奥数 定义新运算
(小学奥数)定义新运算
定義新運算教學目標定義新運算這類題目是在考驗我們的適應能力,我們大家都習慣四則運算,定義新運算就打破了運算規則,要求我們要嚴格按照題目的規定做題.新定義的運算符號,常見的如△、◎、※等等,這些特殊的運算符號,表示特定的意義,是人為設定的.解答這類題目的關鍵是理解新定義,嚴格按照新定義的式子代入數值,把定義的新運算轉化成我們所熟悉的四則運算。
知識點撥一定義新運算基本概念:定義一種新的運算符號,這個新的運算符號包含有多種基本(混合)運算。
基本思路:嚴格按照新定義的運算規則,把已知的數代入,轉化為加減乘除的運算,然後按照基本運算過程、規律進行運算。
關鍵問題:正確理解定義的運算符號的意義。
注意事項:①新的運算不一定符合運算規律,特別注意運算順序。
②每個新定義的運算符號只能在本題中使用。
我們學過的常用運算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,為什麼運算結果不同呢?主要是運算方式不同,實際是對應法則不同.可見一種運算實際就是兩個數與一個數的一種對應方法,對應法則不同就是不同的運算.當然,這個對應法則應該是對任意兩個數,通過這個法則都有一個唯一確定的數與它們對應.只要符合這個要求,不同的法則就是不同的運算.在這一講中,我們定義了一些新的運算形式,它們與我們常用的“+”,“-”,“×”,“÷”運算不相同.二 定義新運算分類1.直接運算型2.反解未知數型3.觀察規律型4.其他類型綜合模組一、直接運算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【巩固】 定義新運算為a △b =(a +1)÷b ,求的值。
6△(3△4)【巩固】 設a △2b a a b =⨯-⨯,那麼,5△6=______,(5△2) △3=_____.例題精講【巩固】 P 、Q 表示數,*P Q 表示2P Q +,求3*(6*8)【巩固】 已知a ,b 是任意自然數,我們規定: a ⊕b = a +b -1,2a b ab ⊗=-,那麼[]4(68)(35)⊗⊕⊕⊗= .【巩固】 M N *表示()2,(20082010)2009M N +÷**____=【巩固】 規定運算“☆”為:若a >b ,則a ☆b =a +b ;若a =b ,則a ☆b =a -b+1;若a <b ,則a ☆b =a ×b 。
小学四年级奥数定义新运算
小学四年级奥数定义新运算做题目是也要多多牢记自己哪里容易错做个错提集是很不错的选择.对于高难度题目的错,主要是平时多做自己不会的题目,力求弄懂,并多做.只要你做的比其他同学多的多,那么你成绩肯定不会差。
以下是无忧考网整理的相关资料,希望对您有所帮助。
【篇一】设a、b都表示数,规定a△b=3 a-2 b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b。
点击下一页查看答案分析:分析解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍。
解:①3△2=3 3-2 2=9-4=52△3=3 2-2 3=6-6=0。
②由①的例子可知“△”没有交换律。
③要计算(17△6)△2,先计算括号内的数,有:17△6=3 17-2 6=39;再计算第二步39△2=3 39-2 2=113,所以(17△6)△2=113。
对于17△(6△2),同样先计算括号内的数,6△2=3 6-2 2=14,其次17△14=3 17-2 14=23,所以17△(6△2)=23。
④由③的例子可知“△”也没有结合律.⑤因为4△b=3 4-2 b=12-2b,那么12-2b=2,解出b=5。
【篇二】例题1.规定:A○B表示A、B中较大的数,A△B表示A、B中较小的数.若(A○5+B△3)×(B○5+A△3)=96,且A、B均为大于0的自然数,A×B的所有取值有()个。
定义新运算解析:共5种,分类讨论,由于题目中所要求的定义新运算的符号是较大的数与较大的数,则对于A或者B有3类不同的范围,A小于3,A大于等于3,小于5,A大于等于5。
对于B 也有类似,两者合起来共有3×3=9种不同的组合,我们分别讨论。
1)当A【篇三】定义新运算1.规定:a※b=(b+a)×b,那么:(2※3)※5得多少?2.规定:a⊙b=a/b-b/a,则:2⊙(5⊙3)得多少?3.规定:a※b=(a+2b)/3,若6※x=22/3,则x是多少?4.如果a△b表示(a-2)×b,例如3△4=(3-2)×4=4,当a△5=30时,那么a是多少?5.已知a,b是任意有理数,我们规定:a⊙b=a+b-1,a⊙b=ab-2,那么4⊙【(6⊙8)(3⊙5)】是多少?6.如果a⊙b表示3a―2b,例如4⊙5=3×4―2×5=2,当x⊙5比5⊙x大5时,那么x是多少?7.A、b均为自然数,且a⊙b=a+2a+3a+……+ab,若x⊙10=110,那么x是多少?8.规定新运算※:a※b=3a-2b,若x※(4※1)=7,则x是多少?9.对余数a、b、c、d规定=2ab-c+d,如果7,那么x是多少?10.规定:6※2=6+66=72,2※3=2+22+222=246,1※4=1+11+111+1111=1234,那么:7※5是多少?。
小学奥数 定义新运算 精选练习例题 含答案解析(附知识点拨及考点)
定义新运算教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
完整版)六年级奥数定义新运算及答案
完整版)六年级奥数定义新运算及答案1.根据定义,(2※3)※5=(3+2)×3※5=5×15=75.2.根据定义,a△5=(a-2)×5=30,解得a=8.3.根据定义,(18,12)+[18,12]=6+36=42.4.先计算括号内的值:(68)(35)=(6+8-1)+(3×5-2)=(13)+(13)=26,再将4与26相乘,得到104.5.=8,=25,=2,因此++××>=+>=29.6.根据定义,x⊙5=3x-10,5⊙x=3×5-2x,因此有3x-10+5=2x+15,解得x=20.7.根据定义,a※b=(b+a)×b,因此4※5=(5+4)×5=45.8.根据定义,(x※3)※4=x(x+1)(x+2)(x+3)(x+4)(x+5)(x+6)(x+7),因此x=7.9.根据定义,1※2=a+b-c,2※3=2a+3b-6c,因此有a+b-c=3,2a+3b-6c=4,解得a=2,b=1,c=0,因此m的数值是0.10.(1) 根据定义,4△3=1,8△5=3,因此(4△3)+(8△5)=1+3=4;(2) 根据定义,2△3=-1,(-1)△4=3,因此(2△3)△4=3;(3) 根据定义,2△5=-3,3△4=1,因此(2△5)△(3△4)=-2.11.(1) 根据定义,3※4=1,1※9=8,因此(3※4)※9=8;(2) 这个运算不满足交换律,也不满足结合律,因为a※b的结果取决于a和b的大小关系。
12.(1) 根据定义,(2※3)※4=13,2※(3※4)=28;(2) 根据定义,a※3=(2a+3)/(2b+a),因此有2a+3=6,2b+a=9,解得a=3,b=3/2.13.根据定义,12⊙21=252-3=249,5⊙15=75-5=70.4⊗26。
4×26﹣2。
小学奥数定义新运算
小学奥数——定义新运算1、设a,b都表示数,规定a△b=3×a-2×b。
①求4△3,3△4。
②求(17△6)△2, 17△(6△2)。
③如果已知5△b=5,求b。
2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③如果3※(5※x)=3,求x.3、4、如果4※2=14,5※3=22,3※5=4,7※18=31,求6※9的值。
5、设a▽b=a×b+a-b,求5▽8。
6、规定:a△b=a+(a+1)+(a+2)+……(a+b-1),其中a,b表示自然数。
(1)求1△100的值;(2)已知x△10=75,求x。
7. 设ba,表示两个不同的数,规定baba43+=∆.求6)78(∆∆.8. 定义运算⊖为a⊖b=5×)(baba+-⨯. 求11⊖12.9. ba,表示两个数,记为:a※b=2×bba41-⨯.求8※(4※16).10. 设yx,为两个不同的数,规定x□y4)(÷+=yx.求a□16=10中a的值.11. 规定a ba ba b +⨯=.求2 10 10的值.12. Q P ,表示两个数,P ※Q =2QP +,如3※4=243+=3.5.求4※(6※8);如果x ※(6※8)=6,那么=x ?13. 定义新运算x ⊕yx y 1+=.求3⊕(2⊕4)的值.14. 有一个数学运算符号“⊗”,使下列算式成立:4⊗8=16,10⊗6=26,6⊗10=22,18⊗14=50.求7⊗3=?15. 对于数b a ,规定运算“▽”为)5()3(-⨯+=∇b a b a .求)76(5∇∇的值.16. y x ,表示两个数,规定新运算“ ”及“△”如下:x y x y 56+=,x △xy y 3=.求(2 3)△4的值..【读一读】 狼&羊羊和狼在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号△表示羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼。
小学六年级奥数-定义新运算
• 【例题3】如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44 ,那么7*4=________;210*2=________。 • 【思路导航】经过观察,可以发现本题的新运算 “*”被定义为。因此
练习1:
• 1.将新运算“*”定义为:a*b=(a+b)×(a-b).。求 27*9。 • 2.设a*b=a2+2b,那么求10*6和5*(2*8)。 • 3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
• 【例题2】设p、q是两个数,规定:p△q=4×q(p+q)÷2。求3△(4△6)。 • 【思路导航】根据定义先算4△6。在这里“△”是新 的运算符号。 • 3△(4△6) • =3△【4×6-(4+6)÷2】 • =3△19 • =4×19-(3+19)÷2 • =76-11 • =65
练习5:
• 1.设a⊙b=3a-2b,已知x⊙(4⊙1)=7求x。 • 2.对两个整数a和b定义新运算“△”:a△b= ,求 6△4+9△8。 • 3.对任意两个整数x和y定于新运算,“*”:x*y= (其中m是一个确定的整数)。如果1*2=1,那么 3*12=________。
• 因此
7*4=7+77+777+7777=8638 210*2=210+210210=210420
四年级奥数第15讲:定义新运算-课件
总结
生活里,定义新运算这类题目往后会有很多, 而解决它们的窍门就在于:擦亮眼睛,细心观察, 从中找出规律,然后再按规律有条理地依次计算。 这样,再难的定义新运算我们就可以顺藤摸瓜, 迎刃而解了。
先计算括号里的。
(15★6)*4 =(2×15×6)*4
=180*4 =180+4×4 =196
例题五(选讲)
设X、Y是两个数,规定:X※Y=(5×X-Y)÷2。例如7※9=(5×7 -9)÷2=13,求X※8=36中X的值。
例如:7※9=(5×7-9)÷2=13
X※8=36 (5×X-8)÷2=36
定义新运算
例题一
规定A⊙B=3×A+4×B,试计算8⊙3的值。
A⊙B=3×A+4×B
8⊙3 =3×8+4×3 =36 +
练习一
如果规定A▲B=13×A-8×B,求27▲39的值。
27▲39 =13×27-8×39 =351-312 =39
例题二
对于两个数a与b,规定a□b=a×b+a-b, 试算4□6。
a□b = a×b+a-b
4□6 =4×6+4-6 =28-6 =22
练习二
假设A@B=A×B+A+B,那么18@9的计算 结果是多少?
A @ B = A×B+A+B
18 @ 9 =18×9+18+9 =162+18些特殊符号表示特定 的运算意义。新运算使用的符号应避免使用课本 上明确定义或已经约定俗成的符号,如+,-, ×,÷,<,>等,以防止发生混淆,而表示新 运算的运算意义部分,应使用通常的四则运算符 号。
用倒推的方法或解 方程的方法解决问题。
5×X=36×2+8
奥数新定义运算
奥数定义新运算我们已经学习过加、减、乘、除运算,这些运算,即四那么运算是数学中最根本的运算,它们的意义、符号及运算律已被同学们熟知。
除此之外,还会有什么别的运算吗?现在我们就来研究这个问题。
这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。
一、定义1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。
注意:〔1〕解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四那么运算,然后进展计算。
〔2〕我们还要知道,这是一种人为的运算形式。
它是使用特殊的运算符号,如:*、▲、★、◎、 、Δ、◆、■等来表示的一种运算。
〔3〕新定义的算式中,有括号的,要先算括号里面的。
2、一般的解题步骤是:一是认真审题,深刻理解新定义的容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。
二、初步例题诠释例1、对于任意数a,b,定义运算“*〞:a*b=a×b-a-b。
求12*4的值。
分析与解:根据题目定义的运算要求,直接代入后用四那么运算即可。
12*4=12×4-12-4=48-12-4=32例2、假设a ★b = ( a + b )÷b 。
求8 ★5 。
分析与解:该题的新运算被定义为: a ★b等于两数之和除以后一个数的商。
这里要先算括号里面的和,再算后面的商。
这里a代表数字8,b代表数字5。
8 ★5 = 〔8 + 5〕÷5 = 2.6例3、如果a◎b=a×b-(a+b)。
求6◎〔9◎2〕。
分析与解:根据定义,要先算括号里面的。
这里的符号“◎〞就是一种新的运算符号。
6◎〔9◎2〕=6◎[9×2-〔9+2〕]=6◎7=6×7-〔6+7〕=42-13=29例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。
奥数-24定义新运算+答案
定义新运算定义新运算是指用一个符号和已知运算表达式表示一种新的运算。
这个新的运算符号包含有多种基本(混合)运算。
定义新运算是一种特别设计的计算形式,它使用一些特殊的运算符号,这是与四则运算中的加减乘除符号是不一样的。
定义新运算要注意以下四点:1、照猫画虎:严格按照新定义的运算规则,把已知的数代入新定义的式子进行运算。
2、括号优先:新定义的算式中有括号的,要先算括号里的。
但它在没有转化前,是不适合于各种运算的。
3、运算律不轻易使用:新的运算不一定符合运算规律,不一定符合交换律,结合律和分配律,4、意义不确定:每个新定义的运算符号只能在本题中使用,同一符号在不同的题目中意义不同。
【例 1】假设a★b=(a+b)÷b。
求:8★5的值。
解析:该题的新运算被定义为:a ★b等于两数之和除以后一个数的商。
严格按新定义的要求,将数值代入新定义的式子进行运算。
这里a是8,b是5。
8★5=(8+5)÷5=2.6【例 2】规定n※b=3×n-b÷2。
求:10※6的值。
解析:该题的新运算被定义为: n ※b等于第一个数的3倍减后一个数的一半。
这里要先算积和商,再算他们的差。
这里n代表数字10,b代表数字6。
10※6=3×10-6÷2=27练习一1.设a、b都表示数,规定:a○b=6×a-b。
试计算3○4。
2.“★”表示一种新运算,规定A★B=5A+7B,求4★5。
3.规定a#b=(3+b)×a÷2,其中a、b都是自然数。
求:6#8的值。
4.对于任意的两个数a和b,规定a⊙b=3×a-b÷3。
求8⊙9的值5.将新运算“&”定义为:a&b=(a+b)÷(a-b)。
求27&9。
6.规定a△b=(a+b)×(b-a),其中a、b都是自然数,b>a,求5△8的值。
7.规定:m※n=4×n-(m+n)÷2。
六年级数学奥数第8讲:定义新运算-课件
a△b=a+aa+aaa+aaaa+…+a……a
8△2=8+88=96
b个a
4△6=4+44+444+4444+44444+444444=493824
规定a△b=a+aa+aaa+…+aa........a,那么8△6=_9_8_7_2。 (b-2)个a
定义新运算“⊙”如下:对于两个自然数a和b,他 们的最大公约数与最小公倍数的和记为a⊙b,那么 4⊙6=_________。
4、6的最大公约数是 4、6的最小公倍数是
4⊙6=2+12=14
把64=2×2×2×2×2×2表示成∫(64)= 6 , 把243=3×3×因3数×23有×63个表示成g(243)= 5 ,那 么∫(16)因=g(数__83_1有。)5个
16=2×2×2×2 ∫(16)=4
3×3×3×3=81
如果规定符号“↑(a,b)”表示两个数的和除以两个数的差,例如
↑(4,2)= 4 2 =3,规定符号“↓(a,b)”表示两个数的差除以两个
42
数的和,例如↓(4,2)= 4 2
42
=1
3
7 ,那么↑[2,↓(8,4)]=__5____。
↓(8,4) =
16◇6 =4 16÷6=2……4 12△(16◇6)=12△4 =3
12÷4=3
有括号要先 算括号
定义运算“⊙”如下:对于两个自然数a和b,他 们的最大公约数和最小公倍数的和记为a⊙b,那 么4⊙12⊙20=_8_4_______。
奥数专题-定义新运算(带答案完美排版)
定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例子可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步39△2=3 ×39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:① 5※7=5×7-(5+7)=35-12=23,7※ 5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例子可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)=8x-13那么8x-13=3 解出x=2.例3、定义新的运算a ?b=a×b+a+b.①求6 ?2,2 ?6;②求(1 ?2)?3,1 ?(2 ?3);③这个运算有交换律和结合律吗?解:① 6 ?2=6×2+6+2=20,2 ?6=2×6+2+6=20.②(1 ?2)?3=(1×2+1+2)?3=5 ?3=5×3+5+3=231 ?(2 ?3)=1 ?(2×3+2+3)=1 ?11=1×11+1+11=23.③先看“?”是否满足交换律:a ?b=a×b+a+bb ?a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ?b=b ?a,因此“?”满足交换律.再看“?”是否满足结合律:(a ?b)?c=(a×b+a+b)?c=(a×b+a+b)×c+a×b+a+b+c=abc +ac +bc +ab +a +b +c .a ?(b ?c )=a ?(b ×c +b +c )=a ×(b ×c +b +c )+a +b ×c +b +c=abc +ab +ac +a +bc +b +c=abc +ac +bc +ab +a +b +c .(普通加法的交换律) 所以(a ? b )? c =a ?(b ? c ),因此“?”满足结合律.说明:“?”对于普通的加法不满足分配律,看反例:1 ?(2+3)=1 ? 5=1×5+1+5=11;1 ? 2+1 ? 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ?(2+3)≠ 1 ? 2+1 ? 3.例4、有一个数学运算符号“?”,使下列算式成立:2?4=8,5?3=13,3?5=11,9?7=25,求7?3=?解:通过对2?4=8,5?3=13,3?5=11,9?7=25这几个算式的观察,找到规律:a ?b =2a +b ,因此7?3=2×7+3=17.例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x *y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以首先要计算出k 的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a *3,按“*”的定义: a *3=ma+3n ,在只有求出m 、n 时,我们才能计算a *3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.又因为m 、n 均为自然数,所以解出:①当m=1,n=2时: (2*3)△4=(1×2+2×3)△4=8△4=k ×8×4=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4=9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是自然数矛盾,因此m=3,n =1,k=971 m=1 n =2 m=2 n =23(舍去) m=3n =1这组值应舍去.所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a 一b =b 1a +, ①求2一(3一4)的值; ② 若x 一4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值. 4.定义两种运算“?”、“?”,对于任意两个整数a 、b ,a ?b =a +b +1, a ?b=a ×b -1,①计算4?[(6?8)?(3?5)]的值;②若x ?(x ?4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y ×2x ×m y×x ×6+(其中m 是一个确定的整数),如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值. 8.a ※b=b÷a b a +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =? 课后习题解答1.2.3.所以有5x-2=30,解出x=6.4 左边: 8.解:由于9.解:按照规定的运算:x △10=x +(x+1)+(x+2)+…+(x+10-1)=10x +(1+2+3+?+9)=10x + 45因此有10x + 45=65,解出x=2.定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a 、b 都表示数,规定a △b =3×a -2×b ,①求 3△2, 2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b =2,求b .例2、定义运算※为 a ※b =a ×b -(a +b ),①求5※7,7※5; ②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗? ④如果3※(5※x )=3,求x . 例3、定义新的运算a ? b =a ×b +a +b .①求6 ? 2,2 ? 6;②求(1 ? 2)? 3,1 ?(2 ? 3);③这个运算有交换律和结合律吗?例4、有一个数学运算符号“?”,使下列算式成立:2?4=8,5?3=13,3?5=11,9?7=25,求7?3=?例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x *y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a 一b =b 1a +, ①求2一(3一4)的值; ② 若x 一4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值. 4.定义两种运算“?”、“?”,对于任意两个整数a 、b ,a ?b =a +b +1, a ?b=a ×b -1,①计算4?[(6?8)?(3?5)]的值;②若x ?(x ?4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y ×2x ×m y×x ×6+(其中m 是一个确定的整数),如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值. 8.a ※b=b÷a b a +,在x ※(5※1)=6中,求x 的值.9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]。
五年级奥数定义新运算(精)
定义新运算姓名:知识点拨我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。
除此之外,还会有什么别的运算吗?本节课我们就来研究这个问题。
【知识点一】新运算的定义新运算的定义是题目规定的,只在对应题目里有效,相同的符号,在不同的题目里可能有不同的定义。
新定义的运算往往由已学过的四则运算,按照一定的顺序组合而成。
【知识点二】新运算的解答步骤(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。
(2)我们还要知道,这是一种人为的运算形式。
它是使用特殊的运算符号,如:*、▲、★、◎、◆、♀、●、Δ、■等来表示的一种运算。
(3)新定义的算式中,有括号的,要先算括号里面的。
【知识点三】定义新运算的分类1、直接运算型2、反解未知数型3、观察规律型4、综合型经典例题类型一、直接运算型【例1】若表示,求的值。
【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
6△(3△4),求的值。
6△(3△4)【巩固】 规定运算“☆”为:若a >b ,则a ☆b =a +b ;若a =b ,则a ☆b =a -b +1;若a <b ,则a ☆b =a ×b 。
那么,(2☆3)+(4☆4)+(7☆5)=?【巩固】 已知a ,b 是任意自然数是任意自然数,,我们规定: a⊕b = a+b 我们规定: a⊕b = a+b-1,-1,,那么那么【巩固】表示【例2】对于任意的整数x 与y 定义新运算“△”:,求2△9。
【巩固】【巩固】 定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6+[4,6]=2+12=14.根据上面定义的运算,18△12= .【例3】规定:符号“】规定:符号“&&”为选择两数中较大数的运算,“◎”为选择两数中较小数的运算。
四年级奥数定义新运算例题
四年级奥数定义新运算例题四年级奥数定义新运算例题 1例1:设a、b都表示数,规定:a△b表示a的3倍减去b的2倍,即:a△b = a×3-b×2。
试计算:(1)5△6;(2)6△5。
分析与解决:解决此类问题的关键是抓住定义的本质。
本题规定的运算本质是:符号前的数的3倍减去符号后的数的2倍。
5△6=5×3-6×2=36△5=6×3-5×2=8显然,本例定义的运算不满换律,计算中不能将△前后的数交换。
练习一1,设a、b都表示数,规定:a○b=6×a-2×b。
试计算3○4。
2,设a、b都表示数,规定:a*b=3×a+2×b。
试计算:(1)(5*6)*7 (2)5*(6*7)3,有两个整数是A、B,A▽B表示A与B的平均数。
已知A▽6=17,求A。
例2:对于两个数a与b,规定a⊕b=a×b+a+b,试计算6⊕2。
分析与解答:本题指定运算的本质是:将这两个数加到运算符号前后两个数的乘积上。
6⊕2=6×2+6+2=20练习二1,对于两个数a与b,规定:a⊕b=a×b-(a+b)。
计算3⊕5。
2,对于两个数A与B,规定:A☆B=A×B÷2。
试算6☆4。
3,对于两个数a与b,规定:a⊕b= a×b+a+b。
如果5⊕x=29,求x。
例3:如果2△3=2+3+4,5△4=5+6+7+8,按此规律计算3△5。
分析与解答:这道题规定的运算本质是:从运算符号前的数加起,每次加的数都比前面的一个数多1,加数的个数为运算符号后面的数。
所以,3△5=3+4+5+6+7=25练习三1,如果5▽2=2×6,2▽3=2×3×4,计算:3。
2,如果2▽4=24÷(2+4),3▽6=36÷(3+6),计算8▽4。
3,如果2△3=2+3+4,5△4=5+6+7+8,且1△x=15,求x。
六年级奥数定义新运算及答案
定义新运算1.规定:a ※b=(b+a)×b,则(2※3)※5=。
△b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,则,当a △5=30时, a=。
“△〞如下:对于两个自然数a 和b,它们的最大公约数及最小公倍数的和记为a △b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12=。
4.a,b 是任意有理数,我们规定: a ⊕b= a+b-1,2-=⊗ab b a ,则[]=⊗⊕⊕⊗)53()86(4。
5.x 为正数,<x>表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.则<<19>+<93>+<4>×<1>×<8>>的值是。
⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,则,当x ⊙5比5⊙x 大5时, x=。
※4=1234,2※3=234,7※2=78,则4※5=。
“※〞: a ※b=)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,则x=。
9.对于任意有理数x, y,定义一种运算“※〞,规定:x ※y=cxy by ax -+,其中的c b a ,,※2=3,2※3=4,x ※m=x(m ≠0),则m 的数值是。
10.设a,b 为自然数,定义a △b ab b a -+=22。
(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。
,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a-b ,如果a<b ,则定义a ※b= b-a 。
(1)计算:(3※4)※9;(2)这个运算满足交换律吗满足结合律吗也是就是说,下面两式是否成立①a ※b= b ※a;②(a ※b)※c= a ※(b ※c)。
小学奥数专题26-定义新运算
定义新运算定义新运算通常是用特殊的符号表示特定的运算意义。
它的符号不同于课本上明确定义或已经约定的符号,例如“+、-、×、÷、、>、<”等。
表示运算意义的表达式,通常是使用四则运算符号,例如a☆b=3a-3b,新运算使用的符号是☆,而等号右边表示新运算意义的则是四则运算符号。
正确解答定义新运算这类问题的关键是要确切理解新运算的意义,严格按照规定的法则进行运算。
如果没有给出用字母表示的规则,则应通过给出的具体的数字表达式,先求出表示定义规则的一般表达式,方可进行运算。
值得注意的是:定义新运算一般是不满足四则运算中的运算律和运算性质,所以,不能盲目地运用定律和运算性质解题。
一、例题与方法指导例1. 设ab都表示数,规定a△b表示a的4倍减去b的3倍,即a△b=4×a-3×b,试计算5△6,6△5。
解5△6-5×4-6×3=20-18=26△5=6×4-5×3=24-15=9说明例1定义的△没有交换律,计算中不得将△前后的数交换。
例2. 对于两个数a、b,规定a☆b表示3×a+2×b,试计算(5☆6)☆7,5☆(6☆7)。
思路导航:先做括号内的运算。
解(5☆6)☆7=(5×3+6×2)☆7=27☆7=27×3+7×2=955☆(6☆7)=5☆(6×3+7×2)=5☆32=5×3+32×2=79说明本题定义的运算不满足结合律。
这是与常规的运算有区别的。
例3. 已知2△3=2×3×4,4△2=4×5,一般地,对自然数a、b,a△b 表示a×(a+1)×…(a+b-1).计算(6△3)-(5△2)。
思路导航:原式=6×7--5×6=336-30规定:a△=a+(a+1)+(a+2)+…+(a+b-1),其中a,b表示自然数。
(完整版)六年级奥数定义新运算及答案
定义新运算1.规定:a ※b=(b+a)×b,那么(2※3)※5= 。
2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= 。
3.定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= 。
4.已知a,b 是任意有理数,我们规定: a ⊕b= a+b-1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 。
5.x 为正数,<x>表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 。
6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x= 。
7.如果1※4=1234,2※3=234,7※2=78,那么4※5= 。
8.规定一种新运算“※”: a ※b=)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x= 。
9.对于任意有理数x, y,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m=x(m ≠0),则m 的数值是 。
10.设a,b 为自然数,定义a △b ab b a -+=22。
(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。
11.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a-b ,如果a<b ,则定义a ※b= b-a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥数定义新运算
我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。
除此之外,还会有什么别的运算吗?现在我们就来研究这个问题。
这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。
一、定义
1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。
注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运
算,然后进行计算。
(2)我们还要知道,这是一种人为的运算形式。
它是使用特殊的运算符号,如:*、▲、★、◎、 、Δ、◆、■等来表示的一种运算。
(3)新定义的算式中,有括号的,要先算括号里面的。
2、一般的解题步骤是:
一是认真审题,深刻理解新定义的内容;
二是排除干扰,按新定义关系去掉新运算符号;
三是化新为旧,转化成已有知识做旧运算。
二、初步例题诠释
例1、对于任意数a,b,定义运算“*”:a*b=a×b-a-b。
求12*4的值。
分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。
12*4=12×4-12-4=48-12-4=32
例2、假设a ★ b = ( a + b )÷ b 。
求 8 ★ 5 。
分析与解:该题的新运算被定义为: a ★ b 等于两数之和除以后一个数的商。
这里
要先算括号里面的和,再算后面的商。
这里a 代表数字8,b 代表数字5。
8 ★ 5 = (8 + 5)÷ 5 = 2.6
例3、如果a ◎b=a ×b-(a+b)。
求6◎(9◎2)。
分析与解:根据定义,要先算括号里面的。
这里的符号“◎”就是一种新的运算符
号。
6◎(9◎2)
=6◎[9×2-(9+2)]
=6◎7
=6×7-(6+7)
=42-13
=29
例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。
求6Δ5。
分析与解:仔细观察发现“Δ”前面的数字是加数每个数位上的数字,而加数分别
是一位数,二位数,三位数,……“Δ”后面的数字是几,就有几个加数。
因此可以按照这个规律进行解答。
6Δ5=6+66+666+6666+66666=74070
例5、如果规定⊗2=1×2×3,⊗3=2×3×4,⊗4=3×4×5,…… 计算(21⊗-31⊗)×3
2⊗⊗。
分析与解:该题看上去比较复杂,但仔细观察,我们可以发现,该题被定义为⊗X=
(X-1)×X ×(X+1)。
由于把数代入算式中计算比较麻烦,我们可以先化简算式后,再计算。
(
21⊗-31⊗)×3
2⊗⊗ = 21⊗×32⊗⊗-31⊗×3
2⊗⊗ =31⊗-31⊗×3
2⊗⊗ =31⊗(1-3
2⊗⊗) = 4321⨯⨯×(1-4
32321⨯⨯⨯⨯) =4321⨯⨯×(1-4
1) =4321⨯⨯×4
3 =321
例6、规定a ▲b=5a+2
1ab-3b 。
求(8▲5)▲X=264中的未知数。
分析与解:根据新定义,应该先计算括号里面的,再计算括号外面的,然后解方程
即可。
(8▲5)▲X=264
(5×8 + 2
1×8×5-3×5)▲X=264 45▲X=264 5×45+
2
1×45×X-3X=264 225+245X-2
6X =264 225+2
39X=264 2
39X=39 X=2
三、边学边试。