【精品】人教版六年级下册圆柱与圆锥易错提高练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【精品】人教版六年级下册圆柱与圆锥易错提高练习题
一、圆柱与圆锥
1.如图,一个内直径是20cm的纯净水水桶里装有纯净水,水的高度是22cm.将水桶倒放时,空余部分的高度是3cm,无水部分是圆柱形.这个纯净水水桶的容积是多少升?
【答案】解:3.14×(20÷2)2×22+3.14×(20÷2)2×3
=3.14×100×(22+3)
=3.14×100×25
=7850(立方厘米)
7850立方厘米=7.85升
答:这个纯净水水桶的容积是7.85升。
【解析】【分析】水桶的容积包括水的体积和空余部分的体积,根据圆柱的体积公式分别计算后再相加即可求出水桶的容积。
2.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.
【答案】解:3.14×(20÷2)2×2.24+314
=3.14×100×2.24+314
=703.36+314
=1017.36(立方厘米),
1017.36 ÷(3.14×92)
=1017.36×3÷254.34
=3052.08÷254.34
=12(厘米),
答:铅锤的高是12厘米。
【解析】【分析】根据题意可知,先求出圆锥形铅锥的体积,用圆柱形玻璃杯上面的空白
部分的体积+溢出的水的体积=圆锥形铅锥的体积,然后用圆锥形铅锥的体积÷÷铅锥的底面积=铅锥的高,据此列式解答.
3.一个圆锥形沙堆,占地面积是30平方米,高2.7米,每立方米沙重1.7吨。如果用一辆载重8吨的汽车把这些沙子运走,至少需要运多少次?
【答案】解:30×2.7× ×1.7÷8≈6(次)
答:至少需要运6次。
【解析】【分析】根据圆锥的体积公式V=×底面积×高求出这个沙堆的体积,然后乘 1.7吨求出沙堆的重量,最后根据沙堆总重量÷每次载重量=运输次数,代入数据即可求出需要运多少次。
4.把一个底面半径是4厘米,高是6分米的铁制圆锥体放入盛满水的桶里,将有多少立方厘米的水溢出?
【答案】解:×3.14×42×6
=×3.14×16×6
=3.14×16×2
=50.24×2
=100.48(立方厘米)
答:有100.48立方厘米的水溢出.
【解析】【分析】根据题意可知,将圆锥放入盛满水的桶里,溢出的水的体积等于圆锥的
体积,依据圆锥的体积=×底面积×高,据此列式解答.
5.要制作一个无盖的圆柱形水桶,提供下面几种型号的铁皮搭配选择。(单位:dm)
(1)你选择的材料是图________和图________.
(2)你选择的材料制成水桶需要多少平方分米的铁皮?
【答案】(1)②;③
(2)解:12.56×5+3.14×(4÷2)2
=62.8+12.56
=75.36(平方分米)
答:选择的材料是75.36平方分米的铁皮。
【解析】【分析】(1)观察图可知,圆柱的侧面沿高展开,展开图是一个长方形,长方形的长是圆柱的底面周长,图③的底面周长是3.14×4=12.56(dm),与图②的长相等,所以要制作一个无盖的圆柱形水桶,选择图②和图③;
(2)要求无盖圆柱的表面积,用公式:无盖圆柱的表面积=侧面积+底面积,据此列式解答.
6.把一个底面半径是6厘米,高10厘米的圆锥形容器里灌满水,然后倒入一个底面半径是5厘米的圆柱形容器里,求圆柱形容器里水面的高度。
【答案】解: ×3.14×62×10÷(3.14×52)=4.8(厘米)
答:圆柱形容器里水面的高度4.8厘米。
【解析】【解答】×3.14×62×10÷(3.14×52)
=×3.14×62×10÷(3.14×25)
=×3.14×62×10÷78.5
=3.14×12×10÷78.5
=37.68×10÷78.5
=376.8÷78.5
=4.8(厘米)
答:圆柱形容器里水面的高度4.8厘米。
【分析】根据题意可知,先求出圆锥形容器的容积,用公式:V=πr2h,然后除以圆柱的底面积,即可得到圆柱形容器里水面的高度,据此列式解答.
7.一根圆柱形木料锯下5分米长的一段后,剩下的木料的表面积比原来减少了94.2平方分米。锯下的这段木料的体积是多少立方分米?
【答案】解:94.2÷5÷3.14÷2=3(分米) 4.14×32=28.26(平方分米)28.26×5=141.3(立方分米)
答:锯下的这段木料的体积是141.3立方分米。
【解析】【解答】解:94.2÷5÷3.14÷2=3(分米),3.14×32=28.26(平方分米),28.26×5=141.3(立方分米)
大:锯下的这段木料的体积是141.3立方分米。
【分析】剩下的木料的表面积比原来减少的部分就是减少部分圆柱的侧面积;用减少部分的面积除以5即可求出底面周长,用底面周长除以3.14再除以2求出底面半径;然后用底面积乘锯下部分的长度即可求出锯下的木料的体积。
8.如图,有一个圆柱形的零件,高是10cm,底面直径是6cm,零件的一端有一个圆柱形的孔,圆柱形孔的直径是4cm,孔深5cm,如果将这个零件接触空气的部分涂上防锈漆,一共需涂多少平方厘米?
【答案】解:3.14×6×10+3.14×(6÷2)2×2+3.14×4×5=307.72(平方厘米)
答:一共需涂307.72平方厘米。
【解析】【分析】涂防锈漆的面是圆柱形孔的侧面和一个底面;故根据圆柱的侧面积公式:S=πdh和圆柱的底面积公式即圆的面积公式:S=πr²,求出这两个面积;最后求和。
9.把一个体积是565.2cm3的圆柱形铁块溶成一个底面半径是6cm的圆锥形铅锤,铅锤的高是多少?(损耗忽略不计)
【答案】解:565.2×3÷(3.14×62)
=1695.6÷113.04
=15(厘米)
答:铅锤的高是15厘米。
【解析】【分析】熔铸前后体积是不变的。圆锥的体积=底面积×高×,所以:高=圆锥的体积×3÷底面积,由此根据公式计算高即可。
10.做一个底面直径是4分米,高是5分米的圆柱形铁皮油桶,
(1)做这个铁皮油桶,至少要用铁皮多少平方分米?(得数用进一法保留整平方分米)
(2)这个油桶里装了的油,这些油重多少千克?(每升油重0.85千克,得数保留整千克数)
【答案】(1)解:3.14×4×5+3.14×(4÷2)2×2
=62.8+3.14×4×2
=62.8+25.12
=87.92
≈88(平方分米)
答:至少要用铁皮88平方分米。
(2)解:3.14×(4÷2)2×5
=3.14×4×5
=62.8(立方分米)
62.8立方分米=62.8升
0.85×62.8× =42.794≈43(千克)
答:这个油桶能装油43千克。
【解析】【分析】(1)根据圆面积公式计算底面积,用底面周长乘高求出侧面积,用底面