随机信号分析基础第四版 第五章答案.ppt

合集下载

随机信号与系统第五章习题部分答案

随机信号与系统第五章习题部分答案

第五章 习题5-1 设某信号为1000||()t x t e -=(1)试求x (t )的傅里叶变换X (j ω),并绘制X (j ω)曲线;(2)假设分别以采样频率为f s =5000Hz 和f s =1000Hz 对该信号进行采样,得到一组采样序列x k ,说明采样频率对序列x k 频率特性X (e j Ω)的影响。

解:(1)1000||622000()()10j t t j t X j x t e dt e e dt ωωωω∞∞----∞-∞===+⎰⎰. X (j ω)的曲线如下图所示:(2)设采样周期为T ,则采样输出为()()()()k k k x x t t kT x kT t kT δδ∞∞=-∞=-∞=-=-∑∑.由时域相乘等于频域卷积,有1122()()*[()]()*[()]22j k k X e X j t kT X j kT Tππδδππ∞∞Ω=-∞=-∞=Ω-=ΩΩ-∑∑F 121212()()()2k k X j k d X j jk T T T T Tπππωδωωπ∞∞∞-∞=-∞=-∞=⋅=Ω--=Ω-∑∑⎰. 即序列x k 频率特性X (e j Ω)是原信号频谱X (j ω)以2Tπ为周期进行延拓而成的,而采样频率1122s f T Tππ==⋅,所以采样频率越高,序列x k 频率特性的各周期越分散,越不容易发生频谱混叠。

5-2 假设平稳随机过程x (t )和y (t )满足下列离散差分方程11;k k k k k k k x ax e y ay x v ---=-=+式中,|a|<1;e k ,v k ~N (0,σ 2)分布,且二者互不相关。

试求随机序列y k 的功率谱。

解:对1k k k x ax e --=进行离散时间傅里叶变换(DTFT ),且记DTFT(x k )=X (e j Ω),DTFT(e k )=E (e j Ω),则有j j j ()(1)()X e ae E e ΩΩΩ--=式中,Ω=ωT s ,称为数字频率(rad ),ω为实际频率(rad/s ),T s 为采样周期(s )。

《随机信号分析》复习课(第一章-第四章)

《随机信号分析》复习课(第一章-第四章)

F (x, y) P{X x,Y y}
y
(x, y)
x
0
1.4 多维随机变量及分布
f (x, y) 2F (x, y) xy
f (x, y) 0
xy
F(x, y)
f (x, y)dxdy
f (x, y)dxdy 1
f X (x)
f (x, y)dy
fY ( y)
f (x, y)dx
J
dx dy
对于任意单调函数 g(x) :fY ( y) f X (x) J xg1( y)
如果 g(x) 不是单调函数:
fY ( y) f X (x1) J1 f X (xn ) J n
其中 x1 h1 ( y) … xn hn ( y) , Jk dxk / dy
1.6 随机变量的函数
《随机信号分析》复习课(第一章-第四章)
重点内容
绪论 随机变量基础 重点:随机变量的函数
第二章 随机过程的基本概念 重点: 平稳随机过程的概念,随机过程的功率谱密度 ,高斯过程
第三章 随机过程的线性变换 重点:随机过程线性变换的冲激响应法和频谱法, 白噪声通过线性系统,随机过程线性变换后的概率 分布
x2 f (x)dx
x1
1.3 随机变量的分布函数与概率密度
f (x)
1
2
exp
(x )2 2 2
X ~ N(, 2)
x
FX (x)
1 2
exp
(
x ) 22
2
dx
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-4 -3 -2 -1

《随机信号分析》课件

《随机信号分析》课件
表示随机信号的波动范围,即信号值偏离均值的程度。
方差
均值
自相关函数描述了随机信号在不同时间点之间的相关性。
自相关函数可以用于分析信号的周期性和趋势性。
谱密度函数描述了随机信号的频率成分。
通过谱密度函数,可以了解信号在不同频率下的强度和分布。
04
CHAPTER
随机信号的频域分析
傅立叶变换是信号处理中的基本工具,用于将时间域的信号转换为频域的表示。通过傅立叶变换,我们可以分析信号的频率成分和频率特性。
02
时间变化特性
由于随机信号的取值是随机的,因此其时间变化特性也是随机的,表现为信号的幅度、频率和相位都是随机的。
在通信领域,随机信号可以用于扩频通信、信道编码等,以提高通信的可靠性和抗干扰能力。
通信
在雷达领域,随机信号可以用于雷达测距、目标跟踪等,以提高雷达的抗干扰能力和探测精度。
雷达
在地球物理学领域,随机信号可以用于地震勘探、矿产资源探测等,以提高探测的精度和可靠性。
线性系统的输出信号的统计特性与输入信号的统计特性和系统的传递函数有关。通过分析线性系统对随机信号的作用,我们可以了解系统对信号的影响和信号经过系统后的变化情况。
05
CHAPTER
随机信号的变换域分析
总结词
拉普拉斯变换是一种将时域信号转换为复平面上的函数的方法,用于分析信号的稳定性和可预测性。
详细描述
详细描述
06
CHAPTER
随机信号处理的应用
信号传输
随机信号分析在通信系统中用于信号传输的调制和解调过程,通过对信号的随机性进行编码和解码,实现可靠的信息传输。
目标检测
01
随机信号分析在雷达系统中用于目标检测和跟踪,通过对接收到的回波信号进行分析和处理,实现高精度和高可靠性的目标定位和识别。

《随机信号分析》-高新波等-课后答案

《随机信号分析》-高新波等-课后答案

C = *第0章1/1;1/ 2;1/ 3;1/4;1/ 5;1/ 6;2 /1;2 / 2;2 / 3;2 /4;2 / 5;2/6;3/l;3/2;3/3;3/4;3/5;3/6;4/l;4/2;4/3;4/4;4/5;4/6;5/l;5/2;5/3;5/4;5/5;5/6;6/l;6/2;6/3;6/4;6/5;6/64 = {l/l;2/2;3/3;4/4;5/5;6/6}1/5;!/ 6;2 /4;2 / 5;2 / 6;3 / 3;3 / 4;3 / 5;3 / 6;4 / 2;4 / 3;4 / 4;4 / 5;'4/6;5/l;5/2;5/3;5/4;5/5;5/6;6/l;6/2;6/3;6/4;6/5;6/6 /1 /1;1 / 2;1 / 3;1 / 4;1 / 5;1 / 6;2 /1;2 / 2;2 / 3;2 / 4;2 / 5;2 / 6;3 /1;3 / 2;'3/3;3/4;3/5;3/6;4/l;4/2;4/3;5/l;5/2;5/3;6/l;6/2;6/3B =0.2(2)'0用)=x < 00<x<30x 2/12 2x -3-x 2/4,3<x <41 x>4P (l<x<7/2)=f^v +⑴⑶0.3E (X )= L 2<T :t/r = £ ~^y %dy =E (X2)=「Ji 奇dx = 了241a\^e~y 晶尸dy = 2a 2r (2)= 2a 2o(x)=£(/)-(研x))2=2尸_m S=04292S 0.4⑴£(Jf)=(-1)x03+0x0.44-1x03=0£(K)=1x0.4+2x0.2+3x0.4=2(2)由于存在X=0的情况,所以研Z)不存在(3)E(Z)=(-1-1)2x0.2+(-1-2)2xO.l+(O-l)2xO.l+(0-3)2x0.3+(l-l)2xO.1+0-2)2x0.1+(1-3)2x0.1=5 0.5X=ln*,当\dy\=^M=^e(Iny-mf2/”00.6t2+勺血s=£0<x<l,0<.y<2f32\X x~.—+—s as=(363-)7X*i X丁-312=诉号>=2尸号间=fp+导=土名/(x)0.7££be~^x+y^dxdy=[/>(1-e~'\~y dy=/>(1-e-,)= 1,/>=(!—e~x尸/(x)=he~x Ve-y dy=—^e~x fi<x<\f(y)=be~y^e~x dx—e~y,y>00.8(1)x,v不独立⑵F(z)=££~'|(X+yY{x+y}dxdy=£|/『(xe~x +ye~x}ixdy =g按(1一(1+Z一*片5+*(]_e-(z-y)肱,=]_]+z+/2\2f(z)=F'(z)=\+z+—e~:-(1+z)e~z=—e-2,z>0、2)20.9。

随机信号分析基础(第5章习题讲解)

随机信号分析基础(第5章习题讲解)

rect ( ) 2a a2 2 a a 2 2 2 a ( 0 ) a ( 0 )2 sin ( ) 2 ( )2 2
2
( 0 ) ( 0 )



系统所示的传函为:
t 1 RC j RC h(t ) (t ) e , H ( ) RC 1 j RC

5.31 解:由题可知
得到:
e j e j z z 1 cos 2 2
2
GY ( ) GX ( ) H ( )
2
1 H ( ) 1.64 1.6 cos
1 H (Z ) 1.64 0.8Z 0.8 Z 1 1 1 (0.8Z 1) (0.8Z 1 1)
p
k0 ai RY (k i), i 0 RY (k ) p a R (k i ) 2 , k 0 i Y i i 0
p
i 0
2 RY ( p) 1 X RY (0) RY (1) R (1) R (0) R (1) a R ( p 1 ) Y Y Y Y 1 0 RY (1) 0 a RY (1) RY (0) p RY ( p)
5.26 解:由题可知,所求的系统为一白化滤 波器,有:
GY ( ) H ( ) GX ( ) 1
H ( )
2
2
2 8 ( 8 j )( 8 j ) 2 3 ( 3 j )( 3 j )
稳定的最小相位系统的H(s)的极点在左半S平面,而 零点不在右半S平面。

随机信号分析PPT课件

随机信号分析PPT课件

RY ( )
N0 (bebu)(beb(u))du 20
N0b2 eb e2budu N 0b e b
2
0
4
相关函数为偶函数,τ<0时
R Y ( )
输出自相关函数为
N 0b e b 4
RY()
N0beb 4
a
25
输出的平均功率为
E[Y 2 (t)] RY (0)
N 0b 4
b为时间常数的倒数
a
2
4.1 线性系统的基本理论 4.1.1 线性时不变系统
x(t)
y(t)
L[ ·]
y(t)L[x(t)]
连续时间系统 双侧系统
离散时间系统
单侧系统
a
双侧信号 单侧信号
3
线性系统
L [ a 1 ( t ) x b 2 ( t ) x a ][ x 1 ( t L ) b ][ x 2 ( L t )]
RXY()0 h(u)RX(u)du
输出自相关R 函YX数(为)0 h(u)RX(u)du
RY()h(u)h(v)RX(uv)dudv
0
R Y()0 h(u)RXY(u)du
R Y()0 h(u)R Y aX(u)du
18
输出的均方值(总平均功率)
E[Y2(t)]h(u)h(v)RX(uv)dudv
(
)
N 0b 4
eb
与白噪声输入时 情况相同
a
31
例4.3中的相关函数可以进一步表示为
R Y()4 N 0e b 1 b 1 2/ 2 1be ( b)
二、双侧随机信号
K X(t)
Y(t) h(t)
Y(t)0h(u)X (tu)U (tu)du

随机信号分析基础第五章习题王永德答案

随机信号分析基础第五章习题王永德答案
了解随机信号的应用领域
详细描述
这道题目考察了学生对随机信号应用领域 的了解,包括通信、雷达、声呐、图像处 理等领域的应用。
THANKS
感谢观看
随机信号分析基础 第五章习题王永德 答案
目录
• 习题一答案 • 习题二答案 • 习题三答案 • 习题四答案
01
CATALOGUE
习题一答案
题目一答案
总结词:周期性
详细描述:题目一考察了周期性随机信号的特点,包括周期信号的波形、频谱和 功率谱等。通过分析,可以理解周期信号的规律性和稳定性,以及在通信、雷达 、声呐等领域的应用。
掌握随机信号的模拟生成方 法
详细描述
这道题目要求学生掌握随机 信号的模拟生成方法,包括 基于概率密度函数的生成方 法和基于概率质量函数的生
成方法。
总结词
理解随机信号的数字生成方法
详细描述
这道题目考察了学生对随机信号数字生成 方法的理解,包括基于离散概率分布的生 成方法和基于连续概率分布的生成方法。
总结词
04
详细描述
这道题目要求学生掌握随机信号的表 示方法,包括概率密度函数、概率质 量函数、特征函数等。
06
详细描述
这道题目考察了学生对随机信号线性变换的理 解,包括线性变换的基本原理和计算方法。
题目二答案
总结词
掌握随机信号的谱分析方法
详细描述
这道题目要求学生掌握随机信号的谱分析方法,包括谱 估计的基本原理和计算方法,以及谱估计的评价指标。
详细描述
这道题目要求学生掌握随机信号的模拟生成方法,包括基于 概率分布的随机抽样和基于确定性函数的随机调制。学生需 要理解这些方法的原理,掌握其实现过程,并能够根据实际 需求选择合适的方法生成随机信号。

第5章随机信号分析

第5章随机信号分析

Rxy () 0
R xy ( )
0 的最大峰值一般不在 处。
3. 估计

直接方法:
1 R ( m ) x ( n ) y ( n m ) xy N mn 0
^
N 1 m
1 R ( m ) y ( n ) x ( n m ) yx N mn 0
求傅立叶变换,得
N 1 ^
N 1N 1 1 j m j m R ( m ) e x ( n ) x ( n m ) e x N N N m ( N 1 ) m ( N 1 ) n 0
N 1 N 1 1 j m x ( n ) x ( n m ) e N N N n 0 m ( N 1 )
^
4 自相关函数的应用

检测淹没在随机噪声中的周期信号
x ( t ) x sin( t ) 0
T / 2 1 2 R ( ) lim x sin( t ) sin[ ( t ) ] dt x 0 T / 2 T T



t 令(
) ,则 dt 1 d
R 0 )R m ) X( X(

性质3
周期平稳过程的自相关函数必是周期函数, 且与过程的周期相同。
E[ X 2 (n)]

性质4
性质5
2 R ( 0 ) = EX [ ( n ) ] X

不包含任何周期分量的非周期平稳过程 满足
m 2 lim R ( m ) R ( ) X X X

平稳随机过程
均值和时间无关,是常数;自相关函数与时间的起点无关, 只与两点的时间差有关。

随机信号分析中文版答案

随机信号分析中文版答案
1.6 解: 由已知 f X n ( x ) =
1≤ y ≤ 6
1 b−a
+∞ −∞
X 1 ⋅⋅⋅ X n 相互独立
φ X (ω ) = ∫
i
f X ( xi )e jω xi dxi
=∫
b
a
1 jω xi 1 1 jωb e dxi = (e − e jω a ) b−a b − a jω
(b+ a ) ⎛ (b − a )ω ⎞ jω 2 = Sa ⎜ ⎟e 2 ⎝ ⎠
π
2
−2+
π2
8
2 2 2 ∴ D [ x] = σ X =E⎡ ⎣x ⎤ ⎦ − E [ x] 2 =σy =
π
2
−2+
π2
8

π2
16
=
π2
16
+
π
2
−2
(4)
Rxy = E [ xy ]
π 1 π 2 2 xy sin ( x + y ) dxdy 2 ∫0 ∫0 π π ⎤ 1 π ⎡ = ∫ 2 x ⎢ − y cos ( x + y ) 02 + sin ( x + y ) 02 ⎥ dx 2 0 ⎣ ⎦
5
《随机信号分析》 课后习题答案
武汉理工大学信息工程学院
cx1x 2 = rx1x 2 − mx1mx 2 cx1x 2 ⎞ ⎛10 2 ⎞ ⎛c cx ( x1, x 2) = ⎜ x1x1 ⎟=⎜ ⎟ ⎝ cx 2 x1 cx 2 x 2 ⎠ ⎝ 2 10 ⎠
1 − f x ( x1 , x2 ) = e 192π
1.8 解: C XY = E[( x − mx )( y − m y )] = E[ XY ] − mx m y = m11 − mx m y

随机信号分析基础习题王永德答案专题培训课件

随机信号分析基础习题王永德答案专题培训课件

5.16 解:要求传输函数和输出Z(t)的均方 值,由系统图可知:
Z t [X (t) X (t T )]* U (t)
X(t)*[(t)(tT)]*U(t)
X(t)*[U(t)U(tT)]
所以传函为:
h (t) U (t) U (t T )
s in (T /2 ) jT
若随机输入过程X(t)是宽平稳的,那么线性时不变 系统的输出过程Y(t)也是宽平稳的随机过程。实际上, 对于严平稳随机过程结论同样也成立。若输入是各态 经历过程,输出也将是各态经历过程。
5.11 从频域角度
5.2.2.1.系统输出的功率谱密度
若输入随机过程X(t)为平稳过程,则输出的自相关 函数为:
5.11 从时域角度
5.2.1.2(2)系统输出的自相关函数

R Y ( t , t ) R X ( 1 2 ) h ( 1 ) h (2 ) d 1 d 2 R Y ()
R Y () R X () h ( ) h ()
5.11 解:先求出输入电压的自相关函数
R X()E [X (t)X (t )] E [(X 0co s(2 t ))(X 0co s(2 (t ) )] 1 31 2co s2 记 忆 c o s 0 的 傅 里 叶 逆 变 换 结 果 {(- 0)+ (+ 0)}
因此当系统性能未知时:若能设法得到互谱密度,就可 由式(5.2.42)确定线性系统的的传输函数。
已知微分器传递函数为
H() j
所以:
G X Y () G X () H () jG X ()
G Y()H ()2G X () 2 G X ()
5.23 解:要求自相关函数和功率谱密度

随机信号分析课件共100页

随机信号分析课件共100页

1
2
f (n) S
1
n
3
( n )
(n)
f f n
Ai
Ai
i 1
i 1
几种概率共有的基本性质:
1 0P[A]1
2 P[S]1,P[]0
3
Pk1
Ak
k1
P
Ak
定义:规定一个实验,所有样本点之集合构成样本空间S,在样本
空间中一个样本点或若干个样本点之适当集合F 称为事件域,F 中的每一集合称为事件。若A∈F ,则P[A]就是事件A的概率,并 称这三个实体的结合(S,F ,P)为一个概率空间。
1.3.2 离散型随机变量及其分布列
离散型随机变量X只可能取有限个值或一串值,亦即X的一切可能值
为x1,x2,…,xn…记为
Pn=P[X=xn]
n=1,2,…
称p1,p2,…pn,…为X的分布列,亦称为X的概率函数,我们可
将X的可能值及其相应的概率列成下表:
X x1 P p1
x2 ... xn ... p2 ... pn ...
Байду номын сангаас
分布列
离散型随机变量
密度函数
连续型随机变量

连续取值而非连续型或混合
型随机变量
分布函数定义:设(S,F ,P)是一概率空间,X(s)是定义在其上 的随机变量,R1={x:-∞<x< ∞},对于任意x∈R1,令
FX(x)=P[X≤x]
称FX(x)为随机变量X的分布函数。
按分布函数的定义,当a<b时, P[a<X≤b]如何用分布函数表示?
P[Bi]P[A|Bi]
i1
贝叶斯(Bayes)公式
i1,2,L,N

随机信号分析课件

随机信号分析课件
互相关函数的值越大,说明两个信号 越相似。
谱密度函数
谱密度函数描述了随机信号的频率成分。
通过谱密度函数,可以了解信号在不同频率下的强度分布。
04
随机信号的频域分析
傅里叶变换
傅里叶变换的定义
傅里叶变换是一种将时间域信号转换为频域信号的方法, 通过将信号分解为不同频率的正弦波和余弦波的线性组合, 可以更好地理解信号的频率成分。
功率谱密度的计算
功率谱密度可以通过傅里叶变换的模平方得到, 也可以通过相关函数得到。
功率谱密度的应用
功率谱密度在信号处理中用于频域滤波、噪声抑 制、频率估计等方面。
滤波器设计
滤波器的分类
滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波 器等类型,不同类型的滤波器具有不同的频率响应特性。
滤波器的设计方法
傅里叶变换的性质
傅里叶变换具有线性性、时移性、频移性、共轭性、对称 性等性质,这些性质有助于简化信号处理和分析的过程。
傅里叶变换的应用
傅里叶变换在信号处理、通信、图像处理等领域有着广泛 的应用,例如频谱分析、滤波器设计、调制解调等。
功率谱密度
功率谱密度的定义
功率谱密度是描述随机信号频域特性的重要参数, 它表示信号功率随频率的分布情况。
04
通信
在通信领域中,随机信号分析 用于信道容量评估、信噪比估
计、误码率分析等方面。
雷达
在雷达领域中,随机信号分析 用于目标检测、跟踪和成像等
方面。
地球物理学
在地球物理学领域中,随机信 号分析用于地震勘探、矿产资
源评估等方面。
金融
在金融领域中,随机信号分析 用于股票价格波动分析、风险
评估等方面。
02

《随机信号分析基础》课件第3章

《随机信号分析基础》课件第3章
解 由例3.5易证明X(t)和Y(t)是各自广义平稳的。
RXY t,t E X t Y t E Acost B sin tAcos 2t B sin 2t
E A2 cost cos 2t AB cost sin 2t ABsin t cos 2t B2 sin t sin 2t
令Δt=-t1, 且τ=t2-t1, 则式(3-2)变为
fX(x1, x2; t1, t2)=fX(x1, x2; t1+Δt, t2+Δt) =fX(x1, x2; 0, t2-t1)=fX(x1, x2; τ)
(3-7)
严平稳随机信号X(t)的二维数字特征如下: 自相关函数(见图3-4)
RX t1,t2 E X t1 X t2
tn+Δt, t1′+Δt, t2′+Δt, …, tm′+Δt) (3-14)
联合严格平稳性的性质为: X(t)与Y(t)的二维联合概率 分布或密度函数只与选取两个时刻的差值有关。
FXY(x, y; t1, t2)=FXY(x, y; t1+Δt, t2+Δt)=FXY(x, y; τ), τ=|t1-t2| (3-15)
证明 由题意知:
E A=E B=0 D A=DB= 2 E AB=E A E B=0
E X t =E Acos0t+B sin 0t = cos0t E A+ sin 0t E B=0=mX
RX t,t+ =E X t X t+
=E Acos0t+B sin 0t Acos0 t+ +B sin 0 t+
3.1.3
1. 若随机信号X(t)与Y(t)的任意n+m维联合概率分布函数具 有下述的时移不变性: FXY(x1, x2, …, xn, y1, y2, …, ym; t1, t2, …, tn, t1′, t2′, …, tm′) =FXY(x1, x2, …, xn, y1, y2, …, ym; t1+Δt, t2+Δt, …,tn+Δt,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档