自适应阵列处理

合集下载

二维相控阵的自适应-自适应旁瓣对消策略

二维相控阵的自适应-自适应旁瓣对消策略

二维相控阵的自适应-自适应旁瓣对消策略刘颜回;廖锟;程娟;杨晶;王育强【摘要】传统旁瓣对消方法采用单元天线作为辅助通道,系统对消输出的信噪比较低,且合成阵列存在较高的副瓣抬升隐患。

针对二维稀疏阵列的应用特点,提出一种新的自适应—自适应旁瓣对消策略。

该方法取代了传统方法中使用的单元天线以及数字加权方法,使用小型阵列作为辅助通道和射频加权,并借助辅助通道对干扰方向进行估计,根据估计得到的干扰方向信息对辅助子阵列内部的射频加权系数进行调整,使得辅助通道的波束最大可能地对准干扰方向。

最后利用恒增益对消技术,实现主阵列中的旁瓣对消。

仿真实验结果表明了该方法的有效性和优势。

%The traditional adaptive sidelobe cancellation method uses single antenna as assistant channel,so the signal to noise ratio (SNR) of system output is small,and it is possible to uplift the sidelobe in synthetic array.In view of application feature of two⁃di⁃mensional sparse array,a new method named adaptive⁃adaptive sidelobe cancellation is proposed in this paper.The new method replaces the single antenna with small synthetic arrays as assistant channel and replaces digital weighting method with RF weighting method,and it estimates the direction of the jamming with assistant channel.According to the information about the direction,the new method adjusts the RF weight of assistant channel, and makes the beam of assistant channel align the jamming directions. The sidelobe cancellation method with constant gain is used to perform the sidelobe cancellation.The simulation results prove the effectiveness and advantages of the proposed method.【期刊名称】《无线电工程》【年(卷),期】2016(046)003【总页数】5页(P1-4,21)【关键词】旁瓣对消;自适应-自适应方法;来波到达角;波束形成【作者】刘颜回;廖锟;程娟;杨晶;王育强【作者单位】厦门大学电子科学系,福建厦门361005;厦门大学电子科学系,福建厦门361005;厦门大学电子科学系,福建厦门361005;厦门大学电子科学系,福建厦门361005;电子信息控制重点实验室,四川成都 610036【正文语种】中文【中图分类】TN973.3AbstractThe traditional adaptive sidelobe cancellation method uses single antenna as assistant channel,so the signal to noise ratio (SNR) of system output is s mall,and it is possible to uplift the sidelobe in synthetic array.In view of ap plication feature of two-dimensional sparse array,a new method named adaptive-adaptive sidelobe cancellation is proposed in this paper.The new method r eplaces the single antenna with small synthetic arrays as assistant channel and replaces digital weighting method with RF weighting method,and it es timates the direction of the jamming with assistant channel.According to t he information about the direction,the new method adjusts the RF weightof assistant channel,and makes the beam of assistant channel align the jam ming directions.The sidelobe cancellation method with constant gain is use d to perform the sidelobe cancellation.The simulation results prove the eff ectiveness and advantages of the proposed method.Key words sidelobe cancellation;adaptive-adaptive sidelobe cancellation method;direction of arrival (DOA);beam for ming随着电磁环境的日益恶化,雷达接收信号中夹杂的干扰成分也日趋复杂。

阵列信号处理

阵列信号处理

1 阵列信号模型通常情况下,考虑M 元等距线阵,阵元间距为d ,且假设阵元均为各向同性阵元。

如图2.1所示,每个阵元后面接一路接收机,各阵元接收的信号进入自适应阵列处理器进行加权相加,得到阵列输出。

远场处有一个期望信号和P 个窄带干扰以平面波入射(波长为λ),期望信号到达角度为0θ,P 个干扰的角度分别为()1,2,,k k p θ= ,图2.1中Rc 代表各阵元接收机,()()()12,,,M x t x t x t 分别为M 个接收通道的输出信号,12,,,M w w w 分别为对各阵元通道接收信号的加权值。

()t w 阵列输出波前(等相位图2.1 自适应阵列空间位置关系示意图阵列接收的快拍数据可以表示为()()()t t t =+X AS n(2-1)式中,()t X 为1M ⨯阵列接收数据向量,()()()()12,,,TM t x t x t x t =⎡⎤⎣⎦X 。

[]T表示对矩阵进行转置,()t n 为1M ⨯的噪声向量,()()()()01,,,TP t s t s t s t =⎡⎤⎣⎦S 为信号复包络向量,()k s t 为第k 个信源复包络,()()()01,,,P θθθ=⎡⎤⎣⎦A a a a 为信号指向矩阵,其中,()()(1)1,,,,0,1,i iTj j N i i e e i P ββθ-⎡⎤===⎣⎦a a 为第i 个信号源的导向矢量,即2sin i i d πβθλ=(2-2)定义阵列的协方差矩阵为()()2H H x s n E t t σ⎡⎤==+⎣⎦R X X AR A I (2-3)式中,()()H s E t t ⎡⎤=⎣⎦R S S 为信号的协方差矩阵,I 为M 维单位矩阵,2n σ为阵元的噪声功率,本文中约定,[]T表示转置,[]*表示共轭,[]H表示共轭转置。

式(2-3)常由接收数据采样协方差矩阵ˆx R 代替,即()()11ˆNH xiii t t N==∑R x x(2-4)如图2.1所示的自适应阵列模型,阵列的M 个通道接收信号经加权处理后,最后的输出信号为()()()1MH i i i y t w x t t *===∑w x(2-5)阵列的方向图()p θ定义为()()H p θθ=w a(2-6)调整自适应阵列的权矢量w ,可以改变阵列的方向图,即改变各个方向上入射信号增益。

阵列信号处理

阵列信号处理

B
B
1 有 zB t 2
B

2
z e jt d z B t
因此
s r , t z B t e j0t e j0 s 0, t e j0
2
小结: 信号带宽足够小使得波到达 r 处时的复包络基本 不变。 T r 表示了波传播的空间信息(方向、位置), 它仅含于载波项中,而与信号复包络无关。




s exp[ j t r ]d
T


这里函数 s 是任意的,只要其Fourier变换存在即 可。该式表达了沿同一方向 传播的任意波形(信 号),其频率分量任意。
B. 波动方程球坐标系中的解
球坐标系 r , , ,但是,当波动方程的解具有球形 对称时,函数s r , , , t 并不依赖于 和 ,使解简化, 这时波动方程可简化为:
T

波动方程的任意解可以分解为无穷多个“单频” 解的迭加(传播方向和频率分量均任意)。
波动方程的单频解可以写成单变量的函数:
s r , t A exp[ j (t k r ) A exp[ j t r ]
T T


k ,其大小等于传播速度的倒数,其方向与 式中
时间频率 空间频率
b) 任意解:由四维Fourier变换表示: j t k r 1 s r, t s u , e d kd 4 2 j t k r s k , s t , r e d rdt 其中
T
a t 带宽越宽,信号起伏越快。窄带条件即要求a t cos 变化比 0t t 变化慢。

阵列信号处理技术

阵列信号处理技术

动通信的用户很多,一方面通过空间不同位置进行区分,另 一方面通过不同的编码等方法实现多用户和大容量。 现代超分辨技术,使系统能够分辨空间和时间上都很靠 近的信号。
概括起来说:
波束的控制和管理
时间和空间信号的高分辨 五、主要研究内容 1、阵列构形研究 均匀直线阵、平面阵、元阵、随机阵、共形阵。 2、波束形成和超分辨新方法的研究(不是热点)
军用雷达:
火炮雷动:炮位侦校雷达、炮瞄雷达
战场侦察雷达:(坦克、直升机等目标的检测与识别)
步兵侦察雷达:
空中警戒雷达:(对空监视雷达) 机载雷达气象雷达: 天气预报、人工降雨)
探地雷达: (探测地下管道,检查高速公路施工质量,
接收信号
X T = [ x1 , x 2 , L , x N ]
(2.1.1)
方向图形成网络: W = [ w1 , w 2 , L , w N ]
(2.1.2)
(形成最优权 和系统输出)
y(t ) = W T X = X T W
(2.1.3)
自适应处理器: ( 例如MVDR:Minimum Variance Distortionless Response) 求解约束性问题:
0 ≤ t ≤ T
(2.2.5)
所需信号和噪声的矢量可以表达为:
s1 (t ) S (t ) = 2 M s N (t )
n1 (t ) n (t ) = 2 M n N (t )
0 ≤ t ≤ T
所需信号分量可精确已知,粗略近视已知,或仅在统计意 义上已知。
3、理想的传播模型
3、应用性研究(热点)
在一个具体的领域或工程项目上,如何应用这些理论和
方法,实际系统的误差很大,比如阵列通道之间的性能差异, 频率特性,阵列传感器的位置误差等情况下的一些理论算法 和性能。

[信息与通信]自适应信号处理绪论

[信息与通信]自适应信号处理绪论

其中,X<n>为系统的Y N(为n )参 数C 的(n 状)X 态(矢n )量 V ,Y2 <(nn >)为M维观测数据的测量
矢量,
为系统在n+1和n时刻的N*N状态转移矩阵,C<n>为已知
的N*M测量(n矩阵1,n. )
卡尔曼滤波可用于平稳的和非平稳的自适应滤波器.
2024/1/19
7
基于最小二乘准则的方法
其来补偿信道的畸变.
2〕在数字微波接力通信系统中,由于多径传输所引起的码间干
扰,也必须采用自适应据衡器来克服.
如下图,可得到式子:
x(t) akh(tkTs)
k
x (n T s) a n h (0 )a kh (n T s k T s)
k n
h<t>
an
码形成 及滤波
调制器
信道
x<t> 解调器
自适应 均衡器
需要研究的内容:
◇关于利用这些算法自适应调整非线性模型结构参数的和实行,以及进 一步提高滤波和跟踪性能的新算法和实现结构等问题都有待于研究开 发.
2024/1/19
22
自适应格型滤波器特点:比自适应横向滤波器运算次数稍多,收敛过 程块,系数数值特性好,可确保性能稳定;其结构能使输入信号逐级正 交化,特别适用于要求快速收敛和跟踪快速时变信号的应用场合.
2024/1/19
20世纪60年代初,由于空间技术发展出现。 利用状态变量模型对非平稳、多输入多输出 随机序列作最优估计。应用广泛。可对平稳、 非平稳信号做线性、非线性滤波。缺点:需 要获取信号噪声的先验知识。而在实际中, 往往难以预知这些统计特性。
1967年widrow等提出。可以自动调整自适 应滤波系统的系数。设计时,只需很少或 者不需要信号噪声的先验统计知识。优点: 滤波实现如维纳滤波器一样简单,滤波性 能如卡尔曼滤波器一样好。近十年来,该 理论得到迅速发展。

自适应滤波及信号处理

自适应滤波及信号处理

自适应信号处理自适应信号处理是信号与信息处理领域的重要分支和组成部分,自20世纪五六十年代出现以来,自适应信号处理的理论和技术受到了学术界和许多应用领域的普遍重视。

它的研究的内容是以信号与信息自适应处理为主线,包括自适应滤波检测理论和自适应技术应用两大部分。

自适应滤波理论和技术是统计信号处理和非平稳随机信号处理的主要内容,它可以在无需先验知识的条件下,通过自学习适应或跟踪外部环境的非平稳随机变化,并最终逼近维纳滤波和卡尔曼滤波的最佳滤波性能。

因而,自适应滤波器不但可以用来检测确定性信号,而且可以检测平稳的或非平稳的随机信号。

自适应技术应用包括自适应谱线增强与谱估计方法、自适应噪声干扰抵消技术、自适应均衡技术、自适应阵列处理与波束形成以及自适应神经网络信号处理等内容。

自适应信号处理技术在通信、雷达、声纳、图像处理、地震勘探、工业技术和生物医学等领域有着极其广泛的应用。

其中,通信技术的许多最新进展,都与自适应信号处理密切相关,尽管新的信号处理理论和方法层出不穷,但是自适应信号处理仍然以其算法简单、易于实现和无须统计先验知识等独特的优点,成为许多理论与工程实际问题的首选解决方案之一。

近年来,随着超大规模集成电路技术和计算机技术的迅速发展,出现了许多性能优异的高速信号处理专用芯片和高性能的通用计算机,为信号处理,特别是自适应滤波器的发展和应用提供了重要的物质基础。

另外,信号处理理论和应用的发展,也为自适应滤波理论的进一步发展提供了必要的理论基础。

本章主要介绍目前应用较为广泛的自适应滤波理论与技术,包括维纳滤波、LMS滤波和卡尔曼滤波及其应用。

2.2 维纳滤波从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波,而相应的装置称为滤波器。

根据滤波器的输出是否为输入的线性函数,可将它分为线性滤波器和非线性滤波器两种。

滤波器研究的一个基本课题就是:如何设计和制造最佳的或最优的滤波器。

所谓最佳滤波器是指能够根据某一最佳准则进行滤波的滤波器。

阵列信号处理仿真作业

阵列信号处理仿真作业

阵列信号处理仿真作业需要解决的问题:使用优化算法(可以使用遗传算法)挑选旁瓣相消的阵元 要求:(只需要选择一个突破点即可)①可以针对不同类型的干扰、连片杂波、地杂波或密集型干扰等进行优化 ②也可以考虑存在阵列误差下面我们针对第一个突破点进行仿真:一、基本原理图1给出了一般阵元级部分自适应处理的框图,通常称为多旁瓣相消器。

1NHx图1. 多旁瓣相消器结构部分自适应处理框图如图1所示,整个天线阵的阵元加导向矢量权及用于压低旁瓣的锥削,可得到主通道输出0()m t ,0()m t 的方向图就指向目标方向,而从天线阵中选出M 个阵元作自适应单元,自适应单元加权为H x W ,于是得到主通道输出00()()H m t t =W X ,辅助通道输出为()H x t W Y 。

所以整个自适应信号处理器的输出为0()()()H x e t m t t =-W Y(1)其中0()m t 表示为主通道的输出;12[,,,]T M y y y =Y L 为选取的辅助单元接收的信号;12[,,,]H Tx M w w w ***=W L 为自适应权值;()H x t W Y 为形成辅助通道的输出。

在最小均方误差的准则下,求出的自适应权值就演变成为一个优化问题220min ()min ()()H x E e t E m t t ⎡⎤⎡⎤⇒-⎢⎥⎣⎦⎣⎦W Y (2)得10()()()()H H xE t t E t m t -*⎡⎤⎡⎤=⎣⎦⎣⎦WY Y Y(3)为了保证目标信号不损失,应对自适应权作约束,约束条件是在目标信号的方向上,阵列自适应处理的增益为一常数。

即在权值调整过程中,无论权x W 怎样变化,对有用信号的增益不变。

这样在使自适应阵输出()e t 的均方值2()E e t ⎡⎤⎣⎦最小时,能最大限度地抑制干扰且不损失有用信号能量。

图1中应用式( 2) 的无约束优化方程显然不合理,它不能保证有用信号增益不变。

自适应信号处理技术的应用

自适应信号处理技术的应用

自适应信号处理技术的应用张瑞;杨铁军【摘要】自适应信号处理技术在雷达、通信、声纳、图像处理、计算机视觉、地震勘探、生物医学、振动工程等领域有着极其重要的应用.目前这门新学科仍在继续向纵深方向迅速发展,特别是盲自适应信号处理和利用神经网络进行的非线性自适应信号处理.对于实现智能信息处理系统有很好的应用前景.介绍了自适应信号处理技术在滤波、系统辨识、自适应均衡、回波抵消、谱估计、谱线增强、自适应波束形成等方面的应用,并介绍了其发展前景.【期刊名称】《现代电子技术》【年(卷),期】2006(029)017【总页数】3页(P7-8,11)【关键词】自适应信号处理;滤波;系统;神经网络【作者】张瑞;杨铁军【作者单位】河南工业大学,信息科学与工程学院,河南,郑州,450052;河南工业大学,信息科学与工程学院,河南,郑州,450052【正文语种】中文【中图分类】TN911.7自适应数字系统具有很强的自学习、自跟踪能力,算法简单且易实现,在噪化信号的检测增强,噪声干扰的抵消,通信系统的自适应均衡以及未知系统的自适应参数辨识等方面获得了广泛的应用。

同时,自适应技术又是智能信息处理的重要基础。

1 自适应信号处理技术的应用1.1 自适应滤波器用于滤波与逆滤波自适应数字滤波器有2个输入端,如图1所示。

图1 自适应滤波器用作滤波和逆滤波信号输入端常称为主输入端,所期望的响应d(n)输入端称之为参考输入端。

y(n)就是自适应滤波器的输出端,误差e(n)引出一个误差输入端。

主信号s(n)经过传输系统频率特性和噪声干扰的影响,信号x(n)将和主信号s(n)不同,但他蕴含着主信号,利用自适应滤波器可从信号x(n)中提取原来的主信号s(n),而噪声干扰被滤波器抑制了。

当滤波器输出y(n)逼近于参考输入d(n)=s(n)时,自适应滤波器的最佳权矢量w0可由式:H(z)·w0=1得到,即:w0=H-1(z)这表明自适应滤波器的最佳滤波响应是传输系统转移函数的倒数(即逆函数),这时自适应滤波器对主输入信号x(n)进行逆滤波,使其复原主信号。

阵列信号处理基础教程

阵列信号处理基础教程
阵列信号处理
授课教师:廖桂生
西安电子科技大学雷达信号处理实验室
课程目的
掌握空间传播波携带信号的获取与处理的基 本理论和方法,特别是空间多维信号算法,熟悉 参数估计和自适应波束形成的常用算法。
课程要求
期间:含上机实践 期末:论文、考试
西安电子科技大学雷达信号处理实验室
参考文献
1. Prabhakar S.naidu,Sensor Array Signal Processing 2. 王永良.空间谱估计理论与算法,清华大学出版社 3. Monzingo.R.and Miller T. Introduction to adaptive array.
西安电子科技大学雷达信号处理实验室
代入波动方程:k
2 x
s(r
,
t
)

若约束条件:
k
2 x

k
2 y
k
2 y
s(r,
t
)

kz2s(r
,
t
)

kz2

2
c2

2
c2
s(r,t)

kk
k
2 x

k
2 y
kz2

c
则:(*)式表示的信号是波动方程的解,称为“单色”
或“单频”解。
c
为传播速度,2
频率 f 之外无其它频率分量,那么该信号由其整个
持续期内的时间间隔为1/ 2 f 的信号采样值完全确
定,从而使模拟信号可以由无限个离散的点信号来 表示(拟合)。
空间采样:与时间采样类似,采样频率必须足够高才 不会引起空间模糊(即空间混叠),但由于受到实 际条件的限制,空间采样的点数不可能无限,这相 当于时域加窗,所以会出现旁瓣泄漏。

面向线性调频干扰的空频自适应处理算法

面向线性调频干扰的空频自适应处理算法

第45卷 第12期2023年12月系统工程与电子技术SystemsEngineeringandElectronicsVol.45 No.12December2023文章编号:1001 506X(2023)12 3772 09 网址:www.sys ele.com收稿日期:20220618;修回日期:20221113;网络优先出版日期:20221229。

网络优先出版地址:https:∥kns.cnki.net/kcms/detail/11.2422.TN.20221229.1840.010.html基金项目:国家科技部重点研发项目(2019YFF0217300)资助课题 通讯作者.引用格式:刘鹏,王盾,彭博.面向线性调频干扰的空频自适应处理算法[J].系统工程与电子技术,2023,45(12):3772 3780.犚犲犳犲狉犲狀犮犲犳狅狉犿犪狋:LIUP,WANGD,PENGB.Space frequencyadaptiveprocessingalgorithmforLFMinterference[J].SystemsEngineeringandElectronics,2023,45(12):3772 3780.面向线性调频干扰的空频自适应处理算法刘 鹏1,2, ,王 盾1,2,彭 博1(1.北京卫星信息工程研究所,北京100095;2.天地一体化信息技术国家重点实验室,北京100095) 摘 要:针对卫星导航应用中线性调频(linearfrequencymodulated,LFM)干扰统计特征时变引起的抗干扰性能下降问题,提出了一种基于数据空时频三维特征分组的空频自适应处理(space frequencyadaptiveprocessing,SFAP)算法。

首先通过时频分析方法获取采样数据的时域、频域联合分布,并利用空间相关系数分析相同频率干扰在不同时间的空间相关性,然后对SFAP的采样数据进行分组,将不同时间具有相同频率和到达角参数的采样点分到相同组,最后利用分组后的数据进行协方差矩阵估计、权值计算和自适应滤波,提高了干扰特征值、增加了零陷深度、提升了抗干扰能力。

机载前视阵列雷达俯仰-慢时间空时自适应处理

机载前视阵列雷达俯仰-慢时间空时自适应处理

El e v a t i o n 。 _ t e m po r a l S TAP me t ho d f o r a i r b o r ne f o r wa r d - ・ l o o k i ng pl a n a r r a da r
CH EN Yi , LI U Zhe ng,XI E Ro n g ( Na t i o n a l La b o f Ra d a r S i g n a l Pr o c e s s i n g ,Xi d i a n Un i v e r s i t y,Xi ’ a n 7 1 0 0 7 1,C h i n a )
3一dimensionalstapo引言机载远程战场侦察雷达和机载火控雷达大多都采用前视阵模式前视阵通常采用方位一慢时间进行二维自适应处理spacetimeadaptiveprocessingstapl15j此时杂波呈现为距离依从性在这种情况下要获得较好的杂波抑制效果变得非常困难特别是当探测距离较近时雷达波束下视角较大各个距离单元杂波的统计特性与俯仰角斜距相关由杂波统计特性不一致所导致的杂波距离非均匀性在近距离大俯仰角时变得 程 与 电 子 技 术
S y s t e ms En g i n e e r i n g a n d El e c t r o n i c s
V0 1 . 3 5 No . 5
Ma v 2 01 3
2 0 1 3年 5 月
文章编号: 1 0 0 1 — 5 0 6 X ( 2 0 1 3 ) 0 5 — 0 9 6 8 — 0 5
网址 : ww w. s y s — e l e . C O L T ,
_
机 载 前视 阵 列雷 达 俯仰 _ - 陧时 间空 时 自适 应 处 理

基于脉动阵列的自适应光学实时波前处理机设计

基于脉动阵列的自适应光学实时波前处理机设计

Vo13 , . 5 No. 5 Ma, 0 y 2 08
基 于脉 动 阵 列 的 自适应 光 ቤተ መጻሕፍቲ ባይዱ
实时波前处理机设计
郑文佳 一,王春鸿 ,姜文汉 ,李 梅 ,唐端午 2 ,
( .中国科学院光 电技术研究所 ,成都 6 0 0 ,2 1 12 9 .中国科学院研究生院 ,北京 10 3 ) 009
摘要 :针对 自适应光学系统对波前处理机 高计算量 、高实时性的要求 ,本文提 出了一种基 于脉动阵列的 自适应光 学实时波前处理方法。该方法将脉动阵列的概念 引入波前处理机设计 ,完成 了波前斜率计算、复原运算和控制运 算向脉动阵列的映射,合理地建立 了数据 的深度流水线,同时分析 了以 F G P A技 术实现 时系统的计算延 时。对于
Z NG We - a-,WA G h nh n I I NG nh n ,L i A a - HE nj i . N C u .o g,J A We -a I I Me ,T NG Du nwu,
( .ntu fO ts n Eet nc, hns A a e yo S i cs C eg u6 00 , hn ; 1Istt i eo pi a d l r i C iee cd m f c n e, h nd 12 9 C i c co s e a 2 G a u t Sh o o C i s A a e yo Si csB ln 0 0 9 C ia . rd ae c o l hn e cd m f ce e, e g 10 3 , h ) f e n i t n
s ba etr d p v pia y tm a e n i pe ne s g aXin re - I u ・p r e a t eo t ls se h b e lme t u i l x Vitx I u a i c s m d n i XC2 0 0 F GA. x r n l V3 0 P Ep i t e me a

阵列信号处理1-2

阵列信号处理1-2
)] = ξ[W (t )] = d (t) 2rXd (t)W (t )
2 2 T
+ W (t ) RXX (t )W (t )
T
(2.2.3 )
将上式对变量 W(t)求导数并使之等于零
ξ[W (t )] = 2rXd (t ) + 2RXX (t )W (t ) Wopt = RXX rXd
多径信号:有用信号经过多次反(散)射进入接收机的信号. 2,信号模型:
① 随机信号 例如:舰船发动机的噪声,推进器的噪声,未知的通信 信号,传感器热噪声,环境噪声,干扰信号,本质上都是随 机的.这些噪声都典型地来自大量独立微弱源的合成效应, 故应用统计学中心极限定理,可取合成噪声信号的数学模型 为高斯(Gauss)随机过程(通常是平稳高斯随机过程). 高斯信号的统计学性质特别有利于分析计算,因为高斯随机 过程的一阶矩和二阶矩给出了这种随机信号的全部信息特征. 来源:大量独立微弱源的合成效应.(未知的通信信号传感 器热噪声,环境噪声,干扰……等) 模型:Gauss平稳随机过程 参数:均值,方差
(2.1.1) (2.1.2) (2.1.3)
T 方向图形成网络: W = [ w1 , w 2 , L , w N ]
(形成最优权 和系统输出) 自适应处理器:
y (t ) = W T X = X T W
( 例如MVDR:Minimum Variance Distortionless Response) 求解约束性问题: min s.t
4,有利于多目标远距离的检测和跟踪 (Multiple targets detection and traction) 阵元数越多,天线孔径越大,波束及空间谱分辨率越高. 同时自由度增大.增加形成的主波束数量,实现对多目标的跟 踪.另一方面,也可以增加抑制干扰的数量. 三,自适应阵列信号处理的发展历史 自适应波束形成技术的研究主要在六十年代到七十年代, 到七十年代末已经基本成熟. 空间谱估计:主要是超/高分辨空间谱估计技术,从七 十年代到八十年代末期. 八十年代到九十年代,主要研究如何在实际系统中应用

基于稀疏恢复的空时二维自适应处理技术研究现状_马泽强

基于稀疏恢复的空时二维自适应处理技术研究现状_马泽强

况下可以将该优化问题转化为如式(2)所示的 l1 范
数最小化问题[6]:
min x 1 s.t. y − Ax
2

ε⎫⎪⎪⎬⎪⎪⎪⎭
(2)
其中, ⋅ 1 为向量的 l1 范数,即向量中所有元素的绝 对值的和, ε 为容许的观测误差。由于这是一个凸
优化问题,所以容易求解。还有其他一些求解稀疏
恢复问题的方法,比如加权二范数最小化方法
2 基于空时谱稀疏性的 SR-STAP 方法
2.1 谱估计-滤波器结构 SR-STAP 的基本框架 传统的 STAP 算法可以分为两个环节:即估计
杂波特性(具体体现在对杂波协方差矩阵的估计上) 和自适应滤波。估计杂波协方差矩阵是通过直接将 训练样本的自相关矩阵求平均得到的,如图 1 中“传 统 STAP 方法”对应的实线框内流程所示。
L i =1
xixiH
(3)
Reed 等人的研究表明,如果阵元数为 N,一个
相干处理间隔(CPI)内的相干脉冲数为 M,那么当
独立同分布训练样本数 L>2MN 时,该方法可以获
得近似最优性能。而在实际场景中,即使经过子阵
合成,雷达的阵元数 N 和相干脉冲数 M 也是较大
的,所以往往很难得到满足这一要求的足量平稳训
稀疏恢复在小样本下的优势和 STAP 技术面临 的上述问题促使了基于稀疏恢复的 STAP 技术 (Sparse Recovery-based STAP,以下简称稀疏恢复 STAP 技术或 SR-STAP)的出现。目前已经取得一 定研究成果的稀疏恢复 STAP 技术是基于空时谱稀 疏性的空时谱估计-滤波器结构 SR-STAP 方法[9], 本文主要对基于空时谱稀疏性的稀疏恢复 STAP 方 法的已有研究成果进行总结,并对其中涉及到的其 他一些研究方向进行简要探讨。

阵列信号处理某高校课程

阵列信号处理某高校课程
率和扩大覆盖范围。
医学成像中的阵列信号处理
总结词
医学成像中的阵列信号处理主要用于提高成像质量和诊断准确率。
详细描述
医学成像技术如超声成像、核磁共振成像等,利用不同频率的声波或电磁波获取人体内部结构的信息 。阵列信号处理技术可以对接收到的信号进行处理,实现图像增强、去噪和分辨率提升。阵列信号处 理在医学成像中能够提高成像质量和诊断准确率,对于医疗诊断和治疗具有重要意义。
阵列信号处理将进一步与其他 领域的技术融合,如机器学习 、人工智能等。通过跨域协同 ,可以实现更高效、更精准的 信号处理和分析。
随着传感器技术的发展,阵列 的构成和排列方式也将不断创 新。未来的阵列信号处理系统 将更加灵活、多样化和智能化 。
阵列信号处理技术的应用领域 将继续拓展,如智能感知、无 人系统、物联网等新兴领域。 通过与这些领域的交叉融合, 阵列信号处理将发挥更大的作 用和价值。
信号的波束形成
通过调整阵列天线接收信号的相位和幅度,实现信号的 波束形成,增强特定方向的信号强度。
阵列信号的传播特性
信号的空间传播
阵列信号在空间中传播时,会受到环境因素的影 响,如多径效应、阴影衰落等。
信号的方向特性
阵列信号的方向特性包括方向图、波束宽度、副 瓣电平等,这些特性决定了阵列对信号的接收和 定向发射能力。
05
课程总结与展望
课程总结
阵列信号处理的基本原理
阵列信号处理是一门研究如何通过多个传感器接收信号,并通过对这些信号的处理和分析,实现对信号源的定位、跟 踪和识别的学科。其基本原理包括信号的传播、阵列的几何排列、信号的波束形成等。
课程内容与学习目标
本课程介绍了阵列信号处理的基本概念、原理和方法,包括信号模型、阵列模型、信号参数估计、波束形成等。通过 学习,学生应能掌握阵列信号处理的基本理论和方法,并能够运用所学知识解决实际问题。

阵列信号处理课件第四章部分自适应阵列处理技术

阵列信号处理课件第四章部分自适应阵列处理技术
3. Gabriel, Using Spectral Estimation Techniques in Adaptive Processing Antenna Systems.IEEE,AP34,1986,No.3,P291~300 自适应方法
3
4. Adams, Adaptive Main-Beam Nulling for NarrowBeam Antenna Arrays.IEEE,AES-16,1980,P509~516 用几个指向目标临近方向的波束进行对消
参考文献:
1) L.J.Griffths.An alternative approach to linearly constrained adaptive beamforming.IEEE Trans.on AP-30(1) 1982.27-34
2) N.K.Jablon, “Adaptive beamforming with the generalized sidelobe canceller in the presence of array imperfections”
通道中的干扰信号进而对消掉。
要求:下支路中不含目标信号,由
C
H n
C
0
保证。
25
x t s t a 0 xn t
C
H n
C
C
H n
a
0
0
C a 0
称 Cn 为信号阻塞矩阵(Block Matrix)
在上述结构中,用了L个约束条件,全自适应处理
的自由度为N-L个。由上述结构可方便设计降维
13
来波方向0 30 ,干扰方向 1 0 和2 60 14
§4.3 波束空间部分自适应处理
➢波束指的是普通波束。 ➢波束空间自适应处理:最常见的是对傅氏基

相干干扰条件下的自适应阵列信号处理研究

相干干扰条件下的自适应阵列信号处理研究

技术Special TechnologyI G I T C W 专题0 引言自适应阵列又称为自适应天线,智能天线,空域自适应滤波器,自适应波束形成。

自适应波束形成技术应用广泛,诸如通信、声纳、雷达等方面都被采用。

雷达中最常见的空域抗干扰措施就是采用自适应阵列即空域滤波的手段来抑制干扰信号。

空间平滑技术是一种常用的处理相干源的预处理方法,由Evans 等人首先提出,并经过不断改进,平滑后的相关矩阵可以较好地用于相干源波达方向估计。

利用处理相干源的空间平滑技术,本文介绍一种结合自适应理论和空间平滑技术的自适应信号处理方法,经过理论和仿真分析,这种技术对相干干扰有着很强的抑制作用。

1 窄带自适应阵列的信号模型在这一节中我们假设阵列排列方式为一维均匀线阵,阵元数设为M ,信号个数设为N ,其阵列输入矢量可以写为:X =AS +N (1)其中:(2)信号矢量:(3)阵列对信号的操纵矩阵:(4)阵元噪声向量: (5)设各阵元上的噪声为独立同分布高斯白噪声。

是第i 个信号的操纵矢量,有,其中,d 为阵元间距,λ为电磁波波长。

阵列输入相关矩阵。

波束形成输出信号表示为,其中权值矢量为。

当期望信号的DOA (θ)已知时,对于线性约束最小方差算法就是要选择一个权,使得阵列输出功率最小,同时满足期望信号方向的增益为常数的约束条件,即:(6)求解上述问题,可以得到最佳权向量:;2 空间平滑技术当干扰信号与期望信号相干时,由于相干信号间相位保持不变,在某一特定阵元上,线性约束最小方差波束形成器会将二者当作一个来波,形成波束时会导致期望信号被对消掉。

干扰信号与期望信号相干会使阵列输入相关矩阵R xx亏秩,空间平滑的目的就是使R xx 恢复满秩,从而达到解相干的目的。

如下图所示,前向空间平滑将阵元数为M 的阵列分成p 个长为m 的相互重叠的子阵,子阵阵元数和子阵个数满足M=p+m -1。

图1 前向空间平滑算法示意图第n 个子阵收到的输入矢量为:那么该子阵的输入相关矩阵为:其中,A m 是一个m ×N 的参考子阵的导向矢量矩阵(通常取第一个子阵)。

现代数字信号处理课件:自适应滤波——自适应信号处理技术与应用

现代数字信号处理课件:自适应滤波——自适应信号处理技术与应用

Pxx(z)=P1mm(z)+Pnn(z)|H(z)|2
(6.1.8)
基础理论
滤波器输入和期望响应间的互相关谱只取决于互相关的原始 分量和参考分量,并可表示为
Pxd(z)=Pnn(z)H*(z) 于是维纳滤波器的传输函数则为
(6.1.9)
Wopt (z)
Pnn (n)H *(z) P1mm (z) Pnn (z) H (z)
感应、接地不良及其他原因造成。Widrow等人采用如图 6.8所示的噪声 对消电路抑制这种干扰,取得了很好的效果。图中主通道接心电图仪的 前置放大器输出,它包含心电信号和工频干扰。参考通道直接从墙上的 电源插座取出,因而有用信号分量基本上不会出现在参考通道中。因为 需要调整两个参量(幅度和相位),所以采用两路加权,即滤波器含有两 个可变的加权系数,一个系数直接对应工频干扰,而另一个系数对应于 相移了90°的工频干扰。自适应滤波器的实验结果示于图 6.9。图 6.9(a) 为主通道的信号,从图中可看到它受到市电的干扰。图 6.9(b)为从墙上 取下的送到参考通道的50 Hz干扰信号。图 6.9(c)为自适应噪声对消的输 出,可以看出自适应噪声对消的效果很明显。
基础理论
图 6.5中第一个权的输入直接由参考输入采样得到,而 第二个输入是将第一个权输入移相90°后产生的,即
x1k=c cos(kω0+) x2k=c sin(kω0+)
其中,ω0=2πf0T(T为采样周期)。 权的迭代采用LMS算法,图 6.6给出了这种算法的工作
原理流程。权的修正过程如下: w1, k+1=w1, k+2μεkx1,k w2,k+1=w2,k+2μεkx2,k
若参考通道有信号s的分量进入,如图 6.2所示,则自适 应滤波器的输出y将包含信号分量,也就是说,系统的输出e 中信号s也受到了一定程度的对消,从而使噪声对消效果变 差。可以证明

自适应阵列处理

自适应阵列处理

自适应阵列处理
自适应阵列处理是指利用阵列信号处理的原理和方法,对接收到的信号进行自适应处理,并输出经过处理的信号。

自适应阵列处理采用了反馈控制原理,通过对信号处理的过
程进行实时监测和调整,使得处理后的信号质量得到优化,从而提高了信号处理的效率和
准确性。

自适应阵列处理的优点主要有以下几点:
1. 增强信号的辨识能力:随着天线个数的增加,阵列的接收和处理能力得到了大幅
提升,从而可以更加准确地识别和分离不同频率和不同方向的信号。

2. 减少信号的干扰:利用自适应滤波算法可以有效地抵消噪声和干扰信号,提高信
号的干扰抵抗能力,从而更加准确地识别目标信号。

3. 提高信号处理的速度:利用自适应阵列处理可以实现对多个信号的实时处理和分析,从而能够更快地捕捉目标信号,并作出及时的决策。

4. 提高系统的可靠性:自适应阵列处理的实现可以自动调整滤波器的参数,从而更
好地适应不同的信号环境,提高系统的可靠性和鲁棒性。

自适应阵列处理在多个领域得到了广泛的应用,包括雷达、无线通信、物联网等领域。

随着技术的不断发展和应用场景的不断拓展,自适应阵列处理在未来将得到更加广泛的应
用和发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/ PPT课件下载:/kejian/ 试卷下载:/shiti/
模型参数确定
• d的限制 • 空时等效性
时间采样:奈奎斯特抽样准则 T≤Ts / 2
空间采样:d ≤λ / 2
模型参数确定
Байду номын сангаас当N一定时,d取不同值
当d=λ / 2时为最佳
阵列信号处理模型优化
• 自适应阵列处理是利用阵列信号模型,根据期望信号和干扰信号的 广义平稳性,在某种最优准则下来寻求最优权矢量。
PPT模板下载:/moban/ 节日PPT模板:/jieri/ PPT背景图片:/beijing/ 优秀PPT下载:/xiazai/ Word教程: /word/ 资料下载:/ziliao/ 范文下载:/fanwen/ 教案下载:/jiaoan/
• 最优准则: • 1)最小均方误差准则(MMSE); • 2)最大信干噪比准则(MSINR); • 3)最小噪声方差准则(MNV);
维纳—霍夫方程
• 更多阵列信号处理模型以及参数优化方法。。。。。。
谢谢观看
自适应阵列处理
----基本概念与原理
目录
一 自适应阵列处理基本概念 二 自适应阵列处理基本模型 三 模型参数选择
自适应阵列处理基本概念
采用阵列天线而非单个连续孔径天线? 1)分辨率; 2)方向图控制;
自适应阵列
(基础:维纳滤波器)
维纳滤波器
自适应干扰对消 最优准则
目录
一 自适应阵列处理基本概念 二 自适应阵列处理基本模型 三 模型参数选择
自适应阵列处理基本模型(ULA)
自适应阵列接收通道(Rc)
功率增益方向图(log)
主波束宽度:3dB带宽
主瓣越窄,分辨率越高
L越大!
目录
一 自适应阵列处理基本概念 二 自适应阵列处理基本模型 三 模型参数选择
模型参数确定
L=Nd:当d一定时,N=8和N=16 N↑ L↑
模型参数确定
当L一定时,N,d分别取不同值; 需要对d的取值进行限制
相关文档
最新文档