随机信号分析基础第四版 第五章答案.ppt
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.8解:
m2
X
(t)
lim
RX
(
)
a2
mX a
E[Y (t)] mX
h( )d
a e d 0
a
5.9解:已知系统传输函数H()=
1
1+jRC
h(t)
1
t
e RC
RC
t 0
(1)GY () GX () H()2
N0 2
1
1+ 2R 2C2
(2)RY ( ) F 1[GY ()]
2
百度文库
N0 2
4sin2 (T 2
/ 2)d
N0
sin 2
(T 2
/
2)d
N0 T N0T 22 4
5.20证明:
RY1Y2 (t, t ) E[Y1(t)Y2 (t )] E{X (t) * h1(t) X (t ) * h2 (t )}
E{ X (t 1)h1(1)d1 X (t 2 )h2 (2 )d2} E{ X (t 1) X (t 2 )h1(1)h2 (2 )d1d2} RX ( 2 1)h1(1)h2 (2 )d1d2
H () Z () 1 e jT e jT / 2 (e jT / 2 e jT / 2 )
X () j
j
e 2 jT /2 j sin(T / 2) 2e jT /2 sin(T / 2)
j
(2)E(Z 2 (t)) W 1
2
GZ
()d
1
2
2
GX () H () d
1
e
t3 -t2 RC
N0 4RC
e
t2 -t1 RC
N0
RY (t3 -t2 )RY (t2 -t1) RY (0)
4RC
5.15证明:GY () GX () H () 2
H () T ete jt dt T e( j )t dt
0
0
[e( j )T 1]
( j)
H () 2
RX ( ) * h2 ( ) * h1( ) GY1Y2 () F{RY1Y2 (t, t )} F{RX ( ) * h2 ( ) * h1( )} GX ()H2 ()H1*()
5.25解:RXY ( )
RX ()h( )d
RX () ()
RXY ( ) h( )
要求RXY (0) 0,也即要求h(0)=0
0
0
4
2 2
d
2 1 arctan( )
2
20
2
4
H () 2 d
5.29解:e 0 H (0) 2
10
0
[1 (
d
)2 ]2
1000
1012
d
10
0 (106 2 )2
可利用公式
(x2
dx a2)n
x 2(n 1)a2 (x2
a2 )n1
2n 3 2(n 1)a2
dx (x2 a2 )n1
2
e( j )T
2
1
( j)
2 2 2
{[eT
cos T
1]2
[eT
sin T ]2}
2 2
2
{e2T
1 2eT
cos T }
GY
( )
GX
() 2 2 2
{e2T
1 2eT
cos T }
5.16解:
(1)Z '(t) Y (t) X (t) X (t T )
jZ () X () X ()e jT
5.28解:(1)输出功率W E[Y 2 (t)]
N0
2
H () d
2 0
等效系统输出功率We E[Ye2 (t)]
1
2
GX ()
H e () 2
d
H (0 ) 2 N0
2
根据W We
2
H () d
0
H (0 ) 2
5.28解:(2) H () 2 2 4 2
2
H () d
N0
e RC
4RC
5.9证明:(3)R
Y(t3
-t1
)=
N0 4RC
e
t3 -t1 RC
t3
>t1
R
Y(t3
-t1
)=
N0 4RC
t3 -t1
e RC
t3 >t2 >t1
R
Y(t3
-t1
)=
N0 4RC
e
t3
-t2 +t2 RC
-t1
4NRC e e 0
t3 -t2 t2 -t1
RC
RC
N0 4RC
m2
X
(t)
lim
RX
(
)
a2
mX a
E[Y (t)] mX
h( )d
a e d 0
a
5.9解:已知系统传输函数H()=
1
1+jRC
h(t)
1
t
e RC
RC
t 0
(1)GY () GX () H()2
N0 2
1
1+ 2R 2C2
(2)RY ( ) F 1[GY ()]
2
百度文库
N0 2
4sin2 (T 2
/ 2)d
N0
sin 2
(T 2
/
2)d
N0 T N0T 22 4
5.20证明:
RY1Y2 (t, t ) E[Y1(t)Y2 (t )] E{X (t) * h1(t) X (t ) * h2 (t )}
E{ X (t 1)h1(1)d1 X (t 2 )h2 (2 )d2} E{ X (t 1) X (t 2 )h1(1)h2 (2 )d1d2} RX ( 2 1)h1(1)h2 (2 )d1d2
H () Z () 1 e jT e jT / 2 (e jT / 2 e jT / 2 )
X () j
j
e 2 jT /2 j sin(T / 2) 2e jT /2 sin(T / 2)
j
(2)E(Z 2 (t)) W 1
2
GZ
()d
1
2
2
GX () H () d
1
e
t3 -t2 RC
N0 4RC
e
t2 -t1 RC
N0
RY (t3 -t2 )RY (t2 -t1) RY (0)
4RC
5.15证明:GY () GX () H () 2
H () T ete jt dt T e( j )t dt
0
0
[e( j )T 1]
( j)
H () 2
RX ( ) * h2 ( ) * h1( ) GY1Y2 () F{RY1Y2 (t, t )} F{RX ( ) * h2 ( ) * h1( )} GX ()H2 ()H1*()
5.25解:RXY ( )
RX ()h( )d
RX () ()
RXY ( ) h( )
要求RXY (0) 0,也即要求h(0)=0
0
0
4
2 2
d
2 1 arctan( )
2
20
2
4
H () 2 d
5.29解:e 0 H (0) 2
10
0
[1 (
d
)2 ]2
1000
1012
d
10
0 (106 2 )2
可利用公式
(x2
dx a2)n
x 2(n 1)a2 (x2
a2 )n1
2n 3 2(n 1)a2
dx (x2 a2 )n1
2
e( j )T
2
1
( j)
2 2 2
{[eT
cos T
1]2
[eT
sin T ]2}
2 2
2
{e2T
1 2eT
cos T }
GY
( )
GX
() 2 2 2
{e2T
1 2eT
cos T }
5.16解:
(1)Z '(t) Y (t) X (t) X (t T )
jZ () X () X ()e jT
5.28解:(1)输出功率W E[Y 2 (t)]
N0
2
H () d
2 0
等效系统输出功率We E[Ye2 (t)]
1
2
GX ()
H e () 2
d
H (0 ) 2 N0
2
根据W We
2
H () d
0
H (0 ) 2
5.28解:(2) H () 2 2 4 2
2
H () d
N0
e RC
4RC
5.9证明:(3)R
Y(t3
-t1
)=
N0 4RC
e
t3 -t1 RC
t3
>t1
R
Y(t3
-t1
)=
N0 4RC
t3 -t1
e RC
t3 >t2 >t1
R
Y(t3
-t1
)=
N0 4RC
e
t3
-t2 +t2 RC
-t1
4NRC e e 0
t3 -t2 t2 -t1
RC
RC
N0 4RC