( 3)如图 3,∠ ABC=∠ BCD= 45°,连接AC、 BD 交于点 O,连接 OE,若 AB=,CD= 2,BC=6,则OE=.24.( 12 分)在平面直角坐标系中,点A, B 分别是 x 轴正半轴与y 轴正半轴上一点,OA=m,OB= n,以 AB 为边在第一象限内作正方形ABCD .(1)若 m=4, n= 3,直接写出点 C 与点 D 的坐标;(2)点 C 在直线 y= kx(k> 1 且 k 为常数)上运动.①如图 1,若 k= 2,求直线 OD 的解析式;②如图 2,连接 AC、BD 交于点 E,连接 OE,若 OE= 2OA,求 k 的值.2018-2019 人教版八年级(下)期末数学试卷参考答案与试题解析一、你一定能选对 !(本大题共有 10 小题,每小题 3 分,共 30 分)下列各题均有四个备选答案,其中有且只有一个是正确的,请将正确答案的代号在答题卡上将对应的答案标号涂黑1.( 3 分)若代数式在实数范围内有意义,则 x 的取值范围是( )A .x ≥﹣ 2B .x >﹣ 2C . x ≥ 2D . x ≤ 2【解答】 解:根据题意得: x ﹣ 2≥ 0, 解得 x ≥2. 故选: C .2.( 3 分)下列各组数据中能作为直角三角形的三边长的是( )A .1, 2, 2B .1, 1,C . 4, 5, 6D . 1,, 2【解答】 解: A 、∵ 12+22= 5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;2 2 2,∴此组数据不能作为直角三角形的三边长,故本选项错误;B 、∵ 1 +1 = 2≠( )C 、∵ 42+52= 41≠ 62,∴此组数据不能作为直角三角形的三边长,故本选项错误;222,∴此组数据能作为直角三角形的三边长,故本选项正确.D 、∵ 1 +( ) = 4= 2 故选: D .3.( 3 分)下面给出的四边形 ABCD 中,∠ A 、∠ B 、∠ C 、∠ D 的度数之比,其中能判定四 边形 ABCD 是平行四边形的条件是( )A .3: 4: 3: 4B .3: 3: 4:4C . 2: 3: 4: 5D . 3: 4: 4: 3【解答】 解:根据平行四边形的两组对角分别相等,可知 A 正确.故选: A .4.( 3 分)甲、乙、丙、丁四人进行射击测试,每人10 次射击的平均成绩恰好是 9.4 环,方差分别是 S 甲 2= 0.90,S 乙 2= 1.22,S 丙 2= 0.43,S 丁 2= 1.68,在本次射击测试中,成绩最稳定的是()A .甲B .乙C .丙D .丁【解答】解:∵ 0.43< 0.90< 1.22<1.68,∴丙成绩最稳定,故选: C.5.( 3 分)如果直线 y= kx+b 经过一、二、四象限,则有()A .k> 0, b>0B .k> 0, b<0C. k< 0, b> 0D. k< 0, b< 0【解答】解:由一次函数y= kx+b 的图象经过第一、二、四象限,又由 k<0 时,直线必经过二、四象限,故知k< 0.再由图象过一、二象限,即直线与y 轴正半轴相交,所以b> 0.故选: C.6.( 3 分)如图,在? ABCD 中,已知AD = 12cm, AB= 8cm, AE 平分∠ BAD 交 BC 边于点E,则 CE 的长等于()A .8cmB .6cm C. 4cm D. 2cm【解答】解:∵四边形ABCD 是平行四边形,∴BC= AD= 12cm,AD∥BC,∴∠ DAE=∠ BEA,∵ AE 平分∠ BAD ,∴∠ BAE=∠ DAE ,∴∠ BEA=∠ BAE ,∴BE= AB= 8cm,∴CE= BC﹣ BE= 4cm;故选: C.7.( 3 分)小华周末坚持体育锻炼.某个周末他跑步到离家较远的和平公园,打了一会儿篮球后散步回家.下面能反映当天小华离家的距离y 与时间x 的函数关系的大致图象是()A .B.C.D.【解答】解:象分三个段,第一段:跑步到离家的和平公园,在个段,离家的距离随的增大而增大;第二段:打了一会儿球,一段离家的距离不随的化而改;第三段:散步回家,一段,离家的距离随的增大而减小,并且段的速度小于第一段的速度.故: B.8.( 3 分)某中学随机地了50 名学生,了解他一周在校的体育,果如下表所示:(小)5678人数101520 550 名学生一周在校的平均体育是()A .6.2 小B .6.4 小C. 6.5 小D. 7 小【解答】解:根据意得:(5× 10+6× 15+7× 20+8×5)÷ 50=( 50+90+140+40 )÷ 50=320÷ 50=6.4(小).故 50 名学生一周在校的平均体育是 6.4 小.故: B.9.( 3 分)直y= kx+6 和直 y=( k+1 )x+6( k 是正整数)及x 成的三角形面S ( k= 1,2, 3,⋯, 8), S +S +S +⋯ +S 的是()k 1 2 38A .B .C. 16 D. 14【解答】解:立两直解析式成方程,得:,解得:,∴两直的交点是(0, 6).∵直 y= kx+6 与 x 的交点(,0),直 y=( k+1)x+6 与 x 的交点(,0),∴ S k=× 6× | ()|=18(),∴ S1 2 38+S +S +⋯ +S= 18×( 1+ + +⋯ +),= 18×( 1),= 18×=16.故: C.10.(3 分)如,矩形ABCD 中, AB= 2,BC=6,P矩形内一点,接PA,PB,PC,PA+PB+PC 的最小是()A .4+3B .2C. 2+6D. 4【解答】解:将△ BPC 点 C 逆旋60°,得到△ EFC ,接PF、 AE、 AC,AE 的即所求.由旋的性可知:△PFC 是等三角形,∴PC=PF,∵ PB= EF ,∴PA+PB+PC= PA+PF+EF ,∴当 A、 P、F 、 E 共, PA+PB +PC 的最小,∵四边形ABCD 是矩形,∴∠ ABC= 90°,∴tan∠ ACB ==,∴∠ ACB= 30°, AC=2AB= 4,∵∠ BCE= 60°,∴∠ ACE= 90°,∴ AE==2,故选: B.二、填空题(本大题共有 6 小题,每小题 3 分,共 18 分)下列各题不需要写出解答过程,请将结论直接填写在答题卷的指定位置11.(3 分)计算: 3﹣的结果是2.【解答】解: 3﹣=2.故答案为: 2.12.( 3 分)函数 y=﹣ 6x+5 的图象是由直线y=﹣ 6x 向上平移5个单位长度得到的.【解答】解:函数y=﹣ 6x+5 的图象是由直线y=﹣ 6x 向上平移 5 个单位长度得到的.故答案为上,5.13.( 3 分)数据 5,5, 6, 6, 6, 7, 7 的众数为 6【解答】解:数据5, 5,6, 6, 6, 7, 7 的众数为: 6;故答案为: 614.( 3 分)如图,在 ? ABCD 中, AE⊥ BC 于点 E, F 为 DE 的中点,∠ B= 66°,∠ EDC =44°,则∠ EAF 的度数为68°.【解答】解:∵四边形ABCD 是平行四边形,∴∠ B=∠ ADC= 66°, AD∥ BC,∵AE⊥BC,∴ AE⊥ AD ,∴∠ EAD = 90°,∵ EF = FD ,∴ FA = FD = EF ,∵∠ EDC = 44°,∴∠ ADF =∠ FAD = 22°, ∴∠ EAF =90°﹣ 22°= 68°,故答案为 68°15.( 3 分)如图,菱形 ABCD 的面积为 120cm 2,正方形 AECF 的面积为 50cm 2,则菱形的边长为 13 cm .【解答】 解:因为正方形 AECF 的面积为 50cm 2,所以 AC = cm ,因为菱形 ABCD 的面积为 120cm 2,所以 BD = cm ,所以菱形的边长= cm .故答案为: 13.16.( 3 分)对于点 P ( a , b ),点 Q ( c , d ),如果 a ﹣ b = c ﹣ d ,那么点 P 与点 Q 就叫作等差点.例如:点 P ( 4, 2),点 Q (﹣ 1,﹣ 3),因 4﹣ 2=﹣ 1﹣(﹣ 3)= 2,则点 P 与点 Q 就是等差点.如图在矩形 GHMN 中,点 H ( 2,3),点 N (﹣ 2,﹣ 3),MN ⊥ y 轴, HM⊥ x 轴,点 P 是直线 y = x+b 上的任意一点(点P 不在矩形的边上) ,若矩形 GHMN 的边上存在两个点与点P 是等差点,则 b 的取值范围为﹣ 5< b <5 .第14页(共 22页)根据等差点的定义可知,当直线y= x+b 与矩形 MNGH 有两个交点时,矩形GHMN 的边上存在两个点与点P 是等差点,当直线 y= x+b 经过点 G(﹣ 2, 3)时, b=5,当直线 y= x+b 经过点 M( 2,﹣ 3)时, b=﹣ 5,∴满足条件的 b 的范围为:﹣5< b<5.故答案为﹣ 5< b< 5三、解下列各题(本大题共8 小题,共72 分下列各题需要在答题卷的指定位置写出文字说明、证明过程、演算步骤或画出图形17.( 8 分)计算:( 1)﹣+( 2)(+)÷【解答】解:( 1)﹣+=3 ﹣ 2 +=2 ;( 2)(+)÷=+=4+.18.( 8 分)如图, ? ABCD 的对角线 AC, BD 相交于点O,△ OAB 是等边三角形.(1)求证: ? ABCD 为矩形;(2)若 AB =4,求 ?ABCD 的面积.【解答】解( 1)∵△ AOB 为等边三角形∴∠ BAO = 60°=∠ AOB, OA= OB∵四边形 ABCD 是平行四边形∴OB= OD,∴OA= OD∴∠ OAD= 30°,∴∠ BAD= 30°+60 °= 90°∴平行四边形ABCD 为矩形;(2)在 Rt△ ABC 中,∠ ACB= 30°,∴AB= 4, BC= AB= 4∴ ? ABCD 的面积= 4 ×4= 1619.( 8 分)“大美武汉,畅游江城”.某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:( 1)求被调查的学生总人数;( 2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;( 3)若该校共有1200 名学生,请估计“最想去景点B“的学生人数.【解答】解:( 1)被调查的学生总人数为8÷20% = 40(人);(2)最想去 D 景点的人数为 40﹣ 8﹣ 14﹣ 4﹣ 6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为× 360°=72°;(3) 1200×=420,所以估计“最想去景点B“的学生人数为420 人.20.( 8 分)如图,直线l1: y1=﹣x+b 分别与x 轴、 y 轴交于点A、点 B,与直线l2: y2 = x 交于点 C( 2, 2).(1)若 y1< y2,请直接写出 x 的取值范围;(2)点 P 在直线 l1: y1=﹣ x+b 上,且△ OPC 的面积为 3,求点 P 的坐标?【解答】解:( 1)∵直线 l 1: y1=﹣x+b 与直线 l2: y2=x 交于点 C( 2,2),∴当 y1<y2时, x> 2;( 2)将( 2, 2)代入 y1=﹣x+b,得 b= 3,∴y1=﹣ x+3,∴A( 6, 0),B( 0,3),设 P( x,﹣ x+3 ),则当 x< 2 时,由× 3× 2﹣×3× x=3,解得 x=0,∴ P( 0, 3);当 x> 2 时,由× 6× 2﹣×6×(﹣x+3)= 3,解得 x=4,∴﹣x+3= 1,∴ P( 4, 1),第17页(共 22页)21.( 8 分)如图,矩形 ABCD 中,点 E , F 分别在边上, AG =CH , BE = DF .( 1)求证:四边形 EGFH 是平行四边形;( 2)若 EG = EH , AB = 8,BC =4.求 AE 的长.【解答】 解:( 1)∵矩形 ABCD 中, AB ∥ CD ,∴∠ FCH =∠ EAG ,又∵ CD =AB , BE =DF ,∴ CF = AE ,又∵ CH =AG ,∴△ AEG ≌△ CFH ,∴ GE = FH ,∠ CHF =∠ AGE , ∴∠ FHG =∠ EGH ,∴ FH ∥ GE ,∴四边形 EGFH 是平行四边形;( 2)如图,连接 EF ,AF ,∵ EG = EH ,四边形 EGFH 是平行四边形,∴四边形 GFHE 为菱形,∴ EF 垂直平分 GH ,又∵ AG =CH ,∴ EF 垂直平分 AC ,∴ AF = CF = AE ,设 AE = x ,则 FC = AF = x , DF = 8﹣x ,在 Rt △ADF 中, AD 2+DF 2= AF 2,∴ 42+(8﹣ x ) 2= x 2,解得 x =5,∴ AE = 5.AB 与 CD 上,点 G 、H 在对角线 AC22.( 10 分)某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤ x≤ 70,且为整数),函数 y 与自变量x 的部分对应值如表x 单位:台)102030y(单位:万元 / 台)605550(1)求 y 与 x 之间的函数关系式;(2)市场调查发现,这种机器每月销售量 z(台)与售价 a(万元 /台)之间满足如图所示的函数关系.①该厂第一个月生产的这种机器40 台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)② 若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?【解答】解:( 1)设 y 与 x 的函数关系式为y=kx+b,,得,即 y 与 x 的函数关系式为y=﹣ 0.5x+65( 10≤ x≤70,且为整数);( 2)① 设 z 与 a 之间的函数关系式为z=ma+n,,得,∴ z 与 a 之间的函数关系式为z=﹣ a+90 ,当 z= 40 时, 40=﹣ a+90,得 a= 50,当 x= 40 时, y=﹣ 0.5× 40+65= 45,40× 50﹣ 40× 45= 2000﹣ 1800= 200(万元),答:该厂第一个月销售这种机器的总利润为200 万元;②设每台机器的利润为w 万元,w=(﹣ x+90)﹣(﹣ 0.5x+65 )=﹣x+25,∵ 10≤x≤ 70,且为整数,∴当x= 10 时, w 取得最大值,答:每个月生产10 台这种机器才能使每台机器的利润最大.23.( 10 分)已知,在四边形ABCD 中,点 E、点 F 分别为 AD 、BC 的中点,连接EF.(1)如图 1, AB∥ CD,连接 AF 并延长交 DC 的延长线于点 G,则 AB 、 CD 、EF 之间的数量关系为 2EF =AB+CD ;(2)如图 2,∠ B= 90°,∠ C= 150°,求 AB、 CD 、EF 之间的数量关系?( 3)如图 3,∠ ABC=∠ BCD= 45°,连接AC、 BD 交于点 O,连接 OE,若 AB=,CD= 2,BC=6,则OE=.【解答】解:( 1)结论: AB +CD= 2EF,理由:如图 1 中,∵点 E、点 F 分别为 AD 、 BC 的中点,∴BC= FC, AE=ED,∵ AB∥ CD ,∴∠ ABF =∠ GCF ,∵∠ BFA=∠ CFG ,∴△ ABF ≌△ CFG (ASA),∴AB=CG,AF =FG,∵ AE= ED , AF = FG,∴2EF= DG =DC+CG=DC+AB ;故答案为 2EF =AB+CD.第20页(共 22页)( 2)如图 2 中,作 CK ⊥ BC ,连接 AF ,延长 AF 交 CK 于 K .连接 DK ,作 DH ⊥ CK 于H .∵∠ ABF =∠ KCF , BF =FC ,∠ AFB =∠ CFK ,∴△ AFB ≌△ KFC ,∴ AB = CK , AF = FK ,∵∠ BCD = 150°,∠ BCK = 90°,∴∠ DCK = 120°,∴∠ DCH = 60°,∴ CH = CD , DH =CD ,在 Rt △DKH 中, DK 2= DH 2+KH 2=(CD )2 +( AB+ CD )2= AB 2+CD 2+AB?CD ,∵ AE = ED , AF = FK ,∴ EF = DG ,∴ 4EF 2= DK 2,∴ 4EF 2= AB 2+CD 2+AB?CD .( 3)如图 3 中,以点 B 为原点, BC 为 x 轴,建立平面直角坐标系如图所示.由题意: A ( 1, 1), B ( 6, 0),D (4, 2),∵ AE = ED ,∴ E ( , ),∵中线 AC 的解析式为 y =﹣,中线 BD 的解析式为 y = x ,由,解得 ,∴ O (,),∴ OE == ,故答案为.24.( 12 分)在平面直角坐标系中,点A, B 分别是 x 轴正半轴与y 轴正半轴上一点,OA=m,OB= n,以 AB 为边在第一象限内作正方形ABCD .(1)若 m=4, n= 3,直接写出点 C 与点 D 的坐标;(2)点 C 在直线 y= kx(k> 1 且 k 为常数)上运动.①如图 1,若 k= 2,求直线 OD 的解析式;②如图 2,连接 AC、BD 交于点 E,连接 OE,若 OE= 2OA,求 k 的值.【解答】解:( 1)∵ OA= m, OB= n,以 AB 为边在第一象限内作正方形ABCD ,∴ C( n, m+n),D ( m+n, m),把 m= 4, n=3 代入可得:C( 3, 7),D ( 7,4),( 2)① 设 C(a, 2a),由题意可得:,解得: m= n= a,∴D( 2a, a),∴直线 OD 的解析式为:y=x,②由 B( 0, n),D (m+n,m),可得: E(),OE=2OA,∴,可得:( m+n)2= 16m2,∴m+n= 4m, n=3m,∴C( 3m, 4m),∴直线 OC 的解析式为:y=x,可得: k=.。

相关文档
最新文档