2019-2020南京东山外国语学校数学中考模拟试题附答案
江苏省南京市2019-2020学年中考第二次模拟数学试题含解析
江苏省南京市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A.(2017,0)B.(2017,12)C.(2018,3)D.(2018,0)2.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是( )A.60o B.65o C.70o D.75o3.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A、B的坐标分别为(3,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为()A.35 22(,)B.332,)C.2352(,)D.4332,)4.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个B.3个C.2个D.1个5.一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A.4个B.3个C.2个D.1个6.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D7.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是()A.圆锥B.圆柱C.球D.正方体8.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.9.如图1,在△ABC中,D、E分别是AB、AC的中点,将△ADE沿线段DE向下折叠,得到图1.下列关于图1的四个结论中,不一定成立的是()A.点A落在BC边的中点B.∠B+∠1+∠C=180°C.△DBA是等腰三角形D.DE∥BC10.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=211.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )A.q<16 B.q>16C.q≤4D.q≥412.下列说法正确的是()A.某工厂质检员检测某批灯泡的使用寿命采用普查法B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6C.12名同学中有两人的出生月份相同是必然事件D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是1 3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,点P(﹣1,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是_____.14.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,23=AB BC ,DE=6,则EF= .15.已知a ,b ,c ,d 是成比例的线段,其中3cm a =,2cm b =,6cm c =,则d =_______cm . 16.如图,将△AOB 以O 为位似中心,扩大得到△COD ,其中B (3,0),D (4,0),则△AOB 与△COD 的相似比为_____.17.如图,AB 是⊙O 的直径,点E 是»BF的中点,连接AF 交过E 的切线于点D ,AB 的延长线交该切线于点C ,若∠C =30°,⊙O 的半径是2,则图形中阴影部分的面积是_____.18.计算(+1)(-1)的结果为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的“和谐点”.(1)已知点A 的坐标为()1,3,①若点B 的坐标为()3,3,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标; ②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点()1,4D 为点()1,2E 、(),F m n 的“和谐点”,且DE =2,若使得DEF ∆与⊙O 有交点,画出示意图直接写出半径r 的取值范围.20.(6分)某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.求y 关于x 的函数关系式;该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A 型电脑出厂价下调a (0<a <200)元,且限定商店最多购进A 型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.21.(6分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为 ;该班学生的身高数据的中位数是 ;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?22.(8分)(1)问题发现如图1,在Rt △ABC 中,∠A=90°,AB AC =1,点P 是边BC 上一动点(不与点B 重合),∠PAD=90°,∠APD=∠B ,连接 CD .(1)①求PB CD的值;②求∠ACD 的度数. (2)拓展探究如图 2,在Rt △ABC 中,∠A=90°,AB AC =k .点P 是边BC 上一动点(不与点B 重合),∠PAD=90°,∠APD=∠B ,连接CD ,请判断∠ACD 与∠B 的数量关系以及PB 与CD 之间的数量关系,并说明理由.(3)解决问题如图 3,在△ABC 中,∠B=45°,AB=42,BC=12,P 是边BC 上一动点(不与点B 重合),∠PAD=∠BAC ,∠APD=∠B ,连接CD .若 PA=5,请直接写出CD 的长.23.(8分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC 为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)24.(10分)(1)计算:20(2)(3)12sin 60π︒-+-+-; (2)化简:2121()a a a a a--÷-. 25.(10分)如图,在平面直角坐标系中,矩形OABC 的顶点B 坐标为(4,6),点P 为线段OA 上一动点(与点O 、A 不重合),连接CP ,过点P 作PE ⊥CP 交AB 于点D ,且PE =PC ,过点P 作PF ⊥OP 且PF =PO (点F 在第一象限),连结FD 、BE 、BF ,设OP =t .(1)直接写出点E 的坐标(用含t 的代数式表示): ;(2)四边形BFDE 的面积记为S ,当t 为何值时,S 有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.26.(12分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是_____度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在_____等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?27.(12分)已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=513,BD⊥AC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F.(1)求∠EAD的余切值;(2)求BFCF的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2F滚动7次时的横坐标为8,纵坐F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.【详解】.解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2017÷6=336余1,∴点F滚动1次时的横坐标为2,点F滚动7次时的横坐标为8,∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,∴点F滚动2107次时的横坐标为2017+1=2018∴点F滚动2107次时的坐标为(2018),故选C.【点睛】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.2.D【解析】【详解】由题意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°−∠DCA)÷2=(180°−30°)÷2=75°.故选D.【点睛】本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.3.B【解析】【分析】连接OO′,作O′H⊥OA于H.只要证明△OO′A是等边三角形即可解决问题.【详解】连接OO′,作O′H⊥OA于H,在Rt △AOB 中,∵tan ∠BAO=OB OA =3 ∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等边三角形,∵O′H ⊥OA ,∴OH=32, ∴332, ∴O′(32,32), 故选B .【点睛】本题考查翻折变换、坐标与图形的性质、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是发现特殊三角形,利用特殊三角形解决问题.4.B【解析】【分析】通过图象得到a 、b 、c 符号和抛物线对称轴,将方程24ax bx c ++=转化为函数图象交点问题,利用抛物线顶点证明()+x ax b a b ≤+.【详解】由图象可知,抛物线开口向下,则0a <,0c >,Q 抛物线的顶点坐标是()1,4A ,∴抛物线对称轴为直线12b x a=-=,∴2b a =-,∴0b >,则①错误,②正确;方程24ax bx c ++=的解,可以看做直线4y =与抛物线2y ax bx c =++的交点的横坐标, 由图象可知,直线4y =经过抛物线顶点,则直线4y =与抛物线有且只有一个交点,则方程24ax bx c ++=有两个相等的实数根,③正确;由抛物线对称性,抛物线与x 轴的另一个交点是()1,0-,则④错误;不等式()x ax b a b +≤+可以化为2ax bx c a b c ++≤++, Q 抛物线顶点为()1,4,∴当1x =时,y a b c =++最大,∴2ax bx c a b c ++≤++故⑤正确.故选:B .【点睛】本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式.5.B【解析】试题解析:①∵二次函数的图象的开口向下,∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上,∴c>0,∵二次函数图象的对称轴是直线x=1,12b a,∴-= ∴2a+b=0,b>0 ∴abc<0,故正确;②∵抛物线与x 轴有两个交点,240b ac ∴->,24b ac ∴>, 故正确;③∵二次函数图象的对称轴是直线x=1,∴抛物线上x=0时的点与当x=2时的点对称,即当x=2时,y>0∴4a+2b+c>0,故错误;④∵二次函数图象的对称轴是直线x=1,12b a,∴-=∴2a+b=0, 故正确.综上所述,正确的结论有3个.故选B.6.C【解析】试题解析:A 、由监测点A 监测P 时,函数值y 随t 的增大先减少再增大.故选项A 错误;B 、由监测点B 监测P 时,函数值y 随t 的增大而增大,故选项B 错误;C 、由监测点C 监测P 时,函数值y 随t 的增大先减小再增大,然后再减小,选项C 正确;D 、由监测点D 监测P 时,函数值y 随t 的增大而减小,选项D 错误.故选C .7.C【解析】【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;C. 球的主视图只能是圆,故符合题意;D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,故选C.【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键. 8.D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.9.A【解析】【分析】根据折叠的性质明确对应关系,易得∠A=∠1,DE 是△ABC 的中位线,所以易得B 、D 答案正确,D 是AB 中点,所以DB=DA ,故C 正确.【详解】根据题意可知DE 是三角形ABC 的中位线,所以DE ∥BC ;∠B+∠1+∠C=180°;∵BD=AD ,∴△DBA 是等腰三角形.故只有A 错,BA≠CA .故选A .【点睛】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.还涉及到翻折变换以及中位线定理的运用.(1)三角形的外角等于与它不相邻的两个内角和.(1)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作.10.C【解析】分析:根据每个选项所涉及的数学知识进行分析判断即可.详解:A 选项中,“五边形的外角和为360°”是真命题,故不能选A ;B 选项中,“切线垂直于经过切点的半径”是真命题,故不能选B ;C 选项中,因为点(3,-2)关于y 轴的对称点的坐标是(-3,-2),所以该选项中的命题是假命题,所以可以选C ;D 选项中,“抛物线y=x 2﹣4x+2017对称轴为直线x=2”是真命题,所以不能选D.故选C.点睛:熟记:(1)凸多边形的外角和都是360°;(2)切线的性质;(3)点P (a ,b )关于y 轴的对称点为(-a ,b );(4)抛物线2 (0)y ax bx c a =++≠的对称轴是直线:2b x a=-等数学知识,是正确解答本题的关键.11.A【解析】∵关于x 的一元二次方程x 2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选 A.12.B【解析】【分析】分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.【详解】A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B. 根据平均数是4求得a 的值为2,则方差为15 [(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是12,故本选项错误. 故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.0a 2<<【解析】【分析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等. 14.1.【解析】试题分析:∵AD ∥BE ∥CF ,∴AB DE BC EF=,即263EF =,∴EF=1.故答案为1. 考点:平行线分线段成比例.15.4【解析】【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad =cb ,将a ,b 及c 的值代入即可求得d .【详解】已知a ,b ,c ,d 是成比例线段,根据比例线段的定义得:ad =cb ,代入a =3,b =2,c =6,解得:d =4,则d =4cm .故答案为:4【点睛】本题主要考查比例线段的定义.要注意考虑问题要全面.16.3:1.【解析】∵△AOB 与△COD 关于点O 成位似图形,∴△AOB ∽△COD ,则△AOB 与△COD 的相似比为OB :OD=3:1,故答案为3:1 (或34).1723π 【解析】【分析】首先根据切线的性质及圆周角定理得CE 的长以及圆周角度数,进而利用锐角三角函数关系得出DE ,AD 的长,利用S △ADE ﹣S 扇形FOE =图中阴影部分的面积求出即可.【详解】解:连接OE ,OF 、EF ,∵DE 是切线,∴OE ⊥DE ,∵∠C =30°,OB =OE =2,∴∠EOC =60°,OC =2OE =4,∴CE =OC×sin60°=4sin 60⨯=o∵点E 是弧BF 的中点,∴∠EAB =∠DAE =30°,∴F ,E 是半圆弧的三等分点,∴∠EOF=∠EOB=∠AOF=60°,∴OE∥AD,∠DAC=60°,∴∠ADC=90°,∵CE=AE=23,∴DE=3,∴AD=DE×tan60°=333,⨯=∴S△ADE113333222AD DE=⋅=⨯⨯=∵△FOE和△AEF同底等高,∴△FOE和△AEF面积相等,∴图中阴影部分的面积为:S△ADE﹣S扇形FOE23360π2333260π.3⋅⨯=-=-故答案为3323π-【点睛】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△FOE和△AEF面积相等是解题关键.18.1【解析】【分析】利用平方差公式进行计算即可.【详解】原式=()2﹣1=2﹣1=1,故答案为:1.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)①点C 坐标为()1,5C 或()3,5C ';②y =x +2或y =-x +3;(2)217r ≤≤或517r ≤≤【解析】【分析】(1)①根据“和谐点”的定义即可解决问题;②首先求出点C 坐标,再利用待定系数法即可解决问题;(2)分两种情形画出图形即可解决问题.【详解】(1)①如图1.观察图象可知满足条件的点C 坐标为C (1,5)或C'(3,5);②如图2.由图可知,B (5,3).∵A (1,3),∴AB=3.∵△ABC 为等腰直角三角形,∴BC=3,∴C 1(5,7)或C 2(5,﹣1).设直线AC 的表达式为y=kx+b (k≠0),当C 1(5,7)时,357k b k b +=⎧⎨+=⎩,∴12k b =⎧⎨=⎩,∴y=x+2,当C 2(5,﹣1)时,351k b k b +=⎧⎨+=-⎩,∴14k b =-⎧⎨=⎩,∴y=﹣x+3.综上所述:直线AC 的表达式是y=x+2或y=﹣x+3.(2)分两种情况讨论:①当点F 在点E 左侧时:连接OD .则OD=221417+=,∴217r ≤≤.②当点F 在点E 右侧时:连接OE ,OD .∵E (1,2),D (1,3),∴22125+221417+=517r ≤≤综上所述:217r ≤≤517r ≤≤【点睛】本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的首先思考问题,属于中考压轴题.20. (1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A 型电脑每台利润×A 电脑数量+B 型电脑每台利润×B 电脑数量”可得函数解析式;(2)根据“B 型电脑的进货量不超过A 型电脑的2倍且电脑数量为整数”求得x 的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥1003,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,3313≤x≤60,①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足3313≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.21.(1) 乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一);(2)120°;(3)160或1;(4)3 5 .【解析】【分析】(1)对比图①与图②,找出图②中与图①不相同的地方;(2)则159.5﹣164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率. 【详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5﹣164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,故答案为120°;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1. 故答案为160或1;(4)列树状图得:P (一男一女)=1220=35. 22.(1)1,45°;(2)∠ACD=∠B ,PB AB CD AC = =k ;(3710. 【解析】【分析】(1)根据已知条件推出△ABP ≌△ACD ,根据全等三角形的性质得到PB=CD ,∠ACD=∠B=45°,于是得到 1;PB CD= ()2根据已知条件得到△ABC ∽△APD ,由相似三角形的性质得到AB AP k AC AD ==,得到 ABP ∽△CAD ,根据相似三角形的性质得到结论;()3过A 作AH ⊥BC 于 H ,得到△ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到222245,3,AC AH CH PH PA AH =+==-=根据相似三角形的性质得到 AB AP AC AD =,推出△ABP ∽△CAD ,根据相似三角形的性质即可得到结论.【详解】(1)∵∠A=90°,1,AB AC= ∴AB=AC ,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°, ∴AP=AD ,∴∠BAP=∠CAD ,在△ABP 与△ACD 中,AB=AC, ∠BAP=∠CAD ,AP=AD, ∴△ABP ≌△ACD ,∴PB=CD ,∠ACD=∠B=45°, ∴PB CD =1, (2),PB AB ACD B k CD AC ,∠=∠== ∵∠BAC=∠PAD=90°,∠B=∠APD , ∴△ABC ∽△APD ,AB AP k AC AD==Q ∵∠BAP+∠PAC=∠PAC+∠CAD=90°, ∴∠BAP=∠CAD ,∴△ABP ∽△CAD ,∴∠ACD=∠B ,,PB AB k CD AC== (3)过 A 作 AH ⊥BC 于 H ,∵∠B=45°,∴△ABH 是等腰直角三角形,∵BC=12,∴CH=8,∴2245,AC AH CH =+=∴PH=22PA AH -=3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD ,∴△ABC ∽△APD ,∴AB AP AC AD=, ∵∠BAP+∠PAC=∠PAC+∠CAD ,∴∠BAP=∠CAD ,∴△ABP ∽△CAD ,∴,AB PB AC CD =即421,45CD = ∴102CD =. 过 A 作 AH ⊥BC 于 H ,∵∠B=45°,∴△ABH 是等腰直角三角形,∵BC=12,∴CH=8,∴AC ==∴,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD ,∴△ABC ∽△APD , ∴AB AP AC AD=, ∵∠BAP+∠PAC=∠PAC+∠CAD ,∴∠BAP=∠CAD ,∴△ABP ∽△CAD ,∴,AB PBAC CD =7,CD=∴2CD =【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.23.客车不能通过限高杆,理由见解析【解析】【分析】根据DE ⊥BC ,DF ⊥AB ,得到∠EDF=∠ABC=14°.在Rt △EDF 中,根据cos ∠EDF=DF DE,求出DF 的值,即可判断.【详解】∵DE ⊥BC ,DF ⊥AB ,∴∠EDF=∠ABC=14°.在Rt △EDF 中,∠DFE=90°,∵cos ∠EDF=DF DE, ∴DF=DE•cos ∠EDF=2.55×cos14°≈2.55×0.97≈2.1.∵限高杆顶端到桥面的距离DF 为2.1米,小于客车高2.5米,∴客车不能通过限高杆.【点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.24.(1)3(2)11a a +-. 【解析】 【分析】(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;(3)根据分式的减法和除法可以解答本题.【详解】(1)())0223π12sin60︒-+-+-=4+1+|1﹣2×3=4+1+|133 13(2)2a 12a 1a a a --⎛⎫÷- ⎪⎝⎭=()()2a 1a 1a 2a 1a a+--+÷ =()()()2a 1a 1a ·a a 1+--=a1 a1 +-.【点睛】本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.25.(1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.【解析】【分析】【详解】(1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴AD PAGE PG=,∴46AD tt-=,∴AD=16t(4﹣t),∴BD=AB﹣AD=6﹣16t(4﹣t)=16t2﹣23t+6,∵EG⊥x轴、FP⊥x轴,且EG=FP,∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,∴S四边形BEDF=S△BDF+S△BDE=12×BD×EF=12×(16t2﹣23t+6)×6=12(t﹣2)2+16,∴当t=2时,S有最小值是16;(3)①假设∠FBD为直角,则点F在直线BC上,∵PF=OP<AB,∴点F不可能在BC上,即∠FBD不可能为直角;②假设∠FDB为直角,则点D在EF上,∵点D在矩形的对角线PE上,∴点D不可能在EF上,即∠FDB不可能为直角;③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,如图2,作FH⊥BD于点H,则FH=PA,即4﹣t=6﹣t,方程无解,∴假设不成立,即△BDF不可能是等腰直角三角形.26.(1)117;(2)答案见图;(3)B;(4)30.【解析】【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【详解】(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.27.(1)∠EAD的余切值为56;(2)BFCF=58.【解析】【分析】(1)在Rt△ADB中,根据AB=13,cos∠BAC=513,求出AD的长,由勾股定理求出BD的长,进而可求出DE的长,然后根据余切的定义求∠EAD的余切即可;(2)过D作DG∥AF交BC于G,由平行线分线段成比例定理可得CD:AD=CG:FG=3:5,从而可设CD=3x,AD=5x,再由EF∥DG,BE=ED,可知BF=FG=5x,然后可求BF:CF的值.【详解】(1)∵BD⊥AC,∴∠ADE=90°,Rt△ADB中,AB=13,cos∠BAC=5 13,∴AD=5,由勾股定理得:BD=12,∵E是BD的中点,∴ED=6,∴∠EAD的余切==56;(2)过D作DG∥AF交BC于G,∵AC=8,AD=5,∴CD=3,∵DG∥AF,∴=35,设CD=3x,AD=5x,∵EF∥DG,BE=ED,∴BF=FG=5x,∴==5 8 .【点睛】本题考查了勾股定理,锐角三角函数的定义,平行线分线段成比例定理.解(1)的关键是熟练掌握锐角三角函数的概念,解(2)的关键是熟练掌握平行线分线段成比例定理.。
江苏省南京市2019-2020学年中考数学模拟试题(5)含解析
江苏省南京市2019-2020学年中考数学模拟试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若2x y +=,2xy =-,则y xx y+的值是( ) A .2B .﹣2C .4D .﹣42.下列计算正确的是( ) A .a 2+a 2=2a 4B .(﹣a 2b )3=﹣a 6b 3C .a 2•a 3=a 6D .a 8÷a 2=a 43.如图,在等腰直角三角形ABC 中,∠C=90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )A .35B .34C .23D .574.已知1122()()A x y B x y ,,,两点都在反比例函数ky x=图象上,当12x 0x <<时,12y y < ,则k 的取值范围是( ) A .k>0B .k<0C .k 0≥D .k 0≤5.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米B .43.510-⨯米C .53.510-⨯米D .93.510-⨯米6.2017年,小榄镇GDP 总量约31600000000元,数据31600000000科学记数法表示为( ) A .0.316×1010B .0.316×1011C .3.16×1010D .3.16×10117.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是( )A .B .C .D .8.数据”1,2,1,3,1”的众数是( ) A .1 B .1.5 C .1.6 D .3 9.下列计算正确的是 A .224a a a +=B .624a a a ÷=C .352()a a =D .222)=a b a b --(10.计算(ab 2)3的结果是( ) A .ab 5B .ab 6C .a 3b 5D .a 3b 611.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,且AB=10,BC=15,MN=3,则AC 的长是( )A .12B .14C .16D .1812.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是( ) 成绩(环) 7 8 9 10 次数 1 4 32A .8、8B .8、8.5C .8、9D .8、10二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.点 C 在射线 AB 上,若 AB=3,BC=2,则AC 为_____.14.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.15.已知反比例函数(0)ky k x=≠,在其图象所在的每个象限内,y 的值随x 的值增大而减小,那么它的图象所在的象限是第__________象限.16.如图,已知⊙P 的半径为2,圆心P 在抛物线y =12x 2﹣1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为_____.17.某市居民用电价格如表所示:用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.5 0.6小芳家二月份用电200千瓦时,交电费105元,则a=______.18.三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为__元(用含a、b的代数式表示)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p) 3.9万台 4.0万台 4.1万台 4.2万台 4.3万台 4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.20.(6分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.①若B、C都在抛物线上,求m的值;②若点C在第四象限,当AC2的值最小时,求m的值.21.(6分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.22.(8分)阅读材料,解答问题.材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(﹣3,9)开始,按点的横坐标依次增加1的规律,在抛物线y=x2上向右跳动,得到点P2、P3、P4、P5…(如图1所示).过P1、P2、P3分别作P1H1、P2H2、P3H3垂直于x轴,垂足为H1、H2、H3,则S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=12(9+1)×2﹣12(9+4)×1﹣12(4+1)×1,即△P1P2P3的面积为1.”问题:(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);(2)猜想四边形P n﹣1P n P n+1P n+2的面积,并说明理由(利用图2);(3)若将抛物线y=x2改为抛物线y=x2+bx+c,其它条件不变,猜想四边形P n﹣1P n P n+1P n+2的面积(直接写出答案).23.(8分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目选手服装普通话主题演讲技巧李明85 70 80 85张华90 75 75 80结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.(1)求证:四边形ADCE是菱形;(2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.25.(10分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;并计算两辆汽车都不直行的概率.(2)求至少有一辆汽车向左转的概率.26.(12分)如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.(1)试探究线段AE与CG的关系,并说明理由.(2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1.①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.②当△CDE为等腰三角形时,求CG的长.27.(12分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为W元.(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】因为()2222x y x xy y +=++,所以()222222228x y x y xy +=+-=-⨯-=,因为22842y x y x x y xy ++===--,故选D. 2.B 【解析】 【分析】 【详解】解:A .a 2+a 2=2a 2,故A 错误; C 、a 2a 3=a 5,故C 错误; D 、a 8÷a 2=a 6,故D 错误; 本题选B.考点:合同类型、同底数幂的乘法、同底数幂的除法、积的乘方 3.A 【解析】∵△DEF 是△AEF 翻折而成, ∴△DEF ≌△AEF ,∠A=∠EDF , ∵△ABC 是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°, ∴∠BED=∠CDF ,设CD=1,CF=x ,则CA=CB=2, ∴DF=FA=2-x ,∴在Rt △CDF 中,由勾股定理得,CF 2+CD 2=DF 2,即x 2+1=(2-x )2, 解得x=3,∴sin∠BED=sin∠CDF=35 CFDF.故选:A.4.B【解析】【分析】根据反比例函数的性质判断即可.【详解】解:∵当x1<x2<0时,y1<y2,∴在每个象限y随x的增大而增大,∴k<0,故选:B.【点睛】本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质.5.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-9米=3.5×10-5米.故选C.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】31600000000=3.16×1.故选:C.本题考查科学记数法,解题的关键是掌握科学记数法的表示. 7.B 【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长, 故选B .【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键. 8.A 【解析】 【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解. 【详解】在这一组数据中1是出现次数最多的,故众数是1. 故选:A . 【点睛】本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 9.B 【解析】试题分析:根据合并同类项的法则,可知2222a a a +=,故A 不正确; 根据同底数幂的除法,知624a a a ÷=,故B 正确; 根据幂的乘方,知()326a a =,故C 不正确;根据完全平方公式,知()2222ab a b a b -=-+,故D 不正确. 故选B.点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算. 10.D 【解析】试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可. 试题解析:(ab 2)3=a 3•(b 2)3=a 3b 1.考点:幂的乘方与积的乘方.11.C【解析】延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN与△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选C.12.B【解析】【分析】根据众数和中位数的概念求解.【详解】由表可知,8环出现次数最多,有4次,所以众数为8环;这10个数据的中位数为第5、6个数据的平均数,即中位数为892=8.5(环),故选:B.【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2或2.【解析】解:本题有两种情形:(2)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;故答案为2或2.点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.14.40°【解析】【分析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为40°.【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.15.【解析】【分析】直接利用反比例函数的增减性进而得出图象的分布.【详解】∵反比例函数ykx(k≠0),在其图象所在的每个象限内,y的值随x的值增大而减小,∴它的图象所在的象限是第一、三象限.故答案为:一、三.【点睛】本题考查了反比例的性质,正确掌握反比例函数图象的分布规律是解题的关键.16.6,16,1)【解析】【分析】根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.将P的纵坐标代入函数解析式,求P点坐标即可【详解】根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.当y=1时,12 x 1-1=1,解得 当y=-1时,12x 1-1=-1,方程无解故P 2)或(2) 【点睛】此题注意应考虑两种情况.熟悉直线和圆的位置关系应满足的数量关系是解题的关键. 17.150 【解析】 【分析】根据题意可得等量关系:不超过a 千瓦时的电费+超过a 千瓦时的电费=105元;根据等量关系列出方程,解出a 的值即可. 【详解】∵0.5×200=100<105, ∴a<200.由题意得:0.5a+0.6(200-a)=105, 解得:a=150. 故答案为:150 【点睛】此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程. 18.(3a ﹣b )【解析】解:由题意可得,剩余金额为:(3a-b )元,故答案为:(3a-b ). 点睛:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)p =0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m 的值为1. 【解析】 【分析】(1)直接利用待定系数法求一次函数解析式即可;(2)利用销量×售价=销售金额,进而利用二次函数最值求法求出即可;(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可. 【详解】(1)设p =kx+b ,把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b 中,得:3.9 24.0, k bk b+=⎧⎨+=⎩解得:0.13.8 kb=⎧⎨=⎩,∴p=0.1x+3.8;(2)设该品牌手机在去年第x个月的销售金额为w万元,w=(﹣50x+2600)(0.1x+3.8)=﹣5x2+70x+9880=﹣5(x﹣7)2+10125,当x=7时,w最大=10125,答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)当x=12时,y=100,p=5,1月份的售价为:100(1﹣m%)元,则2月份的售价为:0.8×100(1﹣m%)元;1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台;∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,解得:m1%=53(舍去),m2%=15,∴m=1,答:m的值为1.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键.20.(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=23或m=﹣23;②m的值为462--.【解析】分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.详解:(1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),∴﹣4﹣8+c=0,即c=12,∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,则顶点坐标为(﹣2,16);(2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,∵点B关于原点的对称点为C,∴C(﹣m,﹣n),∵C落在抛物线上,∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,解得:﹣m2+4m+12=m2﹣4m﹣12,解得:m=2或m=﹣2;②∵点C(﹣m,﹣n)在第四象限,∴﹣m>0,﹣n<0,即m<0,n>0,∵抛物线顶点坐标为(﹣2,16),∴0<n≤16,∵点B在抛物线上,∴﹣m2﹣4m+12=n,∴m2+4m=﹣n+12,∵A(2,0),C(﹣m,﹣n),∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,当n=时,AC2有最小值,∴﹣m2﹣4m+12=,解得:m=,∵m<0,∴m=不合题意,舍去,则m的值为.点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C (-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=12时,AC2有最小值,在解方程求得m的值即可.21.吉普车的速度为30千米/时.【解析】【分析】先设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时,列出方程求出x的值,再进行检验,即可求出答案.【详解】解:设抢修车的速度为x千米/时,则吉普车的速度为15x千米/时.由题意得:1515151.560 x x-=.解得,x=20经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意.答:吉普车的速度为30千米/时.点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用.为中考常见题型,要求学生牢固掌握.注意检验.22.(1)2,2;(2)2,理由见解析;(3)2.【解析】【分析】(1)作P5H5垂直于x轴,垂足为H5,把四边形P1P2P3P2和四边形P2P3P2P5的转化为S P1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2和S P2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3来求解;(2)(3)由图可知,P n﹣1、P n、P n+1、P n+2的横坐标为n﹣5,n﹣2,n﹣3,n﹣2,代入二次函数解析式,可得P n﹣1、P n、P n+1、P n+2的纵坐标为(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,将四边形面积转化为S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn ﹣2来解答.【详解】(1)作P5H5垂直于x轴,垂足为H5,由图可知S P1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2=93111449 2222⨯⨯++---=2,S P2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3=3(14)1111142222+⨯⨯+---=2;(2)作P n﹣1H n﹣1、P n H n、P n+1H n+1、P n+2H n+2垂直于x轴,垂足为H n﹣1、H n、H n+1、H n+2,由图可知P n﹣1、P n、P n+1、P n+2的横坐标为n﹣5,n﹣2,n﹣3,n﹣2,代入二次函数解析式,可得P n﹣1、P n、P n+1、P n+2的纵坐标为(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,四边形P n﹣1P n P n+1P n+2的面积为S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2=222222223(5)(2)(5)(4)(4)(3)(3)(2)2222n n n n n n n n ⎡⎤-+--+--+--+-⎣⎦---=2; (3)S 四边形Pn ﹣1PnPn+1Pn+2=S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣2Hn ﹣2Hn ﹣3Pn ﹣3﹣S 梯形Pn ﹣3Hn ﹣3Hn﹣2Pn ﹣2=22223(5)(5)(2)(2)(5)(5)(4)(4)-22n b n c n b n c n b n c n b n c ⎡⎤-+-++-+-+-+-++-+-+⎣⎦-2222(4)(4)(3)(3)(3)(3)(2)(2)22n b n c n b n c n b n c n b n c-+-++-+-+-+-++-+-+-=2. 【点睛】本题是一道二次函数的综合题,考查了根据函数坐标特点求图形面积的知识,解答时要注意,前一小题为后面的题提供思路,由于计算量极大,要仔细计算,以免出错,23.(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析. 【解析】 【分析】(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题. 【详解】(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%, 普通话项目对应扇形的圆心角是:360°×20%=72°;(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5; (3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5, 张华得分为:90×10%+75×20%+75×30%+80×40%=78.5, ∵80.5>78.5, ∴李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛. 【点睛】本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键. 24.(1)详见解析;(2)1. 【解析】【分析】(1)利用直线DE是线段AC的垂直平分线,得出AC⊥DE,即∠AOD=∠COE=90°,从而得出△AOD≌△COE,即可得出四边形ADCE是菱形.(2)利用当∠ACB=90°时,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性质和勾股定理得出OD和AO的长,即根据菱形的性质得出四边形ADCE的面积.【详解】(1)证明:由题意可知:∵分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;∴直线DE是线段AC的垂直平分线,∴AC⊥DE,即∠AOD=∠COE=90°;且AD=CD、AO=CO,又∵CE∥AB,∴∠1=∠2,在△AOD和△COE中∴△AOD≌△COE(AAS),∴OD=OE,∵A0=CO,DO=EO,∴四边形ADCE是平行四边形,又∵AC⊥DE,∴四边形ADCE是菱形;(2)解:当∠ACB=90°时,OD∥BC,即有△ADO∽△ABC,∴又∵BC=6,∴OD=3,又∵△ADC的周长为18,∴AD+AO=9,即AD=9﹣AO,∴可得AO=4,∴DE=6,AC=8,∴【点睛】考查线段垂直平分线的性质,菱形的判定,相似三角形的判定与性质等,综合性比较强.25.(1)49;(2)59.【解析】【分析】(1)可以采用列表法或树状图求解.可以得到一共有9种情况,从中找到两辆汽车都不直行的结果数,根据概率公式计算可得;(2)根据树状图得出至少有一辆汽车向左转的结果数,根据概率公式可得答案.【详解】(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:∴这两辆汽车行驶方向共有9种可能的结果,其中两辆汽车都不直行的有4种结果,所以两辆汽车都不直行的概率为49;(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=59.【点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.26.(1)AE=CG ,AE ⊥CG ,理由见解析;(2)①位置关系保持不变,数量关系变为34CG AE =; 理由见解析;②当△CDE 为等腰三角形时,CG 的长为32或2120或158. 【解析】试题分析:()1AE CG AE CG =⊥,,证明ADE V ≌CDG V ,即可得出结论. ()2①位置关系保持不变,数量关系变为3.4CG AE =证明ADE CDG V V ∽,根据相似的性质即可得出. ()3分成三种情况讨论即可.试题解析:(1)AE CG AE CG =⊥,, 理由是:如图1,∵四边形EFGD 是正方形,∴90DE DG EDC CDG =∠+∠=︒,, ∵四边形ABCD 是正方形,∴90AB CD ADE EDC ,,=∠+∠=︒ ∴ADE CDG ∠=∠, ∴ADE V ≌CDG V ,∴45AE CG DCG DAE =∠=∠=︒,, ∵45ACD ∠=︒, ∴90ACG ,∠=︒∴CG AC ,⊥ 即AE CG ⊥;(2)①位置关系保持不变,数量关系变为3.4CG AE = 理由是:如图2,连接EG 、DF 交于点O ,连接OC ,∵四边形EFGD 是矩形, ∴OE OF OG OD ===, Rt DGF △中,OG=OF , Rt DCF V 中,OC OF ,= ∴OE OF OG OD OC ====,∴D 、E 、F 、C 、G 在以点O 为圆心的圆上, ∵90DGF ∠=︒, ∴DF 为O e 的直径, ∵DF EG =,∴EG 也是O e 的直径, ∴∠ECG=90°,即AE CG ⊥, ∴90DCG ECD ,∠+∠=︒ ∵90DAC ECD ∠+∠=︒, ∴DAC DCG ∠=∠, ∵ADE CDG ∠=∠, ∴ADE CDG V V ∽,∴3.4CG DC AE AD == ②由①知:3.4CG AE = ∴设34CG x AE x ==,, 分三种情况:(i )当ED EC =时,如图3,过E 作EH CD ⊥于H ,则EH ∥AD ,∴DH CH =,∴4AE EC x ,== 由勾股定理得:5AC =, ∴85x =,5.8x =1538CG x ∴==; (ii )当3DE DC ==时,如图1,过D 作DH AC ⊥于H ,EH CH ∴=,∵90CDH CAD CHD CDA ∠=∠∠=∠=︒,, ∴CDH CAD V V ∽,∴,CD CH CA CD = 3,53CH ∴= ∴95CH =,∴97425255AE x AC CH ==-=-⨯=, 720x =, ∴21320CG x ,==(iii )当3CD CE ==时,如图5,∴4532AE x ==-=,12x =,∴332CG x ==, 综上所述,当CDE △为等腰三角形时,CG 的长为32或2120或158. 点睛:两组角对应,两三角形相似.27.(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元. 【解析】 【分析】(1)直接利用每件利润×销量=总利润进而得出等式求出答案;(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.【详解】(1)根据题意得:(x﹣20)(﹣2x+1)=150,解得:x1=25,x2=35,答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)由题意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,∵a=﹣2,∴抛物线开口向下,当x<30时,y随x的增大而增大,又由于这种农产品的销售价不高于每千克28元∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).∴销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.【点睛】此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键.。
江苏省南京市2019-2020学年中考数学仿真第三次备考试题含解析
江苏省南京市2019-2020学年中考数学仿真第三次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠2.一个多边形内角和是外角和的2倍,它是( )A .五边形B .六边形C .七边形D .八边形3.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有( )A .3块B .4块C .6块D .9块4.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .5.下列算式中,结果等于x 6的是( )A .x 2•x 2•x 2B .x 2+x 2+x 2C .x 2•x 3D .x 4+x 26.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )A .4.995×1011B .49.95×1010C .0.4995×1011D .4.995×10107.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m ,将0.000 000 04用科学记数法表示为( )A .0.4×108B .4×108C .4×10﹣8D .﹣4×108 8.13-的相反数是 ( ) A .13 B .13- C .3 D .-39.如图,G ,E 分别是正方形ABCD 的边AB ,BC 上的点,且AG =CE ,AE ⊥EF ,AE =EF ,现有如下结论:①BE =DH;②△AGE ≌△ECF;③∠FCD =45°;④△GBE ∽△ECH .其中,正确的结论有( )A.4 个B.3 个C.2 个D.1 个10.观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a的值为A.75 B.89 C.103 D.139 11.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>0 12.下列运算不正确的是A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.用换元法解方程221231x xx x+-=+时,如果设21xyx+=,那么原方程化成以y为“元”的方程是________.14.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=______.15.如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分別交AB、BC于点M、N.若M在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为_____16.已知抛物线y =x 2-x -1与x 轴的一个交点为(m ,0),则代数式m 2-m +2017的值为____. 17.因式分解:3a 2-6a+3=________.18.函数1x y -=自变量x 的取值范围是 _____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,建筑物AB 的高为6cm ,在其正东方向有个通信塔CD ,在它们之间的地面点M (B ,M ,D 三点在一条直线上)处测得建筑物顶端A 、塔项C 的仰角分别为37°和60°,在A 处测得塔顶C 的仰角为30°,则通信塔CD 的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3=1.73,精确到0.1m )20.(6分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.21.(6分)如图,已知在Rt ABC V 中,90C ∠=︒,AD 是BAC ∠的平分线.(1)作一个O e 使它经过A D 、两点,且圆心O 在AB 边上;(不写作法,保留作图痕迹)(2)判断直线BC 与O e 的位置关系,并说明理由.22.(8分)如图,在△ABC 中,BC =12,tanA =34,∠B =30°;求AC 和AB 的长.23.(8分)如图,在△ABC中,∠ABC=90°,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE.(1)求证:四边形BCFE是平行四边形;(2)当∠ACB=60°时,求证:四边形BCFE是菱形.24.(10分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.(1)直接写出∠D与∠MAC之间的数量关系;(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;②如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=2时,直接写出BC的值.25.(10分)如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ 于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.当α=125°时,∠ABC=°;求证:AC=CE;若△ABC的外心在其内部,直接写出α的取值范围.26.(12分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.27.(12分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(3,0)与点B(0,﹣1),点D 在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.2.B【解析】【分析】多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【详解】设这个多边形是n边形,根据题意得:(n﹣2)×180°=2×310°解得:n=1.故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.3.B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选B.4.D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.A【解析】试题解析:A、x2•x2•x2=x6,故选项A符合题意;B、x2+x2+x2=3x2,故选项B不符合题意;C、x2•x3=x5,故选项C不符合题意;D、x4+x2,无法计算,故选项D不符合题意.故选A.6.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】将499.5亿用科学记数法表示为:4.995×1.故选D.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【详解】0.000 000 04=4×10-8,故选C【点睛】此题考查科学记数法,难度不大8.B【解析】 先求13-的绝对值,再求其相反数: 根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点13-到原点的距离是13,所以13-的绝对值是13; 相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此13的相反数是13-.故选B . 9.C【解析】【分析】由∠BEG =45°知∠BEA >45°,结合∠AEF =90°得∠HEC <45°,据此知 HC <EC ,即可判断①;求出∠GAE+∠AEG =45°,推出∠GAE =∠FEC ,根据 SAS 推出△GAE ≌△CEF ,即可判断②;求出∠AGE =∠ECF =135°,即可判断③;求出∠FEC <45°,根据相似三角形的判定得出△GBE 和△ECH 不相似,即可判断④.【详解】解:∵四边形 ABCD 是正方形,∴AB =BC =CD ,∵AG =GE ,∴BG =BE ,∴∠BEG =45°,∴∠BEA >45°,∵∠AEF =90°,∴∠HEC <45°,∴HC <EC ,∴CD ﹣CH >BC ﹣CE ,即 DH >BE ,故①错误;∵BG =BE ,∠B =90°,∴∠BGE =∠BEG =45°,∴∠AGE =135°,∴∠GAE+∠AEG =45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE 和△CEF 中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE 和△ECH 不相似,∴④错误;故选:C.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.10.A【解析】观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B.11.D【解析】【分析】首先根据有理数a,b在数轴上的位置判断出a、b两数的符号,从而确定答案.【详解】由数轴可知:a<0<b,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.12.B【解析】,B 是错的,A 、C 、D 运算是正确的,故选B二、填空题:(本大题共6个小题,每小题4分,共24分.)13.y-23y= 【解析】分析:根据换元法,可得答案. 详解:21x x +﹣221x x +=1时,如果设21x x +=y ,那么原方程化成以y 为“元”的方程是y ﹣2y =1. 故答案为y ﹣2y=1. 点睛:本题考查了换元法解分式方程,把21x x +换元为y 是解题的关键. 14.1【解析】【分析】先利用垂径定理得到OD ⊥BC ,则BE=CE ,再证明OE 为△ABC 的中位线得到116322OE AC ==⨯=,入境计算OD−OE 即可.【详解】解:∵BD =CD , ∴¶¶BDCD =, ∴OD ⊥BC ,∴BE =CE ,而OA =OB ,∴OE 为△ABC 的中位线, ∴116322OE AC ==⨯=,∴DE=OD-OE=5-3=1.故答案为1.【点睛】此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.15.115°【解析】【分析】根据三角形的内角和得到∠BAC+∠ACB=130°,根据线段的垂直平分线的性质得到AM=PM,PN=CN,由等腰三角形的性质得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=12×130°=65°,于是得到结论.【详解】∵∠ABC=50°,∴∠BAC+∠ACB=130°,∵若M在PA的中垂线上,N在PC的中垂线上,∴AM=PM,PN=CN,∴∠MAP=∠APM,∠CPN=∠PCN,∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,∴∠MAP+∠PCN=∠PAC+∠ACP=12×130°=65°,∴∠APC=115°,故答案为:115°【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.16.1【解析】【分析】把点(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.【详解】∵二次函数y=x2﹣x﹣1的图象与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.故答案为:1.【点睛】本题考查了抛物线与x轴的交点问题,求代数式的值的应用,解答此题的关键是求出m2﹣m=1,难度适中.17.3(a-1)2【解析】【分析】先提公因式,再套用完全平方公式.【详解】解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.【点睛】考点:提公因式法与公式法的综合运用.18.x≥1且x≠1【解析】【分析】根据分式成立的条件,二次根式成立的条件列不等式组,从而求解.【详解】解:根据题意得:10{30 xx-≥-≠,解得x≥1,且x≠1,即:自变量x取值范围是x≥1且x≠1.故答案为x≥1且x≠1.【点睛】本题考查函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.通信塔CD的高度约为15.9cm.【解析】【分析】过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.【详解】过点A作AE⊥CD于E,则四边形ABDE 是矩形, 设CE=xcm ,在Rt △AEC 中,∠AEC=90°,∠CAE=30°, 所以AE=330CEtan =︒,在Rt △CDM 中,CD=CE+DE=CE+AB=(x+6)cm , DM=)36603x CDtan +=︒cm , 在Rt △ABM 中,BM=63737AB tan tan =︒︒cm ,∵AE=BD , )3663373x x tan +=+︒, 解得:33,∴33(cm ),答:通信塔CD 的高度约为15.9cm . 【点睛】本题考查了解直角三角形,能通过解直角三角形求出AE 、BM 的长度是解此题的关键. 20. (1)14;(2)13. 【解析】 【分析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为14; (2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可. 【详解】(1) ∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,∴任取一个球,摸出球上的汉字刚好是“美”的概率P=14(2)列表如下: 美 丽 光 明 美 ---- (美,丽) (光,美) (美,明) 丽 (美,丽) ---- (光,丽) (明,丽) 光 (美,光) (光,丽) ---- (光,明) 明(美,明)(明,丽)(光,明)-------根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故 取出的两个球上的汉字恰能组成“美丽”或“光明”的概率13P . 【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.21.(1)见解析;(2)BC 与O e 相切,理由见解析. 【解析】 【分析】(1)作出AD 的垂直平分线,交AB 于点O ,进而利用AO 为半径求出即可;(2)利用半径相等结合角平分线的性质得出OD ∥AC ,进而求出OD ⊥BC ,进而得出答案. 【详解】(1)①分别以A D 、为圆心,大于12AD 的长为半径作弧,两弧相交于点E 和F , ②作直线EF ,与AB 相交于点O ,③以O 为圆心,OA 为半径作圆,如图即为所作;(2)BC 与O e 相切,理由如下: 连接OD ,,OA OD Q 为O e 半径,OA OD∴=,AOD∴V是等腰三角形,OAD ODA∠=∠∴,ADQ平分BAC∠,CAD OAD∴∠=∠,CAD ODA∴∠=∠,AC OD∴P,90C∠=︒Q,90ODB∴∠=︒,OD BC∴⊥,ODQ为Oe半径,BC∴与Oe相切.【点睛】本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键.22.8+63.【解析】【分析】如图作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解决问题;【详解】解:如图作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH=12BC=6,BH22BC CH-3在Rt△ACH中,tanA=34=CHAH,∴AH=8,∴AC22AH CH+10,【点睛】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(1)见解析;(2)见解析【解析】【分析】(1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形.(2)根据菱形的判定证明即可.【详解】(1)证明::∵D.E为AB,AC中点∴DE为△ABC的中位线,DE=BC,∴DE∥BC,即EF∥BC,∵EF=BC,∴四边形BCEF为平行四边形.(2)∵四边形BCEF为平行四边形,∵∠ACB=60°,∴BC=CE=BE,∴四边形BCFE是菱形.【点睛】本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(1)相等或互补;(2)①BD+AB=2BC;②AB﹣BD2BC;(3)BC3131. 【解析】【分析】(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,(2)①作辅助线,证明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解题, ②在射线AM上截取AF=BD,连接CF,证明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解题,(3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.【详解】解:(1)相等或互补;理由:当点C,D在直线MN同侧时,如图1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四边形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;当点C,D在直线MN两侧时,如图2,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D与∠MAC之间的数量是相等或互补;(2)①猜想:BD+AB2BC如图3,在射线AM上截取AF=BD,连接CF.又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF2BC∵AF+AB=BF2BC∴BD+AB2BC;②如图2,在射线AM上截取AF=BD,连接CF,又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=2BC∵AB﹣AF=BF=2BC∴AB﹣BD=2BC;(3)①当点C,D在直线MN同侧时,如图3﹣1,由(2)①知,△ACF≌△DCB,∴CF=BC,∠ACF=∠ACD=90°,∴∠ABC=45°,∵∠ABD=90°,∴∠CBD=45°,过点D作DG⊥BC于G,在Rt△BDG中,∠CBD=45°,BD2,∴DG=BG=1,在Rt △CGD 中,∠BCD =30°, ∴CG =3,DG =3, ∴BC =CG+BG =3+1,②当点C ,D 在直线MN 两侧时,如图2﹣1, 过点D 作DG ⊥CB 交CB 的延长线于G , 同①的方法得,BG =1,CG =3, ∴BC =CG ﹣BG =3﹣1 即:BC =31+ 或31-,【点睛】本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键. 25.(1)125;(2)详见解析;(3)45°<α<90°. 【解析】 【分析】(1)利用四边形内角和等于360度得:∠B+∠ADC =180°,而∠ADC+∠EDC =180°,即可求解; (2)证明△ABC ≌△EDC (AAS )即可求解;(3)当∠ABC =α=90°时,△ABC 的外心在其直角边上,∠ABC =α>90°时,△ABC 的外心在其外部,即可求解. 【详解】(1)在四边形BADC 中,∠B+∠ADC =360°﹣∠BAD ﹣∠DCB =180°, 而∠ADC+∠EDC =180°,∴∠ABC=∠PDC=α=125°,故答案为125;(2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,∴∠ACB=∠ECD,又BC=DC,由(1)知:∠ABC=∠PDC,∴△ABC≌△EDC(AAS),∴AC=CE;(3)当∠ABC=α=90°时,△ABC的外心在其斜边上;∠ABC=α>90°时,△ABC的外心在其外部,而45°<α<135°,故:45°<α<90°.【点睛】本题考查圆的综合运用,解题的关键是掌握三角形全等的判定和性质(AAS)、三角形外心.26.(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升.【解析】试题分析:(1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.试题解析:解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)÷7=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)100800×100%=12.5%.答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.27.(1)详见解析;(2),1).【解析】【分析】(1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;(2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E 的坐标.【详解】(1)∵点A,0)与点B(0,﹣1),∴OB=1,∴,∵AB 是⊙M 的直径,∴⊙M 的直径为2,∵∠COD=∠CBO ,∠COD=∠CBA ,∴∠CBO=∠CBA ,即BD 平分∠ABO ;(2)如图,过点A 作AE ⊥AB 于E ,交BD 的延长线于点E ,过E 作EF ⊥OA 于F ,即AE 是切线,∵在Rt △ACB 中,tan ∠OAB=OB OA == ∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC=12ABO ∠=30°,∴=∴AC=OA ﹣OC=3, ∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE 是等边三角形,∴∴AF=12AE =1,∴OF=OA ﹣,∴点E 的坐标为(3,1).【点睛】此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.。
2019-2020南京市中考数学模拟试卷(及答案)
2019-2020南京市中考数学模拟试卷(及答案)一、选择题1.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( ) A .154B .14C .1515D .417172.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A .B .C .D .3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A .14cmB .4cmC .15cmD .3cm4.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A 5B 25C 5D .235.已知命题A :“若a 2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( ) A .a =1B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)6.下列二次根式中的最简二次根式是()A.30B.12C.8D.0.57.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A.2 B.3 C.4 D.58.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+9.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=35米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A.5米B.6米C.8米D.(3+5)米10.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°11.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠12.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.14.如图,矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为____________.15.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .16.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____. 17.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)18.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是x= .19.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.20.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.三、解答题21.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?22.如图,在平面直角坐标系中,直线10y kx =-经过点(12,0)A 和(,5)B a -,双曲线(0)my x x=>经过点B . (1)求直线10y kx =-和双曲线my x=的函数表达式; (2)点C 从点A 出发,沿过点A 与y 轴平行的直线向下运动,速度为每秒1个单位长度,点C 的运动时间为t (0<t <12),连接BC ,作BD ⊥BC 交x 轴于点D ,连接CD , ①当点C 在双曲线上时,求t 的值;②在0<t <6范围内,∠BCD 的大小如果发生变化,求tan ∠BCD 的变化范围;如果不发生变化,求tan ∠BCD 的值; ③当136112DC =时,请直接写出t 的值.23.问题:探究函数y =x + 的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)函数的自变量x 的取值范围是:____;(2)如表是y 与x 的几组对应值,请将表格补充完整: x… ﹣3﹣2﹣﹣11 2 3 …y … ﹣3 ﹣3 ﹣3 ﹣443 …(3)如图,在平面直角坐标系中描点并画出此函数的图象;(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).24.已知:如图,△ABC为等腰直角三角形∠ACB=90°,过点C作直线CM,D为直线CM上一点,如果CE=CD且EC⊥CD.(1)求证:△ADC≌△BEC;(2)如果EC⊥BE,证明:AD∥EC.25.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,∴BC ,则cos B =BC AB , 故选A2.D解析:D 【解析】 【分析】 【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等; B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1. 故选:D3.A解析:A 【解析】运用直角三角形的勾股定理,设正方形D 的边长为x ,则22222(65)(5)10x +++=,x =(负值已舍),故选A4.A解析:A 【解析】 【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B . 【详解】在直角△ABC 中,根据勾股定理可得:AB ===3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B AC AB ==. 故选A . 【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.5.D【解析】【分析】a=可确定a的范围,排除掉在范围内的选项即可.【详解】解:当a≥0a=,当a<0a=-,∵a=1>0,故选项A不符合题意,∵a=0,故选项B不符合题意,∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选:D.【点睛】a aaa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键. 6.A解析:A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC,不是最简二次根式;D故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.7.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.8.D解析:D【分析】首先用x 表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程. 【详解】解:∵甲每小时做x 个零件,∴乙每小时做(x+8)个零件, ∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x =+, 故选D. 【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.9.A解析:A 【解析】试题分析:根据CD :AD=1:2,CD=3米,AD=6米,根据AB=10米,∠D=90°可得:米,则BC=BD -CD=8-3=5米.考点:直角三角形的勾股定理10.D解析:D 【解析】题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.11.A解析:A 【解析】 【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形, ∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =, ∴OB BM OD DN -=-,即OM ON =, ∴四边形AMCN 是平行四边形,∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形. 故选:A . 【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.12.无二、填空题13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC 连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函解析:13【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案. 详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =, ∴tan ∠BAC =133EF AC AF AC ==. 故答案为13. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.14.【解析】试题解析:∵四边形ABCD 是矩形∴OB=ODOA=OCAC=BD ∴OA=OB ∵AE 垂直平分OB ∴AB=AO ∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角解析:【解析】试题解析:∵四边形ABCD 是矩形, ∴OB =OD ,OA =OC ,AC =BD , ∴OA=OB , ∵AE 垂直平分OB , ∴AB =AO , ∴OA =AB =OB =3, ∴BD =2OB =6,∴AD ==【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.15.110°【解析】∵a ∥b ∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110° 【解析】∵a ∥b ,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°16.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<. 【解析】 【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<, ∴1k >,3k <, ∴13k <<, 故答案为:13k <<. 【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.17.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分 解析:()43n -【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.18.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.19.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca -=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.20.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.三、解答题21.甲每小时做24个零件,乙每小时做20个零件.【解析】【分析】设甲每小时做x个零件,则乙每小时做(x-4)个零件,根据工作时间=工作总量÷工作效率结合甲做120个所用的时间与乙做100个所用的时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设甲每小时做x个零件,则乙每小时做(x﹣4)个零件,根据题意得:1201004x x=-,解得:x=24,经检验,x=24是分式方程的解,∴x ﹣4=20.答:甲每小时做24个零件,乙每小时做20个零件.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(1)直线的表达式为5106y x =-,双曲线的表达式为30y x =-;(2)①52;②当06t <<时,BCD ∠的大小不发生变化,tan BCD ∠的值为56;③t 的值为52或152. 【解析】【分析】(1)由点(12,0)A 利用待定系数法可求出直线的表达式;再由直线的表达式求出点B 的坐标,然后利用待定系数法即可求出双曲线的表达式;(2)①先求出点C 的横坐标,再将其代入双曲线的表达式求出点C 的纵坐标,从而即可得出t 的值;②如图1(见解析),设直线AB 交y 轴于M ,则(0,10)M -,取CD 的中点K ,连接AK 、BK .利用直角三角形的性质证明A 、D 、B 、C 四点共圆,再根据圆周角定理可得BCD DAB ∠=∠,从而得出tan tan OM BCD DAB OA∠=∠=,即可解决问题; ③如图2(见解析),过点B 作⊥BM OA 于M ,先求出点D 与点M 重合的临界位置时t 的值,据此分05t <<和512t ≤<两种情况讨论:根据,,A B C 三点坐标求出,,AM BM AC 的长,再利用三角形相似的判定定理与性质求出DM 的长,最后在Rt ACD ∆中,利用勾股定理即可得出答案.【详解】(1)∵直线10y kx =-经过点(12,0)A 和(,5)B a -∴将点(12,0)A 代入得12100k -= 解得56k = 故直线的表达式为5106y x =- 将点(,5)B a -代入直线的表达式得51056a -=- 解得6a =(6,5)B ∴- ∵双曲线(0)m y x x=>经过点(6,5)B -56m ∴=-,解得30m =- 故双曲线的表达式为30y x =-; (2)①//AC y 轴,点A 的坐标为(12,0)A∴点C 的横坐标为12 将其代入双曲线的表达式得305122y =-=- ∴C 的纵坐标为52-,即52AC = 由题意得512t AC ⋅==,解得52t = 故当点C 在双曲线上时,t 的值为52; ②当06t <<时,BCD ∠的大小不发生变化,求解过程如下:若点D 与点A 重合由题意知,点C 坐标为(12,)t -由两点距离公式得:222(612)(50)61AB =-+--= 2222(126)(5)36(5)BC t t =-+-+=+-+22AC t =由勾股定理得222AB BC AC +=,即226136(5)t t ++-+=解得12.2t =因此,在06t <<范围内,点D 与点A 不重合,且在点A 左侧如图1,设直线AB 交y 轴于M ,取CD 的中点K ,连接AK 、BK由(1)知,直线AB 的表达式为5106y x =- 令0x =得10y =-,则(0,10)M -,即10OM =点K 为CD 的中点,BD BC ⊥12BK DK CK CD ∴===(直角三角形中,斜边上的中线等于斜边的一半) 同理可得:12AK DK CK CD === BK DK CK AK ∴===∴A 、D 、B 、C 四点共圆,点K 为圆心BCD DAB ∴∠=∠(圆周角定理)105tan tan 126OM BCD DAB OA ∴∠=∠===;③过点B 作⊥BM OA 于M由题意和②可知,点D 在点A 左侧,与点M 重合是一个临界位置此时,四边形ACBD 是矩形,则5AC BD ==,即5t =因此,分以下2种情况讨论:如图2,当05t <<时,过点C 作CN BM ⊥于N(6,5(1),2,0),(12,)B A t C --12,6,6,5,OA OM AM OA OM BM AC t ∴===-===90CBN DBM BDM DBM ∠+∠=∠+∠=︒CBN BDM ∴∠=∠又90CNB BMD ∠=∠=︒CNB BMD ∴∆~∆ CN BN BM DM ∴= AM BM AC BM DM -∴=,即655t DM-= 5(5)6DM t ∴=- 56(5)6AD AM DM t ∴=+=+- 由勾股定理得222AD AC CD += 即222513616(5)(6t t ⎡⎤+-+=⎢⎥⎣⎦解得52t =或152t =(不符题设,舍去) 当512t ≤<时,同理可得:222513616(5)(6t t ⎡⎤--+=⎢⎥⎣⎦解得152t=或52t=(不符题设,舍去)综上所述,t的值为52或152.【点睛】本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.23.(1)x≠0;(2)3,3;(3)详见解析;(4)此函数有最小值和最大值.【解析】【分析】(1)由分母不为零,确定x的取值范围即可;(2)将x=1,x=2代入解析式即可得答案;(3)描点画图即可;(4)观察函数图象有最低点和最高点,得到一个性质;【详解】(1)因为分母不为零,∴x≠0;故答案为a≠0.(2)x=1时,y=3;x=2时,y=3;故答案为3,3.(3)如图:(4)此函数有最小值和最大值;【点睛】本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.24.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据两锐角互余的关系可得∠ACD=∠BCE,利用SAS即可证明△ADC≌△BEC;(2)由△ADC≌△BEC可得∠ADC=∠E=90°,根据平行线判定定理即可证明AD//EC.【详解】(1)∵EC⊥DM,∴∠ECD=90°,∴∠ACB=∠DCE=90°,∴∠ACD+∠ACE=90°,∠BCE+∠ACE=90°,∴∠ACD=∠BCE,∵CD=CE,CA=CB,∴△ADC≌△BEC(SAS).(2)由(1)得△ADC≌△BEC,∵EC⊥BE,∴∠ADC=∠E=90°,∴AD⊥DM,∵EC⊥DM,∴AD∥EC.【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.25.123米.【解析】【分析】在Rt△ABC中,利用tanBC CABAB∠=即可求解.【详解】解:∵CD∥AB,∴∠CAB=∠DCA=39°.在Rt△ABC中,∠ABC=90°,tanBC CABAB∠=.∴100123tan0.81BCABCAB==≈∠.答:A、B两地之间的距离约为123米.【点睛】本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.。
【附5套中考模拟试卷】江苏省南京市2019-2020学年中考数学模拟试题含解析
(2)点P、点Q(不与△ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC.当AQ⊥PC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明).
___________________________.
A. B. C. D.
3.下列计算正确的是( )
A.x2x3=x6B.(m+3)2=m2+9
C.a10÷a5=a5D.(xy2)3=xy6
4.下列图形中,线段MN的长度表示点M到直线l的距离的是()
A. B. C. D.
5.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1.关于这组数据说法错误的是( )
12.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.关于x的一元如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
10.一、单选题
如图:在 中, 平分 , 平分 ,且 交 于 ,若 ,则 等于()
A.75B.100C.120D.125
11.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为()
2019-2020南京外国语中学数学中考第一次模拟试卷(附答案)
2019-2020南京外国语中学数学中考第一次模拟试卷(附答案)一、选择题1.下列四个实数中,比1-小的数是( )A .2-B .0C .1D .22.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( )A .()6,0-B .()6,0C .()2,0-D .()2,03.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( )A .5cmB .10cmC .20cmD .40cm 4.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( ) A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0) 5.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣56.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面爬到顶点B ,则它爬行的最短路程是( )A .10B .5C .22D .37.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .54 8.已知直线//m n ,将一块含30°角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30°D .40︒9.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( )A .2B .3C .4D .10.下列二次根式中的最简二次根式是( )A .30B .12C .8D .0.5 11.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .312.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 ( )A .B .C .D .二、填空题13.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 14.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.15.不等式组0125x a x x ->⎧⎨->-⎩有3个整数解,则a 的取值范围是_____. 16.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)17.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________.18.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______19.若a b =2,则222a b a ab--的值为________. 20.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是三、解答题21.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩22.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE=33,DF=3,求图中阴影部分的面积.23.如图1,菱形ABCD 中,120ABC ∠=︒,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA PE =,PE 交CD 于F ,连接CE .△≌△;(1)证明:ADP CDP△的形状,并说明理由.(2)判断CEP(3)如图2,把菱形ABCD改为正方形ABCD,其他条件不变,直接..写出线段AP与线段CE的数量关系.24.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)25.计算:(1)2(m﹣1)2﹣(2m+1)(m﹣1)(2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;考点:有理数大小比较.2.D解析:D【解析】【分析】根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.【详解】∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),设直线1l的解析式y=kx+b,把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,则4342 bk=⎧⎨+=-⎩,解得:24kb=-⎧⎨=⎩,故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,则324m nn+=⎧⎨=-⎩,解得m2n4=⎧⎨=-⎩,∴直线2l的解析式为:y=2x﹣4,联立2424y xy x=-+⎧⎨=-⎩,解得:2xy=⎧⎨=⎩即1l与2l的交点坐标为(2,0).故选D.【点睛】本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.3.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.4.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 5.A解析:A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.6.C解析:C【解析】蚂蚁有两种爬法,就是把正视和俯视(或正视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短路程.【详解】如图所示,路径一:AB 22211=++=()22;路径二:AB 2221110=++=().∵2210<,∴蚂蚁爬行的最短路程为22.故选C .【点睛】本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.7.B解析:B【解析】【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可.【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置,∴AE=AB ,∠E=∠B=90°,又∵四边形ABCD 为矩形,∴AB=CD ,∴AE=DC ,而∠AFE=∠DFC ,∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ),∴EF=DF ;∵四边形ABCD为矩形,∴AD=BC=6,CD=AB=4,∵Rt△AEF≌Rt△CDF,∴FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=133,则FD=6-x=5 3 .故选B.【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.8.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】解:Q直线//m n,21180ABC BAC∴∠+∠∠+∠=+︒,30ABC=︒∠Q,90BAC∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B.【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.9.C解析:C【解析】【分析】由题意,可得A(1,1),C(1,k),B(2,),D(2,k),则△OAC面积=(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),根据△OAC与△CBD的面积之和为,即可得出k的值.【详解】∵AC∥BD∥y轴,点A,B的横坐标分别为1、2,∴A(1,1),C(1,k),B(2,),D(2,k),∴△OAC面积=×1×(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),∵△OAC与△CBD的面积之和为,∴(k-1)+ (k-1)=,∴k=4.故选C.【点睛】本题考查反比例函数系数k的几何意义,三角形面积的计算,解题的关键是用k表示出△OAC与△CBD的面积.10.A解析:A【解析】【分析】根据最简二次根式的概念判断即可.【详解】A30B12=23C8=22,不是最简二次根式;D20.5=2,不是最简二次根式;故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.11.B解析:B【解析】【分析】【详解】过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=12 BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=12S S+=12.故选B.12.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.二、填空题13.n<2且【解析】分析:解方程得:x=n﹣2∵关于x的方程的解是负数∴n﹣2<0解得:n<2又∵原方程有意义的条件为:∴即∴n的取值范围为n<2且解析:n<2且3 n2≠-【解析】分析:解方程3x n22x1+=+得:x=n﹣2,∵关于x的方程3x n22x1+=+的解是负数,∴n﹣2<0,解得:n<2.又∵原方程有意义的条件为:1x2≠-,∴1n22-≠-,即3n2≠-.∴n的取值范围为n<2且3n2≠-.14.2000【解析】【分析】设这种商品的进价是x元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x元由题意得(1+40)x×08=2240解得:x=2000故答案为:2000解析:2000,【解析】【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【详解】设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240,解得:x =2000,故答案为:2000.【点睛】本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.15.﹣2≤a <﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a 的不等式从而求出a 的范围【详解】解不等式x ﹣a >0得解析:﹣2≤a <﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式x ﹣a >0,得:x >a ,解不等式1﹣x >2x ﹣5,得:x <2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a <﹣1,故答案为:﹣2≤a <﹣1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分 解析:()43n -【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3; 图②中三角形的个数为5=4×2-3; 图③中三角形的个数为9=4×3-3; …可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.17.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.18.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB得m +m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.19.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本解析:3 2【解析】分析:先根据题意得出a=2b,再由分式的基本性质把原式进行化简,把a=2b代入进行计算即可.详解:∵ab=2,∴a=2b,原式=()()() a b a b a a b+--=a b a +当a=2b时,原式=22b bb+=32.故答案为32.点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.20.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式解析:k≥,且k≠0【解析】试题解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,解得:k≥-,∵原方程是一元二次方程,∴k≠0.考点:根的判别式.三、解答题21.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】 先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=. 原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.22.(1)DE 与⊙O 相切,理由见解析;(2)阴影部分的面积为2π﹣33. 【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE 与⊙O 相切,理由:连接DO ,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC 的平分线交⊙O 于点D ,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE 与⊙O 相切;(2)∵∠ABC 的平分线交⊙O 于点D ,DE⊥BE,DF⊥AB,∴DE=DF=3,=6, ∵sin∠DBF=31=62, ∴∠DBA=30°,∴∠DOF=60°,∴sin60°=32DF DO DO ==,则故图中阴影部分的面积为:26013236022ππ⨯-=-. 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键.23.(1)证明见解析;(2)CEP ∆是等边三角形,理由见解析;(3)CE =. 【解析】【分析】(1)由菱形ABCD 性质可知,AD CD =,ADP CDP ∠=∠,即可证明;(2)由△PDA ≌△PDC ,推出PA=PC ,由PA=PE ,推出DCP DEP ∠=∠,可知60CPF EDF ∠=∠=︒,由PA═PE=PC ,即可证明△PEC 是等边三角形;(3)由△PDA ≌△PDC ,推出PA=PC ,∠3=∠1,由PA=PE ,推出∠2=∠3,推出∠1=∠2,由∠EDF=90°,∠DFE=∠PFC ,推出∠FPC=EDF=90°,推出△PEC 是等腰直角三角形即可解答;【详解】(1)证明:在菱形ABCD 中,AD CD =,ADP CDP ∠=∠,在ADP ∆和CDP ∆AD CD ADP CDP DP DP =⎧⎪∠=∠⎨⎪=⎩,∴()ADP CDP SAS ∆≅∆.(2)CEP ∆是等边三角形,由(1)知,ADP CDP ∆≅∆,∴DAP DCP ∠=∠,AP CP =,∵PA PE =,∴DAP DEP ∠=∠,∴DCP DEP ∠=∠,∵CFP EFD ∠=∠(对顶角相等),∴180180PFC PCF DFE DEP ︒-∠-∠=︒-∠-∠,即60CPF EDF ∠=∠=︒,又∵PA PE =,AP CP =;∴PE PC =,∴CEP ∆是等边三角形.(3)2CE AP =.过程如下:证明:如图1中,∵四边形ABCD 是正方形,∴AD=DC ,∠ADB=∠CDB=45°,∠ADC=90°,在△PDA 和△PDC 中,PD PD PDA PDC DA DC ⎧⎪∠∠⎨⎪⎩===,,∴△PDA ≌△PDC ,∴PA=PC ,∠3=∠1,∵PA=PE ,∴∠2=∠3,∴∠1=∠2,∵∠EDF=90°,∠DFE=∠PFC ,∴∠FPC=EDF=90°, ∴△PEC 是等腰直角三角形.∴2PC 2AP .【点睛】本题考查正方形的性质、菱形的性质、全等三角形的判定和性质、等边三角形判定、等腰直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.123米.【解析】【分析】在Rt△ABC中,利用tanBC CABAB∠=即可求解.【详解】解:∵CD∥AB,∴∠CAB=∠DCA=39°.在Rt△ABC中,∠ABC=90°,tanBC CABAB∠=.∴100123tan0.81BCABCAB==≈∠.答:A、B两地之间的距离约为123米.【点睛】本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.25.(1)﹣3m+3;(2)【解析】【分析】(1)先根据完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)先计算括号内分式的减法,将除法转化为乘法,再约分即可得.【详解】(1)原式=2(m2﹣2m+1)﹣(2m2﹣2m+m﹣1)=2m2﹣4m+2﹣2m2+2m﹣m+1=﹣3m+3;(2)原式=(﹣)÷==.【点睛】本题主要考查分式和整式的混合运算,熟练掌握分式与整式的混合运算顺序和运算法则是解题关键.。
【附20套中考模拟试题】江苏省南京市南京外国语校2019-2020学年中考数学模拟试卷含解析
江苏省南京市南京外国语校2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:次序第一次第二次第三次第四次第五次甲命中的环数(环) 6 7 8 6 8乙命中的环数(环) 5 10 7 6 7根据以上数据,下列说法正确的是( )A.甲的平均成绩大于乙B.甲、乙成绩的中位数不同C.甲、乙成绩的众数相同D.甲的成绩更稳定2.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为()A.16+162B.16+82C.24+162D.4+423.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )A.q<16 B.q>16C.q≤4D.q≥44.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为()A.1 B.2 C.3 D.45.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.16.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )A.8374y xy x-=⎧⎨-=⎩B.8374y xx y-=⎧⎨-=⎩C.8374x yy x-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩7.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.8.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解,则t的取值范围是( )A.-5<t≤4B.3<t≤4C.-5<t<3 D.t>-59.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A.30°B.45°C.50°D.75°10.第24 届冬奥会将于2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是()A.15B.25C.12D.3511.下列各数中是有理数的是()A.πB.0 C.2D.3512.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.其中正确的个数为A.1 B.2 C.3 D.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣4x图象上的两个点,则y1与y2的大小关系为__________.14.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.15.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_____.16.已知x1,x2是方程x2+6x+3=0的两实数根,则2112x xx x的值为_____.17.如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,……,依次下去.则点B6的坐标____________.183,则它的半径为______ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P 的坐标求△PAB的面积.20.(6分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为,图①中m的值为;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.21.(6分)李宁准备完成题目;解二元一次方程组48x yx y-=⎧⎨+=-⎩W,发现系数“□”印刷不清楚.他把“□”猜成3,请你解二元一次方程组438x yx y-=⎧⎨+=-⎩;张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?22.(8分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).画出△ABC关于x轴对称的△A1B1C1;以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.24.(10分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.25.(10分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.26.(12分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GE•GD.求证:∠ACF=∠ABD;连接EF,求证:EF•CG=EG•CB.27.(12分)如图1所示,点E在弦AB所对的优弧上,且为半圆,C是上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:x/cm 0 1 2 3 4 5 6y1/cm 0 0.78 1.76 2.85 3.98 4.95 4.47y2/cm 4 4.69 5.26 5.96 5.94 4.47(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;结合函数图象,解决问题:①连接BE,则BE的长约为cm.②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为cm.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可.【详解】把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;∴甲、乙成绩的中位数相同,故选项B错误;根据表格中数据可知,甲的众数是8环,乙的众数是7环,∴甲、乙成绩的众数不同,故选项C错误;甲命中的环数的平均数为:(环),乙命中的环数的平均数为:(环),∴甲的平均数等于乙的平均数,故选项A错误;甲的方差=[(6−7)2+(7−7)2+(8−7)2+(6−7)2+(8−7)2]=0.8;乙的方差=[(5−7)2+(10−7)2+(7−7)2+(6−7)2+(7−7)2]=2.8,因为2.8>0.8,所以甲的稳定性大,故选项D正确.故选D.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.同时还考查了众数的中位数的求法.2.A【解析】【分析】分析出此三棱柱的立体图像即可得出答案.【详解】由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=224=8222+4×2所以答案选择A项.【点睛】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.3.A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选 A.4.B【解析】【分析】先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答【详解】将点A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,与x轴交于两点,设A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有两个不等的实数根,∴x1+x2=4,x1•x2=3,∴AB=|x1﹣x2|=2;故选B.【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.5.C【解析】【分析】根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于12AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法. 6.C 【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程. 【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程. 7.C 【解析】 【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得. 【详解】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选C . 【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图. 8.B 【解析】 【分析】先利用抛物线的对称轴方程求出m 得到抛物线解析式为y=-x 2+4x ,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x 2+4x 与直线y=t 在1<x <3的范围内有公共点可确定t 的范围. 【详解】∵ 抛物线y=-x 2+mx 的对称轴为直线x=2,∴222(1)b m a -=-=⨯-, 解之:m=4, ∴y=-x 2+4x ,当x=2时,y=-4+8=4, ∴顶点坐标为(2,4),∵ 关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解, 当x=1时,y=-1+4=3, 当x=2时,y=-4+8=4, ∴ 3<t≤4, 故选:B 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质. 9.B 【解析】试题解析:∵AB=AC ,∠A=30°,∴∠ABC=∠ACB=75°,∵AB 的垂直平分线交AC 于D ,∴AD=BD ,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B . 10.B 【解析】 【分析】先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解. 【详解】∵有 5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张, ∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是25. 故选B . 【点睛】本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比. 11.B 【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案. 【详解】A 、π是无限不循环小数,属于无理数,故本选项错误;B 、0是有理数,故本选项正确;C是无理数,故本选项错误;D故选B.【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.12.B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。
【解析版】2019年江苏省南京外国语学校中考数学模拟试卷
2019年江苏省南京外国语学校中考数学模拟试卷一、选择题(本大题共8小题,每小题2分)1.如果a与﹣2互为倒数,那么a是()A.﹣2 B.﹣C.D.22.南京长江三桥是世界上第一座弧线形钢塔斜拉桥,全长15 600m,用科学记数法表示为()A.1.56×104m B.15.6×103m C.0.156×104m D.1.6×104m3.从正面观察下图的两个物体,看到的是()A.B.C.D.4.已知α为等边三角形的一个内角,则cosα等于()A.B.C.D.5.若反比例函数y=﹣的图象经过点A(2,m),则m的值是()A.﹣2 B.2 C.﹣D.6.我市某一周的最高气温统计如下表:则这组数据的中位数与众数分别是()A.27,28 B.27.5,28 C.28,27 D.26.5,277.如图:下列四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.如图,三根音管被敲击时能依次发出“1”、“3”、“5”,两只音锤同时从“1”开始,以相同的节拍往复敲击这三根音管,不同的是:甲锤每拍移动一位(左中右中左中右…),乙锤则在两端各有一拍不移位(左中右右中左左中右…).在第2010拍时,你听到的是()A.同样的音“1”B.同样的音“3”C.同样的音“5”D.不同的两个音二、填空题(本大题共10小题,每小题2分)9.写出﹣1和2之间的一个无理数:.10.分解因式:a3﹣ab2= .11.在函数y=中,自变量x的取值范围是.12.如图,l1∥l2,则∠1= 度.13.方程组的解是.14.布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是.15.已知x2﹣5x=6,则10x﹣2x2+5= .16.红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm的红丝带交叉成60°角重叠在一起(如图),则重叠四边形的面积为cm2.17.如图,有一种动画程序,屏幕上方正方形区域ABCD表示黑色物体甲,其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y=2x+b发射信号,当信号遇到区域甲时,甲由黑变白,则当b的取值范围为时,甲能由黑变白.18.如图,金属杆AB的中点C与一个直径为12的圆环焊接并固定在一起,金属杆的A端着地并且与地面成30°角.圆环沿着AD向D的方向滚动(无滑动)的距离为时B点恰好着地.三、解答题(本大题共有10小题,共84分.)19.(1)计算:.(2)解不等式组,并写出不等式组的整数解.20.某学校为丰富大课间自由活动的内容,随机选取本校100名学生进行调查,调查内容是“你最喜欢的自由活动项目是什么”,整理收集到的数据,绘制成下图.(1)学校采用的调查方式是;(2)求喜欢“踢毽子”的学生人数,并在下图中将“踢毽子”部分的图形补充完整;(3)该校共有800名学生,请估计喜欢“跳绳”的学生人数.21.电脑中的信号都是以二进制数的形式给出的.二进制数是由0和1组成,电子元件的“开”、“关”分别表示“1”和“0”.一组电子元件的“开”“关”状态就表示相应的二进制数.例如:“开”“开”“开”“关”表示“1110”.如图,电脑芯片的某段电路上分布着一组电子元件A、B、C、D,且这四个元件的状态始终呈现为两开两关.(1)请用二进制数表示这组元件所有开关状态;(2)求A、B两个元件“开”“关”状态不同的概率.22.如图,一艘核潜艇在海面下500米A处测得俯角为30°正前方的海底C处有黑匣子信号发出,继续在同一深度直线航行4000米后在B处测得俯角为60°正前方的海底C处有黑匣子信号发出.点C和直线AB在同一铅垂面上,求点C距离海面的深度(结果保留根号).23.如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.求证:(1)△APB≌△DPC;(2)∠BAP=2∠PAC.24.某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间的定价每增加10元时,就会有一间房间空闲.宾馆每天需对每个居住的房间支出20元的各种费用.房价定为多少元时,宾馆一天的利润为10890元?25.在一次远足活动中,小聪由甲地步行到乙地后原路返回,小明由甲地步行到乙地后原路返回,到达途中的丙地时发现物品可能遗忘在乙地,于是从丙返回乙地,然后沿原路返回.两人同时出发,步行过程中保持匀速.设步行的时间为t(h),两人离甲地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t之间的函数关系.(1)甲、乙两地之间的距离为km,乙、丙两地之间的距离为km;(2)分别求出小明由甲地出发首次到达乙地及由乙地到达丙地所用的时间.(3)求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.26.已知抛物线C1:y=﹣x2+2mx+1(m为常数,且m>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.(1)当m=1时,判定△ABC的形状,并说明理由;(2)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.27.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:;(2)若△DEF三边的长分别为、、,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.28.如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.(1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法).(2)矩形ABCD中,AB=3,BC=1,直接写出边CD上A,B两点的勾股点的个数.(3)如图2,矩形ABCD中,AB=12cm,BC=4 cm,DM=8 cm,AN=5 cm.动点P从D点出发沿着DC方向以1 cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s),点H为M,N两点的勾股点,且点H在直线l上.①当t=4时,求PH的长.②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).2019年江苏省南京外国语学校中考数学模拟试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分)1.如果a与﹣2互为倒数,那么a是()A.﹣2 B.﹣C.D.2考点:倒数.分析:根据乘积是1的两个数叫做互为倒数解答.解答:解:∵a与﹣2互为倒数,∴a是﹣.故选:B.点评:本题考查了倒数的定义,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.是基础题,熟记概念是解题的关键.2.南京长江三桥是世界上第一座弧线形钢塔斜拉桥,全长15 600m,用科学记数法表示为()A.1.56×104m B.15.6×103m C.0.156×104m D.1.6×104m考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法表示为a×10n(1≤|a|<10,n是整数):确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:15 600=1.56×104m.故选A.点评:此题考查用科学记数法表示大数.用科学记数法表示数的关键是确定a与10的指数n,确定a时,要注意范围,n等于原数的整数位数减1.3.从正面观察下图的两个物体,看到的是()A.B.C.D.考点:简单组合体的三视图.分析:先细心观察原立体图形中的圆柱体和正方体的位置关系,结合四个选项选出答案.解答:解:由于正方体的正视图是个正方形,而竖着的圆柱体的正视图是个长方形,因此只有C的图形符合这个条件.故选C.点评:本题考查了学生的观察能力和几何体三视图中的主视图.4.已知α为等边三角形的一个内角,则cosα等于()A.B.C.D.考点:特殊角的三角函数值;等边三角形的性质.分析:先根据等边三角形的性质求出α的度数,再根据cos60°=即可解答.解答:解:∵α为等边三角形的一个内角,∴α=60°.∴cosα=cos60°=.故选A.点评:本题考查的是等边三角形的性质及特殊角的三角函数值,比较简单.5.若反比例函数y=﹣的图象经过点A(2,m),则m的值是()A.﹣2 B.2 C.﹣D.考点:待定系数法求反比例函数解析式.专题:计算题;待定系数法.分析:直接把点的坐标代入解析式即可.解答:解:把点A代入解析式可知:m=﹣.故选C.点评:主要考查了反比例函数的求值问题.直接把点的坐标代入解析式即可求出点坐标中未知数的值.A.27,28 B.27.5,28 C.28,27 D.26.5,27考点:众数;中位数.专题:图表型.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:处于这组数据中间位置的那个数是27,由中位数的定义可知,这组数据的中位数是27.众数是一组数据中出现次数最多的数,在这一组数据中28是出现次数最多的,故众数是28.故选:A.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.7.如图:下列四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.解答:解:∵A.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,但不是中心对称图形,故此选项错误;B:此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;C.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D:此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:B.点评:此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.8.如图,三根音管被敲击时能依次发出“1”、“3”、“5”,两只音锤同时从“1”开始,以相同的节拍往复敲击这三根音管,不同的是:甲锤每拍移动一位(左中右中左中右…),乙锤则在两端各有一拍不移位(左中右右中左左中右…).在第2010拍时,你听到的是()A.同样的音“1”B.同样的音“3”C.同样的音“5”D.不同的两个音考点:规律型:图形的变化类.专题:压轴题.分析:根据题意,知甲锤每4次一循环,乙锤每6次一循环.根据规律分别计算在第2010拍时,听到的声音.解答:解:甲锤:2010÷4=502,则在第2010拍时,听到的是“3”的声音;乙锤:2010÷6=335,则在第2010拍时,听到的是“1”的声音.故选D.点评:此题主要是能够分别正确找到两锤几次一循环的规律,根据规律即可求解.二、填空题(本大题共10小题,每小题2分)9.写出﹣1和2之间的一个无理数:(答案不唯一).考点:无理数.专题:开放型.分析:根据无理数的定义进行解答即可,例如.解答:解:∵无理数是无限不循环小数,≈1.41,∴1<<2,∴符合条件,故答案为:(答案不唯一).点评:本题考查的是无理数的定义,属开放性题目,答案不唯一.10.(2分)(2019•荆州)分解因式:a3﹣ab2= a(a+b)(a﹣b).考点:提公因式法与公式法的综合运用.专题:因式分解.分析:观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.解答:解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).点评:本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式.本题考点:因式分解(提取公因式法、应用公式法).11.在函数y=中,自变量x的取值范围是x≠.考点:函数自变量的取值范围;分式的定义.专题:计算题.分析:函数由分式组成,故分母不等于0是这个函数有意义的条件.解答:解:根据题意得:2x﹣1≠0,解得x≠.故答案为x.点评:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;12.如图,l1∥l2,则∠1= 20 度.考点:平行线的性质.分析:先求出∠2,再根据直角三角形两锐角互余即可求出.解答:解:∵l1∥l2,∴∠2=70°,∴∠1=90°﹣∠2=90°﹣70°=20°.点评:本题利用两直线平行同位角相等和直角三角形两锐角互余求解.13.方程组的解是.考点:解二元一次方程组.专题:计算题.分析:方程①和②中y的系数互为相反数,可采用加减消元法来解二元一次方程组.解答:解:①+②得:4x=4,解得:x=1,把x=1代入②得1+2y=3,解得:y=1.所以原方程组的解是.点评:本题考查二元一次方程组的解法,有加减法和代入法两种,当同一个未知数的系数相同或互为相反数是采用加减消元法较简单.14.布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是.考点:概率公式.分析:根据题意分析可得:共6个球,其中2个白球,故从袋中任意摸出一个球,摸出的球是白球的概率是.解答:解:P(白球)==.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.已知x2﹣5x=6,则10x﹣2x2+5= ﹣7 .考点:代数式求值.专题:整体思想.分析:首先将所求代数式化为(x2﹣5x)的形式,然后将(x2﹣5x)的值整体代入求解即可.解答:解:10x﹣2x2+5=﹣2(x2﹣5x)+5=﹣2×6+5=﹣7;故答案为:﹣7.点评:要注意整体思想在代数求值问题中的应用.16.红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm的红丝带交叉成60°角重叠在一起(如图),则重叠四边形的面积为cm2.考点:菱形的性质.专题:应用题.分析:观察可得重叠部分四边形为菱形,作AE⊥BC于E,则AE为丝带宽,利用三角函数求得AB的长,从而就不难求得菱形的面积.解答:解:过点A作AE⊥BC于E,AF⊥CD于F,因为红丝带带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又AE=AF.∴BC=CD,∴四边形ABCD是菱形.∵∠B=60°(图2),作AE⊥BC于E,则AE为丝带宽,在Rt△ABE中,AE=1cm,∴sin60°=,∴AB=cm,所以S菱形=BC×AE=cm2.故答案为:.点评:本题考查了菱形面积的求法与直角三角形的综合运用.17.如图,有一种动画程序,屏幕上方正方形区域ABCD表示黑色物体甲,其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y=2x+b发射信号,当信号遇到区域甲时,甲由黑变白,则当b的取值范围为﹣3≤b≤0 时,甲能由黑变白.考点:正方形的性质;坐标与图形性质.专题:计算题.分析:若信号遇到区域甲时,甲由黑变白,则就是直线y=2x+b与正方形有交点,结合图象求出b的取值范围.解答:解:根据题意知,若信号遇到区域甲时,甲由黑变白,则就是直线y=2x+b与正方形有交点,故当直线经过B(2,1)点时,b有最小值,1=4+b,解得b=﹣3,当直线经过D(1,2)点时,b有最大值,2=2+b,解得b=0,故b的取值范围为﹣3≤b≤0.故答案为:﹣3≤b≤0.点评:本题主要考查正方形的性质,把正方形与直线方程结合考查,不难但是做题考虑要周全.18.如图,金属杆AB的中点C与一个直径为12的圆环焊接并固定在一起,金属杆的A端着地并且与地面成30°角.圆环沿着AD向D的方向滚动(无滑动)的距离为2π时B点恰好着地.考点:弧长的计算.专题:压轴题.分析:滚动距离就是弧长,当金属杆AB转动到与地面平行时,对应的圆心角为30度,所以对应的圆心角一共是60度,根据弧长公式可得结果.解答:解:由题意可知,圆环在滚动过程中,圆心角转动了60°,所以圆环滚动的距离为=2π.点评:本题考查弧长公式,分析出圆心角转动了60°是解题的关键.三、解答题(本大题共有10小题,共84分.)19.(1)计算:.(2)解不等式组,并写出不等式组的整数解.考点:分式的混合运算;在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:(1)根据整式运算的法则先算括号里面的,再把整式的除法变为乘法进行运算即可;(2)先求出不等式的解集,再求出符合条件的正整数解即可.解答:(1)解:原式=(1分)=(3分)=(4分)=;(6分)(2),解:解不等式①,得x≥﹣1,(2分)解不等式②,得x<3,(4分)所以,不等式组的解集是﹣1≤x<3,(5分)所以,不等式组的整数解为﹣1,0,1,2.(6分)故答案为、﹣1,0,1,2.点评:此题比较简单,本题考查的是整式的混合运算及求不等式组解集的方法,在解(2)时可借助于数轴求解.20.某学校为丰富大课间自由活动的内容,随机选取本校100名学生进行调查,调查内容是“你最喜欢的自由活动项目是什么”,整理收集到的数据,绘制成下图.(1)学校采用的调查方式是抽样调查;(2)求喜欢“踢毽子”的学生人数,并在下图中将“踢毽子”部分的图形补充完整;(3)该校共有800名学生,请估计喜欢“跳绳”的学生人数.考点:条形统计图;全面调查与抽样调查;用样本估计总体.分析:(1)根据题意,学校采用的调查方式是随机的抽样调查;(2)根据直方图中,各组频数之和为样本容量,可得“踢毽子”一组人数为100﹣40﹣20﹣15=25;据此可将图形补充完整;(3)首先计算样本中喜欢“跳绳”的学生占的比例,再根据样本估计总体的思想计算即可.解答:解:(1)抽样调查;(2)已知总人数为100,故“踢毽子”一组人数为100﹣40﹣20﹣15=25;据此可将图形补充完整;(3)在样本中,喜欢“跳绳”的学生占20%,故在该校的800名学生,喜欢“跳绳”的学生有800×20%=160人.点评:本题考查学生根据统计知识,分析问题,解决实际问题的能力.21.电脑中的信号都是以二进制数的形式给出的.二进制数是由0和1组成,电子元件的“开”、“关”分别表示“1”和“0”.一组电子元件的“开”“关”状态就表示相应的二进制数.例如:“开”“开”“开”“关”表示“1110”.如图,电脑芯片的某段电路上分布着一组电子元件A、B、C、D,且这四个元件的状态始终呈现为两开两关.(1)请用二进制数表示这组元件所有开关状态;(2)求A、B两个元件“开”“关”状态不同的概率.考点:列表法与树状图法.分析:(1)列举出两开两关的所有情况即可;(2)看A、B两个元件“开”“关”状态不同的情况占总情况的多少即可.解答:解:(1)所有可能出现的结果如下:A B C D 结果1 1 0 0 11001 0 1 0 10101 0 0 1 10010 0 1 1 00110 1 0 1 01010 1 1 0 0110总共有6种结果,每种结果出现的可能性相同(4分);(2)所有的结果中,满足A、B两个元件“开”“关”状态不同的结果有4种,所以A、B两个元件“开”“关”状态不同的概率是(7分).点评:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.22.如图,一艘核潜艇在海面下500米A处测得俯角为30°正前方的海底C处有黑匣子信号发出,继续在同一深度直线航行4000米后在B处测得俯角为60°正前方的海底C处有黑匣子信号发出.点C和直线AB在同一铅垂面上,求点C距离海面的深度(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:由C点向AB作垂线,交AB的延长线于E点,并交海面于F点,易证∠BAC=∠BCA,所以有BA=BC.然后在直角△BCE中,利用正弦函数求出CE.解答:解:由C点向AB作垂线,交AB的延长线于E点,并交海面于F点.已知AB=4000(米),∠BAC=30°,∠EBC=60°,∵∠BCA=∠EBC﹣∠BAC=30°,∴∠BAC=∠BCA.∴BC=BA=4000(米).在Rt△BEC中,EC=BC•sin60°=4000×=2000(米).∴CF=CE+EF=2000+500(米).答:海底黑匣子C点处距离海面的深度为(2000+500)米.点评:本题考查了仰俯角问题,解决此类问题的关键是正确的将仰俯角转化为直角三角形的内角并选择正确的边角关系解直角三角形,要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.23.如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.求证:(1)△APB≌△DPC;(2)∠BAP=2∠PAC.考点:正方形的性质;全等三角形的判定与性质.专题:证明题.分析:(1)AP=AB,PB=PC,∴∠ABC﹣∠PBC=∠DCB﹣∠PCB,即∠ABP=∠DCP,因此可证得两三角形全等.(2)有(1)∠CAD=45°,△PAD为等边三角形,可求得∠BAP=30°∠PAC=∠PAD﹣∠CAD=15°,因此可证的结论.解答:(1)解:∵四边形ABCD是正方形,∴∠ABC=∠DCB=90°.∵PB=PC,∴∠PBC=∠PCB.(1分)∴∠ABC﹣∠PBC=∠DCB﹣∠PCB,即∠ABP=∠DCP.(2分)又∵AB=DC,PB=PC,∴△APB≌△DPC.(3分)(2)证明:∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°.∵△APB≌△DPC,∴AP=DP.又∵AP=AB=AD,∴DP=AP=AD.∴△APD是等边三角形.∴∠DAP=60°.(5分)∴∠PAC=∠DAP﹣∠DAC=15°.∴∠BAP=∠BAC﹣∠PAC=30°.(6分)∴∠BAP=2∠PAC.(7分)点评:本题考查全等三角形的证明,要熟练掌握几种判定方法,根据条件选择合适的判定方法.本题是用角度证明2倍角关系,有时候也可用角平分线或等角转移来证明.24.某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间的定价每增加10元时,就会有一间房间空闲.宾馆每天需对每个居住的房间支出20元的各种费用.房价定为多少元时,宾馆一天的利润为10890元?考点:一元二次方程的应用.专题:经济问题.分析:设每个房间的定价增加x元,由于当每个房间的定价为每天180元时,房间会全部住满,而当每个房间的定价每增加10元时,就会有一间房间空闲.宾馆每天需对每个居住的房间支出20元的各种费用,又要求宾馆一天的利润为10890元,由此即可列出方程(180+x﹣20)(50﹣)=10890,解此方程即可解决问题.解答:解:设每个房间的定价增加x元,根据题意得:(180+x﹣20)(50﹣)=10890,解得:x=170,当x=170时,180+x=350,答:房价定为350元时,宾馆的利润为10890元.点评:此题和实际生活结合比较紧密,首先要正确理解题意,把握好题目中的数量关系,然后才能列出方程解决问题.25.在一次远足活动中,小聪由甲地步行到乙地后原路返回,小明由甲地步行到乙地后原路返回,到达途中的丙地时发现物品可能遗忘在乙地,于是从丙返回乙地,然后沿原路返回.两人同时出发,步行过程中保持匀速.设步行的时间为t(h),两人离甲地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t之间的函数关系.(1)甲、乙两地之间的距离为10 km,乙、丙两地之间的距离为 2 km;(2)分别求出小明由甲地出发首次到达乙地及由乙地到达丙地所用的时间.(3)求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.考点:一次函数的应用.分析:(1)根据图中信息,甲、乙两地之间的距离为10km,乙、丙两地之间的距离为2km;(2)利用图象可以得出两人所用总时间为2小时,由(1)可得两人所行路程,分别求出即可,令v2=(10+2)÷1=12,求解;(3)利用待定系数法求解析式.解答:解:(1)10,2(2分)(2)根据小明到达丙时所用时间为1小时,所行路程为(10+2)km,即v2=(10+2)÷1=12km/h,t1=10÷12=,t2=2÷12=,∴小明由甲地出发首次到达乙地用了小时,由乙地到达丙地用了小时(4分)(3)设线段AB所表示的S2与之间的函数关系式为S2=kt+b(k≠0).由(1)可知点A、B的坐标为A(,10),B(1,8),代入,得(6分)解得:,∴S2=﹣12t+20()(8分)点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.要学会利用待定系数法求解析式.26.已知抛物线C1:y=﹣x2+2mx+1(m为常数,且m>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.(1)当m=1时,判定△ABC的形状,并说明理由;(2)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.考点:二次函数综合题.分析:(1)根据轴对称的性质可得:AC=BC等腰三角形,借助于辅助线,又可求得∠ACy=45°,可得△ABC为等腰直角三角形;(2)首先假设成立,根据菱形的性质求解,求得m=,所以存在.解答:解:(1)当m=1时,△ABC为等腰直角三角形.理由如下:如图:∵点A与点B关于y轴对称,点C又在y轴上,∴AC=BC.过点A作抛物线C1的对称轴,交x轴于D,过点C作CE⊥AD于E.当m=1时,顶点A的坐标为A(1,2),∴CE=1.又∵点C的坐标为(0,1),AE=2﹣1.∴AE=CE.从而∠ECA=45°,∴∠ACy=45°.由对称性知∠BCy=∠ACy=45°,∴∠ACB=90°.∴△ABC为等腰直角三角形.(2)假设抛物线C1上存在点P,使得四边形ABCP为菱形,则PC=AB=BC.由(1)知,AC=BC,∴AB=BC=AC.∴△ABC为等边三角形.∴∠ACy=∠BCy=30°.∵四边形ABCP为菱形,且点P在C1上,∴点P与点C关于AD对称.∴PC与AD的交点也为点E,因此∠ACE=90°﹣30°=60°.∵点A,C的坐标分别为A(m,m2+1),C(0,1),∴AE=m2+1﹣1=m2,CE=m.在Rt△ACE中,tan60°===.∴m=±,∵m>0,∴m=,故抛物线C1上存在点P,使得四边形ABCP为菱形,。
2019-2020南京市数学中考第一次模拟试卷含答案
4.D
解析:D 【解析】 【分析】 先通过加权平均数求出 x 的值,再根据众数的定义就可以求解. 【详解】
解:根据题意得:70+80×3+90x+100=85(1+3+x+1), x=3 ∴该组数据的众数是 80 分或 90 分. 故选 D. 【点睛】 本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列 出方程.通过列方程求出 x 是解答问题的关键.
10.C
解析:C 【解析】 【分析】 设第 n 个图形中有 an 个点( 为正整数),观察图形,根据各图形中点的个数的变化可得
出变化规律“an= n2+ n+1(n 为正整数)”,再代入 n=9 即可求出结论.
【详解】 设第 n 个图形中有 an 个点(n 为正整数), 观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,
A.(1,2)
B.(-2,1)
C.(-1,-2) D.(-2,-1)
12.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )
A.50°
二、填空题
B.20°
C.60°
D.70°
13.分解因式:2x3﹣6x2+4x=__________. 14.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的 概率是 0.2,摸出白球的概率是 0.5,那么摸出黑球的概率是 . 15.已知反比例函数的图象经过点(m,6)和(﹣2,3),则 m 的值为________.
江苏省南京东山外国语校2024届中考四模数学试题含解析
江苏省南京东山外国语校2024届中考四模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为A.40海里B.60海里C.70海里D.80海里2.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.3.如图所示的几何体的俯视图是( )A.B.C.D.4.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<05.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )A.k≤2且k≠1B.k<2且k≠1C.k=2 D.k=2或16.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.157.π这个数是( )A.整数B.分数C.有理数D.无理数8.cos30°的值为()A.1 B.12C.33D.329.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )A.四条边相等的四边形是菱形B.一组邻边相等的平行四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形10.计算2311xx x-+++的结果为()A.2 B.1 C.0 D.﹣111.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°12.从3、1、-2这三个数中任取两个不同的数作为P点的坐标,则P点刚好落在第四象限的概率是()A .14B .13C .23D .12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:16a 3﹣4a=_____.14.如图,□ABCD 中,E 是BA 的中点,连接DE ,将△D A E 沿DE 折叠,使点A 落在□ABCD 内部的点F 处.若∠CBF =25°,则∠FD A 的度数为_________.15.使得分式值242x x -+为零的x 的值是_________; 16.若二次函数y =-x 2-4x +k 的最大值是9,则k =______.17.如图,E 是▱ABCD 的边AD 上一点,AE=ED ,CE 与BD 相交于点F ,BD=10,那么DF=__.18.如果实数x 、y 满足方程组30233x y x y +=⎧⎨+=⎩,求代数式(xy x y ++2)÷1x y +. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,分别延长▱ABCD 的边CD AB ,到E F ,,使DE BF =,连接EF ,分别交AD BC ,于G H ,,连结CG AH.,求证:CG //AH .20.(6分)如图,已知抛物线213(0)22y x x n n =-->与x 轴交于,A B 两点(A 点在B 点的左边),与y 轴交于点C . (1)如图1,若△ABC 为直角三角形,求n 的值;(2)如图1,在(1)的条件下,点P 在抛物线上,点Q 在抛物线的对称轴上,若以BC 为边,以点B 、C 、P 、Q为顶点的四边形是平行四边形,求P点的坐标;(3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交y轴于点E,若AE﹕ED=1﹕1.求n的值.21.(6分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣34x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.22.(8分)如图,在矩形ABCD中,AB═2,3,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)23.(8分)如图,一次函数y=2x ﹣4的图象与反比例函数y=k x的图象交于A 、B 两点,且点A 的横坐标为1. (1)求反比例函数的解析式; (2)点P 是x 轴上一动点,△ABP 的面积为8,求P 点坐标.24.(10分)在Rt ABC ∆中,90ACB ∠=,CD 是AB 边的中线,DE BC ⊥于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果30A ∠=①如图1,DCB ∠=②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;(2)如图3,若点P 在线段CB 的延长线上,且()090A αα∠=<<,连结DP ,将线段DP 绕点逆时针旋转2α得到线段DF ,连结BF ,请直接写出DE 、BF 、BP 三者的数量关系(不需证明)25.(10分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?26.(12分)某海域有A、B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求:(1)∠C=°;(2)此时刻船与B港口之间的距离CB的长(结果保留根号).27.(12分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,2取1.414参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】分析:依题意,知MN=40海里/小时×2小时=80海里,∵根据方向角的意义和平行的性质,∠M=70°,∠N=40°,∴根据三角形内角和定理得∠MPN=70°.∴∠M=∠MPN=70°.∴NP=NM=80海里.故选D.2、A【解题分析】根据三视图的定义即可判断.【题目详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【题目点拨】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.3、D【解题分析】试题分析:根据俯视图的作法即可得出结论.从上往下看该几何体的俯视图是D.故选D.考点:简单几何体的三视图.4、B【解题分析】试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.考点:一次函数的性质和图象5、D【解题分析】当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,综上可知k的值为1或2,故选D.【题目点拨】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.6、B【解题分析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=123= 205.故选B.7、D【解题分析】由于圆周率π是一个无限不循环的小数,由此即可求解.【题目详解】解:实数π是一个无限不循环的小数.所以是无理数.故选D.本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.8、D【解题分析】cos30°=2.故选D.9、A【解题分析】根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.【题目详解】∵将△ABC延底边BC翻折得到△DBC,∴AB=BD,AC=CD,∵AB=AC,∴AB=BD=CD=AC,∴四边形ABDC是菱形;故选A.【题目点拨】本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.10、B【解题分析】按照分式运算规则运算即可,注意结果的化简.【题目详解】解:原式=231111x xx x-++==++,故选择B.【题目点拨】本题考查了分式的运算规则.11、D【解题分析】试题分析:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选D.考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质12、B【解题分析】解:画树状图得:∵共有6种等可能的结果,其中(1,-2),(3,-2)点落在第四项象限,∴P点刚好落在第四象限的概率=26=13.故选B.点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、4a(2a+1)(2a﹣1)【解题分析】首先提取公因式,再利用平方差公式分解即可.【题目详解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案为4a(2a+1)(2a﹣1)【题目点拨】本题考查了提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.14、50°【解题分析】延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明△BCG≌△DAE,从而∠7=∠6=25°,进而可求∠FDA 得度数.【题目详解】延长BF交CD于G由折叠知,BE=CF, ∠1=∠2, ∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案为50°.【题目点拨】本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质. 证明△BCG ≌△DAE 是解答本题的关键. 15、2【解题分析】根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.【题目详解】解:要使分式有意义则20x +≠ ,即2x ≠-要使分式为零,则240x -= ,即2x =±综上可得2x =故答案为2【题目点拨】本题主要考查分式的性质,关键在于分式的分母不能为0.16、5【解题分析】y=−(x−2)2+4+k ,∵二次函数y=−x2−4x+k 的最大值是9,∴4+k=9,解得:k=5,故答案为:5.17、4【解题分析】∵AE=ED ,AE+ED=AD ,∴ED=AD ,∵四边形ABCD 是平行四边形,∴AD=BC ,AD//BC ,∴△DEF ∽△BCF ,∴DF :BF=DE :BC=2:3,∵DF+BF=BD=10,∴DF=4,故答案为4.18、1【解题分析】解:原式=222()xy x y x y x y ++⋅++=xy +2x +2y ,方程组:30233x y x y +=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩,当x =3,y =﹣1时,原式=﹣3+6﹣2=1.故答案为1.点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、证明见解析【解题分析】分析:根据平行四边形的性质以及已知的条件得出△EGD 和△FHB 全等,从而得出DG=BH ,从而说明AG 和CH 平行且相等,得出四边形AHCG 为平行四边形,从而得出答案.详解:证明:在▱ABCD 中,AB//CD AD//CB AD CB ,,=,E F EDG DCH FBH ,∠∠∠∠∠∴===,又 DE BF =,EGD ∴≌()FHB AAS ,DG BH ∴=,AG HC ∴=,又AD//CB ,∴四边形AGCH 为平行四边形, AH //CG ∴.点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型.解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG 为平行四边形.20、 (1) 2n =;(2) 1139(,)28和(539,)28;(3) 278n = 【解题分析】(1)设1(,0)A x ,2(,0)B x ,再根据根与系数的关系得到122x x n =-,根据勾股定理得到:2221AC x n =+、2222BC x n =+,根据222AC BC AB +=列出方程,解方程即可;(2)求出A 、B 坐标,设出点Q 坐标,利用平行四边形的性质,分类讨论点P 坐标,利用全等的性质得出P 点的横坐标后,分别代入抛物线解析式,求出P 点坐标;(3)过点D 作DH ⊥x 轴于点H ,由AE :1ED =:4,可得AO :1OH =:4.设(0)OA a a =>,可得 A 点坐标为(,0)a -,可得4,5OH a AH a ==.设D 点坐标为2(4,86)a a a n --.可证△DAH ∽△CBO ,利用相似性质列出方程整理可得到 2111220a a n --=①,将(,0)A a -代入抛物线上,可得21322n a a =+②,联立①②解方程组,即可解答. 【题目详解】解:(1)设1(,0)A x ,2(,0)B x ,则12,x x 是方程213022x x n --=的两根, ∴122x x n =-. ∵已知抛物线213(0)22y x x n n =-->与y 轴交于点C . ∴(0,-)C n 在Rt △AOC 中:2221AC x n =+,在Rt △BOC 中:2222BC x n =+,∵△ABC 为直角三角形,由题意可知∠90ACB =°,∴222AC BC AB +=,即222221221()x n x n x x +++=-,∴212n x x =-,∴22n n =,解得:120,2n n ==,又0n >,∴2n =.(2)由(1)可知:213222y x x =--,令0,y =则2132022x x --=, ∴11,x =-24x =, ∴(1,0),(4,0)A B -.①以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是四边形CBPQ 时,设抛物线的对称轴为32l = ,l 与BC 交于点G ,过点P 作PF ⊥l ,垂足为点F ,即∠90PFQ =°=∠COB . ∵四边形CBPQ 为平行四边形,∴,PQ BC PQ =∥BC ,又l ∥y 轴,∴∠FQP =∠QGB =∠OCB ,∴△PFQ ≌△BOC ,∴4PF BO ==,∴P 点的横坐标为311+4=22, ∴211131139()2,22228y =⨯-⨯-= 即P 点坐标为1139(,)28. ②当以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是四边形CBQP 时,设抛物线的对称轴为32l = ,l 与BC 交于点G ,过点1P 作11P F ⊥l ,垂足为点1F , 即∠1190=PF Q °=∠COB . ∵四边形11CBQ P 为平行四边形,∴1111,=PQ BC PQ ∥BC ,又l ∥y 轴, ∴∠111=F Q P ∠1Q GB =∠OCB ,∴△111PF Q ≌△BOC ,∴114==PF BO ,∴1P 点的横坐标为35-4=-22, ∴2515339()2,22228⎛⎫ ⎪=⨯--⨯-=⎝⎭y即1P 点坐标为39(-,25)8 ∴符合条件的P 点坐标为1139(,)28和39(-,25)8. (3)过点D 作DH ⊥x 轴于点H ,∵AE :1ED =:4,∴AO :1OH =:4.设(0)OA a a =>,则A 点坐标为(,0)a -,∴4,5OH a AH a ==.∵D 点在抛物线213(0)22y x x n n =-->上, ∴D 点坐标为2(4,86)a a a n --,由(1)知122x x n =-,∴2n OB a=, ∵AD ∥BC ,∴△DAH ∽△CBO ,∴AH DH BO CO=, ∴25862a a a n n na--=, 即2111220a a n --=①,又(,0)A a -在抛物线上,∴21322n a a =+②, 将②代入①得:221311122()022a a a a --+=,解得10a=(舍去),23 2a=把32a=代入②得:278n=.【题目点拨】本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.21、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣94)2+8116;当x=94时,S有最大值,最大值为8116;(3)存在,点P的坐标为(4,0)或(32,0).【解题分析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.【题目详解】(1)将点E代入直线解析式中,0=﹣34×4+m,解得m=3,∴解析式为y=﹣34x+3,∴C(0,3),∵B(3,0),则有3093cb c=⎧⎨=-++⎩,解得23bc=⎧⎨=⎩,∴抛物线的解析式为:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),设直线BD 的解析式为y =kx+b ,代入点B 、D ,304k b k b +=⎧⎨+=⎩, 解得26k b =-⎧⎨=⎩, ∴直线BD 的解析式为y =﹣2x+6,则点M 的坐标为(x ,﹣2x+6),∴S =(3+6﹣2x)•x•12=﹣(x ﹣94)2+8116, ∴当x =94时,S 有最大值,最大值为8116. (3)存在,如图所示,设点P 的坐标为(t ,0),则点G(t ,﹣34t+3),H(t ,﹣t 2+2t+3), ∴HG =|﹣t 2+2t+3﹣(﹣34t+3)|=|t 2﹣114t| CG 223(33)4t t +-+-54t , ∵△CGH 沿GH 翻折,G 的对应点为点F ,F 落在y 轴上,而HG ∥y 轴,∴HG ∥CF ,HG =HF ,CG =CF ,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣114t|=54t,当t2﹣114t=54t时,解得t1=0(舍),t2=4,此时点P(4,0).当t2﹣114t=﹣54t时,解得t1=0(舍),t2=32,此时点P(32,0).综上,点P的坐标为(4,0)或(32,0).【题目点拨】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG =HG为解题关键.22、(1)作图见解析;(2)EB是平分∠AEC,理由见解析;(3)△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【解题分析】【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;(3)先判断出△AEP≌△FBP,即可得出结论.【题目详解】(1)依题意作出图形如图①所示;(2)EB 是平分∠AEC ,理由:∵四边形ABCD 是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=3, ∵点E 是CD 的中点,∴DE=CE=12CD=1, 在△ADE 和△BCE 中,90AD BC C D DE CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ADE ≌△BCE ,∴∠AED=∠BEC ,在Rt △ADE 中,AD=3,DE=1, ∴tan ∠AED=AD DE=3, ∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED ﹣∠BEC=60°=∠BEC , ∴BE 平分∠AEC ;(3)∵BP=2CP ,BC=3=,∴323 在Rt △CEP 中,tan ∠CEP=CP CE 3 ∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP=BPAB=33,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【题目点拨】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.23、(1)y=6x;(2)(4,0)或(0,0)【解题分析】(1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用△ABP的面积为8,可求P点坐标. 【题目详解】解:(1)把x=1代入y=2x﹣4,可得y=2×1﹣4=2,∴A(1,2),把(1,2)代入y=kx,可得k=1×2=6,∴反比例函数的解析式为y=6x;(2)根据题意可得:2x﹣4=,解得x1=1,x2=﹣1,把x2=﹣1,代入y=2x﹣4,可得y=﹣6,∴点B的坐标为(﹣1,﹣6).设直线AB 与x 轴交于点C ,y=2x ﹣4中,令y=0,则x=2,即C (2,0),设P 点坐标为(x ,0),则×|x ﹣2|×(2+6)=8,解得x=4或0,∴点P 的坐标为(4,0)或(0,0).【题目点拨】本题主要考查用待定系数法求一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。
江苏南京市东山外国语校2024届中考数学对点突破模拟试卷含解析
江苏南京市东山外国语校2024学年中考数学对点突破模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.如图是某个几何体的三视图,该几何体是( )A .圆锥B .四棱锥C .圆柱D .四棱柱2.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为( )A .①B .②C .③D .④3.下列运算结果是无理数的是( ) A .32×2 B .32⨯C .722÷D .22135-4.2-的相反数是 A .2-B .2C .12D .12-5.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是( )A .国B .厉C .害D .了6.如图,点A 所表示的数的绝对值是( )A .3B .﹣3C .13D .13-7.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A .米B .米C .米 D .米8.3的相反数是( ) A .﹣3B .3C .13D .﹣139.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( ) A .k >12B .k ≥12C .k >12且k ≠1 D .k ≥12且k ≠1 10.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有( ) A .5个 B .4个 C .3个 D .2个 二、填空题(共7小题,每小题3分,满分21分)11.如图,点D 为矩形OABC 的AB 边的中点,反比例函数(0)ky x x=>的图象经过点D ,交BC 边于点E.若△BDE的面积为1,则k =________12.据报道,截止2018年2月,我国在澳大利亚的留学生已经达到17.3万人,将17.3万用科学记数法表示为__________. 13.如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE ,且点F 在矩形ABCD 内部.将AF 延长交边BC 于点G .若CG GB 1k =,则ADAB= (用含k 的代数式表示).14.如图,在平行四边形ABCD 中,点E 在边BC 上,将ABE △沿AE 折叠得到AFE △,点F 落在对角线AC 上.若AB AC ⊥,3AB =,5AD =,则CEF △的周长为________.15.如果不等式10xx a-⎧⎨-⎩<>无解,则a的取值范围是________16.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.17.如图,已知OP 平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是_________.三、解答题(共7小题,满分69分)18.(10分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AE⊥BF于点G,求证:AE=BF;(2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论;(3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系;.19.(5分)在平面直角坐标系中,一次函数34y x b=-+的图象与反比例函数kyx=(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).求一次函数和反比例函数解析式.若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.根据图象,直接写出不等式34kx bx-+>的解集.20.(8分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值是多少cm.21.(10分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚A点处测得山腰上一点D的仰角为30°,并测得AD的长度为180米.另一部分同学在山顶B点处测得山脚A点的俯角为45°,山腰D点的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)22.(10分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站 A B C D E X(千米)8 9 10 11.5 13 1y (分钟)1820222528(1)求1y 关于x 的函数表达式;李华骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用221y x 11x 782=-+来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间. 23.(12分)如图,在△ABC 中,(1)求作:∠BAD=∠C ,AD 交BC 于D .(用尺规作图法,保留作图痕迹,不要求写作法). (2)在(1)条件下,求证:AB 2=BD•BC .24.(14分)数学兴趣小组为了研究中小学男生身高y (cm )和年龄x (岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB 上,后7个点大致位于直线CD 上. 年龄组x 7891011121314151617男生平均身高y115.2118.3122.2126.5129.6135.6140.4146.1154.8162.9168.2(1)该市男学生的平均身高从 岁开始增加特别迅速. (2)求直线AB 所对应的函数表达式.(3)直接写出直线CD 所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD 所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状【题目详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是长方形可判断出这个几何体应该是四棱柱.故选B.【题目点拨】本题考查了由三视图找到几何体图形,属于简单题,熟悉三视图概念是解题关键.2、C【解题分析】根据正方形的判定定理即可得到结论.【题目详解】与左边图形拼成一个正方形,正确的选择为③,故选C.【题目点拨】本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.3、B【解题分析】根据二次根式的运算法则即可求出答案.【题目详解】A选项:原式=3×2=6,故A不是无理数;B,故B是无理数;C6,故C不是无理数;D==12,故D不是无理数故选B.【题目点拨】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.4、B【解题分析】根据相反数的性质可得结果.【题目详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【题目点拨】本题考查求相反数,熟记相反数的性质是解题的关键.5、A【解题分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【题目详解】∴有“我”字一面的相对面上的字是国.故答案选A.【题目点拨】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.6、A【解题分析】根据负数的绝对值是其相反数解答即可.|-3|=3,故选A.【题目点拨】此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.7、D【解题分析】先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米.故选D8、A【解题分析】试题分析:根据相反数的概念知:1的相反数是﹣1.故选A.【考点】相反数.9、C【解题分析】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>12且k≠1.故选C【题目点拨】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10、C【解题分析】矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选C.二、填空题(共7小题,每小题3分,满分21分)11、1分析:设D (a ,k a ),利用点D 为矩形OABC 的AB 边的中点得到B (2a ,k a ),则E (2a ,2k a ),然后利用三角形面积公式得到12•a•(k a -2ka )=1,最后解方程即可.详解:设D (a ,ka),∵点D 为矩形OABC 的AB 边的中点,∴B (2a ,k a ), ∴E (2a ,2ka),∵△BDE 的面积为1, ∴12•a•(k a -2k a)=1,解得k=1.故答案为1.点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k 的取值. 12、1.73×1. 【解题分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【题目详解】将17.3万用科学记数法表示为1.73×1. 故答案为1.73×1. 【题目点拨】本题考查了正整数指数科学计数法,根据科学计算法的要求,正确确定出a 和n 的值是解答本题的关键.13。
江苏省南京市2019-2020学年中考数学模拟试题(3)含解析
江苏省南京市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.102.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A.12B.22C.3D.33.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1D.k≥12且k≠14.如图,BC∥DE,若∠A=35°,∠E=60°,则∠C等于()A.60°B.35°C.25°D.20°5.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A .30,28B .26,26C .31,30D .26,226.如图,为了测量河对岸l 1上两棵古树A 、B 之间的距离,某数学兴趣小组在河这边沿着与AB 平行的直线l 2上取C 、D 两点,测得∠ACB =15°,∠ACD =45°,若l 1、l 2之间的距离为50m ,则A 、B 之间的距离为( )A .50mB .25mC .(50﹣5033)mD .(50﹣253)m 7.小轩从如图所示的二次函数y=ax 2+bx+c (a≠0)的图象中,观察得出了下面五条信息:①ab >0;②a+b+c <0;③b+2c >0;④a ﹣2b+4c >0;⑤3a b 2=. 你认为其中正确信息的个数有A .2个B .3个C .4个D .5个8.计算(—2)2-3的值是( )A 、1B 、2C 、—1D 、—29.2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是( )A .2.098 7×103B .2.098 7×1010C .2.098 7×1011D .2.098 7×101210.化简2(21)÷-的结果是( )A .221-B .22-C .12-D .2+2 11.要使分式有意义,则x 的取值应满足( ) A .x=﹣2 B .x≠2 C .x >﹣2 D .x≠﹣212.如图,正方形ABCD 的顶点C 在正方形AEFG 的边AE 上,AB =2,AE =42G 到BE 的距离是( )A.165B.3625C.3225D.185二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.14.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB 的平分线.做法中用到全等三角形判定的依据是______.15.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN 的最小值是_____.16.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是___.17.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是____.18.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:(31m+﹣m+1)÷241mm-+,其中m的值从﹣1,0,2中选取.证:△ABP ≌△CAQ ;请判断△APQ 是什么形状的三角形?试说明你的结论.21.(6分)观察下列各式:①()()2111x x x -+=- ②()()23111x x x x -++=- ③()()324111x x x x x -+++=- 由此归纳出一般规律()()111n n x x x x --++⋅⋅⋅++=__________. 22.(8分)如图,在电线杆CD 上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6米的B 处安置高为1.5米的测角仪AB ,在A 处测得电线杆上C 处的仰角为30°,求拉线CE 的长(结果保留小数点后一位,参考数据:2 1.41,?3 1.73≈≈).23.(8分)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点()0,3C -,A 点的坐标为()1,0-.(1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,直接写出使QBC ∆为直角三角形的点Q 的坐标.24.(10分)化简求值:212(1)211x x x x -÷-+++,其中x 是不等式组273(1)423133x x x x -<-⎧⎪⎨+≤-⎪⎩①②的整数解. 25.(10分)如图,已知A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于点B ,OC=BC ,AC=12OB .求证:AB是⊙O 的切线;若∠ACD=45°,OC=2,求弦CD 的长.26.(12分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;(3)现从A 1,A 2中各选出一人进行座谈,若A 1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.27.(12分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)根据三角形中位线定理求出DE ,得到DF ∥BM ,再证明EC=EF=12AC ,由此即可解决问题. 【详解】在RT △ABC 中,∵∠ABC=90°,AB=2,BC=1, ∴AC=22AB BC +=2286+=10,∵DE 是△ABC 的中位线, ∴DF ∥BM ,DE=12BC=3, ∴∠EFC=∠FCM ,∵∠FCE=∠FCM ,∴∠EFC=∠ECF ,∴EC=EF=12AC=5, ∴DF=DE+EF=3+5=2.故选B .2.B【解析】作AD ⊥BC 的延长线于点D,如图所示:在Rt △ADC 中,BD=AD ,则2BD .cos ∠ACB=222AD AB ==, 故选B .根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>12且k≠1.故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.C【解析】【分析】先根据平行线的性质得出∠CBE=∠E=60°,再根据三角形的外角性质求出∠C的度数即可.【详解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故选C.【点睛】本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.5.B.【解析】试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1.平均数是(22×2+23+1+28+30+31)÷7=1,所以平均数是1.故选B.考点:中位数;加权平均数.6.C【解析】【分析】如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN 分别求得CM、CN的长度,则易得AB =MN=CM﹣CN,即可得到结论.【详解】如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=503tan603BN==︒(m),∴MN=CM﹣CN=50﹣503(m).则AB=MN=(50﹣503)m.故选C.【点睛】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.D【解析】试题分析:①如图,∵抛物线开口方向向下,∴a<1.∵对称轴xb12a3=-=-,∴2b a3=-<1.∴ab>1.故①正确.②如图,当x=1时,y<1,即a+b+c<1.故②正确.③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.④如图,当x=﹣1时,y>1,即a﹣b+c>1,∵抛物线与y轴交于正半轴,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.⑤如图,对称轴b12a3=-=-,则3a b2=.故⑤正确.综上所述,正确的结论是①②③④⑤,共5个.故选D.8.A【解析】本题考查的是有理数的混合运算根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。
江苏省南京市2019-2020学年中考数学考前模拟卷(4)含解析
江苏省南京市2019-2020学年中考数学考前模拟卷(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如右图,⊿ABC内接于⊙O,若∠OAB=28°则∠C的大小为()A.62°B.56°C.60°D.28°2.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=2AE2;④S△ABC=4S△ADF.其中正确的个数有()A.1 B.2 C.3 D.43.如图所示的几何体,它的左视图与俯视图都正确的是()A.B.C.D.4.下列事件是确定事件的是()A.阴天一定会下雨B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C.打开电视机,任选一个频道,屏幕上正在播放新闻联播D.在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书5.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数0 1 2 3 4人数 4 12 16 17 1关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是26.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B 两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.800sinα米D.800tanα米7.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗8.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为()A.12cm B.122cm C.24cm D.242cm9.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣810.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A.14°B.15°C.16°D.17°11.已知抛物线y=(x﹣1a)(x﹣11a+)(a为正整数)与x轴交于M a、N a两点,以M a N a表示这两点间的距离,则M1N1+M2N2+…+M2018N2018的值是()A.20162017B.20172018C.20182019D.2019202012.如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是()A.2B.22C.2 D.43二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:a2﹣a=_____.14.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=kx的图象恰好经过斜边A′B的中点C,若S ABO=4,tan∠BAO=2,则k=_____.15.在比例尺为1:50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实际距离是______千米.16.因式分解:16a3﹣4a=_____.17.太极揉推器是一种常见的健身器材.基本结构包括支架和转盘,数学兴趣小组的同学对某太极揉推器的部分数据进行了测量:如图,立柱AB的长为125cm,支架CD、CE的长分别为60cm、40cm,支点C 到立柱顶点B的距离为25cm.支架CD,CE与立柱AB的夹角∠BCD=∠BCE=45°,转盘的直径FG=MN=60cm,D,E分别是FG,MN的中点,且CD⊥FG,CE⊥MN,则两个转盘的最低点F,N距离地面的高度差为_____cm.(结果保留根号)18.某校广播台要招聘一批小主持人,对A、B两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如表所示:应聘者专业素质创新能力外语水平应变能力A 73 85 78 85B 81 82 80 75如果只招一名主持人,该选用______;依据是_____.(答案不唯一,理由支撑选项即可)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.20.(6分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=mx(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.21.(6分)如图,在平面直角坐标系xOy中,已知正比例函数34y x=与一次函数7y x=-+的图像交于点A,(1)求点A的坐标;(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交34y x=和7y x=-+的图像于点B、C,连接OC,若BC=75OA,求△OBC的面积.22.(8分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(﹣3,0),点C的坐标为(0,﹣3),对称轴为直线x=﹣1.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.23.(8分)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=10t﹣5t1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?24.(10分)如图,在Rt中,,分别以点A、C为圆心,大于长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE.(1)求;(直接写出结果)(2)当AB=3,AC=5时,求的周长.25.(10分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).26.(12分)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)27.(12分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n=;(2)扇形统计图中,D部分扇形所对应的圆心角是;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【详解】连接OB.在△OAB中,OA=OB(⊙O的半径),∴∠OAB=∠OBA(等边对等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=12∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠C=62°; 故选A 2.C 【解析】 【分析】①图中有3个等腰直角三角形,故结论错误; ②根据ASA 证明即可,结论正确; ③利用面积法证明即可,结论正确;④利用三角形的中线的性质即可证明,结论正确. 【详解】∵CE ⊥AB ,∠ACE=45°, ∴△ACE 是等腰直角三角形, ∵AF=CF , ∴EF=AF=CF ,∴△AEF ,△EFC 都是等腰直角三角形, ∴图中共有3个等腰直角三角形,故①错误,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC , ∴∠EAH=∠BCE ,∵AE=EC ,∠AEH=∠CEB=90°, ∴△AHE ≌△CBE ,故②正确,∵S △ABC =12BC•AD=12AB•CE ,AE ,AE=CE ,∴CE 2,故③正确, ∵AB=AC ,AD ⊥BC , ∴BD=DC , ∴S △ABC =2S △ADC , ∵AF=FC , ∴S △ADC =2S △ADF , ∴S △ABC =4S △ADF . 故选C . 【点睛】本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题. 3.D【解析】试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D.考点:D.4.D【解析】试题分析:找到一定发生或一定不发生的事件即可.A、阴天一定会下雨,是随机事件;B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;D、在学校操场上向上抛出的篮球一定会下落,是必然事件.故选D.考点:随机事件.5.A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.6.D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=ACAB,即可解决问题.【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=AC AB,∴AB=800 tan tanACαα=,故选D.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型. 7.B 【解析】试题解析:由题意得251 34xx yxx y⎧⎪+⎪⎨⎪⎪++⎩==,解得:23xy⎧⎨⎩==.故选B.8.D【解析】【分析】过A作AD⊥BF于D,根据45°角的三角函数值可求出AB的长度,根据含30°角的直角三角形的性质求出斜边AC的长即可.【详解】如图,过A作AD⊥BF于D,∵∠ABD=45°,AD=12,∴sin45ADAB︒==122,又∵Rt△ABC中,∠C=30°,∴AC=2AB=242,故选:D.【点睛】本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.9.A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.10.C【解析】【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.11.C【解析】【分析】代入y=0求出x的值,进而可得出M a N a=1a-1a+1,将其代入M1N1+M2N2+…+M2018N2018中即可求出结论.【详解】解:当y=0时,有(x-1a)(x-1a+1)=0,解得:x1=1a+1,x2=1a,∴M a N a=1a-1a+1,∴M1N1+M2N2+…+M2018N2018=1-12+12-13+…+12018-12019=1-12019=20182019.故选C.【点睛】本题考查了抛物线与x 轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出M a N a 的值是解题的关键.12.C【解析】【分析】连接AC ,交O e 于点,F 设,FN a =则2,NC a =()222,DC a =+()224,AC a =+根据△AMN 的面积为4,列出方程求出a 的值,再计算半径即可.【详解】连接AC ,交O e 于点,FO e 内切于正方形,ABCD MN 为O e 的切线, AC 经过点,,O F FNC V 为等腰直角三角形,2,NC FN =,CD MN 为O e 的切线,,EN NF =设,FN a =则2,NC a =(222,DC a =+()224,AC a =()223,AF AC CF a ∴=-= △AMN 的面积为4, 则14,2MN AF ⋅⋅= 即()122234,2a a ⋅⋅=解得222,a = ()()()2121222 2.r EC a ==== 故选:C.【点睛】考查圆的切线的性质,等腰直角三角形的性质,三角形的面积公式,综合性比较强.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a (a ﹣1)【解析】直接提取公因式a,进而分解因式得出答案【详解】a2﹣a=a(a﹣1).故答案为a(a﹣1).【点睛】此题考查公因式,难度不大14.1【解析】设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,∵S△ABO=12•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=12A′O′=1,BD=12BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x·y=3×2=1.故答案为1.15.6【解析】【分析】本题可根据比例线段进行求解.【详解】解:因为在比例尺为1:50000的地图上甲,乙两地的距离12cm,所以,甲、乙的实际距离x满足12:x=1:50000,即x=1250000=600000cm=6km.【点睛】本题主要考查比例尺和比例线段的相关知识.16.4a(2a+1)(2a﹣1)【解析】【分析】首先提取公因式,再利用平方差公式分解即可.【详解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案为4a(2a+1)(2a﹣1)【点睛】本题考查了提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.17.102【解析】【分析】作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.解直角三角形求出FP、NT即可解决问题.【详解】解:作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.由题意△QDF,△QCH都是等腰直角三角形,四边形FQHJ是矩形,∴DF=DQ=30cm,CQ=CD−DQ=60−30=30cm,∴FJ=QH=152cm,∵AC=AB−BC=125−25=100cm,∴PF=(152+100)cm,同法可求:NT=(100+52),∴两个转盘的最低点F,N距离地面的高度差为=(152+100)-(100+52)=102故答案为: 102【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.18.A A的平均成绩高于B平均成绩【解析】【分析】根据表格求出A,B的平均成绩,比较大小即可解题.【详解】解:A的平均数是80.25,B的平均数是79.5,∴A比B更优秀,∴如果只招一名主持人,该选用A;依据是A的平均成绩高于B平均成绩.【点睛】本题考查了平均数的实际应用,属于简单题,从表格中找到有用信息是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)13;(2)13.【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:1 3(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是26=13.考点:概率的计算.20.(1)y=3x;y=x-2;(2)(0,0)或(4,0)【解析】试题分析:(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB与x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标.试题解析:(1)∵反比例函数y=mx(m≠0)的图象过点A(1,1),∴1=1m ∴m=1.∴反比例函数的表达式为y=3x.∵一次函数y=kx+b的图象过点A(1,1)和B(0,-2).∴31 {2k bb==+-,解得:1{2kb-==,∴一次函数的表达式为y=x-2;(2)令y=0,∴x-2=0,x=2,∴一次函数y=x-2的图象与x轴的交点C的坐标为(2,0).∵S△ABP=1,1 2PC×1+12PC×2=1.∴PC=2,∴点P的坐标为(0,0)、(4,0).【点睛】本题考查了待定系数法求函数的解析式以及三角形的面积的计算,正确根据S△ABP=S△ACP+S△BCP 列方程是关键.21.(1)A(4,3);(2)28.【解析】【分析】(1)点A是正比例函数34y x=与一次函数y=-x+7图像的交点坐标,把34y x=与y=-x+7联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在Rt△OAD中,由勾股定理求得OA的长,再由BC=75OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据12OBCS BC OP∆=⋅即可求得△OBC的面积.【详解】解:(1)由题意得:347y xy x⎧=⎪⎨⎪=-+⎩,解得43xy=⎧⎨=⎩,∴点A的坐标为(4,3).(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中,由勾股定理得,2222435 OA OD AD+=+=∴775755BC OA==⨯=.∵P(a,0),∴B(a,34a),C(a,-a+7),∴BC=37(7)744a a a--+=-,∴7774a-=,解得a=8.∴11782822OBCS BC OP∆=⋅=⨯⨯=.22.(1)y=x2+2x﹣3;(2)点P的坐标为(2,21)或(﹣2,5);(3)94.【解析】【分析】(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.然后依据S△POC=2S△BOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可.【详解】解:(1)∵抛物线与x轴的交点A(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的交点B的坐标为(1,0),设抛物线解析式为y=a(x+3)(x﹣1),将点C(0,﹣3)代入,得:﹣3a=﹣3,解得a=1,则抛物线解析式为y=(x+3)(x﹣1)=x2+2x﹣3;(2)设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=2S△BOC,∴12•OC•|a|=2×12OC•OB,即12×3×|a|=2×12×3×1,解得a=±2.当a=2时,点P的坐标为(2,21);当a=﹣2时,点P的坐标为(﹣2,5).∴点P的坐标为(2,21)或(﹣2,5).(3)如图所示:设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,∴直线AC的解析式为y=﹣x﹣3.设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).∴QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+94﹣94)=﹣(x+32)2+94,∴当x=﹣32时,QD有最大值,QD的最大值为94.【点睛】本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用.23.(1)小球飞行时间是1s时,小球最高为10m;(1) 1≤t≤3.【解析】【分析】(1)将函数解析式配方成顶点式可得最值;(1)画图象可得t的取值.【详解】(1)∵h=﹣5t1+10t=﹣5(t﹣1)1+10,∴当t=1时,h取得最大值10米;答:小球飞行时间是1s时,小球最高为10m;(1)如图,由题意得:15=10t﹣5t1,解得:t1=1,t1=3,由图象得:当1≤t≤3时,h≥15,则小球飞行时间1≤t≤3时,飞行高度不低于15m.【点睛】本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.24.(1)∠ADE=90°;(2)△ABE的周长=1.【解析】试题分析:(1)是线段垂直平分线的做法,可得∠ADE=90°(2)根据勾股定理可求得BC=4,由垂直平分线的性质可知AE=CE,所以△ABE的周长为AB+BE+AE=AB+BC=1试题解析:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=1.考点:1、尺规作图;2、线段垂直平分线的性质;3、勾股定理;4、三角形的周长25.CE的长为(4+)米【解析】【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【详解】过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=CH AH,∴CH=AH•tan ∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×3=23(米),∵DH=1.5,∴CD=23+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=CD CE,∴CE=23 1.53=(4+3)(米),答:拉线CE的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题26.解:作AB的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M即可.【解析】【详解】易得M在AB的垂直平分线上,且到C的距离等于AB的一半.27.(1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平.【解析】【分析】(1)根据统计图可以求出这次调查的n的值;(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;(4)根据题意可以写出树状图,从而可以解答本题.【详解】解:(1)n%=1﹣10%﹣15%﹣35%=40%,故答案为40;(2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,故答案为144°;(3)调查的结果为D等级的人数为:400×40%=160,故补全的条形统计图如右图所示,(4)由题意可得,树状图如右图所示,P(奇数)82, 123 ==P(偶数)41, 123 ==故游戏规则不公平.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。
2019-2020学年江宁区东山外国语学校七年级(下)第一次月考数学试卷(3月份)(含答案解析)
2019-2020学年江宁区东山外国语学校七年级(下)第一次月考数学试卷(3月份)一、选择题(本大题共8小题,共24.0分)1.下列运算正确的是()A. x2+x3=x5B. (x−2)2=x2−4C. 2x2⋅x3=2x5D. (x3)4=x72.若(x−2)(x+1)=x2+ax+b,则a+b=()A. −1B. 2C. 3D. −33.已知a2+b2=2,a+b=1,则ab的值为()A. −1B. −12C. −32D. 34.下列变形是因式分解的是()A. 6xy2=2xy•3yB. x−1=x(1−1x)C. x2−2x−3=x(x−2)−3D. 5a−a2=a(5−a)5.分解因式x3−4xy2,结果正确的是()A. x(x2−4y2)B. x(x−2y)2C. x(x+2y)(x−2y)D. x(x+2y)26.如图,∠1=50°,如果AB//DE,那么∠D的度数为()A. 40°B. 50°C. 130°D. 140°7.如图,AB//CD,CE平分∠ACD交AB于E,若∠A=120°,则∠AEC=()A. 20°B. 25°C. 30°D. 50°8.长方形的一边长是4x+y,另一边比它小x−y,则长方形的周长是()A. 7x+yB. 7x+3yC. 14x+2yD. 14x+6y二、填空题(本大题共10小题,共30.0分)9.计算(−x2)2⋅(2xy2)2=______ .10.0.000000602用科学记数法可表示为______.11.分解因式:10x2−1000=______.12.计算2017×2019−20182的结果是__________.13.若a−b=4,则2a2−4ab+2b2−12的值为______ .14.已知x+y=8,x2+y2=23,则xy的值为______ .15.如果a2=5,b2=3,那么(a+b)(a−b)=______ .16.把一张长方形纸条按图中折叠后,若∠EFB=65°,则∠AED′=______度.17.如图,直线l1//l2,一块含45°的直角三角板按如图方式放置,若∠1=30°,则∠2的度数是______.18.,如图,用四个全等的直角三角形和一个小正方形拼成一个较大的正方形,那么它们三者面积之间的关系用式子可表示为 _____________________________,整理后即为 _________________________三、计算题(本大题共2小题,共22.0分)19.计算:(1)y3⋅y3+(−2y3)2;(2)(3x2y−xy2+2xy)÷xy;(3)(a+2b−c)(a−2b+c).20.分解因式:(1)16a2−(a2+4)2;(2)(y2−2y)2−2(y2−2y)−3.四、解答题(本大题共6小题,共42.0分)21.先化简,再求值:(1)3a(2a2−4a+3)−2a2(3a+4),其中a=−2;(2)[(x−y)2+(x+y)(x−y)]÷2x,其中x=3,y=1.22.分解因式(1)9(m+n)2−(m−n)2(2)81a4−72a2b2+16b4.23.已知9n+1−32n=72,求n的值.24.如图所示的正方形网格中,每个小正方形的边长都为1个单位长度,三角形ABC的顶点都在正方形网格的格点上,将三角形ABC经过平移后得到三角形A1B1C1,其中点B1是点B的对应点.(1)画出平移后得到的三角形A1B1C1;(2)连接AA1、BB1,则线段AA1、BB1的关系为________________;(3)四边形AA1C1C的面积为____________(平方单位).25.(1)如图1,已知a//b,a//c,那么b与c平行吗?为什么?(2)思考:根据本题,你能得出什么结论?______(3)利用上述结论,回答下列问题:①如图2(1),AB//CD,则∠A+∠C+∠E=______ °;②在图2(2)(3)中,直接写出∠A、∠E、∠C之间的关系.答:在图2(2)中______ ,在图2(3)中______ .26.阅读下列材料:式子“1×2×3×4×5×…×100”表示从1开始的100个连续自然数的积.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1×2×3×4×5× (100)表示为100πn =1n ,这里“π”是求积符号.例如:1×3×5×7×9×…×99,即从1开始的100以内的连续奇数的积,可表示为50πn =1(2n −1),又知13×23×33×43×53×63×73×83×93×103可表示为10πn =1n 3.通过对以上材料的阅读,请解答下列问题:(1)1×12×13×…×110用求积符号可表示为______ ;(2)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积)用求积符号可表示为______ ;(3)已知:a 2−b 2=(a −b)(a +b),如:32−22=(3−2)(3+2),据上述信息:①求:(1−(12)2)(1−(13)2)的值;②求:12πn =1(1−1n 2)的值.【答案与解析】1.答案:C解析:解:A、本选项不是同类项,不能合并,错误;B、(x−2)2=x2−4x+4,本选项错误;C、2x2⋅x3=2x5,本选项正确;D、(x3)4=x12,本选项错误,故选:C.A、本选项不是同类项,不能合并,错误;B、原式利用完全平方公式展开得到结果,即可作出判断;C、原式利用单项式乘单项式法则计算得到结果,即可作出判断;D、原式利用幂的乘方运算法则计算得到结果,即可作出判断.此题考查了完全平方公式,合并同类项,单项式乘单项式,以及幂的乘方,熟练掌握公式及法则是解本题的关键.2.答案:D解析:已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出a与b的值,即可求出a+b的值.此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.解:已知等式整理得:(x−2)(x+1)=x2−x−2=x2+ax+b,∴a=−1,b=−2,则a+b=−3,故选:D.3.答案:B解析:此题考查了完全平方公式,熟练掌握公式是解本题的关键.将a+b=1两边平方,利用完全平方公式展开,把a2+b2=2代入计算即可求出ab的值.解:将a+b=1两边平方得:(a+b)2=a2+b2+2ab=1,将a2+b2=2代入得:2+2ab=1,.解得:ab=−12故选B.4.答案:D解析:本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积形式.根据因式分解是把一个多项式转化成几个整式积形式,可得答案.解:A.不是多项式转化成几个整式积形式,故A不是因式分解;B.x−1不能再分解,故B不是因式分解;C.不是几个整式积形式,故C不是因式分解;D.符合因式分解的意义,故D是因式分解.故选D.5.答案:C解析:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,原式提取公因式,再利用平方差公式分解即可.解:原式=x(x2−4y2)=x(x+2y)(x−2y),故选C.6.答案:C解析:解:∵∠1与∠2为对顶角,∴∠1=∠2=50°,∵AB//DE,∴∠2+∠D=180°,则∠D=130°,故选:C.由对顶角相等求出∠2的度数,再利用两直线平行同旁内角互补求出所求角度数即可.此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.7.答案:C解析:解:∵AB//CD,∠A=120°,∴∠ACD=60°,∵CE平分∠ACD,∴∠ECD=∠AEC=30°,∵AB//CD,∴∠AEC=∠ECD=30°,故选C.直接利用平行线的性质得出∠ACD=70°,再利用角平分线的性质得出答案.此题主要考查了平行线的性质以及角平分线的性质,正确得出∠ACD的度数是解题关键.8.答案:D解析:此题考查了整式的加减,列式表示出长方形的周长是关键.根据题意表示另一边的长,进一步表示周长,化简即可.解:根据题意知这个长方形的周长为2[4x+y+(4x+y)−(x−y)]=2(4x+y+4x+y−x+y)=2(7x+3y)=14x+6y,故选:D.9.答案:4x6y4解析:本题主要考查的是单项式乘单项式、积的乘方,掌握单项式乘单项式法则、积的乘方法则是解题的关键,先算积的乘方,然后按照单项式乘单项式法则进行计算即可.解:原式=x4⋅4x2y4=4x6y4.故答案为:4x6y4.10.答案:6.02×10−7解析:解:0.000000602=6.02×10−7.故答案为:6.02×10−7.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.答案:10(x+10)(x−10)解析:解:原式=10(x2−100)=10(x+10)(x−10).故答案为:10(x+10)(x−10).首先提取公因式10,再利用平方差公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.12.答案:−1解析:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.原式变形后,利用平方差公式计算即可得到结果.解:原式=(2018−1)×(2018+1)−20182=20182−1−20182=−1,故答案为−1.13.答案:20解析:此题主要考查了运用公式法分解因式,熟练利用完全平方公式是解题关键.将前三项提取公因式2,进而利用完全平方公式分解因式,将已知条件代入得出即可.解:∵2a2−4ab+2b2−12=2(a−b)2−12,将a−b=4代入上式得:原式=2(a−b)2−12=2×42−12=20.故答案为:20.14.答案:20.5解析:解:∵(x+y)2=x2+y2+2xy,∴82=23+2xy,∴xy=20.5.故答案为20.5.利用完全平方公式得到(x+y)2=x2+y2+2xy,然后把x+y=8,x2+y2=23代入可求出xy的值.本题考查了完全平方公式:(a±b)2=a2±2ab+b2.15.答案:2解析:解:(a+b)(a−b)=a2−b2=5−3=2,故答案为:2.根据平方差公式:(a+b)(a−b)=a2−b2代入计算即可.本题考查的是平方差公式的运用,掌握平方差公式:两数和与差的积等于这两个数的平方差是解题的关键.16.答案:50解析:解:∵AD//BC,∴∠DEF=∠EFB=65°,∠AED′+∠D′EF=180°−∠EFB=115°,∵根据折叠的性质得∠DEF=∠D′EF=65°,∴∠AED′=115°−65°=50°,故答案为:50.本题考查了平行线的性质,根据平行线的性质得出∠DEF=∠EFB=65°,∠AED′+∠D′EF=180°−∠EFB=115°,再由图形折叠的性质得∠DEF=∠D′EF=65°,进而得出结论.17.答案:15°解析:本题考查了平行线的性质的应用,解此题的关键是能正确作出辅助线,注意:两直线平行,内错角相等,同位角相等.过A作AD//直线l1,推出l1//l2//AD,根据平行线的性质得出∠3=∠1=30°,∠2=∠4,即可得出答案.解:如图,过A作AD//直线l1,∵l1//l2,∴l1//l2//AD,∵∠1=30°,∠3+∠4=45°,∴∠3=∠1=30°,∴∠2=∠4=45°−30°=15°,故答案为:15°18.答案:大正方形的面积=小正方形面积+四个直角三角形的面积和;2ab+(b−a)2=c2解析:本题考查正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.根据4个直角三角形面积+小正方形面积=大正方形面积计算即可.解:大正方形的面积=小正方形面积+四个直角三角形的面积和,ab,即c2=(b−a)2+4×12∴2ab+(b−a)2=c2.故答案为大正方形的面积=小正方形面积+四个直角三角形的面积和;2ab+(b−a)2=c2.19.答案:解:(1)原式=y6+4y6=5y6;(2)原式=3x−y+2;(3)原式=a2−(2b−c)2=a2−4b2+4bc−c2.解析:此题考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.(1)原式利用同底数幂的乘法,幂的乘方与积的乘方运算法则计算,合并即可得到结果;(2)原式利用多项式除以单项式法则计算即可得到结果;(3)原式利用平方差公式及完全平方公式化简即可得到结果.20.答案:解:(1)原式=(4a+a2+4)(4a−a2−4)=−(a2+4a+4)(a2−4a+4)=−(a+2)2(a−2)2;(2)原式=(y2−2y−3)(y2−2y+1)=(y−3)(y+1)(y−1)2.解析:【试题解析】本题主要考查了因式分解的方法,关键是熟练掌握因式分解中的公式法.(1)先利用平方差公式进行分解,然后再利用完全平方公式进行分解可得结果;(2)先利用十字相乘法进行分解,然后利用完全平方公式和十字相乘法进行分解可得结果.21.答案:解:(1)3a(2a2−4a+3)−2a2(3a+4)=6a3−12a2+9a−6a3−8a2=−20a2+9a,当a=−2时,原式=−80−18=−98;(2)[(x−y)2+(x+y)(x−y)]÷2x=(x2−2xy+y2+x2−y2)÷2x=(2x2−2xy)÷2x=x−y,当x=3,y=1时,原式=3−1=2.解析:本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.(1)先算乘法,再合并同类项,最后代入求出即可;(2)先算括号内的乘法,合并同类项,再算除法,最后代入求出即可.22.答案:解:(1)9(m+n)2−(m−n)2=[3(m+n)]2−(m−n)2=[3(m+n)+(m−n)][3(m+n)+(m−n)]=4(2m+n)(m+2n);(2)81a4−72a2b2+16b4=(9a2−4b2)2=(3a+2b)2(3a−2b)2.解析:(1)直接利用平方差公式分解因式得出答案;(2)直接利用完全平方公式分解因式,进而利用平方差公式分解因式得出答案.此题主要考查了公式法分解因式,正确应用公式是解题关键.23.答案:解:因为9n+1−32n=72,所以32n×(9−1)=72,所以32n=72÷(9−1)=9=32,所以2n=2,因此n=2÷2=1.答:n的值是1.解析:此题主要考查了有理数的乘方问题,解答此题的关键是求出32n的值是多少.首先根据9n+1−32n=72,化简,求出32n的值是多少,然后根据求出的32n的值,求出n的值是多少即可.24.答案:解:(1)如图所示,三角形A1B1C1即为所求(2)平行且相等(只写一种关系扣1分)(3)12.解析:本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)画出A,B,C的对应点A1B1C1即可.(2)利用平移的性质即可判断;(3)根据面积和可得结论.解:(1)见答案;(2)因为各点平移距离是相等的,所以,AA1与BB1平行且相等.故答案为平行且相等;(3)S四边形AA1C1C =S△A1C1C+S△A1AC,=12×4×3+12×4×3,=12.故答案为12.25.答案:解:(1)b//c.理由:∵a//b,∴∠1=∠2,∵a//c,∴∠1=∠3,∴∠2=∠3,∴b//c;(2)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(3)①360;②∠E=∠A+∠C;∠A=∠C+∠E解析:(1)根据平行线的性质得出∠2=∠3,再根据平行线的判定进行推导,得出b//c;(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行,这是平行公理的推论;(3)过点E作AB的平行线EF,根据平行公理的推论得出EF//CD,再根据平行线的性质进行推导,即可得出∠A、∠E、∠C之间的关系.本题主要考查了平行线的性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系;应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(1)见答案;(2)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(3)①∠A+∠C+∠E=360°;②∠E=∠A+∠C,∠A=∠C+∠E.26.答案:解:(1)10πn=11n;(2)50πn=12n;(3)①(1−(12)2)(1−(13)2)=(1+12)×(1−12)×(1+13)×(1−13)=32×12×43×23=23;②12πn=1(1−12)=(1+1)×(1−1)×(1+1)×(1−1)×…×(1+1)×(1−1)=32×12×43×23×…×1312×1112=1324.解析:解:(1)1×12×13×…×110=10πn=11n,故答案为:10πn=11n;(2)2×4×6×8×10×…×100=50πn=12n,故答案为:50πn=12n;(3)①(1−(12)2)(1−(13)2)=(1+12)×(1−12)×(1+13)×(1−13)=32×12×43×23=23;②12πn=2(1−1n2)=(1+12)×(1−12)×(1+13)×(1−13)×…×(1+112)×(1−112)=32×12×43×23×…×1312×1112=1324.(1)由新定义可得结果;(2)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积),由新定义可得公式;(3)①套用题给公式即可得;②由新定义可知:12πn=1(1−1n2)=(1+12)×(1−12)×(1+13)×(1−13)×…×(1+112)×(1−112),再计算、约分可得.此题主要考查了有理数的混合运算和数字的变化规律,理解新定义是解答此题的关键。
南京东山外国语学校数学整式的乘法与因式分解检测题(Word版 含答案)
南京东山外国语学校数学整式的乘法与因式分解检测题(Word 版含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3【答案】D【解析】【分析】根据20192019a x =+,20192020b x =+,20192021c x =+分别求出a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可完成.【详解】∵20192019a x =+,20192020b x =+,20192021c x =+, 20192019201920201a b x x -=+--=-20192019201920212a c x x -=+--=-20192020201920211b c x x -=+--=-∴222a b c ab ac bc ++---2221(222222)2a b c ab ac bc =++--- 2222221(222)2a ab b a ac c b bc c =-++-++-+ 222111()()()222a b a c b c =-+-+- 222111(1)(2)(1)222=⨯-+⨯-+⨯- 11222=++ 3=故选D【点睛】本题考查完全平方公式的应用,熟练掌握完全平方公式是解题关键.2.已知n 16221++是一个有理数的平方,则n 不能取以下各数中的哪一个( ) A .30B .32C .18-D .9 【答案】B【解析】【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n 的值,然后选择答案即可.【详解】2n 是乘积二倍项时,2n +216+1=216+2×28+1=(28+1)2,此时n=8+1=9,216是乘积二倍项时,2n +216+1=2n +2×215+1=(215+1)2,此时n=2×15=30,1是乘积二倍项时,2n +216+1=(28)2+2×28×2-9+(2-9)2=(28+2-9)2,此时n=-18,综上所述,n 可以取到的数是9、30、-18,不能取到的数是32.故选B .【点睛】本题考查了完全平方式,难点在于要分情况讨论,熟记完全平方公式结构是解题的关键.3.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( )A .4B .8C .12D .16【答案】D【解析】(x -2 015)2+(x -2 017)2=(x -2 016+1)2+(x -2 016-1)2=22(2016)2(2016)1(2016)2(2016)1x x x x -+-++---+=22(2016)2x -+=34∴2(2016)16x -=故选D.点睛:本题主要考查了完全平方公式的应用,把(x -2 015)2+(x -2 017)2化为 (x -2 016+1)2+(x -2 016-1)2,利用完全平方公式展开,化简后即可求得(x -2 016)2的值,注意要把x-2016当作一个整体.4.因式分解x 2-ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3) 【答案】B【解析】【分析】【详解】因为(x +6)(x -1)=x 2+5x-6,所以b=-6;因为(x -2)(x +1)=x 2-x-2,所以a=1.所以x 2-ax +b=x 2-x-6=(x-3)(x+2).故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a ,说明b 是正确的,所以将看错了a 的式子展开后,可得到b 的值,同理得到a 的值,再把a ,b 的值代入到x 2+ax +b 中分解因式.5.下列运算正确的是( )A .236•a a a =B .()325a a =C .23•a ab a b -=-D .532a a ÷=【答案】C【解析】【分析】根据同底数幂乘法、幂的乘方、单项式乘法、同底数幂除法法则即可求出答案.【详解】A .原式=a 5,故A 错误;B .原式=a 6,故B 错误;C .23•a ab a b -=-,正确;D .原式=a 2,故D 错误.故选C .【点睛】本题考查了同底数幂乘法、幂的乘方、单项式乘法、同底数幂除法,解题的关键是熟练运用运算法则,本题属于基础题型.6.下列多项式中,能运用公式法进行因式分解的是( )A .a 2+b 2B .x 2+9C .m 2﹣n 2D .x 2+2xy+4y 2【答案】C【解析】试题分析:直接利用公式法分解因式进而判断得出答案.解:A 、a 2+b 2,无法分解因式,故此选项错误;B 、x 2+9,无法分解因式,故此选项错误;C 、m 2﹣n 2=(m+n )(m ﹣n ),故此选项正确;D 、x 2+2xy+4y 2,无法分解因式,故此选项错误;故选C .7.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.8.下列由左到右的变形,属于因式分解的是( )A .2(2)(2)4x x x +-=-B .242(4)2x x x x +-=+-C .24(2)(2)x x x -=+-D .243(2)(2)3x x x x x -+=+-+ 【答案】C【解析】【分析】根据因式分解的意义,可得答案.【详解】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积的形式,故B 错误;C. 把一个多项式转化成几个整式积的形式,故C 正确;D 没把一个多项式转化成几个整式积的形式,故D 错误.故答案选:C.【点睛】本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.9.若2149x kx ++是完全平方式,则实数k 的值为( ) A .43 B .13 C .43± D .13± 【答案】C【解析】【分析】本题是已知平方项求乘积项,根据完全平方式的形式可得出k 的值.【详解】由完全平方式的形式(a±b )2=a 2±2ab+b 2可得: kx=±2•2x•13, 解得k=±43. 故选:C【点睛】本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b )2=a 2±2ab+b 2是关键.10.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为( )A .12B .1C .()12a b +D .+a b【答案】C【解析】【分析】用长方形的面积除以长可得.【详解】宽为:()()()()22222a ab ab ba b a b a b +++÷+=+÷+= ()12a b + 故选:C【点睛】考核知识点:整式除法与面积.掌握整式除法法则是关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知3x y +=,3336x y +=,则xy =______.【答案】-1【解析】【分析】将3336x y +=利用立方和公式以及完全平方公式进行变形后再计算即可得出答案.【详解】解:∵3x y +=∴33222()()3()33(93)279x y x y x xy y x y xy xy xy ⎡⎤+=+-+=⨯+-=-=-⎣⎦ ∵3336x y +=∴27936xy -=∴1xy =-故答案为:-1.【点睛】本题考查的知识点是立方和公式以及完全平方公式,解此题的关键是记住立方和公式.12.多项式x 2+2mx+64是完全平方式,则m = ________ .【答案】±8【解析】根据完全平方式的特点,首平方,尾平方,中间是加减首尾积的2倍,因此可知2mx=2×(±8)x ,所以m=±8. 故答案为:±8.点睛:此题主要考查了完全平方式,解题时,要明确完全平方式的特点:首平方,尾平方,中间是加减首尾积的2倍,关键是确定两个数的平方.13.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.【答案】27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.14.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=______.【答案】()()2a b a b ++.【解析】【分析】根据图形中的正方形和长方形的面积,以及整体图形的面积进而得出恒等式.【详解】解:由面积可得:()()22a 3ab 2b a 2b a b ++=++.故答案为:()()a 2b a b ++.【点睛】此题主要考查了十字相乘法分解因式,正确利用面积得出等式是解题关键.15.-3x 2+2x -1=____________=-3x 2+_________.【答案】 -(3x 2-2x +1) (2x -1)【解析】根据提公因式的要求,先提取负号,可得-(3x 2-2x +1),再把2x-1看做一个整体去括号即可得(2x-1).故答案为:-(3x 2-2x +1) ,(2x -1).16.若m+1m =3,则m 2+21m =_____. 【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m =7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.17.分解因式:2x 2﹣8=_____________【答案】2(x+2)(x ﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.18.若()2242x ax x ++=-,则a =_____.【答案】-4【解析】【分析】直接利用完全平方公式得出a 的值.【详解】解:∵()2242x ax x ++=-,∴4a =-故答案为:4-【点睛】此题主要考查了公式法分解因式,正确应用公式是解题关键.19.已知:7a b +=,13ab =,那么 22a ab b -+= ________________.【答案】10【解析】∵(a+b ) 2 =7 2 =49,∴a 2 -ab+b 2 =(a+b ) 2 -3ab=49-39=10,故答案为10.20.光的速度约为3×105 km/s,太阳系以外距离地球最近的一颗恒星(比邻星)发出的光需要4年的时间才能到达地球.若一年以3×107 s 计算,则这颗恒星到地球的距离是_______km.【答案】3.6×1013【解析】【分析】根据题意列出算式,再根据单项式的运算法则进行计算.【详解】依题意,这颗恒星到地球的距离为4×3×107×3×105,=(4×3×3)×(107×105),=3.6×1013km .故答案为:3.6×1013.【点睛】本题考查了根据实际问题列算式的能力,科学记数法相乘可以运用单项式相乘的法则进行计算.。
江苏省南京市东山外国语学校2019-2020学年八年级上学期数学12月月考试试题
江苏省南京市东山外国语学校2019-2020学年八年级上学期数学12月月考试试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中,没有平方根的是( )A .﹣4B .0C .0.25D2.下列各点中,位于直角坐标系第二象限的点是( ) A .(2,1)B .(﹣2,﹣1)C .(2,﹣1)D .(﹣2,1)3.由四舍五入得到的地球半径约为6.4×103km ;精确到( ) A .1000 kmB .100 kmC .0.1 kmD .0.01 km4.已知,一次函数y =kx +b 的图象如图,下列结论正确的是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <05.以下列各组数为三角形的边长,能构成直角三角形的是( )A .2、3、4B .5、5、6C .2D 6.如图,在平面直角坐标系中,点B 的坐标为()3,2,以点O 为圆心,OB 的长为半径画弧,交x 轴的正半轴于点A ,则点A 的横坐标在( ).A .2和3之间B .3和3.5之间C .3.5和4之间D .4和5之间二、填空题7.8-的立方根是__________.8.点 P (3,﹣4)关于 y 轴对称点的坐标是_________.9.阅读理解:∵4216=,()4216-=,∴16的四次方根为2±,即2=±,=______.10.已知y 与2x +成正比例,且当1x =时,3y =.则y 与x 之间的函数关系式是______. 11..在平面直角坐标系中,若点M (1,3)与点N (x ,3)之间的距离是5,则x 的值是____________.12.已知一次函数y=(2﹣m )x +2的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1<x 2时,有y 1>y 2,那么m 的取值范围是_______.13.如图,直线1l :11y k x b =+与直线2l :22y k x b =+交于点()2,2,则方程组1122y k x b y k x b =+⎧⎨=+⎩的解为______.14.如图,一农户要建一个矩形猪舍,猪舍的一边利用住房墙(住房墙的长度大于BC ),另外三边用25m 长的建筑材料围成,为方便进出,在CD 边上留一个1m 宽的门.若设AB 为()y m ,BC 为()x m ,则y 与x 之间的函数关系式为______.15.如图,在△ABC 中,AC=4cm ,线段AB 的垂直平分线交AC 于点N ,△BCN 的周长是7cm ,则BC 的长为______cm .16.如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC =________度.17.如图,在平面直角坐标系中,点A 、B 的坐标分别为()3,2、()1,0-,若将线段BA 绕点B 顺时针旋转90得到线段BA',则点A'的坐标为________.18.如图为一张藏宝图,已知秘密宝藏藏在图中的某个黑点标示的位置.建立适当的平面直角坐标系,现知道Rt ABC 的直角顶点C 的位置的坐标为()1,1,B 点位置的坐标为()2,0.经过调查,秘密宝藏的位置P 满足为条件:PAB △为非等腰的锐角三角形.A 点位置的坐标为______,符合条件的P 点的个数为______个.三、解答题19.解答下列各题:(10π. (2)求x 的值:24250x -=.20.如图,在平面直角坐标系xOy 中,已知点()0,6A ,点()6,6B .(1)尺规作图,求作一点P ,使点P 同时满足下列条件(保留作图痕迹,不写作法) ①点P 到A 、B 两点的距离相等. ②点P 到xOy ∠的两边的距离相等. (2)直接写出点P 的坐标. 21.已知函数3123y x =-+,不画图象,解答下列问题.(2)若点(),0P a 、()1,Q b -都在该函数的图象上,试求a 、b 的值. 22.已知一次函数的图象经过()1,1和()1,5--. (1)求这个一次函数的关系式.(2)求这个一次函数与x 轴、y 轴的交点坐标及一次函数图象与两坐标轴围成的三角形的面积.(3)当1y <时,x 的取值范围是______.23.如图,ABC 中,AB AC =,M 是BC 的中点,D 、E 分别是AB 、AC 边上的点,且BD CE =.(1)求证:MD ME =.(2)若D 为AB 的中点,且10AB =,求ME 的长.24.请你用学习“一次函数”时积累的经验和方法解决下列问题: (1)在平面直角坐标系中,画出函数y x =的图象: ①列表填空:②描点、连线,画出y x =的图象.(2)结合所画函数图象,写出y x =两条不同类型的性质. (3)当12x -<<时,y 的取值范围是______.25.命题:有两个角相等的三角形是等腰三角形(简称“等角对等边”). 已知:如图,△ABC 中,∠B=∠C . 求证:AB=AC .三位同学作出了三种不同的辅助线,并完成了命题的证明.小刚的方法:作∠BAC 的平分线AD ,可证△ABD ≌△ACD ,得AB=AC ;小亮的方法:作BC 边上的高AD ,可证△ABD ≌△ACD ,得AB=AC ;小莉的方法:作BC 边上的中线AD . (1)请你写出小刚与小亮方法中△ABD ≌△ACD 的理由: (2)请你按照小莉的思路完成命题的证明.26.如图,直线1l :12y kx =+()0k ≠与直线2l :244y x =-交于点(),4P m ,直线1l 分别交x 轴、y 轴于点A 、B ,直线2l 交x 轴于点C .(1)求k 、m 的值.(2)请直接写出使得不等式244kx x +<-成立的x 的取值范围. (3)在直线2l 上找点Q ,使得QACBPCSS=,求点Q 的坐标.27.如图①,在一条笔直的公路上有M 、P 、N 三个地点,M 、P 两地相距20km ,甲开汽车,乙骑自行车分别从M 、P 两地同时出发,匀速前往N 地,到达N 地后停止运动.已知乙骑自行车的速度为20km/h ,甲,乙两人之间的距离y (km )与乙行驶的时间t (h )之间的关系如图②所示.(1)M、N两地之间的距离为km;(2)求线段BC所表示的y与t之间的函数表达式;(3)若乙到达N地后,甲,乙立即以各自原速度返回M地,请在图②所给的直角坐标系中补全函数图象.参考答案1.A【解析】根据平方根的定义得到只有非负数才有平方根进行判断即可.解:∵正数有两个平方根,0有一个平方根,负数没有平方根,∴﹣4没有平方根.“点睛”本题考查了平方根的定义的理解和应用,若一个数的平方等于a,那么这个数叫a.2.D【解析】试题解析:A、(2,1)在第一象限,故本选项错误;B、(-2,-1)在第三象限,故本选项错误;C、(2,-1)在第四象限,故本选项错误;D、(-2,1)在第二象限,故本选项正确.故选D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.B【分析】先把6.4×103写成原数,再分析4所表示的数位.【详解】因为6.4×103 km =6400km,所以,精确到100 km故选B【点睛】本题考核知识点:科学计数法,近似数.解题关键点:把科学记数法的形式改写成原数,再分析.4.B【分析】根据图象在坐标平面内的位置,确定k,b的取值范围,从而求解.【详解】∵一次函数y=kx+b的图象,y随x的增大而增大,∴k>0,∵直线与y轴负半轴相交,∴b<0.故选:B.【点睛】本题主要考查一次函数的解析式的系数的几何意义,掌握一次函数的解析式的系数与直线在坐标系中的位置关系,是解题的关键.5.D【分析】根据勾股定理的逆定理得出选项A、B、C不能构成直角三角形,D选项能构成直角三角形,即可得出结论.【详解】解:A、22+32≠42,不符合勾股定理的逆定理,故不正确;B、52+52≠62,不符合勾股定理的逆定理,故不正确;C、22+2≠2,不符合勾股定理的逆定理,故不正确;D、2+2=2,符合勾股定理的逆定理,能构成直角三角形,故正确.故选D.【点睛】本题考查了勾股定理的逆定理;在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.C【分析】结合勾股定理得出OB的值,进而再利用估算无理数的方法得出答案.【详解】由题意可得:OB OA===,<<34<<, ∵23.512.25=,∴点A 的横坐标在3.5和4之间. 故选C . 【点睛】7.-2 【解析】【分析】根据立方根的定义进行求解即可得. 【详解】∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2, 故答案为﹣2.【点睛】本题考查了立方根的定义,熟练掌握立方根的定义是解题的关键. 8.(-3,﹣4) 【分析】关于y 轴对称的点,纵坐标不变,横坐标互为相反数. 【详解】解:∵关于y 轴对称的点,纵坐标不变,横坐标互为相反数. ∴P (3,﹣4)关于 y 轴对称点的坐标是(-3,﹣4) 【点睛】本题考查了点的对称,属于简单题,熟悉坐标的对称性质是解题关键. 9.3 【分析】根据已知四次方根的定义,(±3)四次方为81,因而可以得出答案. 【详解】解:∵4381=,()4381-=,∴81的四次方根为3±,即3=±,3=.【点睛】题目考查了四次方根的概念,学生只要抓住基本的运算规律即可,另外不要出现漏解的现象. 10.2y x =+ 【分析】根据y 与x+2成正比例,设y=k (x+2),把x 与y 的值代入求出k 的值,即可确定出关系式. 【详解】解:设()2y k x =+,把1x =,3y =代入()2y k x =+中,得()123k +=, 解得1k =, ∴2y x =+. 故答案为:2y x =+. 【点睛】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键. 11.-4或6 【解析】分析:点M 、N 的纵坐标相等,则直线MN 在平行于x 轴的直线上,根据两点间的距离,可列出等式|x-1|=5,从而解得x 的值.解答:解:∵点M (1,3)与点N (x ,3)之间的距离是5, ∴|x-1|=5, 解得x=-4或6. 故答案为-4或6. 12.m >2 【解析】∵当x 1<x 2时,有y 1>y 2, ∴2-m <0, ∴m >2. 13.22x y =⎧⎨=⎩【分析】根据两直线的交点坐标就是两直线对应方程组成的二元一次方程组的解集解答即可. 【详解】解:由题意,直线1l :11y k x b =+与直线2l :22y k x b =+交于点()2,2,则方程组1122y k x b y k x b =+⎧⎨=+⎩的解为22x y =⎧⎨=⎩. 【点睛】本题考查了函数解析式与图象的关系,熟练掌握函数图象的交点就是两函数解析式组成的方程组的解是解答的关键. 14.1132y x =- 【分析】设AB 为y (m ),BC 为x (m ),根据AB+BC+CD-1=25列出方程即可. 【详解】 解:设AB 为()ym ,BC 为()x m ,根据题意得125y x y ++-=,整理得1132y x =-. 故答案为:1132y x =-. 【点睛】此题考查了根据实际问题列函数关系式的知识,属于基础题,解答本题关键是根据三边建筑材料的总长为25米,列出等式. 15.3 【解析】试题分析:根据线段的垂直平分线的性质得到NB=NA ,根据三角形的周长公式计算即可. 解:∵线段AB 的垂直平分线交AC 于点N , ∴NB=NA ,△BCN 的周长=BC+CN+BN=7cm ,∴BC+AC=7cm ,又AC=4cm , ∴BC=3cm , 故答案为3.考点:线段垂直平分线的性质. 16.52 【解析】分析:因为AC =AD =DB ,所以可设∠B =x °,即可表示∠BAD =x °,∠ADC =∠ACD =2x °; 根据三角形的内角和等于180°,列方程求得x 的值,便可得到∠ADC 的度数. 详解:∵AC =AD =DB , ∴∠B =∠BAD ,∠ADC =∠C . ∵∠ADC =∠B +∠BAD , ∴∠ADC =∠C =2∠B . 设∠B =x °,则∠C =2x °.∵在△ABC 中,∠BAC +∠B +∠C =180°, ∴x +2x +102=180. 解得:x =26. ∴∠ADC =2x =52°. 故答案为52.点睛:本题考查了等腰三角形的性质,三角形外角的性质及三角形内角和的问题,解答本题的关键是熟练掌握等腰三角形的性质和三角形外角的性质. 17.()1,4- 【分析】作AC ⊥x 轴于C ,利用点A 、B 的坐标得到AC=2,BC=4,根据旋转的定义,可把Rt △BAC 绕点B 顺时针旋转90°得到△BA′C′,如图,利用旋转的性质得BC′=BC=4,A′C′=AC=2,于是可得到点A′的坐标. 【详解】作AC ⊥x 轴于C ,∵点A 、B 的坐标分别为(3,2)、(-1,0), ∴AC=2,BC=3+1=4,把Rt △BAC 绕点B 顺时针旋转90°得到△BA′C′,如图, ∴BC′=BC=4,A′C′=AC=2, ∴点A′的坐标为(1,-4). 故答案为(1,-4). 【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是把线段的旋转问题转化为直角三角形的旋转. 18.()0,0; 4 【分析】根据已知点的坐标建立平面坐标系,即可得到点A 的坐标,再根据等腰三角形的判定和锐角三角形的定义,结合图形即可得出结论. 【详解】解:∵ABC 为直角三角形,C 点坐标为()1,1,B 点坐标为()2,0, ∴AB 所在直线为x 轴,垂直于AB 所在直线为y 轴,如图所示:∴A 点坐标为()0,0.∵PAB △为非等腰的锐角三角形,∴P 点不能在过点C 垂直于AB 的直线上(不能等腰),P 点不能在y 轴上(90PAB ∠=︒),不能在y 轴左侧(90PAB ∠>︒), 由对称性可知P 点不能在过B 点垂直于x 轴垂线上,以及右侧,AB 下方那两点也不能(90APB ∠>︒),∴满足条件P 点,如图所示:1P ,2P ,3P ,4P ,共4个,故答案为:(0,0);4. 【点睛】本题考查由点的坐标确定平面直角坐标系、等腰三角形、锐角三角形,理解等腰三角形和锐角三角形的定义,正确建立平面直角坐标系是解答的关键. 19.(1)0;(2)152x =,252x =-. 【分析】(1)原式第一项利用平方根定义计算,第二项利用立方根定义,最后一项利用零指数幂法则计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解. 【详解】(10π()431=+--11=-0=.(2)24250x -=2425x =,2254x =, ∴152x =,252x =-.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 20.(1)图见解析;(2)()3,3P .【分析】(1)如图(见解析),先连接AB ,再作AB 的垂直平分线MN ,然后作xOy ∠的角平分线OF 即可得;(2)先根据垂直平分线的性质可得点P 的横坐标,再根据角平分线的性质可得点P 的纵坐标. 【详解】(1)分以下三步: ①连接AB ,②作AB 的垂直平分线MN , ③作xOy ∠的角平分线OF ,则MN 与OF 的交点即为满足条件的点P ,如图所示:(2)()()0,6,6,6A B ,6,AB AB OA ∴=⊥,∵点P 是AB 的垂直平分线MN 上的点, ∴点P 的横坐标为132AB =, ∵点P 是xOy ∠的角平分线OF 上的点, ∴点P 到xOy ∠两边的距离相等, ∴点P 的纵坐标等于其横坐标为3, ∴()3,3P . 【点睛】本题考查了线段垂直平分线和角平分线的尺规作图与性质、点坐标,熟练掌握尺规作图是解题关键.21.(1))1A -在该函数上,理由见解析;(2)a =73b =【分析】(1)将点)1A-代入函数关系式,计算后判断即可,;(2)分别将P ,Q 点代入函数关系式进而得出答案. 【详解】解:(1)点)1A-在函数3123y x =-+的图象上,理由是:当39x时,3123y =-+1923=-⨯+1=-.∴)1A-在函数3123y x =-+的图象上.(2)∵点(),0P a 、()1,Q b -都在该函数的图象上, 令0y =,则31023x =-+解得:x =∴ a =令1x =-,()31123y =-⨯-+123=+73=.∴73b =. 【点睛】此题主要考查了函数关系式以及函数图象上点的坐标性质,正确理解图象上点的坐标性质是解题关键.22.(1)32y x =-; (2)2,03⎛⎫⎪⎝⎭,()0,2-,23;(3)1x <【分析】(1)利用待定系数法求解一次函数的解析式即可;(2)分别令x=0和y=0求得一次函数与坐标轴的交点,再利用三角形的面积公式即可解答; (3)解关于x 的一元一次不等式即可求解. 【详解】(1)设函数解析式为y kx b =+(0k ≠), 由题意将两点代入得:15k b k b +=⎧⎨-+=-⎩,解得:32k b =⎧⎨=-⎩,∴一次函数的解析式为:32y x =-. (2)令0y =,得23x =, 令0x =,得2y =-,∴一次函数32y x =-与x 轴的交点坐标为2,03⎛⎫⎪⎝⎭,与y 轴的交点坐标为()0,2-, ∴1222233S =⨯⨯=. (3)当1y <时,即321x -<, ∴33x <, ∴1x <,∴当1y <时,x 的取值范围是1x <. 【点睛】本题考查待定系数法求一次函数的解析式、求函数图像与坐标轴围成的三角形的面积、解一元一次不等式,是一次函数的常考题型,难度适中,会利用待定系数法求解一次函数的解析式是解答的关键.23.(1)证明见解析;(2)5. 【分析】(1)由等腰三角形判断△BDM ≌△CEM (SAS )即可解题(2)连接AM ,利用等腰三角形的性质得到Rt AMC ,利用直角三角形中线的性质,D 为AB 的中点,求出12EM AC =即可解题. 【详解】(1)∵AB AC =, ∴B C ∠=∠, ∵M 是BC 的中点, ∴BM CM =,在DBM △和ECM 中,BM CM B C BD CE =⎧⎪∠=∠⎨⎪=⎩,∴DBM ECM ≌△△()SAS , ∴MD ME =. (2)连接AM ,∵AB AC =且M 为BC 中点, ∴AM BC ⊥. ∴90AMC ∠=︒.∵AB AC =,BD CE =,∴AB BD AC CE -=-,即AD AE =. ∵D 为BC 中点, ∴E 为AC 中点.∵在Rt AMC 中,90AMC ∠=︒, ∴12EM AC =. ∵AB AC =且10AB =, ∴10AC =. ∴1110522ME AC ==⨯=.【点睛】本题考查了全等三角形判定、等腰三角形性质和直角三角形中线性质,关键在于熟练运用性质与定理证明.24.(1)①3;2;1;0;1;2;3;见解析; ②画图见解析.(2)增减性:0x <时,y 随x 的增大而减小,0x >时,y 随x 的增大而增大.对称性:图象关于y 轴对称. (3)02y ≤< 【分析】(1)列表画出图象解答即可; (2)根据一次函数的性质解答即可; (3)结合图象回答即可. 【详解】 (1)①故答案为:3;2;1;0;1;2;3.②(2)0x <时,y 随x 的增大而减小,0x >时,y 随x 的增大而增大. 对称性:图象关于y 轴对称. 函数的最小值为0.(3)由图象可得,当12x -<<时,02y ≤<. 故答案为:02y ≤<. 【点睛】此题考查一次函数的图象,关键是根据一次函数的图象和特点解答即可. 25.(1)AAS ;(2)证明见解析. 【解析】分析:(1)根据AAS 即可判断;(2)过点D 作DE ⊥AB 于点E ,过点D 作DF ⊥AC 于点F .首先证明△BDE ≌△CDF (AAS ),推出BE=CF ,DE=DF ,再证明Rt △AED ≌Rt △AFD ,推出AE=AF 即可解决问题; 详解:(1)△ABD ≌△ACD 的理由是AAS , 故答案为AAS .(2)证明:过点D 作DE ⊥AB 于点E ,过点D 作DF ⊥AC 于点F .∵∠BED=∠CFD=90°,∠B=∠C ,BD=CD . ∴△BDE ≌△CDF (AAS ).∴BE=CF ,DE=DF .在Rt △AED 和Rt △AFD 中,∠AED=∠AFD=90°. ∵AD=AD ,DE=DF ,∴Rt △AED ≌Rt △AFD .∴AE=AF .∴AE+BE=AF+CF .即AB=AC .点睛:本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.(1)1k =,2m =;(2)2x >;(3)Q 点的坐标为1,22⎛⎫- ⎪⎝⎭或3,22⎛⎫⎪⎝⎭ 【分析】(1)先将P 坐标代入2l 的解析式中求出m 值,得到点P 坐标,再代入1l 的解析式中求得k 值即可;(2)根据图像,不等式的解集为直线1l 位于直线2l 下方部分的点的横坐标的取值范围;(3)先求出点A 、B 、C 坐标,再利用三角形的面积公式求出BPC S △,设Q 点坐标为(),44t t -,根据QAC BPC S S =列方程求解即可.【详解】(1)把(),4P m 代入244y x =-得444m -=,解得2m =,所以P 点坐标为()2,4,把()2,4P 代入12y kx =+得224k +=,解得1k =.(2)由图可知,不等式 244kx x +<-成立的x 的取值范围为2x >;(3)当0y =时,20x +=,解得2x =-,则()2,0A -;当0x =时,122y x =+=,则()0,2B ,当0y =时,440x -=,解得1x =,则()1,0C ,所以BPC PAC BAC S S S =-△△△()()11124122322=⨯+⨯-⨯+⨯=, 设Q 点坐标为(),44t t -,因为3QAC BPC S S ==, 所以()1124432t ⨯+⨯-=,解得12t =或32t =, 所以Q 点的坐标为1,22⎛⎫- ⎪⎝⎭或3,22⎛⎫ ⎪⎝⎭. 【点睛】本题考查了待定系数法求一次函数的解析式、由两直线的交点求不等式的解集、坐标与图形的性质、三角形的面积公式、解绝对值方程等知识,熟练掌握这些知识的灵活运用是解答的关键.27.(1)M 、N 两地之间的距离为80km ;(2)y 与x 之间的函数表达式为y=60x ﹣20;(3)80.【解析】试题分析:(1)根据路程=速度×时间,可求PM ,再计算20即可求解;(2)由题意可知B (13,0),C (1,40),根据待定系数法可求线段BC 所表示的y 与t 之间的函数表达式;(3)当甲开汽车返回M 地时,甲,乙两人之间的距离y (km )最大为60;依此补全函数图象.试题解析:(1)20×3+20=60+20=80(km ).答:M 、N 两地之间的距离为80km ;(2)由题意可知B(13,0),C(1,40),设y与x之间的函数表达式为y=kx+b.根据题意得,当x=13时,y=0;当x=1时,y=40.所以12340k bk b⎧+=⎪⎨⎪+=⎩,解得6020kb=⎧⎨=-⎩.所以,y与x之间的函数表达式为y=60x﹣20;(3)如图所示:故答案为80.。
2024-2025学年江苏南京市东山外国语学校数学九年级第一学期开学联考模拟试题【含答案】
2024-2025学年江苏南京市东山外国语学校数学九年级第一学期开学联考模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)函数y =x 的取值范围是()A .1x ≤B .1x <C .1x ≥D .1x >2、(4分)在一个直角三角形中,如果斜边长是10,一条直角边长是6,那么另一条直角边长是().A .6B .7C .8D .93、(4分)关于反比例函数3y x=,下列说法中错误的是()A .它的图象分布在一、三象限B .它的图象过点(-1,-3)C .当x>0时,y 的值随x 的增大而增大D .当x<0时,y 的值随x 的增大而减小4、(4分)如图,在平面直角坐标系中,点B 在x 轴上,△AOB 是等腰三角形,AB=AO=5,BO=6,则点A 的坐标为()A .(3,4)B .(4,3)C .(3,5)D .(5,3)5、(4分)若函数22(2){22x x y x x +≤=> (),则当函数值y =8时,自变量x 的值是()A .B .4C .或4D .46、(4分)已知直线,则下列说法中正确的是()A .这条直线与轴交点在正半轴上,与轴交点在正半轴上B .这条直线与轴交点在正半轴上,与轴交点在负半轴上C .这条直线与轴交点在负半轴上,与轴交点在正半轴上D .这条直线与轴交点在负半轴上,与轴交点在负半轴上7、(4分)某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A .在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B .从一副扑克牌中任意抽取一张,这张牌是“红色的”C .掷一枚质地均匀的硬币,落地时结果是“正面朝上”D .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是68、(4分)矩形具有而平行四边形不具有的性质是()A .对角线互相平分B .邻角互补C .对角相等D .对角线相等二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)函数2(y kx k k =-+为任意实数)的图象必经过定点,则该点坐标为____.10、(4分)如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =___.11、(4分)在学校的社会实践活动中,一批学生协助搬运初一、二两个年级的图书,初一年级需要搬运的图书数量是初二年级需要搬运的图书数量的两倍.上午全部学生在初一年级搬运,下午一半的学生仍然留在初一年级(上下午的搬运时间相等)搬运,到放学时刚好把初一年级的图书搬运完.下午另一半的学生去初二年级搬运图书,到放学时还剩下一小部分未搬运,最后由三个学生再用一整天的时间刚好搬运完.如果这批学生每人每天搬运的效率是相同的,则这批学生共有人数为______.12、(4分)已知在△ABC 中,∠ABC 和∠ACB 的角平分线交于O ,且∠ABC 的角平分线与∠ACB 的外角平分线交于P ,∠OPC 和∠OCP 角平分线交于H ,∠H=117.5°,则∠A=________13、(4分)一组数据:1,2,1,0,2,a ,若它们的众数为1,则这组数据的平均数为_______.三、解答题(本大题共5个小题,共48分)14、(12分)某公司经营甲、乙两种商品,两种商品的进价和售价情况如下表:进价(万元/件)售价(万元/件)甲1214.5乙810两种商品的进价和售价始终保持不变.现准备购进甲、乙两种商品共20件.设购进甲种商品x 件,两种商品全部售出可获得利润为w 万元.(1)w 与x 的函数关系式为__________________;(2)若购进两种商品所用的资金不多于200万元,则该公司最多购进多少合甲种商品?(3)在(2)的条件下,请你帮该公司设计一种进货方案,使得该公司获得最大利润,并求出最大利润是多少?15、(8分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x (分),且50100x (无满分),将其按分数段分为五组,绘制出以下不完整表格:组别成绩x (分)频数(人数)频率一5060x < 2m二6070x < 100.2三7080x < 12b四8090x < a0.4五90100x < 6n请根据表格提供的信息,解答以下问题:(1)本次决赛共有__________名学生参加;(2)直接写出表中:a =___________b =____________(3)请补全右面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为__________.16、(8分)按照下列要求画图并作答:如图,已知ABC .()1画出BC 边上的高线AD ;()2画ADC ∠的对顶角EDF ∠,使点E 在AD 的延长线上,DE AD =,点F 在CD 的延长线上,DF CD =,连接EF ,AF ;()3猜想线段AF 与EF 的大小关系是:______;直线AC 与EF 的位置关系是:______.17、(10分)在平面直角坐标系xOy 中,直线l 与x 轴,y 轴分别交于A 、B 两点,且过点B (0,4)和C (2,2)两点.(1)求直线l 的解析式;(2)求△AOB 的面积;(3)点P 是x 轴上一点,且满足△ABP 为等腰三角形,直接写出所有满足条件的点P 的坐标.18、(10分)有两个不透明的布袋,其中一个布袋中有一个红球和两个白球,另一个布袋中有一个红球和三个白球,它们除了颜色外其他都相同.在两个布袋中分别摸出一个球,(1)用树形图或列表法展现可能出现的所有结果;(2)求摸到一个红球和一个白球的概率.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE =CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE =BF ,∠BEF =2∠BAC ,FC =2,则AB 的长为_________.20、(4分)正比例函数图象经过()3,6-,则这个正比例函数的解析式是_________.21、(4分)一直角三角形的两条直角边分别是4cm 和3cm,则其斜边上中线的长度为___________.22、(4分)点D 、E 、F 分别是△ABC 三边的中点,若△ABC 的周长是16,则△DEF 的周长是_____.23、(4分)若分式方程有增根,则k 的值是_________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2;(3)在(2)的条件下,求线段BC 扫过的面积(结果保留π).25、(10分)△ABC 在平面直角坐标系中的位置如图所示.(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 向右平移6个单位,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标;(3)观察△A 1B 1C 1和△A 2B 2C 2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.26、(12分)如图,在△ABC 中,∠ACB=90°,AC=BC ,E 为AC 边的中点,过点A 作AD ⊥AB交BE 的延长线于点D ,CG 平分∠ACB 交BD 于点G.F 为AB 边上一点,连接CF ,且∠ACF=∠CBG.(1)求证:BG=CF ;(2)求证:CF=2DE ;(3)若DE=1,求AD 的长参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A 【解析】根据二次根式的性质的意义,被开方数大于或等于0,可以求出x 的范围.【详解】解:由y =1-0x ≥解得:1x ≤故选A本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.2、C 【解析】本题直接根据勾股定理求解即可.【详解】由勾股定理的变形公式可得:另一直角边长=1.故选C .本题考查勾股定理的应用,熟练掌握勾股定理是解题的关键.3、C 【解析】试题分析:反比例函数的性质:当时,图象位于一、三象限,在每一象限,y 随x 的增大而减小;当时,图象位于二、四象限,在每一象限,y 随x 的增大而增大.解:A 、因为,所以它的图象分布在一、三象限,B 、它的图象过点(-1,-3),D 、当,y 的值随x 的增大而减小,均正确,不符合题意;C 、当,y 的值随x 的增大而减小,故错误,本选项符合题意.考点:反比例函数的性质点评:反比例函数的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.4、A 【解析】先过点A 作AC ⊥OB ,根据△AOB 是等腰三角形,求出OA =AB ,OC =BC ,再根据点B 的坐标,求出OC 的长,再根据勾股定理求出AC 的值,从而得出点A 的坐标.【详解】过点A 作AC ⊥OB ,∵△AOB 是等腰三角形,∴OA =AB ,OC =BC ,∵AB =AO =5,BO =6,∴OC =3,∴AC 4==,∴点A 的坐标是(3,4).故选:A .此题考查了等腰三角形的性质,勾股定理,关键是作出辅助线,求出点A 的坐标.5、D 【解析】把y=8代入第二个方程,解得x=4大于2,所以符合题意;把y=8代入第一个方程,解得:x=,又由于x 小于等于2,所以舍去,所以选D 6、C 【解析】先确定直线y=kx+b经过第一、二、三限,即可对各选项进行判断.【详解】解:∵直线y=kx+b,k>0,b>0,∴直线y=kx+b经过第一、二、三象限,故选:C.本题考查了一次函数与系数的关系:对于一次函数y=kx+b,它与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.7、D【解析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D选项符合题意,故选D.本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.8、D 【解析】根据矩形相对于平行四边形的对角线特征:矩形的对角线相等,求解即可.【详解】解:由矩形对角线的特性可知:矩形的对角线相等.故选:D .本题考查的知识点是矩形的性质以及平行四边形的性质,掌握矩形以及平行四边形的边、角、对角线的性质是解此题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、(1,2)【解析】先把函数解析式化为y=k (x-1)+2的形式,再令x=1求出y 的值即可.【详解】解:函数y kx k 2=-+可化为()y k x 12=-+,当x 10-=,即x 1=时,y 2=,∴该定点坐标为()1,2.故答案为:()1,2.本题考查的是一次函数图象上点的坐标特点,把原函数的解析式化为y=k (x-1)+2的形式是解答此题的关键.10、245【解析】根据菱形面积=对角线积的一半可求AC ,再根据勾股定理求出BC ,然后由菱形的面积即可得出结果.【详解】∵四边形ABCD 是菱形,∴4,BO DO AO CO ===,AC BD ⊥,∴8BD =,∵1242ABCD S AC BD =⨯=菱形,∴6AC =,∴132OC AC ==,∴5BC ==,∵24ABCD S BC AH =⨯=菱形,∴245AH =;故答案为:245.本题考查了菱形的性质、勾股定理以及菱形面积公式.熟练掌握菱形的性质,由勾股定理求出BC 是解题的关键.11、8【解析】设二年级需要搬运的图书为a 本,则一年级搬运的图书为2a 本,这批学生有x 人,每人每天的搬运效率为m ,根据题意的等量关系建立方程组求出其解即可.【详解】解:设二年级需要搬运的图书为a 本,则一年级搬运的图书为2a 本,这批学生有x 人,每人每天的搬运效率为m ,由题意得:1112222111122mx x m a xm m a +⨯⨯⎧⎪⎪⎨⎪⨯⨯⎪+⎩==解得:x=8,即这批学生有8人本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,设参数法列方程解实际问题的运用,解答时根据工作量为2a 和a 建立方程是关键,运用整体思想是难点.12、70°【解析】根据三角形内角和定理,可得∠HCP+∠HPC=62.5°,由角平分线的性质,得∠OCP+∠OPC=125°,由三角形外角性质,得到∠BOC 的度数,然后∠OBC+OCB=55°,然后可以计算得到∠A 的度数.【详解】解:∵∠H=117.5°,∴∠HCP+∠HPC=180°-117.5°=62.5°,∵CH平分∠OCP,PH平分∠OPC,∴∠OCP+∠OPC=2(∠HCP+∠HPC)=125°,∴∠BOC=125°,∴∠OBC+∠OCB=180°-125°=55°,∵BO平分∠ABC,CO平分∠ACB,∴∠ABC+∠ACB=2(∠OBC+OCB)=110°,∴∠A=180°-110°=70°;故答案为:70°.本题考查了角平分线的性质,三角形的内角和定理,三角形的外角性质,解题的关键是灵活运用性质求出有关的角度.13、7 6.【解析】根据众数为1,求出a的值,然后根据平均数的概念求解:∵众数为1,∴a=1.∴平均数为:121021766 +++++=.考点:1.众数;2.平均数.三、解答题(本大题共5个小题,共48分)14、(1)w=0.5x+40;(2)10;(3)该公司购进甲种商品10件,乙种商品10件时,该公司获得最大利润,最大利润是45万元【解析】(1)设该公司购进甲种商品x件,则乙种商品(20﹣x)件,根据题意可得等量关系:公司获得的利润w=甲种商品的利润+乙种商品的利润,根据等量关系可得函数关系式;(2)根据资金不多于20万元列出不等式组;(3)根据一次函数的性质:k>0时,w随x的增大而增大可得答案.【详解】解:(1)设该公司购进甲种商品x件,则乙种商品(20﹣x)件,根据题意得:w=(14.5﹣12)x+(10﹣8)(20﹣x),整理得:w=0.5x+40;故答案为:w=0.5x+40;(2)由题意得:12x+8(20﹣x)≤200,解得x≤10,故该公司最多购进10台甲种商品;(3)∵对于函数w=0.5x+40,w随x的增大而增大,∴当x=10时,能获得最大利润,最大利润为:w=0.5×10+40=45(万元),故该公司购进甲种商品10件,乙种商品10件时,该公司获得最大利润,最大利润是45万元.此题主要考查了一次函数的应用,关键是正确理解题意,找出等量关系,列出函数关系式.15、解:(1)50;(2)20,0.24;(3)见详解;(4)52%.【解析】(1)用第二组的频数除以它所占的频率得到调查的总人数;(2)用第四组的频率乘以样本容量得到a的值,用第三组的频数除以样本容量得到b的值;(3)利用a的值补全频数分布直方图;(4)用第四组和第五组的频数和除以样本容量即可.【详解】解:解:(1)10÷0.2=50,所以本次决赛共有50名学生参加;(2)a=50×0.4=20,b=1250=0.24;故答案为50;20;0.24;(3)补全频数分布直方图为:(4)本次大赛的优秀率=20650+×100%=52%.故答案为50;20;0.24;52%.本题考查了频数(率)分布直方图:能从频数分布直方图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.16、()1画图见解析;()2画图见解析;()3AF EF =;AC //EF .【解析】(1)直接利用钝角三角形高线的作法得出答案;(2)利用圆规与直尺截取得出E ,F 位置进而得出答案;(3)利用已知线段和角的度数利用全等三角形的判定与性质分析得出答案.【详解】()1如图所示:高线AD 即为所求;()2如图所示:()3猜想线段AF 与EF 的大小关系是:AF EF =;理由:在ADF 和EDF 中90AD DE ADF EDF DF DF=⎧⎪∠=∠=⎨⎪=⎩,ADF ∴≌()EDF SAS ,AF EF ∴=;直线AC 与EF 的位置关系是:AC //EF .理由:在ADC 和EDF 中AD ED ADC EDF DC DF =⎧⎪∠=∠⎨⎪=⎩,ADC ∴≌()EDF SAS ,ACD EFD ∠∠∴=,AC //EF ∴.故答案为AF EF =;AC //EF .本题考查了作图,三角形全等的判定与性质等,正确作出钝角三角形的高线是解题关键.17、(1)y =﹣x +4;(2)8;(3)点P 坐标为(﹣4,0)或(+4,0)或(4﹣,0)或(0,0)【解析】(1)直线过(2,2)和(0,4)两点,则待定系数法求解析式.(2)先求A 点坐标,即可求△AOB 的面积(3)分三类讨论,可求点P 的坐标【详解】解(1)设直线l 的解析式y =kx +b ∵直线过(2,2)和(0,4)∴224k b b =+⎧⎨=⎩解得:14k b =-⎧⎨=⎩∴直线l 的解析式y =﹣x +4(2)令y =0,则x =4∴A (4,0)∴S △AOB =12×AO ×BO =12×4×4=8(3)∵OA =4,OB =4∴AB =若AB =AP =∴在点A 左边,OP =﹣4,在点A 右边,OP =+4∴点P 坐标(+4,0),(4﹣,0)若BP =BP =∴P (﹣4,0)若AP =BP 则点P 在AB 的垂直平分线上,∵△AOB 是等腰直角三角形,∴AB 的垂直平分线过点O ∴点P 坐标(0,0)本题考查了待定系数法求一次函数解析式,等腰三角形的性质,关键是利用分类讨论的思想解决问题.18、(1)见解析;(2)512【解析】(1)按照树状图的画法画出树状图即可;(2)根据树状图得出摸到一红一白的概率.【详解】(1)树状图如下:(2)根据树状图得:共有12种情况,其中恰好1红1白的情况有5种故概率P=512本题考查利用树状图求概率,注意,本题还可用列表法求概率,应熟练掌握这两种方法.一、填空题(本大题共5个小题,每小题4分,共20分)19、6【解析】先证明△AOE ≌△COF ,Rt △BFO ≌Rt △BFC ,再证明△OBC 、△BEF 是等边三角形即可求出答案.【详解】如图,连接BO ,∵四边形ABCD 是矩形,∴DC ∥AB ,∠DCB=90°∴∠FCO=∠EAO 在△AOE 与△COF 中,=AOE FOC FCO EAO AE CF ⎧⎪=⎨⎪=⎩∠∠∠∠∴△AOE ≌△COF ∴OE=OF,OA=OC ∵BF=BE ∴BO ⊥EF ,∠BOF=90°∵∠BEF=2∠BAC=∠CAB+∠AOE ∴∠EAO=∠EOA ,∴EA=EO=OF=FC=2在Rt △BFO 与Rt △BFC 中BF BFFO FC=⎧⎨=⎩∴Rt △BFO ≌Rt △BFC∴BO=BC在Rt △ABC 中,∵AO=OC ,∴BO=AO=OC=BC ∴△BOC 是等边三角形∴∠BCO=60°,∠BAC=30°∴∠FEB=2∠CAB=60°,∵BE=BF ∴EB=EF=4∴AB=AE+EB=2+4=6,故答案为6.本题考查的是全等三角形的性质与判定和等边三角形的判定与性质,能够充分调动所学知识是解题本题的关键.20、2y x =-【解析】设解析式为y =kx ,再把(3,−6)代入函数解析式即可算出k 的值,进而得到解析式.【详解】解:设这个正比例函数的解析式为y =kx (k≠0),∵正比例函数的图象经过点(3,−6),∴−6=3k ,解得k =−2,∴y =−2x .故答案是:y =−2x .此题主要考查了待定系数法求正比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.21、52cm【解析】【分析】先利用勾股定理求出直角三角形的斜边长,然后再根据直角三角形斜边中线的性质进行解答即可.=5cm ,所以斜边上的中线长为:52cm ,故答案为:52cm.【点睛】本题考查了勾股定理、直角三角形斜边中线,熟知直角三角形斜边中线等于斜边的一半是解题的关键.22、1.【解析】据D 、E 、F 分别是AB 、AC 、BC 的中点,可以判断DF 、FE 、DE 为三角形中位线,利用中位线定理求出DF 、FE 、DE 与AB 、BC 、CA 的长度关系即可解答.【详解】如图,∵D 、E 、F 分别是AB 、BC 、AC 的中点,∴ED 、FE 、DF 为△ABC 中位线,∴DF 12=BC ,FE 12=AB ,DE 12=AC ,∴DF +FE +DE 12=BC 12+AB 12+AC 12=(AB +BC +CA )12=⨯16=1.故答案为:1.本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.23、-1【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-7=0,所以增根是x=7,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】解:方程两边都乘(x-3),得1-2(x-3)=-k ,∵方程有增根,∴最简公分母x-3=0,即增根是x=3,把x=3代入整式方程,得k=-1.故答案为:-1.考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.二、解答题(本大题共3个小题,共30分)24、(1)作图见解析;(2)作图见解析;(3)2π.【解析】【分析】(1)利用轴对称的性质画出图形即可;(2)利用旋转变换的性质画出图形即可;(3)BC 扫过的面积=22OCC OBB S S -扇形扇形,由此计算即可;【详解】(1)△ABC 关于x 轴对称的△A 1B 1C 1如图所示;(2)△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2如图所示;(3)BC 扫过的面积=22OCC OBB S S -扇形扇形=2290··90··360360ππ-=2π.【点睛】本题考查了利用轴对称和旋转变换作图,扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.25、(1)见解析;(2)见解析,A 2(6,4),B 2(4,2),C 2(5,1);(1)△A 1B 1C 1和△A 2B 2C 2是轴对称图形,对称轴为图中直线l:x=1,见解析.【解析】(1)根据轴对称图形的性质,找出A 、B 、C 的对称点A 1、B 1、C 1,画出图形即可;(2)根据平移的性质,△ABC 向右平移6个单位,A 、B 、C 三点的横坐标加6,纵坐标不变;(1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l :x =1.【详解】(1)由图知,A (0,4),B (﹣2,2),C (﹣1,1),∴点A 、B 、C 关于y 轴对称的对称点为A 1(0,4)、B 1(2,2)、C 1(1,1),连接A 1B 1,A 1C 1,B 1C 1,得△A 1B 1C 1;(2)∵△ABC 向右平移6个单位,∴A 、B 、C 三点的横坐标加6,纵坐标不变,作出△A 2B 2C 2,A 2(6,4),B 2(4,2),C 2(5,1);(1)△A 1B 1C 1和△A 2B 2C 2是轴对称图形,对称轴为图中直线l :x =1.本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.26、(1)详见解析;(2)详见解析;(3)5AD 【解析】(1)利用“ASA”判断△BCG ≌△CFA ,从而得到BG=CF ;(2)连结AG ,利用等腰直角三角形的性质得CG 垂直平分AB ,则BG=AG ,再证明∠D=∠GAD 得到AG=DG ,所以BG=DG ,接着证明△ADE ≌△CGE 得到DE=GE ,则BG=2DE ,利用利用△BCG ≌△CFA 得到CF=BG,于是有CF=2DE ;(3)先得到BG=2,GE=1,则BE=3,设CE=x ,则BC=AC=2CE=2x ,在Rt △BCE 中利用勾股定理得到x 2+(2x )2=32,解得x=5,所以BC=5,BC=5,然后在Rt △ABD 中利用勾股定理计算AD 的长.【详解】(1)证明:∵∠ACB=90°,AC=BC ,∴△ACB 为等腰直角三角形,∴∠CAF=∠ACG=45°,∵CG 平分∠ACB ,∴∠BCG=45°,在△BCG 和△CFA 中CBG ACFBC CABCG CAF ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴△BCG ≌△CFA ,∴BG=CF ;(2)证明:连结AG ,∵CG 为等腰直角三角形ACB 的顶角的平分线,∴CG 垂直平分AB ,∴BG=AG ,∴∠GBA=∠GAB ,∵AD ⊥AB ,∴∠D+∠DBA=90°,∠GAD+∠GAB=90°,∴∠D=∠GAD ,∴AG=DG ,∴BG=DG ,∵CG ⊥AB ,DA ⊥AB ,∴CG ∥AD ,∴∠DAE=∠GCE,∵E 为AC 边的中点,∴AE=CE ,在△ADE 和△CGE 中DAE GCE AE CEAED CEG ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴△ADE ≌△CGE ,∴DE=GE ,∴DG=2DE ,∴BG=2DE ,∵△BCG ≌△CFA,∴CF=BG ,∴CF=2DE ;(3)∵DE=1,∴BG=2,GE=1,即BE=3,设CE=x ,则BC=AC=2CE=2x ,在Rt△BCE 中,x 2+(2x)2=32,解得x=5,∴BC=5,∴BC=6105,在Rt △ABD 中,∵BD=4,AB=5,∴AD=5此题考查全等三角形的判定与性质,等腰直角三角形,解题关键在于作辅助线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:C 【解析】 【分析】 【详解】 试题分析:∵在矩形 ABCD 中,AE 平分∠BAD, ∴∠BAE=∠DAE=45°, ∴△ABE 是等腰直角三角形,
∴AE= 2 AB, ∵AD= 2 AB,
∴AE=AD, 又∠ABE=∠AHD=90° ∴△ABE≌△AHD(AAS), ∴BE=DH, ∴AB=BE=AH=HD,
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B 解析:B 【解析】 【分析】 由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形, 细心观察即可求解. 【详解】 A、正方体的左视图与主视图都是正方形,故 A 选项不合题意; B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故 B 选项与题意相符; C、球的左视图与主视图都是圆,故 C 选项不合题意; D、圆锥左视图与主视图都是等腰三角形,故 D 选项不合题意; 故选 B. 【点睛】 本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.
∴∠EBH=∠OHD, 又 BE=DH,∠AEB=∠HDF=45° ∴△BEH≌△HDF(ASA), ∴BH=HF,HE=DF,故③正确; 由上述①、②、③可得 CD=BE、DF=EH=CE,CF=CD-DF, ∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确; ∵AB=AH,∠BAE=45°, ∴△ABH 不是等边三角形, ∴AB≠BH, ∴即 AB≠HF,故⑤错误; 综上所述,结论正确的是①②③④共 4 个. 故选 C. 【点睛】 考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角 形的判定与性质
第一象限的图象经过点 D,交 BC 于 E,若点 E 是 BC 的中点,则 OD 的长为_____.
16.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆 AB 的影子一部分落在水平地面 L 的影长 BC 为 5 米,落在斜坡上的部分影长 CD 为 4 米.测得 斜 CD 的坡度 i=1: .太阳光线与斜坡的夹角∠ADC=80°,则旗杆 AB 的高度
_____.(精确到 0.1 米)(参考数据:sin50°=0.8,tan50°=1.2, =1.732)
17.已知扇形 AOB 的半径为 4cm,圆心角∠AOB 的度数为 90°,若将此扇形围成一个圆锥的 侧面,则围成的圆锥的底面半径为________cm
18.已知关于 x 的一元二次方程 ax2 2x 2 c 0 有两个相等的实数根,则 1 c 的值 a
x2 y 有意义,则 y>0,
∵xy<0, ∴x<0,
∴原式= x y .
故选 A 【点睛】
此题考查二次根式的性质与化简,解题关键在于掌握其定义
12.C
解析:C 【解析】 【分析】 首先根据矩形的特点,可以得到 S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到 S 矩形 = EBNP S 矩形 MPFD ,即可得 S△PEB=S△PFD,从而得到阴影的面积. 【详解】 作 PM⊥AD 于 M,交 BC 于 N.
A.10
B.12
C.16
D.18
二、填空题
13.如图,⊙O 是△ABC 的外接圆,∠A=45°,则 cos∠OCB 的值是________.
14.如图,添加一个条件:
,使△ADE∽△ACB,(写出一个即可)
15.如图,边长为 2 的正方形 ABCD 的顶点 A,B 在 x 轴正半轴上,反比例函数 y k 在 x
x 1
根据题意可知
x x
5 3
x 8
解得 3 x 5.
故选:B.
【点睛】
本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列
出不等式关系式即可求解.
10.B
解析:B 【解析】
【分析】
【详解】
A. 18 = 3 2 ,与 3 不是同类二次根式,故此选项错误;
B. 1 = 3 ,与 3 ,是同类二次根式,故此选项正确; 33
8.B
解析:B 【解析】
解:∵ 3 10 4 ,∴ 4 10 1 5 .故选 B .
点睛:此题主要考查了估算无理数的大小,正确得出 10 的取值范围是解题关键. 9.B
解析:B 【解析】 【分析】
根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.
【详解】
解:设温度为 x℃,
知道这 11 名同学成绩的( )
A.平均数
B.中位数
C.众数
D.方差
3.如图,在矩形 ABCD 中,AD= 2 AB,∠BAD 的平分线交 BC 于点 E,DH⊥AE 于点
H,连接 BH 并延长交 CD 于点 F,连接 DE 交 BF 于点 O,下列结论:①∠AED=∠CED;
②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有( )
小区环境,购买银杏树用了 12000 元,购买玉兰树用了 9000 元.已知玉兰树的单价是银杏
树单价的 1.5 倍,那么银杏树和玉兰树的单价各是多少?
24.计算:
1
a
b
a
2b
(2a
b)2
;
2 m
4
.
25.材料:解形如(x+a)4+(x+b)4=c 的一元四次方程时,可以先求常数 a 和 b 的均值
C. 24 = 2 6 ,与 3 不是同类二次根式,故此选项错误;
D. 0.3 = 3 = 30 ,与 3 不是同类二次根式,故此选项错误; 10 10
故选 B.
11.A
解析:A 【解析】 【分析】 二次根式有意义,隐含条件 y>0,又 xy<0,可知 x<0,根据二次根式的性质化简. 解答 【详解】
A.2 个
B.3 个
C.4 个
D.5 个
4.等腰三角形的两边长分别为 3 和 6,则这个等腰三角形的周长为( )
A.12 B.15 C.12 或 15 D.18
5.肥皂泡的泡壁厚度大约是 0.0007mm,0.0007 用科学记数法表示为( )
A.0.7×10﹣3
B.7×10﹣3
C.7×10﹣4
D.7×10﹣5
C. 24
D. 0.3
11.若 xy 0 ,则 x2 y 化简后为( )
A. x y
B. x y
C. x y
D. x y
12.如图,点 P 是矩形 ABCD 的对角线 AC 上一点,过点 P 作 EF∥BC,分别交 AB,CD 于 E、
F,连接 PB、PD.若 AE=2,PF=8.则图中阴影部分的面积为( )
,然后设 y=x+ .再把原方程换元求解,用种方法可以成功地消去含未知数的 奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法. 例:解方程:(x﹣2)4+(x﹣3)4=1 解:因为﹣2 和﹣3 的均值为 ,所以,设 y=x﹣ ,原方程可化为(y+ )4+(y﹣ )4 =1, 去括号,得:(y2+y+ )2+(y2﹣y+ )2=1
22.2018 年“妇女节”前夕,扬州某花店用 4000 元购进若干束花,很快售完,接着又用
4500 元购进第二批花,已知第二批所购花的束数是第一批所购花束数的 1.5 倍,且每束花
的进价比第一批的进价少 5 元,求第一批花每束的进价是多少?
23.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共 150 棵用来美化
4.B
解析:B 【解析】 试题分析:根据题意,要分情况讨论:①、3 是腰;②、3 是底.必须符合三角形三边的 关系,任意两边之和大于第三边. 解:①若 3 是腰,则另一腰也是 3,底是 6,但是 3+3=6,∴不构成三角形,舍去. ②若 3 是底,则腰是 6,6. 3+6>6,符合条件.成立. ∴C=3+6+6=15. 故选 B. 考点:等腰三角形的性质.
∴∠ADE=∠AED= 1 (180°﹣45°)=67.5°, 2
∴∠CED=180°﹣45°﹣67.5°=67.5°, ∴∠AED=∠CED,故①正确;
∵∠AHB= 1 (180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等), 2
∴∠OHE=∠AED, ∴OE=OH, ∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°, ∴∠OHD=∠ODH, ∴OH=OD, ∴OE=OD=OH,故②正确; ∵∠EBH=90°﹣67.5°=22.5°,
7.A
解析:A 【解析】 【分析】 先求出不等式组的解集,再在数轴上表示出来即可. 【详解】
2x 1<3① 3x 1 2②
∵解不等式①得:x<1, 解不等式②得:x≥-1, ∴不等式组的解集为-1≤x<1,
在数轴上表示为:
,
故选 A. 【点睛】 本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求 出不等式组的解集是解此题的关键.
y4+y2+ +2y3+ y2+ y+y4+y2+ ﹣2y3+ y2﹣ y=1
整理,得:2y4+3y2﹣ =0(成功地消去了未知数的奇次项)
解得:y2= 或 y2= (舍去)
所以 y=± ,即 x﹣ =± .所以 x=3 或 x=2. (1)用阅读材料中这种方法解关于 x 的方程(x+3)4+(x+5)4=1130 时,先求两个常数 的均值为______. 设 y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130. (2)用这种方法解方程(x+1)4+(x+3)4=706