培优专题5代数式的化简和求值(含答案)-
第三十三讲 代数式的化简与求值(含答案)-
第三十三讲代数式的化简与求值1.在前面几讲中我们分别学习了整式、分式以及根式的恒等变形与证明,其中也涉及到它们的化简与求值.本讲主要是把这兰种类型的代数式综合起来,其中求值问题是代数式运算中的非常重要的内容. 2.对于代数式的化简、求值,常用到的技巧有:(1)因式分解,对所给的条件、所求的代数式实施因式分解,达到化繁为简的目的;(2)运算律,适当运用运算律,也有助于化简;(3)换元、配方、待定系数法、倒数法等;(4)有时对含有根式的等式两边同时实施平方,也不失为一种有效的方法.例题求解【例1】已知,求的值.思路点拨由已知得(x-4)2=3,即x2-8x+13=0.所以原式=5.注本题使用了整体代换的作法.【例2】已知:x+y+x=3a(a ≠0),求:的值.思路点拨由得:解设,,,∴∴原式=(可将两边平方的得到)【例3】已知,求的值.思路点拨设∴,然后对和两种情况进行讨论,原式=和.【例4】已知,,,求(1)的值:(2)的值.思路点拨先由条件求出,可得,.注这道题充分体现了三个数的平方和,三个数的立方和,及三个数四次方和的常规用法,这些常用处理方法对我们今后的学习是十分重要的.【例5】 (2003年河北初中数学应用竞赛题)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为a,第二次提价的百分率为b;乙商场:两次提价的百分率都是(a>0,b>0);丙商场:第一次提价的百分率为b,第二次提价的百分率为a,则提价最多的商场是( )A.甲 B.乙 C.丙 D.不能确定思路点拨乙商场两次提价后,价格最高.选B【例6】已知非零实数 a、b、c满足,,求的值.思路点拨原条件变形为:∴为±1或0.【例7】(2001年重庆市)阅读下面材料:在计算3+5+7+9+11+13+15+17+19+21时;我机发现,从第一个数开始,以后的每个数与它的前一个数的差都是一个相同的定值.具有这种规律的一列数,除了直接相加外,我们还可以用公式计算它们的和.(公式中的n表示数的个数,a表示第一个数的值,d表示这个相差的定值.)那么3+5+7+9+11+13+15+17+19+21=.用上面的知识解决下列问题:为保护长江,减少水土流失,我市某县决定对原有的坡荒地进行退耕还林.从1995年起在坡荒地上植树造林,以后每年又以比上一年多植相同面积的树木改造坡荒地,由于每年因自然灾害、树木成活率、人为因素等的影响,都有相同数量的新坡荒地产生,下表为1995、1996、1997年的坡荒地面积和植树的面积的统计数据.假设坡荒地全部种上树后,不再有水土流失形成新的坡荒地,问到哪一年,可以将全县所有的坡荒地全部种上树木.1995年1996年1997年每年植树的面积100014001800(亩)植树后坡荒地的实252002400022400际面积(亩)思路点拨 1996年减少了25200-24000=1200,1997年减少了24000-22400=1600,…m年减少了1200+400×(m—1996).1200+1600+…+1200+400(m—1996)=25200.令n=m—1995,得,或(舍去)∴ m =1995+n =2004.∴到2004年,可以将坡荒地全部种上树木.【例8】 (2003年“信利杯”)某校初三两个毕业班的学生和教师共100人一起在台阶上拍毕业照留念,摄影师要将其排列成前多后少的梯形队阵{排数≥3),且要求各行的人数必须是连续的自然数,这样才能使后一排的人均站在前一排两人间的空挡处,那么,满足上述要求的排法的方案有( )A.1种 B. 2种 C.4种 D.0种思路点拨设最后一排有k个人,共有n排,那么从后往前各排的人数分别为k,k+1,k+2,…,k+(n—1),由题意可知,即n[2k+(n-1)]=200.因为k,n都是正整数,且n≥3,所以n<2k+(n—1),且n与2k+(n —1)的奇偶性不同.将200分解质因数,可知n=5或n=8.当n=5时,k=l8;当n=8时,k=9.共有两种不同方案.选B【例9】 (第17届江苏省竞赛初三)有两道算式:好+好=妙,妙×好好×真好=妙题题妙,其中每个汉字表示0~9中的一个数字,相同汉字表示相同数字,不同汉字表示不同数字.那么,“妙题题妙”所表示的四位数的所有因数的个数是.思路点拨从加法式得“好”<5,“妙”≠0,因此“好”=1,“妙”=2或“好”=2,“妙”=4或“好”=3,“妙”=6或“好”=4,“妙”=8.显然,中间两种情形不满足乘法式,所以只能是:(1)“好”=1,“妙”=2,从而乘法式变为2×11×(真×10+1)=2002+题×110,即真×10+1=91+题×5.上式左边≤91,右边≥91,所以两边都等于91.由此得“真”=,“题”=0“妙题题妙”=2002.(2)“好”=4,“妙”=8,乘法式为8×44×(真×10十4)=8008+题×110.即704+1760×真=4004十题×55.在0~9中,只有“真”=2,“题”=4满足上式,但此时“好”与“题”表示相同的数字,与题意不符.故四位数“妙题题妙”有唯一解2002.由2002=2×7×11×13,知2002的所有因数的个数为24=16.【例9】设,,且.求的值.思路点拨设,显然,于是,,,代入已知得,即,由,,可知,,,∴,原式=1.学历训练(A级))1.当m在可取值范围内取不同的值时,代数式的最小值是( )A.0 B.5 C.3 D.92.已知:a、b都是负实数,且,那么的值为( )A. B. C. D.3.如a、b、c是三个任意整数,那么、、 ( )A.都不是整数 B.至少有两个整数 C.至少有一个整数 D.都是整数4.如果,那么的值是( )A.0 B.1 C.2 D.45.已知:,,,且,试求的值.6.已知,那么的值是多少?(B级)1.设等式在实数范围内成立,其中a、x、y是两两不同的实数,则的值是( )A.3 B. C.2 D.2.已知m>0, n>0,且,求的值.3.已知2,试求的值.4.已知,且x≠y,求的值.5.设a、b、c均不为0,且,,求证:a、b、c中至少有一个等于1998.6.已知a、b、c为整数,且满足,求的值.答案:A级1.B 2.C 3.C 4.D 5.1 6.20B级1.B.2.3 3.4 4.5.提示:,分解得,于是,,中必有一个为0.6.。
代数式化简求值专项训练及答案
代数式化简求值专项训练1.先化简,再求值:(1))1)(2(2)3(3)2)(1(-+++---x x x x x x ,其中31=x .(2) (a +b )(a -b )+(a +b )2-a (2a +b ),其中a =23,b =-112。
(3)22(3)(3)(5)(5)a b a b a b a b -++-+-,其中2a =-,1b =-.2.已知312=-y x ,2=xy ,求 43342y x y x -的值。
3.若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值4.已知22==+ab b a ,,求32232121ab b a b a ++的值.5.已知x 2+x -1=0,求x 3+2x 2+3的值.6.已知:222450a b a b ++-+=,求2243a b +-的值.7.已知等腰△ABC 的两边长,a b 满足:222448160a ab b a -+-+=,求△ABC 的周长?8.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.9、已知x 、y 都是正整数,且3722+=y x ,求x 、y 的值。
10、若182++ax x 能分解成两个因式的积,求整数a 的值?代数式典型例题30题参考答案:1.解:在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有1,a,a+b,,x2y+xy2,共5个.故选C2.解:题中的代数式有:﹣x+1,π+3,共3个.故选C.3.解:①1x分数不能为假分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c不能出现除号;⑤,书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②④共3个.故选:C4.解:“负x的平方”记作(﹣x)2;“x的3倍”记作3x;“y与的积”记作y.故选B5.解:A、x是代数式,0也是代数式,故选项错误;B、表示a与b的积的代数式为ab,故选项错误;C、正确;D、意义是:a与b的和除y的商,故选项错误.故选C6.解:答案不唯一,如买一支钢笔5元,买x支钢笔共5x元7.解:(1)(x+2)2可以解释为正方形的边长为x+2,则它的面积为(x+2)2;(2)某商品的价格为n元.则80%n可以解释为这件商品打八折后的价格.故答案为:(1)正方形的边长为x+2,则它的面积为(x+2)2;(2)这件商品打八折后的价格8.解:根据题意得此三位数=2×100+x=200+x9.解:两位数x放在一个三位数y的右边相当于y扩大了100倍,那么这个五位数为(100y+x)10.解:这m+n个数的平均数=.故答案为:.11.解:小华第一天读了全书的,还剩下(1﹣)n=n;第二天读了剩下的,即(1﹣)n×=n.则未读完的页数是n12.解:(1)∵a﹣b=3,∴3a﹣3b=3,5﹣4a+4b=5﹣4(a﹣b)=5﹣4=1;(2)∵x+5y﹣2=0,∴x+5y=2,∴2x+3+10y=2(x+5y)+3=2×2+3=7;(3)∵3x2﹣6x+8=0,∴x2﹣2x=﹣,∴x2﹣2x+8=﹣+8=.故答案为:(1)3,1;(2)7;(3)13.解:因为a,b互为倒数,c,d互为相反数,所以ab=1,c+d=0,所以3c+3d﹣9ab=3(c+d)﹣9ab=0﹣9=﹣9,故答案为:﹣914.解:由题意知:﹣a﹣b=5所以a+b=﹣5;则当x=1时,ax3+bx=a+b=﹣515.解:开放题,答案无数个,只要所写同类项,所含字母相同且相同字母的指数也相同即可,同类项与字母的顺序无关.如5x3y,12x3y,20x3y.故答案为:5x3y,12x3y,20x3y16.解:由同类项的定义可知m=2,n=3,代入(﹣n)m,结果为9.答:(﹣n)m值是917.解:两个单项式的和是单项式,则它们是同类项,则2m+3=4,m=;n=3.则(4m﹣n)n=(4×﹣3)3=﹣1.答:(4m﹣n)n=﹣118.解:x5y n与﹣3x2m+1y3n﹣2是同类项,2m+1=5,n=3n﹣2,m=2,n=1,m+n=2+1=3,故答案为:319.解:(1)∵其余三面留出宽都是x米的小路,∴由图可以看出:菜地的长为18﹣2x米,宽为10﹣x米;(2)由(1)知:菜地的长为18﹣2x米,宽为10﹣x米,所以菜地的面积为S=(18﹣2x)•(10﹣x);(3)由(2)得菜地的面积为:S=(18﹣2x)•(10﹣x),当x=1时,S=(18﹣2)(10﹣1)=144m2.故答案分别为:(1)18﹣2x,10﹣x;(2)(18﹣2x)(10﹣x);(3)144m220.解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣121.解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,把m、n的值代入n m中,得原式=422.解:∵6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,∴5﹣2R=0,解得R=2.523.解:原式=x2+(﹣2k+6)xy﹣3y2﹣y,∵不含x,y的乘积项,∴x,y的乘积项的系数为0,∴﹣2k+6=0,∴2k=6,∴k=3.∴当k=3时,已知多项式不含x,y的乘积项24.(1)﹣3(2s﹣5)+6s=﹣6s+15+6s=15;(2)3x﹣[5x﹣(x﹣4)]=3x﹣[5x﹣x+4]=3x﹣5x+x﹣4=﹣x+4;(3)6a2﹣4ab﹣4(2a2+ab)=6a2﹣4ab﹣8a2﹣2ab=﹣2a2﹣6ab;(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣2425.(1)x+[﹣x﹣2(x﹣2y)]=x﹣x﹣2x+4y=﹣2x+4y;(2)原式=a﹣a﹣﹣+b2=;(3)2a﹣(5a﹣3b)+3(2a﹣b)=2a﹣5a+3b+6a﹣3b=3a;(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]},=﹣3{9(2x+x2)+9(x﹣x2)+9},=﹣27(2x+x2)﹣27(x﹣x2)﹣27,=﹣54x﹣27x2﹣27x+27x2﹣27,=﹣81x﹣2726.解:(1)﹣;(2)原式=1﹣+﹣++…+﹣=1﹣= 27.解:(1)∵第n个数是(﹣1)n,∴第7个,第8个,第9个数分别是﹣,,﹣.(2),最后与0越来越接近28.解:通过图案观察可知,当n=1时,点的个数是12=1;当n=2时,点的个数是22=4;当n=3时,点的个数是32=9;当n=4时,点的个数是42=16,…∴第n个正方形点阵中有n2个点,∴第n个正方形点阵中的规律是=n2.29.解:根据图案可知,(1)第4个图案火柴有3×4+1=13;第6个图案中火柴有3×6+1=19;(2)当n=1时,火柴的根数是3×1+1=4;当n=2时,火柴的根数是3×2+1=7;当n=3时,火柴的根数是3×3+1=10;所以第n个图形中火柴有3n+1.(3)当n=2008时,3n+1=3×2008+1=602530.解:(1)在第1个图中,共有白色瓷砖1×(1+1)=2块,(2)在第2个图中,共有白色瓷砖2×(2+1)=6块,(3)在第3个图中,共有白色瓷砖3×(3+1)=12块,(4)在第10个图中,共有白色瓷砖10×(10+1)=110块,(5)在第n个图中,共有白色瓷砖n(n+1)块。
八年级数学培优辅导讲义竞赛训练导学案 分式的运算 分式的化简与求值 含答案解析
八年级数学培优辅导讲义竞赛训练导学案分式的化简与求值典例剖析【例l 】 已知2310a a -+=,则代数式361a a +的值为 .(“希望杯”邀请赛试题)解题思路:目前不能求出a 的值,但可以求出13a a+=,需要对所求代数式变形含“1a a +”.【例2】 已知一列数1234567,,,,,,,a a a a a a a 且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为( ) A .648 B .832 C .1168 D .1944(五城市联赛试题) 解题思路:引入参数k ,把17a a 用k 的代数式表示,这是解决等比问题的基本思路.【例3】 3(0)x y z a a ++=≠.求222()()()()()()()()()x a y a y a z a z a x a x a y a z a --+--+---+-+-. (宣州竞赛试题) 解题思路:观察发现,所求代数式是关于x a y a z a ---、、的代数式,而条件可以拆成x a y a z a ---、、的等式,因此很自然的想到用换元法来简化解题过程.【例4】 已知1,2,3,xy yz zxx y y z z x===+++求x 的值. (上海市竞赛试题)解题思路:注意到联立等式得到的方程组是一个复杂的三元一次方程组,考虑取倒数,将方程组化为简单的形式.【例5】 不等于0的三个正整数,,a b c 满足1111a b c a b c++=++,求证:,,a b c 中至少有两个互为相反数.解题思路:,,a b c 中至少有两个互为相反数,即要证明()()()0a b b c c a +++=.(北京市竞赛试题)【例6】 已知,,a b c 为正整数,满足如下两个条件:①32;a b c ++=②14b c a c a b a b c bc ac ab +-+-+-++= 解题思路:本题熟记勾股定理的公式即可解答.(全国初中数学联赛试题)能力训练1.若a b c d b c d a ===,则a b c d a b c d-+-+-+的值是 .(“希望杯”邀请赛试题)2.已知2131xx x =-+,则24291x x x =-+ . (广东竞赛试题)3.若2221998,1999,2000a x b x c x +=+=++=且24abc =,则111c a b ab bc ac a b c++--- 的值为 .(“缙云杯”竞赛试题)4.已知232325x xy y x xy y +-=--,则11x y -= .5.如果111,1a b b c+=+=,那么1c a +=( ).A .1B .2C .12D .14(“新世纪杯”竞赛试题)6.设有理数,,a b c 都不为0,且0a b c ++=,则222222222111b c a c a b a b c+++-+-+-的 值为( ).A .正数B .负数C .零D .不能确定7.已知4360,270(0)x y z x y z xyz --=+-=≠,则22222223657x y z x y z++++的值为( ). A .0 B .1 C .2 D .不能确定8.已知211xx mx =-+,则36331x x m x -+的值为( ) A .1 B .313m + C .2132m - D .2131m + 9.设0a b c ++=,求222222222a b c a bc b ac c ab+++++的值.10.已知111x y z y z x+=+=+其中,,x y z 互不相等,求证2221x y z =. (天津市竞赛试题)11.设,,a b c 满足1111a b c a b c++=++, 求证2121212121211111n n n n n n a b c a b c ------++=++.(n 为自然数)(波兰竞赛试题)12.三角形三边长分别为,,a b c .(1)若a a b cb c b c a ++=+-,求证:这个三角形是等腰三角形; (2)若1111a b c a b c-+=-+,判断这个三角形的形状并证明.13.已知1ax by cz ===,求444444111111111111a b c x y z+++++++++++的值. (“华杯赛”试题)14.解下列方程(组): (1)18272938x x x x x x x x +++++=+++++; (江苏省竞赛试题)(2)596841922119968x x x x x x x x ----+=+----; (“五羊杯”竞赛试题)(3)111211131114x y z y z x z x y ⎧+=⎪+⎪⎪+=⎨+⎪⎪+=⎪+⎩.(北京市竞赛试题)B 级1.设,,a b c 满足0a b c ++=,0abc >,若a b c x a b c=++, 111111()()()y a b c b c c a a b=+++++,则23x y xy ++= .2.若0abc ≠,且a b b c c a c a b+++==,则()()()a b b c c a abc +++= . 3.设,,a b c 均为非零数,且2(),3(),4()ab a b bc b c ac a c =+=+=+,则a b c ++= .4.已知,,x y z 满足1x y z y z x z y x ++=+++,则222x y z y z x z y x+++++的值为 . 5.设,,a b c 是三个互不相同的正数,已知a c c bb a b a-==+,那么有( ). A .32b c = B .32a b = C .2b c = D .2a b =6.如果0a b c ++=,1114a b c ++=-,那么222111a b c++的值为( ).A .3B .8C .16D .207.已知2519910x x --=,则代数式42(2)(1)1(1)(2)x x x x -+----的值为( ).A .1996B .1997C .1998D .199998.若615325x y x y y x y x -==-,则222245623x xy y x xy y-+-+的值为( ). A .92 B .94C .5D .6 (全国初中数学联赛试题)9.已知非零实数,,a b c 满足0a b c ++=. (1)求证:3333a b c abc ++=; (2)求()()a b b c c a c a bc a b a b b c c a---++++---的值. (北京市竞赛试题)10.已知2410a a ++=,且42321322a ma a ma a++=++.求m 的值. (北京市竞赛试题)11.完成同一件工作,甲单独做所需时间为乙、丙两人合做所需时间的p 倍,乙单独做所需时间为甲、(天津市竞赛试题)12.设222222222,,222b c a a c b b a c A B C bc ac ab+-+-+-===,当3A B C ++=-时,求证:2002200220023A B C ++=.(天津市竞赛试题)13.某商场在一楼和二楼之间安装了一自动扶梯,以均匀的速度向上行驶,一男孩和一女孩同时从自动扶梯上走到二楼(扶梯行驶,两人也走梯).如果两人上梯的速度都是匀速的,每次只跨1级,且男孩每分钟走动的级数是女孩的2倍.已知男孩走了27级到达扶梯顶部,而女孩走了18级到达顶部. (1)扶梯露在外面的部分有多少级?(2)现扶梯近旁有一从二楼下到一楼的楼梯道,台阶的级数与自动扶梯的级数相等,两人各自到扶梯顶部后按原速度再下楼梯,到楼梯底部再乘自动扶梯上楼(不考虑扶梯与楼梯间的距离).求男孩第一次追上女孩时走了多少级台阶?(江苏省竞赛试题)专题07 分式的化简求值例1 181提示:3363111aa a a +=+例2 A 提示:7665544332216a a a a a a a a a a a a k •••••==71a a =58328,得k=31±,又25443322151k a a a a a a a a a a =•••= 例3油x+y+z=3a ,得(x-a )+(y-a )+(z-a )=0.设x-a=m ,y-a=n ,z-a=p ,则m+n+p=0,即p=-(m+n ).原式=222p n m pm np mn ++++=()222p n m n m p mn ++++=()()2222n m n m n m mn ++++-=-21 例4 x=512 提示:由已知条件知xy ≠0,yz ≠0,取倒数,得:⎪⎪⎪⎩⎪⎪⎪⎨⎧+++,31,21,1zx x z zx z y xy y x 即⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+,3111,2111,111x z z y y x ①+②+③,得1211111=++z y x 例5 提示:由已知条件,得()()a bc acb abc bc ac b ab +++++++22=()()[]()c a b a c b a b ++++=()()()0=+++a c c b b a例6 由勾股定理,结论可表示为等式:a=b+c ,①或b=a+c ,②或c=b+a ,③,联立①③,只需证a=16或或b =16或c =16,即(a -16)(b -16)(c -16)=0. ④ 展开只需证明0=abc -16(ab +bc +ac )+162(a +b +c )-163=abc -16(ab +bc +ac )+163 ⑤ 将①平方、移项,有a 2+b 2+c 2=322-2(ab +bc +ca ),⑥ 又将②移项、通分,有 0=14-(++b c a bc ++c a b ac -+a b c ab ++)①② ③=14-(2+ab ac aabc-+2+bc ab babc-+2ac bc cabc+-)=222 8()4()4abc ab bc ac a b cabc-+++++=28()4[322()]4abc ab bc ac ab bc caabc-+++-++把⑥代入等式中,0=3 16()164abc ab bc acabc-+++=23 16()16()164abc ab bc ac a b cabc-+++++-=(16)(16)(16)4a b cabc---当a-16=0时,由①有a=16=b+c为斜边的直角三角形.同理,当b=16或c=16时,分别有b=a+c或c=b+a 个直角三角形.A级1. 0或-22. 15∵231x xx-+=1,∴x+1x=4.又∵42291x xx-+=5,∴24291xx x-+=153. 184.35. A6. C 提示:b 2+c 2-a2=-2bc7.B8. C 提示:取倒数,得x+1x=1+m,原式的倒数=x3+31x-m39. 1 提示:2a2+bc=2a2+b(-a-b)=a2-ab+a2-b2=(a-b)(a+a+b)=(a-b)(a-c)10. 提示:由x+1y=y+1z,得x-y=1z-1y,得zy=y zx y--11. 提示:参见例5得(a+b)(b+c)(a+c)=012. (1)∵()a b cbc+=()b cb c a++-,∴(b+c)(ab+ac-a2-bc)=0.∴(b+c)(a-b)(c-a)=0.∵b+c≠0,∴a=b或c=a.∴这个三角形为等腰三角形.(2)∵1a+1c=1+a b c-+1b,∴a cac+=()a ca b c b+-+∴(a-b+c)=ac,∴(a-b)(b-c)=0, a=b或b=c,∴这个三角形为等腰三角形.13. 3 x=1a,y=1b,c=1z,∴411a++411x+=411a++4111a+=1,∴原式=3.14. (1)x=-11 2(2)x=123 14(3)(x,y,z)=(2310,236,232)提示:原方程组各方程左端通分、方程两边同时取倒数.B级1. 22. -1或8 提示:设a bc+=b ca+=c ab+=k,则k=-1或2 3.1128354. 0 提示:由xy z+=1-yz x+-zx y+,得:14=x-xyz x+-xzx y+5. A6. C7. D 提示:原式=4(2)(2)(1)(2)x x xx x-+---=3(2)1x xx-+-=3261281x x x xx-+-+-=2(1)5(1)8(1)1x x x x xx---+--=x2-5x+88. A 提示:由已知条件得x=3y9. (1)由a +b +c =0,得a +b =-c ∴a 3+b 3+c 3=-3ab (a +b )=3abc(2)∵(a b c -+b c a -+c a b -)·ca b-=1+22c ab , ∴同理:(a b c -+b c a -+c ab -)·a bc -=1+22a bc ,(a b c -+b c a -+c a b -)·bc a -=1+22b ac ,∴左边=3+22c ab +22a bc+22c ab =3+3332()a b c abc ++=910. ∵a 2+4a +1=0,∴a 2+1=-4a ,①a ≠0. 4232122a ma a ma a++++=2222(1)(2)2(1)a m a a a ma ++-++=3.把①代入上式中,222216(2)8a m a a ma +--+=3,消元得1692)8m m+--+=3,解得m =19.11. 设甲、乙、丙三人单独完成此项工作分别用a 天、b 天、c 天,则,,bc a p b c ac b q a c ab c x a b ⎧=⋅⎪+⎪⎪=⋅⎨+⎪⎪=⋅⎪+⎩即111,111,111p a b c q b a c x c a b ⋅=+⋅=+⋅=+解得x =14. 12. 由A +B +C =-3得(2222b c a bc+-+1)+222222(1)(1)0.22c a b a b c ac ab +-+-+++=即222222()()()0222b c a c a b a b c bc ac ab+-+-+-++=分解因式,得(b +c -a )(a +b -c )(a -b +c )=0b +c -a , a +b -c ,a -b +c 中至少有一个为0,不妨设b +c -a =0,代入式中, A 2002+B 2002+C 2002=(-1)2002+12002+12002=3.13.(1)设女孩速度x 级/分,电梯速度y 级/分,男孩速度2x 级/分,楼梯S 级,则27271818.S x y S xy -⎧=⎪⎪⎨-⎪=⎪⎩,得13.5271818S S -=-,327418S S -=-,∴S =54. (2)设男孩第一次追上女孩时走过扶梯m 编,走过楼梯n 编,则女孩走过扶梯(m -1)编,走过楼梯(n -1)编,男孩上扶梯4x 级/分,女孩上扶梯3x 级/分.545454(1)54(n 1)423m m m x x x x --+=+,即114231m n m n --+=+,得6n +m =16,m ,n 中必有一个是正整数,且0≤︱m -n ︱≤1.①16m n -=,m 分别取值,则有②m =16-6n ,分别取值,则有 显然,只有m =3,n =126满足条件,故男孩所走的数=3×27+126×54=198级. ∴男孩第一次追上女孩时走了198级台阶.。
初中数学代数式化简求值练习题(含答案)
初中数学代数式化简求值练习题(含答案)1、已知x=1,求代数式x²+x(x-2)+(x+1)(x-1)的值。
2、已知x= -2,求代数式3(x-1)²+4x(x+2)-10的值。
3、先化简,再求值:2(x-3)(x+2)-(3+x)(3-x)-3(x-1)2,其中x=-2。
4、先化简再求值∶(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³),其中x=-1,y=2。
5、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。
6、先化简,再求值:5y(2x²y+3xy²)-3x(4xy²+3x²y),其中x=1,y=-1。
7、先化简,再求值:(3x²y-xy²)-2(xy²-3x²y),其中x=-2,y=3。
8、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。
9、若x²+2y²=5,求多项式(3x²-2xy+y²)-(x²-2xy-3y²)的值。
10、先化简,再求值:5x²+4-3x²-5x-2x²-5+6x,其中x=-3。
11、先化简,再求值:2(x+x²y)-2/3(3x²y+3/2x)-y²,其中x=1,y=-3。
12、先化简,再求值:(4x²y-3xy)+(-5x²y+2xy)-(2yx²-1),其中x=2,y=1/2。
13、先化简,再求值:2x²y-[2xy²-2(-x²y+4xy²)],其中x=1/2,y=-2。
七年级数学尖子生培优竞赛专题辅导第十讲代数式的化简与求值(含答案)
第十讲代数式的化简与求值趣题引路】如图10-1所示的八个点处各写一个数字,已知每个点处所写的数字等于和这个点有线段相连的三个点" + b + c + 〃 + *(e+ /" + &+力)</ + Z> + c + J- i(e + / + g + 〃)解答如下:-a=d + h + e , b=a + c+ f , J + 宀, d=a + c + h.3 3 3 32(a + b + c + d) + (e + f + g +力)/• a+b+e= ------------------ --------------------- .3设a+b+c+cl=/n, e+f+g+h=n ・• a. , . 2m + n■ ■ a+b+c+d= -----3. 2/n + n..m= ---------- ,3m=n.即a+b+c+d=e+f+g+h ・知识拓展】1.在前面几讲中我们分别学习了整式、分式以及根式的恒等变形与证明,苴中也涉及到它们的化简与求值.本讲主要是把这三种类型的代数式综合起来,其中求值问题是代数式运算中的非常重要的内容.2.对于代数式的化简、求值,常用到的技巧有:(1)因式分解,对所给的条件、所求的代数式实施因式分解,达到化繁为简的目的;(2)运算律,适当运用运算律,也有助于化简;(3)换元、配方、待定系数法、倒数法等;(4)有时对含有根式的等式两边同时实施平方,也不失为一种有效的方法.例1已知x=4-d,求"f—X+lh+T的值. x— 8x + 15处的数字的平均数,则代数式a + h + c + cl + ^(e+ f + f* + h)a + h + c + d --(e+ f + g+h)3 32m - n 32 3m一n2m -m 3 3-------- x --------- =—2 3m - m 4应填扌.图10-1解析:由已知得(x—4尸=3,即A2—8x+13=0.所以兀** - 6A?— 2f +1 8A' + 23 _ x2 (x"— 8x + 13) + 2x(才—8x +13) + (A*~— 8x + 13) + 10 _ 10 _、F x2-8x + 15 (X2-8X +13)+2 込—…点评:本题使用了整体代换的作法.例2已知A+Y+Z=3. (^),求匕上空学二遊二岀£2竺凹的值. (x-6/f+(y-t/f+(z-6/f解析:分式的分子、分母是轮换对称形式,可考虑用换元法.解:由x+y+z=3e 得(x—a)(y—a)(z~a)=0.设x—“=〃】, y—a=n> z~a—p>贝0 m+n+p=0・•••" = — (〃?+〃)・•『i 弋—mn + n P + m P —mn + P(m + n) —nm一(m + n)2_ -m2一mn一n2_1八m2 + n2 + p2 nf + n2 + p2 nr + n2 + (m + n)2 2(nr + mn + n2) 2 *点评:实际上,本例有巧妙的解法,将〃?+”+" = 0两边平方,得加2 + "2+卩2=一2(”山+ " + 〃初,.・.mn + np + mp _1m2 +n2 + 2 "例 3 已知" + i = + 求(“ + 〃)(/+、)(「+ “)的值.c b a abc解析:对于分式等式,如岀现两个(或两个)以上的等于号,可设为一个字母为h解:设c^b-c =a-b + c = -a + b + c=k cb aa + b-c = ck,① < a —b +c = bk 9 (^)-a + b + c = ak・③① + ②+③,得:R("+b+e)="+b+c・当“+b+e0 时,k=l,此时a+b=2c,“+c=2b, b+c=2a・.(a + h)(b + c)(c + a) _ 2a ■ 21} ■ 2cabc abc当“+〃+c=0 时♦“ + b= —Ct a + c= —b,〃+c= —a.・・.原式=(-“)•(如p)=_l.abc点评:注意本例须按a+h+c等于零和不等于零两种情况进行讨论.例4 已知“+b+c=l, a2-\-b2+c2=2. a3+b3+c3=39求(1) “be 的值;(2) a4+b4-^c4的值. 解析:•••以+胪+5=2, :•(“+b+c)2—2(ab+be+ca)=2.A ab-¥bc~i rca = ——•2又•••帀+沪+"=3,(“+b+c)(</2+b2-\-c2— ab—be—ca) + 3abc=3 ・:.1x(2+ —)+3“bc=3・2:.abc=-,即"c的值为丄.6 6又•: a4+沪+c4=(a2+护+c2)2—2(crb2+b2c2+c2a2)=4 —2[(ab+be+ca)2—2abc{a + 方+c)]=4—2(丄4 cl ix 25—2x- xl)=—・6 6•••/+戸+疋的值为色.6点评:这道题充分体现了三个数的平方和,三个数的立方和,及三个数四次方和的常规用法,这些常用处理方法对我们今后的学习是十分重要的.好题妙解】佳题新题品味例1 (2003年河北初中数学应用竞赛题)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为",第二次提价的百分率为b:乙商场:两次提价的百分率都是⑺(">0, 2 b>0);丙商场:第一次提价的百分率为几第二次提价的百分率为",则提价最多的商场是( )A.甲B.乙C•.丙 D.不能确定解析用代数式表示三个商场提价后的价格,再比较大小.解:(1)甲商场两次提价后,价格为(l+“)(l+b)=l+“+b+“b.(2)乙商场两次提价后,价格为(1 + 口)(1 + 口)=1+(“+坊+(口)2:2 2 2(3)丙商场两次提价后,价格为(1+")(1+“)=/+"+b+“b.因为(爭)2 —“b>0,所以(字)2>“b.故乙商场两次提价后,价格最髙.选B.例2已知非零实数“、b、c满足0+护+以=1, “(J.+J_)+b(丄+ b + c(丄+丄)=一3,求a+b+c的 b c a c a b 值.解析:因为ubc^O,在已知的第二个等式两边同乘以“be,得"2(c+b)+b2(c+")+c2(“+")= —3"bc, 即ab(a+/?)+bc(b-\-c)4-ac(a+c) + 3abc=0.将&历c 拆开为ubc+abc+ubc,可得ab(“+b+c)+bc(a+b+ c)+ac(a+/?+c)=0・于是(a+b+c)(ab+he+ac)=0.所以a+h+c=0或ab+bc+ac=0.若ab+bc+ac=O.由(a+b+c)2=a2+b2+c2+2cd^2bc+2cic= 1 得“+b+c=±l ・ \ 所以“+"+c的值可能为6 — 1 >1.中考真题欣赏例1 (2003年陕西中考题)先化简,再求值:皆胃L岳,其中眉存—x + 1 (x2+1)(A+ l)(x-l) x-3 _ x-1 x-3 _ 2 尿 = - : 一 = — =0+1 (x + 1) A +1x + 1 x + 1 x + 1解析:当x= 73 + 1时,原式== 4一2逅.V3+2例2 (重庆市)阅读下而材料:在计算3+5+7+9+11 + 13+15+17+19+21时,我们发现,从第一个数开始,以后的每个数与它的前一个数的差都是一个相同的左值.具有这种规律的一列数,除了直接相加外,我们还可以用公式5= 必+巴二12xd计算它们的和.(公式中的〃表示数的个数,“表示第一个数的值,〃表示这个相差的泄值), 2那么3+5+7+9+11 + 13+15 + 17+19+21 = 10x3+巴” x2=120・2用上而的知识解决下列问题:为保护长江,减少水上流失,我市某县决泄对原有的坡荒地进行退耕还林.从1995年起在坡荒地上植树造林,以后每年又以比上一年多植相同面积的树木改造坡荒地.由于每年因自然灾害、树木成活率、人为因素等的影响,都有相同数量的新坡荒地产生,下表为1995、1996、1997年的坡荒地面积和植树的面积的统汁数据•假设坡荒地全部种上树后,不再有水上流失形成新的坡荒地,问到哪一年,可以将全县所有的坡荒地全部种上树木.解析:1997 年减少了24 000-22 400=1 600.m年减少了1 200+400x(/?/-1 996)・1 200+1 600+…+ 1 200+400(加一1 996)=25 200.令n=m—\ 995»得必1200 + 盲_><400一1)=400x HX3+———-=25200. 2 ..・.% +竺匸—6326n+n(n-1)=126n:+5n-126=0.m 二9,血二一14 (舍去).m=1995+9=2004.••• 到2004年,可以将坡荒地全部种上树木°竞赛样题展示例1 (2003年“信利杯”)某校初三两个毕业班的学生和教师共100人一起在台阶上拍毕业照留念,摄影师要将苴排列成前多后少的梯形队阵(排数>3),且要求各行的人数必须是连续的自然数,这样才能使后一排的人均站在前一排两人间的空挡处,那么,满足上述要求的排法的方案有( )A. 1种B.2种C. 4种D. 0种解析设最后一排有k个人,共有n排,那么从后往前各排的人数分别为k, k+1, lc+2,…,k+ (n-l),由题意可知如+ 答丄= 100,即〃[2« + (“-1)] = 200.因为k, n都是正整数,且n$3,所以n<2k+ (n-l),且n与2k+ (n-l)的奇偶性不同。
同步练习】2017-2018学年 八年级数学上册 整式的化简求值 专项培优卷40题(含答案)
同步练习】2017-2018学年八年级数学上册整式的化简求值专项培优卷40题(含答案)1.计算数列:1990--1987+…+2-1.2.已知 x - 2x = 2,先化简并求值:(x-1)+(x+3)(x-3)+(x-3)(x-1)。
3.先化简再求值:(-a-b)-(a+1-b)(a-1-b),其中 a=0.5,b=-2.4.已知 2x-1=3,先化简并求值:(x-3)+2x(x+3)-7.5.已知 x^2+x=6,先化简并求值:x(x+2)-x(x+1)+3x-7.6.先化简再求值:2(x-2)(x+9)+(x+3)(3-x)-(x-3),其中x=-3.7.已知 x+x-1=0,求下列代数式的值:(1)2x+2x-1;(2)x^2/(2+2x^2);(3)x+2x^2+1/x^2.8.已知 a+b+2a-4b+5=0,先化简并求 (a-2b)-(a+2b)的值。
9.计算:(1-1/2)(1-1/3)(1-1/4)。
(1-1/10)的值。
10.若 x+y=2,且(x+2)(y+2)=5,求 x+xy+y 的值。
11.先化简再求值:(2a+b)-(2a-b)(a+b)-2(a-2b)(a+2b),其中a=0.5,b=-2.12.先化简再求值:(a-2b)(a+2ab+4b)-a(a+3b)(a-3b),其中a=-2,b=1.13.已知x+3x-1=0,先化简再求值:4x(x+2)+(x-1)-3(x-1)。
14.已知x-x-(-6)=0,先化简再求值:x(x-1)-x(x-1)+10的值。
15.先化简再求值:(x-1)(x-2)-3x(x+3)+2(x+2)(x-1),其中x=1/3.16、先化简再求值:2(a-3)(a+2)-(3+a)(3-a)-3(a-1),其中a=-2.1化简得:2(-5)(0)-(1)(5)-3(-3)=-10+5+9=417、已知x2+6x-1=0,先化简再求值:(2x+1)-2x(x-1)-(3-x)(-x-3)将x2+6x-1=0代入得:x=-3±2√2化简得:(2(-3+2√2)+1)-2(-3+2√2)(-4+2√2)-(3-(-3+2√2))(-(-3-2√2))5.xxxxxxxx9-0.xxxxxxxx53+12.xxxxxxxx6.xxxxxxxx718、已知x-3x=4,先化简再求值:2(x-2)-(x+1)(x-2)-3化简得:2(x-2)-(x2-x-2)-3=2x-719、先化简再求值:(a+b)(a-b)+(a+b)-(3a-a)÷a,其中a=2,b=-2化简得:(4+4)-2=620、已知实数a,b满足a(a+1)-(a+2b)=1,求a-4ab+4b-2a+4b的值化XXX:a-2ab+8b-121、先化简再求值:(x-1)(x-2)-3x(x+3)+2(x+7)(x-2),其中x=-1.5化简得:(2.25)-(13.5)+(15)=3.7523、先化简再求值:(x-5y)(-x-5y)-(-x+5y),其中x=-1,y=0.5化简得:-2424、已知x-2x-5=0,先化简再求值:(2x-1)2+(x+2)(x-2)-4x(x-2)将x-2x-5=0代入得:x=-5化简得:(2(-5)-1)2+((-5)+2)((-5)-2)-4(-5)(-2)=125、先化简再求值:(x+2y)-2(x-y)(x+y)+2y(x-3y),其中x=-2,y=0.5化简得:-326、先化简再求值:(2a+b)﹣(3a﹣b)+5a(a﹣b),其中a=2,b=-2化XXX:627、先化简再求值:[(a+b)(a-b)+(a-b)+4a(a+1)]÷2a,其中a=-3,b=15/141化XXX:-2/4728、先化简(2x-1)-(3x+1)(3x-1)+5x(x-1),再选取一个你喜欢的数代替x,并求原代数式的值选取x=0,化简得:-129、已知正整数a、b、c满足不等a+b+c+43≤ab+9b+8c,求a、b、c的值由不等式得:ab-a-b+9b-8c+c+43≥0即:(a-1)(b-1)+(9b-8)(c-1)≥0由于a、b、c均为正整数,所以a=1,b=1,c=130、先化简再求值:(2a+b)(2a-b)+b(2a+b)-4ab÷b,其中a=-0.5,b=2化简得:-331、已知x-5x=3,先化简再求值:(x-1)(2x-1)-(x+1)+1化XXX:-1032、先化简再求值:(a+b)+(a-b)(-a+b)+(-a+2b)(-a-2b),其中a=-2,b=0.5化XXX:-9.2533、已知3x2+5x-12=0,先化简再求值:(3x-1)(2x+1)-(x+3)(x-3)-2(x-1)将3x2+5x-12=0代入得:x=1,-4/3化简得:(8/3)-(4/3)-(20/3)=-16/31.先化简再求值:(2a-3b)(-2a-3b)+(-2a+b),其中a=0.5,b=1.35答案:-24.92252.先化简再求值:(2x+3)(2x-3)-2x(x+1)- (x-1),其中x=-1.37答案:-26.82213.已知x+4x-1=0,先化简再求值:(2x+1)-(x+2)(x-2)-x(x-4)答案:-2x^2+2x+54.已知3x+2x-1=0,求代数式3x(x+2)+(x-2)-(x-1)(x+1)答案:5x^2+5x-55.已知x-3x-1=0,先化简再求值:(x+2)-(x+1)(2x-1)-2答案:-2x^2+5x+16.已知x+2x-4=0,先化简再求值:2(x-1)-x(x-6)+3答案:-x^2+3x+1。
化简代数式50道题
化简代数式50道题一、化简下列代数式(1 - 20题带解析)1. 化简:3x + 2x- 解析:根据合并同类项的法则,同类项的系数相加,字母和指数不变。
这里3x和2x是同类项,将它们的系数3和2相加,得到(3 + 2)x=5x。
2. 化简:5a - 3a- 解析:5a和3a是同类项,按照合并同类项的方法,将系数相减,即(5 - 3)a = 2a。
3. 化简:4x+3y - 2x + y- 解析:- 合并同类项4x和-2x,得到(4 - 2)x = 2x。
- 然后,合并同类项3y和y,得到(3+1)y = 4y。
- 所以,化简后的结果为2x + 4y。
4. 化简:2a^2+3a^2- 解析:2a^2和3a^2是同类项,合并同类项时,系数相加,字母和指数不变,即(2 + 3)a^2=5a^2。
5. 化简:6xy-4xy- 解析:6xy和-4xy是同类项,将系数相减,得到(6 - 4)xy = 2xy。
6. 化简:3x^2y+2x^2y - 5x^2y- 解析:- 先合并3x^2y和2x^2y,系数相加得(3 + 2)x^2y=5x^2y。
- 再用5x^2y减去5x^2y,即(5 - 5)x^2y = 0。
7. 化简:4(a + b)-3(a + b)- 解析:- 把(a + b)看作一个整体,4(a + b)和-3(a + b)是同类项。
- 合并同类项得(4 - 3)(a + b)=a + b。
8. 化简:2m^2-3m + 4m^2-m- 解析:- 先合并同类项2m^2和4m^2,得到(2+4)m^2=6m^2。
- 再合并同类项-3m和-m,得到(-3 - 1)m=-4m。
- 所以化简结果为6m^2-4m。
9. 化简:3(a - b)+2(b - a)- 解析:- 先将2(b - a)变形为- 2(a - b)。
- 然后合并同类项3(a - b)和-2(a - b),得到(3-2)(a - b)=a - b。
八年级数学培优专题 专题05 和差化积
专题05 和差化积——因式分解的应用阅读与思考:因式分解是代数变形的有力工具,在以后的学习中,因式分解是学习分式、一元二次方程等知识的基础,其应用主要体现在以下几个方面:1.复杂的数值计算; 2.代数式的化简与求值; 3.简单的不定方程(组); 4.代数等式的证明等.有些多项式分解因式后的结果在解题中经常用到,我们应熟悉这些结果: 1. 4224(22)(22)x x x x x +=++-+; 2. 42241(221)(221)x x x x x +=++-+; 3. 1(1)(1)ab a b a b ±±+=±±; 4.1(1)(1)ab a b a b ±-=±m m ;5. 3332223()()a b c abc a b c a b c ab bc ac ++-=++++---. 例题与求解【例1】已知0≠ab ,2220a ab b +-=,那么22a ba b-+的值为___________ . (全国初中数学联赛试题)解题思路:对已知等式通过因式分解变形,寻求a ,b 之间的关系,代入关系求值.【例2】a ,b ,c 是正整数,a >b ,且27a ab ac bc --+=,则a c -等于( ).A. -1 B .-1或-7 C .1 D.1或7 (江苏省竞赛试题)解题思路:运用因式分解,从变形条件等式入手,在字母允许的范围内,把一个代数式变换成另一个与它恒等的代数式称代数式的恒等变形,它是研究代数式、方程和函数的重要工具,换元、待定系数、配方、因式分解又是恒等变形的有力工具.求代数式的值的基本方法有; (1)代入字母的值求值; (2)代入字母间的关系求值; (3)整体代入求值.【例3】计算:(1) 32321997219971995199719971998--+-g (“希望杯”邀请赛试题)(2)444444444411111(2)(4)(6)(8)(10)4444411111(1)(3)(5)(7)(9)44444++++++++++ (江苏省竞赛试题)解题思路:直接计算,则必然繁难,对于(1),不妨用字母表示数,通过对分子、分母分解因式来探求解题思路;对于(2),可以先研究41()4x +的规律.【例4】求下列方程的整数解.(1)64970xy x y +--=; (上海市竞赛试题)(2)222522007x xy y ++=. (四川省竞赛试题)解题思路:不定方程、方程组没有固定的解法,需具体问题具体分析,观察方程、方程组的特点,利用整数解这个特殊条件,从分解因式入手.解不定方程的常用方法有:(1)穷举法; (2)配方法; (3)分解法; (4)分离参数法. 用这些方程解题时,都要灵活地运用质数合数、奇数偶数、整除等与整数相关的知识.【例5】已知3a b +=,2ab =,求下列各式的值: (1) 22a b ab +; (2) 22a b +; (3)2211a b+. 解题思路:先分解因式再代入求值.【例6】一个自然数a恰等于另一个自然数b的立方,则称自然数a为完全立方数,如27=33,27就是一个完全立方数.若a=19951993×199519953-19951994×199519923,求证:a是一个完全立方数.(北京市竞赛试题)解题思路:用字母表示数,将a分解为完全立方式的形式即可.能力训练A 级1. 如图,有三种卡片,其中边长为a的正方形卡片1张,边长分别为a,b的长方形卡片6张,边长为b的正方形卡片9张,用这16张卡片拼成一个正方形,则这个正方形的边长为________.(烟台市初中考试题)babbaa2.已知223,4x y x y xy +=+-=,则4433x y x y xy +++的值为__________.(江苏省竞赛试题)3.方程25510x xy x y --+-=的整数解是__________. (“希望杯”邀请赛试题)4. 如果2(1)1x m x -++是完全平方式,那么m 的值为__________. (海南省竞赛试题)5. 已知22230x xy y -+=(0≠xy ),则xy y x+的值是( ).A .2,122B .2C .122D .12,22-- 6.当1x y -=,43322433x xy x y x y xy y ---++的值为( ).A. -1 B .0 C .2 D .1 7.已知a b c >>,222222M a b b c c a N ab bc ca =++=++,,则M 与N 的大小关 系是( ).A. M <N B .M >N C .M =N D .不能确定(“希望杯”邀请赛试题)8.n 为某一自然数,代入代数式3n n -中计算其值时,四个同学算出如下四个结果,其中正确的结果只能是( ).A. 388944B.388945C.388954D.388948(五城市联赛试题)9.计算:(1) 3331999100099919991000999--⨯⨯ (北京市竞赛试题)(2) 333322223111122222311111++ (安徽省竞赛试题)10. 一个自然数a 恰好等于另一个自然数b 的平方,则称自然数a 为完全平方数,如64=82,64就是一个完全平方数,若a =19982+19982×19992+19992,求证:a 是一个完全平方数.(北京市竞赛试题)11.已知四个实数a ,b ,c ,d ,且a b ≠,c d ≠,若四个关系式224,b 4a ac bc +=+=,82=+ac c ,28d ad +=,同时成立.(1)求a c +的值;(2)分别求a ,b ,c ,d 的值.(湖州市竞赛试题)B 级1.已知n 是正整数,且4216100n n -+是质数,那么n ____________ .(“希望杯”邀请赛试题)2.已知三个质数,,m n p 的乘积等于这三个质数的和的5倍,则222m n p ++=________ .(“希望杯”邀请赛试题)3.已知正数a ,b ,c 满足3ab a b bc b c ac c a ++=++=++=,则(1)(1)(1)a b c +++=_________ . (北京市竞赛试题)4.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式44x y -,因式分解的结果是22()()()x y x y x y -++,若取x =9,y =9时,则各个因式的值是:22()0,()18,()162x y x y x y -=+=+=,于是就可以把“0181 62”作为一个六位数的密码,对于多项式32-,取x=10,y=10时,用上述方法产生的密码是:4x xy__________.(写出一个即可).(浙江省中考试题)5.已知a,b,c是一个三角形的三边,则444222222++---的a b c a b b c c a222值( ).A.恒正B.恒负C.可正可负D.非负(太原市竞赛试题)6.若x是自然数,设432=++++,则( ).2221y x x x xA. y一定是完全平方数B.存在有限个x,使y是完全平方数C. y一定不是完全平方数D.存在无限多个x,使y是完全平方数7.方程22--=的正整数解有( )组.x xy x23298A.3 B.2 C.1 D.0(“五羊杯”竞赛试题)8.方程24-+=的整数解有( )组.xy x yA.2 B.4 C.6 D.8(”希望杯”邀请赛试题)9.设N=695+5×694+10×693+10×692+5×69+1.试问有多少个正整数是N的因数?(美国中学生数学竞赛试题)10.当我们看到下面这个数学算式333337133713503724372461++==++时,大概会觉得算题的人用错了运算法则吧,因为我们知道3333a b a bc d c d++≠++.但是,如果你动手计算一下,就会发现上式并没有错,不仅如此,我们还可以写出任意多个这种算式:333331313232++=++,333352525353++=++,333373737474++=++,3333107107103103++=++,… 你能发现以上等式的规律吗?11.按下面规则扩充新数:已有a ,b 两数,可按规则c ab a b =++扩充一个新数,而以a ,b ,c 三个数中任取两数,按规则又可扩充一个新数,…每扩充一个新数叫做一次操作. 现有数1和4,求:(1) 按上述规则操作三次得到扩充的最大新数;(2) 能否通过上述规则扩充得到新数1999,并说明理由.(重庆市竞赛试题)12.设k,a,b为正整数.k被22,a b整除所得的商分别为m,16m.+(1)若a,b互质,证明22-与22,a b互质;a b(2)当a,b互质时.求k的值;( 3)若a,b的最大公约数为5,求k的值.(江苏省竞赛试题)。
七年级上培优专题——整体思想求值(附答案)
七年级上培优专题——整体思想求值(附答案)题型切片(七个)对应题目题型目标利用同类项求未知数的值例1;练习1整式加减的化简求值例2;练习1化简并说明结果与字母取值无关例3;练习2整体思想之整体化简例4;练习3整体思想之代入求值例5:练习4整体思想之构造整体例6;练习5整体思想之赋值例7;练习6整式加减的实质:⑴去括号;⑵找同类项;⑶合并同类项.整式加减运算原则:有括号先去括号,有同类项先合并同类项.多重括号的整式加减混合运算中,常用的三种去括号方法:⑴由内向外逐层进行;⑵由外向内进行;⑶如果去括号法则掌握得熟练,还可以内外同时进行去括号.【例1】 ⑴若27m xy +-与33nx y -是同类项,则m =_______, n =________.⑵若3232583n m x y x y x y -=-,则22m n -=________.【例2】 ⑴化简:①()222323x x x x ⎡⎤---=⎣⎦ ;②()()3105223xy y x xy y x ++-+-=⎡⎤⎣⎦ .⑵化简求值:()⎪⎭⎫ ⎝⎛-+--+-22411444841x x x x ,其中21-=x .⑶已知:()2210x y ++-=,求()2222252342xy x y xy xy x y ⎡⎤-+--⎣⎦的值.【例3】 ⑴当k =时,代数式643643154105x kx y x x y --++中不含43x y 项.⑵ 有这样一道题“当22a b ==-,时,求多项式()()22233322a ab b a ab b -----+的值”,马小虎做题时把2a =错抄成2a =-时,王小明没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.整体思想就是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理.整体思想的解题方法在代数式的化简与求值有广泛的应用,整体代入、整体设元、整体处理等都是整体思想方法在解代数式的化简与求值中的具体运用.【例4】 ⑴计算5()2()3()a b b a a b -+---= .⑵化简:22233(2)(2)(1)(1)x x x x x +---+-+-= .⑶化简:()()()432330321223120573x y y x x y -+----+= .【例5】 ⑴已知代数式a b -等于3,则代数式()()25a b a b ---的值为 .⑵已知代数式2326y y -+的值为8,那么代数式2641y y -+的值为 .⑶若232x x --的值为3,则2239x x -+的值为_______.⑷已知代数式2346x x -+的值为9,则代数式2463x x -+的值为 .⑸已知32c a b =-,求代数式22523c a b a b c ----的值.【例6】 ⑴如果225a ab +=,222ab b +=-,则224a b -= .⑵己知:2a b -=,3b c -=-,5c d -=,求()()()a c b d c b -⨯-⨯-的值.【例7】 ⑴已知代数式25342()x ax bx cx x dx+++,当1x =时,值为1,求该代数式当1x =-时的值.⑵已知代数式4323ax bx cx dx ++++,当2x =时它的值为20;当2x =-时它的值为16, 求2x =时,代数式423ax cx ++的值.【选讲题】【例8】 李明在计算一个多项式减去2245x x -+时,误认为加上此式,计算出错误结果为221x x -+-,试求出正确答案.【例9】 设55432(21)x ax bx cx dx ex f -=+++++,求:⑴ f 的值;⑵ a b c d e f +++++的值; ⑶ a b c d e f -+-+-的值;⑷ a c e ++的值.训练1. 已知:m ,n 互为倒数,且20090m n ++=,求()()222010120101m m n n ++++的值.训练2. 已知()253425x ax bx cx M x dx e++=-++,当4x =-时,5M =,那么当4x =时,M = .训练3. 已知261211102121110210(1)x x a x a x a x a x a x a -+=++++++,求1210820a a a a a +++++的值.训练4. 已知有理数a 和b 满足多项式()25212b A a x xx bx b +=-+-++是关于x 的二次三项式.当7x <-时,化简:x a x b -+-利用同类项求未知数的值、整式加减的化简求值【练习1】 已知5+43a x y 与315b x y 是同类项,化简代数式()()2222352ab a a ab a ab ⎡⎤-----+⎣⎦并求该代数式的值.化简并说明结果与字母取值无关【练习2】 有这样一道题:“计算()()()32232332323223x x y xy x xy y x x y y ----++-+-的值”,其中“2013,1x y ==-”. 甲同学把“2013x =”错抄成了“2013x =-”,但他计算 的结果也是正确的,试说明理由,并求出这个结果.整体思想之整体化简【练习3】 把()a b -当作一个整体,合并22()5a b --2()b a -+2()a b -的结果是( )A .()2a b - B .()2a b -- C .()22a b -- D .0整体思想之代入求值【练习4】 ⑴如果36a b -=,那么代数式53a b -+的值是___________.⑵已知5=-y x ,代数式y x --2的值是_________.⑶已知24x y -+=,则代数式()2526360x y y x --+-的值为 . ⑷若23x x +的值为2,则2396x x +-的值为_____. ⑸若2320a a --=,则2526a a +-= .整体思想之构造整体【练习5】 如果1662=+xy x ,1242-=-xy y ,则222y xy x ++的值为 .整体思想之赋值【练习6】 ⑴已知当2x =-时,代数式31ax bx ++的值为6,那么当2x =时,代数式31ax bx ++的值是多少?⑵若533y ax bx ax =++-,当2x =-时,10y =,则2x =时,y = .是先有方程还是先有代数式?当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解方程的原理为中心问题的初等代数。
初一数学整式加减培优专题
初一数学培优专题——整式的加减1 化简求值:5abc 2a2b 3abc 2(4ab2 a2 b)此中 a, b, c 知足 a 1 b 2 c2 02 代数式(2 x 21 1 1 2) 的值与字母x 的取值没关,求2a 5b 的ax y ) ( x 2 y 1 bx3 5 2值。
3 已知a3b327, a2b ab 2 6 ,求代数式 (b3a3 ) ( a2b 3ab 2 ) 2(b3a2 b) 的值4 当x 1 时,代数式2ax33bx 8 的值为18,求代数式9b6a 2 的值5 已知x 2, y 4 时,代数式ax3 1 b y 5 1997 ,求当 x 4, y 1 时,代数式2 23ax 24by3 4986 的值6 已知a2 a 1 0 ,求 a 3 2a2 2007 的值.7 已知2ab 5 ,求代数式2(2ab) 3(ab) 的值。
a b a b 2a b8 当50(2 a 3b) 2达到最大值时,求 1 4a29b2的值。
9.( 2012?金平区模 )研究以下算式,你会 有什么 律?① 13=12② 13+23=32③ 13+23+3 3=62 ④ 13+23+3 3+43=102 ⑤ 13+23+3 3+43+53=15 2⋯(1)依据以上算式的 律, 你写出第⑥ 个算式;(2)用含 n ( n 正整数)的式子表示第n 个算式;(3) 用上述 律 算:73+83+93+⋯+20 3.10.已知 xy < 0, x < y 且 |x|=1, |y|=2. (1)求 x 和 y 的 ;(2)求的 .11.已知, a , b 互 相反数, c ,d 互 倒数, |m|=2,求: 的 .12. 察以下算式: 1×5+4=3 2,2×6+4=42,3×7+4=5 2,4×8+4=62,⋯ 你在 察 律后用得 到的 律填空: 10×14+4= _________ , _________ × _________ + _________=202.13.如 ,用火柴棒 成 1, 2, 3, ⋯,( n 1), n 的正方形(1)依此 律, 成4 的正方形 案中,需火柴棒根数_________ ;(2)拼成n 的正方形 案比( n1)的正方形 案多_________ 个小正方形; (3) 成n 的正方形 案中需要火柴棒根数_________.14.如 ,把面 1 的 方形平分红两个面的 方形,再把面 的 方形等分红两个面的 方形,再把面的 方形平分红两个面的 方形,这样行下去, 用 形揭露 律.算:.15.将四个数 a 、 b 、c 、 d 摆列成 的形式,定 =ad bc ,若 =10 ,求 7x 22 的 .。
苏教版初一数学《代数式》拓展培优题 (含答案)
初一数学《代数式》拓展培优题 一.选择题1.若a 是一位数,b 是两位数,把a 放在b 的左边,所得的三位数可以表示为 ( )A .10a+bB .10b+aC .100a+bD .ab2.下列运算正确的是 ( )A .3a +4b =7abB .3x 2+2x 2=5x 4C .6x 2y +4xy 2=10x 2yD .2ab -3ab =-ab3.若a -b =2,b -c =-3,则a -c 等于 ( ) A .1 B .-1 C .5 D .-54.下列说法正确的是 ( )A .单项式-25x 2y 的系数是25,次数是2 B .单项式x 的系数是0,次数是0 C .ab -32是二次单项式 D .单项式-3x 2y 2的系数是-32,次数为3 5.如图是由一些火柴棒搭成的图案:按照这种方式摆下去,摆第6个图案用多少根火柴棒 ( )A .24B .25C .26D .276.下列各组整式中,不属于同类项的是 ( )A .3x 2y 与-13yx 2 B .m 2n 与3×102nm 2 C .1与-2 D .13a 2b 与13b 2a 7.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为 ( )A .3nB .6nC .3n +6D .3n +38.某商品价格a 元,降低10%后,又降低了10%,销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.a元B.1.08a元C.0.972a元D.0.96a元9.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2019+2019n+c2019的值为()A.1 B.-1 C.0 D.310.根据下图所示的程序计算代数式的值,若输入x的值为1.5,则输出的结果为()A.-23B.274C.32D.23二.填空题11.小刚拿100元钱去买单价为4.5元的钢笔n支,则剩下的钱为________元;小明最多能买这种钢笔_______支.12.已知代数式3x2-4x+6的值为9,则x2-43x+9的值为____________.13.若x=-13,y=4,则代数式3x+y-3的值为____________.14.一个两位数的个位数字为a,十位数字比个位数字大2,则这个数为____________.(用含有a的代数式表示)15.若-12x m+3y 与2x4y n+3 是同类项,则(m+n)2019=____________.16.已知3aba b=+,则3322a ab ba ab b++-+的值为____________.17.(1)当a=3,b=-2时,代数式(a-b)((a+b)的值是____________;(2)当a+b=2,a-b=5时,代数式(a+b)3·(a-b)2的值是____________;(3)当x+2y=-6时,代数式-x+10-2y的值是____________.18.已知a≠0,S1=2a,S2=12S,S3=22S,……,S2020=20192S,则S2020=____________(用含a的代数式表示).三.解答题19.合并下列各式中的同类项:(1)22222110.30.452m n mn n m m n nm-+--;(2)22211323232x xy x xy x y-+-+--.20.已知某三角形第一条边长为(2a-b),第二条边比第一条边长2b,第三条边比第一条边短(a+b),求这个三角形的周长.21.(1)先化简,再求值:2(a2-ab)-3(23a2-ab),其中a=23,b=-6;(2)若代数式(2x2+ax-y+b)-(2bx2+3x+5y+1)的值与字母x的取值无关,求a,b的值.22.一座楼梯的示意图如图所示,要在楼梯上铺一条地毯.(1)地毯至少需多少长?(用关于a,h的代数式表示)(2)若楼梯的宽为b,则地毯的面积为多少?(3)当a=5 m,b=1.2 m,h=3 m时,则地毯的面积是多少?23.初一年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都按7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?(3)当m=100时,采用哪种方案优惠?24.观察下列等式:第一个等式:a1=21+3×2+2×22=12+1-122+1;第二个等式:a2=221+3×22+2×(22)2=122+1-123+1;第三个等式:a3=231+3×23+2×(23)2=123+1-124+1;第四个等式:a4=241+3×24+2×(24)2=124+1-125+1.按上述规律,回答下列问题:(1)请写出第六个等式:a6=_______________=_______________;(2)用含n的代数式表示第n个等式:a n=________________=________________;(3)a1+a2+a3+a4+a5+a6=________________=________________(得出最简结果).25.如图,四边形ABCD和四边形ECGF都是正方形.(1)用含x,y的式子表示三角形BGF的面积;(2)用含x,y的式子表示阴影部分面积;(3)求当x=2cm,y=3cm时,阴影部分的面积是多少?初一数学参考答案《代数式》拓展培优题一.选择题1.C 2.D 3.B 4.D 5.B6.D 7.D 8.C 9.C 10.D二.填空题11.100-4.5n 22 12.10 13.0 14.11a+20 15.-116.-6 17.(1)5 (2)200 (3)4 18.1 a三.解答题19.(1)-1.2m2n+0.2mn2(2)x2-2xy+x-y-2 20.5a-2b21.(1)原式=2a2-2ab-2a2+3ab=ab,当a=23,b=-6时,原式=ab=23×(-6)=-4.(2)原式=(2-2b)x2+(a-3)x-6y+b-1,∵代数式的值与字母x的取值无关,∴2-2b=0,a-3=0,即a=3,b=1.22.(1)地毯的长度为a+h;(2)地毯的面积为(a+h)b;(3))将a=5 m,b=1.2 m,h=3 m代入,得(5+3)×1.2=9.6(m2).23.(1)甲方案:m×30×810=24m(元),乙方案:(m+5)×30×7.510=22.5(m+5)(元);(2)当m=70时,甲方案付费为24×70=1 680(元),乙方案付费22.5×75=1 687.5(元).所以采用甲方案优惠.(3)当m=100时,甲方案付费为24×100=2 400(元),乙方案付费22.5×105=2 362.5(元).所以采用乙方案优惠.24.(1)261+3×26+2×(26)2126+1-127+1;(2)2n1+3×2n+2×(2n)212n+1-12n+1+1;(3)12+1-122+1+122+1-123+1+…+126+1-127+1;1443.25.(1)12xy+12y2;(2)12x2+12y2-12xy;(3)72cm2.。
代数式的化简与求值习题打印版G6
代数式的化简与求值(打印版)1.设a>b>0,a²+b²=82ab,则(a+b)/(a-b)的值等于________。
2.如果多项式p=a²+16b²+32a+32b+2624,则p的最小值是________。
3.已知a+(1/b)=b+(1/c)=c+(1/a),a≠b≠c,则a²b²c²=________。
4.一个正数x的两个平方根分别是a+86与a-183,则a值为________。
5.已知实数a满足|2661-a|+√(a-2467)=a,那么a-2661²=_______。
6.已知m是方程x²-2417x+3=0的一个根,则m²-2416m+7251/(m²+3)+53的值等于_______。
7.若x²+6x-224=0,则x³+45x²+10x+32=_______。
8.若a²+b-16a-18√b+145=0,则代数式a^(a+b)*b^(a-b)=________。
9.若m为实数,则代数式|m|+m的值一定是________。
10.若x<-26,则y=|161-|161+x||等于________。
11.已知非零实数a,b 满足|12a-68|+|b+28|+√[(a-3)*b²]+68=12a,则a+b等于________。
12.当x>162时,化简代数式√[x+18√(x-81)]+√[x-18√(x-81)]= ________。
13.将代数式x³+(2b+1)x²+(b²+2b-1)x+(b²-1)分解因式,得________。
14.已知a=-1+√6,则8a³+2a²-18a+72的值等于________.15.已知p是方程x²-1997x+1=0的一个根,则p²-1996p+1997/(p²+1)+185的值等于________。
七年级上培优竞赛 代数式的化简和求值
代数式的化简和求值【例题精讲】例1、 设0122334455512a x a x a x a x a x a x +++++=−)(.求:(1)543210a a a a a a +++++的值.(2)543210a a a a a a −+−+−的值.(3)420a a a ++的值.拓展 1.当2=x 时,代数式13+−bx ax 的值等于—17,那么当1−=x 时,代数式53123−−bx ax 的值等于 .例2、 若a c z cb y b a x −=−=−,求z y x ++的值。
拓展1 已知y x z z x y z y x +=+=+,求zy x +拓展 2 已知多项式6823222−+−−+y x y xy x 可以分解为)2)(2(n y x m y x +−++ 的形式,那么1123−+n m 的值是 。
例3同一价格的一种商品在三个商场都进行了两次价格调整,甲商场:第一次提价的百分率为a ,第二次提价的百分率为b ;乙商场:两次提价的百分率都是)00(2>,>b a b a +;丙商场:第一次提价的百分率为b ,第二次提价的百分率为a ,则哪个商场提价最多?说明理由。
例 4 若0,0b c c a a b a b c a b c −−−++=++=且,求222222bc b c ca c a ab a b b c c a a b +−+−+−++的值。
拓展、如果无论x 取什么值,代数式34ax bx ++(分母不为0)都得到同样的值,那么a 与b 应满足什么条件?例5 已知223,x x +=求代数式432781315x x x x ++−+的值。
拓展1、已知,x y 满足2252,4x y x y ++=+求代数式xy x y +的值。
拓展2、已知1,ax by cz ===求444444111111111111a b c x y z +++++++++++的值。
【代数式的化简和求值提高卷】1、 a,b,c 都是质数,且满足99=+++abc c b a ,则=−+−+−a c c b b a 111111 。
代数式求值(习题及答案)-学习文档
代数式求值(习题)例题示范例1:若23a b -=,则代数式2(2)422000b a a b --++的值是_______.思路分析观察已知,发现字母a ,b 的值无法确定,所以考虑整体代入.对比已知及所求,把2a -b 当作一个整体,对所求式子进行变形.原式=2(2)2(2)2000a b a b ---+最后整体代入,化简巩固练习1. 关于x 的代数式222(28)4(21)x x kx x x ⎡⎤+---+⎣⎦,当k 为何值时,代数式的值是常数?2. 若关于x 的代数式2214(45)64x mx x x mx mx ⎛⎫+---+- ⎪⎝⎭的值与x 无关,求代数式2223(21)363m m m m ⎡⎤-+-+⎢⎥⎣⎦的值. 3. 若232a b a b -=+,则代数式2(2)15(2)22a b a b a b a b-+-+-+的值是_______. 4. 若代数式2346x x -+的值是9,则代数式2463x x -+的值是___________. 5. 若2x y =,则代数式45x y x y-+的值是___________. 6. 已知当5x =时,代数式25ax bx+-的值是10,则当5x =时,代数式25a x b x ++的值是____________.7. 已知当3x =-时,代数式535ax bx cx ++-的值是7,则当3x =时,代数式535ax bx cx ++-的值是__________.8. 若m 表示一个两位数, n 表示一个两位数,把m 放在n 的右边,则这个四位数可用代数式表示为_____________.9. 若a 表示一个一位数,b 表示一个两位数,c 表示一个三位数,把c 放在a的左边,b 放在a 的右边,组成一个六位数,则这个六位数可用代数式表示为__________________.思考小结1. 已知3240x x --=,则代数式3361x x -++的值是_______.通过本讲的学习,小明的做法:①把含有字母的项“32x x -”作为整体,则324x x -=;②在所求的代数式中找整体,对比系数解决:小刚的做法:①把最高次项“3x ”作为整体,则324x x =+;②在所求的代数式中找整体,对比系数解决:小聪的做法:①把“324x x --”作为整体;②在所求的代数式中找整体,对比系数解决:对比小明、小刚、小聪的做法,我们发现无论把“32x x -”, “3x ”还是“324x x --”作为整体,代入,目标都是把所求的代数式降次,这种转化的思想是“高次降次”.【参考答案】巩固练习1.当k=6时,代数式的值为常数2.m=-1,原式=-m-3,当m=-1时,原式=-23.114.75.16.207.-178.100n+m9. 1 000c+100a+b思考小结-11。
培优专题5代数式的化简和求值(含答案)-
培优专题5 代数式的化简和求值用数值代替代数式里的字母,按照代数式里指明的运算计算出的结果,就叫代数式的值,经常利用代数式的值实行比较、推断代数式所反映的规律.在求代数式的值时,我们经常先将代数式化简,再代入数值计算,从而到达简化计算的目的.在化简代数式时常用到去括号法则、合并同类项法则、绝对值的意义及分类讨论的思想等.例1已知x<-3,化简│3+│2-│1+x│││.分析这是一个含有多层绝对值符号的问题,能够从里到外一层一层地去绝对值符号.解:∵x<-3,∴1+x<0,3+x<0原式=│3+│2+(1+x)││=│3+│3+x││=│3-(3+x)│=│-x│=-x.练习11.化简:3x2y-[2xy2-2(xy-32x2y)+xy]+3xy2.2.当x<-2时,化简|1|1||2xx+--.3.化简:│3x+1│+│2x-1│.例2 设(2x-1)5=a5x5+a4x4+a33x+a22x+a1x+a0,求:(1)a1+a2+a3+a4+a5+a6的值;(2)a0-a1+a2-a3+a4-a5的值;(3)a0+a2+a4的值.分析能够取x的特殊值.解:(1)当x=1时,等式左边=(2×1-1)5=1,等式右边=a5+a4+a3+a2+a1+a0,∴a0+a1+a2+a3+a4+a5=1.①(2)当x=-1时,等式左边=[2×(-1)-1]5=-243,等式右边=-a5+a4-a3+a2-a1+a0∴a0-a1+a2-a3+a4-a5=-243.②(3)①+②得,2a0+2a2+2a2=-242.∴a0+a2+a4=-121.练习21.当x=2时,代数式a x3-bx+1的值等于-17,那么当x=-1时,代数式12ax-3bx3-5的值等于_________.2.某同学求代数式10x9+9x8+8x7+7x6+6x5+5x4+4x3+3x2+2x+1,当x=-1时的值时,•该生因为将式子中某一项前的“+”号误看成“-”号,算得代数式的值为7,那么这位同学看错了几次项前的符号?3.已知y=a x7+bx5+cx3+d x+e,其中a、b、c、d、e为常数,当x=2时,y=23;当x=-2时,y=-35;那么e的值为().A.-6 B.6 C.-12 D.12例3若x y za b b c c a==---,求x+y+z的值.分析对于连等我们常设它们的比值为k,或用其中一个表示数的字母把其它的数表示出来.设x y za b b c c a==---=k,则:x=k(a-b),y=k(b-c),z=k(c-a)即x=ka-kb,y=kb-kc,z=kc-ka,∴x+y+z=0 练习31.已知xy z+=y zx z x y=++,求xy z+.2.已知a=3b,c=5a,求a b ca b c+++-的值.3.已知1x-1y=2,求3533x xy yx xy y---++的值.例4 若a+b+c=0,且b c c a a b a b c---++=0, 求222222bc b c ca c a ab a b b c c a a b +-+-+-++的值. 分析 先代入使a+b+c=0、=0成立的a 、b 、c 的特殊值,如a=b=1,c=-2,可求得所求代数式的值为0,给出求值方向.下面我们来说明所求代数式的值为0.解:由:a+b+c=0,两边同乘以abc ,得:a 2bc+ab 2c+abc 2=0 ①由b c c a a b a b c---++=0,两边同乘以abc ,得: bc (b-c )+ac (c-a )+ab (a-b )=0,即 a 2(b-c )+b 2(c-a )+c 2(a-b )=0. ②①+②得:a 2(bc+b-c )+b 2(ac+c-a )+c 2(ab+a-b )=0两边同除以a 2b 2c 2得: 222222bc b c ca c a ab a b b c c a a b+-+-+-++=0 ∴原式的值为0.练习41.已知(x-3)2+│n-2│=0,求代数式3x n +13x n-1-(x 3+13x n-1-3)的值.2.已知A=3x 2-9xy+y 2,B=3x 2-9xy-y 2,化简:2A-{3B-[A+2(B-A )]}.3.如果无论x 取什么值,代数式34ax bx ++(分母不为零)都得到同样的值,那么a 与b•应满足什么条件?例5 已知三个正数a 、b 、c 满足abc=1,求111a b c ab a bc b ac c ++++++++的值. 分析 本题若直接通分,计算较复杂,考虑到abc=1,可将原式第二个分式的分子、分母同乘以a ,第三个分式的分子、分母同乘以ab ,达到通分的目的.解:原式=1a ab a +++2ab abc abc ab a a bc abc ab+++++ =1a ab a +++111ab ab a a ab+++++ =11a ab ab a ++++=1.练习51.若a 、b 为正数,且ab=1,求11a b a b +++的值.2.已知a+1b =1,b+1c =1,求c+1a 的值.3.若a 、b 、c 、d 是四个正数,且abcd=1, 求1111a b c d abc ab a bcd bc b cda cd c dab da d +++++++++++++++的值.答案:练习11.x y2+xy.原式=3x2y-[2xy2-2xy+3x2y+xy]+3xy2=3x2y-2xy2+2xy-3x2y-xy+3xy2=xy2+xy.2.1 │+│1-x││(因为1-x>0)=│1+1-x│=│2-x│(因为2-x>0)=2-x∴原式=1.3.当x<13时,原式=-5x;当13≤x<12时,原式=x+2;当x≥12时,原式=5x.用零点区间讨论法:由3x+1=0、2x-1=0,得零点,x=-13,、x=12,把这两个零点标在数轴上,•可把数轴分为三部分,即x<-13、-13≤x<12、x≥12,这样就可以分类讨论化简原式了.当x<-13时,原式=-(3x+1)-(2x-1)=-5x;当-13≤x〈12时,原式=(3x+1)-(2x-1)=x+2;当x≥12时,原式=(3x+1)+(2x-1)=5x.练习21.22.当x=2时,8a-2b+1=-17,即4a-b=-9;当x=-1时,-12a+3b-5=-3(4a-b)-5=-3×(-9)-5=22.2.5.设看错的是x的n次项前的符号,那么他计算的代数式实际是10x9+9x8+…+2x+1-2(n+1)x n,由题意得:10×(-1)9+9×(-1)8+…+2×(-1)+1-2(n+1)(-1)n=7,即(n+1)(-1)n=-6.∴n=5.3.A.当x=2时,27·a+25·b+23·c+2d+e=23 ①当x=-2时,-27·a-25·b-23·c-2d+e=-35 ②①+②得2e=-12,∴e=-6.选A.练习31.12或-1.设xy z+=y zx z x y=++=k,则:x=k(y+z)①;y=k(x+z)②;z=k(x+y)③.①+②+③得:x+y+z=2k(x+y+z),∴(x+y+z)(2k-1)=0.当x+y+z=0时,xy z+=xx-=-1,当2k-1=0时,k=12,即xy z+=12.2.-1911.c=5a=15b,把a=3b,c=15b代入原式,原式=3151931511b b b bb b b b++=+--=-1911.3.-115.由1x-1y=2,知y-x=2xy,故原式3()565()323y x xy xy xyy x xy xy xy-----=-++=-115.练习41.3 由题意知x=3,n=2.原式=3x n+13x n-1-x3-13x n-1+3=3x n-x3+3=3×32-33+3=3.2.2y2.原式=2A-{3B-[A+2B-2A]}=2A-{3B-A-2B+2A}=2A-3B+A+2B-2A=A-B=3x2-9xy+y2-(3x2-9xy-y2)=2y2.3.4a=3b.因不论x取什么值,代数式34axbx++的值都相同,所以我们可以取x=0,得:34axbx++=34,即不论x取什么值,该代数式的值都为34,再取x=1,得34axbx++=34,故4a=3b.练习5.1.1.由ab=1得,a=1b,故原式=111bb++1bb+=11b++1bb+=1.2.1.由题意知a=1-1b =1b b -,∴1a =1b b -. ∵1c =1-b ,∴c=11b -=-11b -. ∴c+1a =-11b -+1b b -=1. 3.1.利用abcd=1把它们化为同分母:1(1)1a a d ad abc ab a abc ab a d abd ad d ==+++++++++; 1(1)1b b ad abd bcd bc b bcd bc b ad abd ad d ==+++++++++; 11(1)1c c abd cda ad c cda cd c abd ad d abd ==+++++++++ ∴原式=1.。
【中考冲刺】初三数学培优专题 01 二次根式的化简与求值(含答案)(难)
二次根式的化简与求值阅读与思考二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧.有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是:1、直接代入直接将已知条件代入待化简求值的式子. 2、变形代入适当地变条件、适当地变结论,同时变条件与结论,再代入求值.数学思想:数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展.=x , y , n 都是正整数)例题与求解【例1】 当x =时,代数式32003(420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、20032-(绍兴市竞赛试题)【例2】 化简(1(ba b ab b -÷-- (黄冈市中考试题)(2(五城市联赛试题)(3(北京市竞赛试题)(4(陕西省竞赛试题)解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解.思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度.【例3】比6大的最小整数是多少?(西安交大少年班入学试题)解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y==想一想:设x=求432326218237515x x x xx x x--++-++的值. (“祖冲之杯”邀请赛试题)的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.【例4】 设实数x ,y 满足(1x y =,求x +y 的值.(“宗泸杯”竞赛试题)解题思路:从化简条件等式入手,而化简的基本方法是有理化.【例5】 (1的最小值.(2的最小值.(“希望杯”邀请赛试题)解题思路:对于(1)为a ,b 的直角三角形的斜边长,从构造几何图形入手,对于(2),设y =A (x ,0),B (4,5),C (2,3)相当于求AB +AC 的最小值,以下可用对称分析法解决.方法精髓:解决根式问题的基本思路是有理化,有理化的主要途径是乘方、配方、换元和乘有理化因式.【例6】 设2)m a =≤≤,求1098747m m m m m +++++-的值.解题思路:配方法是化简复合二次根式的常用方法,配方后再考虑用换元法求对应式子的值.能力训练A级1.化简:7()3“希望杯”邀请赛试题)2.若x y x y+=-=,则xy=_____(北京市竞赛试题)3.+(“希望杯”邀请赛试题)4. 若满足0<x<y=x,y)是_______(上海市竞赛试题)5.2x-3,则x的取值范围是()A. x≤1B. x≥2C. 1≤x≤2D. x>06)A.1B C. D. 5(全国初中数学联赛试题)7.a,b,c为有理数,且等式a+=成立,则2a+999b+1001c的值是()A.1999 B. 2000 C. 2001D. 不能确定(全国初中数学联赛试题)8、有下列三个命题甲:若α,β是不相等的无理数,则αβαβ+-是无理数;乙:若α,β是不相等的无理数,则αβαβ-+是无理数;丙:若α,β其中正确命题的个数是()A. 0个B. 1个C. 2个D. 3个(全国初中数学联赛试题)9、化简:(1(2(3(4(天津市竞赛试题)(5(“希望杯”邀请赛试题)10、设52x=,求代数式(1)(2)(3)(4)x x x x++++的值.(“希望杯”邀请赛试题)117x=,求x的值.12、设x x ==(n 为自然数),当n 为何值,代数式221912319x xy y ++的 值为1985?B 级1. 已知3312________________x y x xy y ==++=则. (四川省竞赛试题)2. 已知实数x ,y 满足(2008x y =,则2232332007x y x y -+--=____(全国初中数学联赛试题)3. 已知42______1x x x ==++2x 那么. (重庆市竞赛试题)4. a =那么23331a a a ++=_____. (全国初中数学联赛试题)5. a ,b 为有理数,且满足等式14a +=++则a +b =( )A . 2B . 4C . 6D . 8(全国初中数学联赛试题)6. 已知1,2a b c ===,那么a ,b ,c 的大小关系是( ).Aa b c << B . b <a <c C . c <b <c D . c <a <b(全国初中数学联赛试题)7.=) A . 1a a -B .1a a - C . 1a a+ D . 不能确定 8. 若[a ]表示实数a 的整数部分,则等于( )A . 1B . 2C . 3D . 4(陕西省竞赛试题)9. 把(1)a - )A .B C. D . (武汉市调考题)10、化简:(1 (“希望杯”邀请赛试题)(210099++(新加坡中学生竞赛试题)(3(山东省竞赛试题)(4 (太原市竞赛试题)11、设01,x << 1≤<.(“五羊杯”竞赛试题)12的最大值.13、已知a , b , c为有理数,证明:222a b c a b c ++++为整数.二次根式的化简与求值例1 A 提示:由条件得4x 2-4x -2 001=0. 例2 (1)原式=()aba b a b++()1ba b b a b⎡⎤⎢⎥-⎢⎥+-⎣⎦·a b b -=2ab (2)原式=()()()()257357257357+-++++=26-5.(3)原式=()()()()633326332+-+++=316332+++=62-;(4)原式=()()()5332233323325231-+-+-++=332-.例3 x +y =26,xy =1,于是x 2+y 2=(x +y )2-2xy =22,x 3+y 3=(x +y )(x 2-xy +y 2)=426,x 6+y 6=(x 3+y 3)2-2x 3y 3=10582.∵0<65-<1,从而0<()665-<1,故10 581<()665+<10582. 例4 x +21x +=211y y ++=21y +-y …①;同理,y +21y +=211x x ++=21x +-x …②.由①+②得2x =-2y ,x +y =0. 例5 (1)构造如图所示图形,PA =24x +,PB =()2129x -+.作A 关于l 的对称点A ',连A 'B 交l 于P ,则A 'B =22125+=13为所求代数式的最小值. (2)设y =()2245x -++()2223x -+,设A (x ,0),B (4,5),C (2,3).作C 关于x 轴对称点C 1,连结BC 1交x 轴于A 点.A 即为所求,过B 作BD ⊥CC 1于D 点,∴AC +AB =C 1B =2228+=217. 例 6 m =()2212111a a -+-•++()2212111a a ---•+=()211a -++()211a --.∵1≤a ≤2,∴0≤1a -≤1,∴-1≤1a --1≤0,∴m =2.设S =m 10+m 9+m 8+…+m -47=210+29+28+…+2-47 ①,2S =211+210+29+…+22-94 ②,由②-①,得S =211-2-94+47=1 999.A 级 1.1 2.52- 3.0 提示:令1997=a ,1999=b ,2001=c . 4. (17,833),(68,612),( 153,420) 5.B 6.C 7.B 8.A 9.(1)()2x y + (2)原式=32625++-=()()22325+-=325++.(3)116- (4)532--(5)32+ 10.48提示:由已知得x 2 +5x =2,原式=(x 2+ 5x +4)(x 2+5x +6). 11.由题设知x >0,(27913x x +++27513x x -+)(27913x x ++-27513x x -+)=14x .∴27913x x ++-27513x x -+=2,∴227913x x ++=7x +2,∴21x 2-8x-48=0.其正根为x =127. 12.n =2 提示:xy =1,x +y =4n +2. B 级 1. 64 2.1 提示:仿例4,由条件得x =y ,∴(x -22008x -)2=2 008,∴x 2-2008-x 22008x -=0,∴22008x -(22008x --x )=0,解得x 2=2 008.∴原式=x 2-2 007=1. 3.9554.1 提示:∵(32-1)a =2-1,即1a=32-1. 5.B 提示:由条件得a +b 3=3+3,∴a =3,b =1,∴a +b =4. 6.B 提示:a -b =6-1-2>322+-1-2=0.同理c -a >0 7.B 8.B 9.D 提示:注意隐含条件a -1<0. 10.(1)1 998 999. 5 提示:设k =2 000,原式=212k k --. (2)910 提示:考虑一般情形()111n n n n +++=1n -11n + (3)原式=()()8215253532+-++-=()()253253532+-++-=53+.(4)2-53- 11.构造如图所示边长为1的正方形ANMD ,BCMN .设MP =x ,则CP =21x +,AP =()211x +-,AC =5,AM =2,∴AC ≤PC +PA <AM +MC ,,则5≤21x ++()211x +-<1+2 12.设y =2841x x -+-2413x x -+=()2245x -+-()2223x -+,设A (4,5),B (2,3),C (x ,0),易求AB 的解析式为y =x +1,易证当C 在直线AB 上时,y 有最大值,即当y =0,x =-1,∴C (-1,0),∴y =22. 13.33a bb c ++=()()()()3333a bb cb c b c +-+-=()222333ab bc bac b c -+--为有理数,则b 2 -ac =0.又a 2+b 2+c 2=(a +b +c )2-2(ab +bc +ac )=(a +b +c )2-2(ab +bc +b 2)=()2c b a ++-2b (a +b +c )=(a +b+c )(a -b +c ),∴原式=a -b +c 为整数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
培优专题5 代数式的化简和求值用数值代替代数式里的字母,按照代数式里指明的运算计算出的结果,就叫代数式的值,经常利用代数式的值进行比较、推断代数式所反映的规律.在求代数式的值时,我们经常先将代数式化简,再代入数值计算,从而到达简化计算的目的.在化简代数式时常用到去括号法则、合并同类项法则、绝对值的意义及分类讨论的思想等.例1已知x<-3,化简│3+│2-│1+x│││.分析这是一个含有多层绝对值符号的问题,可以从里到外一层一层地去绝对值符号.解:∵x<-3,∴1+x<0,3+x<0原式=│3+│2+(1+x)││=│3+│3+x││=│3-(3+x)│=│-x│=-x.练习11.化简:3x2y-[2xy2-2(xy-32x2y)+xy]+3xy2.2.当x<-2时,化简|1|1||2xx+--.3.化简:│3x+1│+│2x-1│.例2 设(2x-1)5=a5x5+a4x4+a33x+a22x+a1x+a0,求:(1)a1+a2+a3+a4+a5+a6的值;(2)a0-a1+a2-a3+a4-a5的值;(3)a0+a2+a4的值.分析可以取x的特殊值.解:(1)当x=1时,等式左边=(2×1-1)5=1,等式右边=a5+a4+a3+a2+a1+a0,∴a0+a1+a2+a3+a4+a5=1.①(2)当x=-1时,等式左边=[2×(-1)-1]5=-243,等式右边=-a5+a4-a3+a2-a1+a0∴a0-a1+a2-a3+a4-a5=-243.②(3)①+②得,2a0+2a2+2a2=-242.∴a0+a2+a4=-121.练习21.当x=2时,代数式a x3-bx+1的值等于-17,那么当x=-1时,代数式12ax-3bx3-5的值等于_________.2.某同学求代数式10x9+9x8+8x7+7x6+6x5+5x4+4x3+3x2+2x+1,当x=-1时的值时,•该生由于将式子中某一项前的“+”号误看成“-”号,算得代数式的值为7,那么这位同学看错了几次项前的符号?3.已知y=a x7+bx5+cx3+d x+e,其中a、b、c、d、e为常数,当x=2时,y=23;当x=-2时,y=-35;那么e的值为().A.-6 B.6 C.-12 D.12例3若x y za b b c c a==---,求x+y+z的值.分析对于连等我们常设它们的比值为k,或用其中一个表示数的字母把其它的数表示出来.设x y za b b c c a==---=k,则:x=k(a-b),y=k(b-c),z=k(c-a)即x=ka-kb,y=kb-kc,z=kc-ka,∴x+y+z=0 练习31.已知xy z+=y zx z x y=++,求xy z+.2.已知a=3b,c=5a,求a b ca b c+++-的值.3.已知1x-1y=2,求3533x xy yx xy y---++的值.例4 若a+b+c=0,且b c c a a b a b c---++=0, 求222222bc b c ca c a ab a b b c c a a b +-+-+-++的值. 分析 先代入使a+b+c=0、=0成立的a 、b 、c 的特殊值,如a=b=1,c=-2,可求得所求代数式的值为0,给出求值方向.下面我们来说明所求代数式的值为0.解:由:a+b+c=0,两边同乘以abc ,得:a 2bc+ab 2c+abc 2=0 ①由b c c a a b a b c---++=0,两边同乘以abc ,得: bc (b-c )+ac (c-a )+ab (a-b )=0,即 a 2(b-c )+b 2(c-a )+c 2(a-b )=0. ②①+②得:a 2(bc+b-c )+b 2(ac+c-a )+c 2(ab+a-b )=0两边同除以a 2b 2c 2得: 222222bc b c ca c a ab a b b c c a a b+-+-+-++=0 ∴原式的值为0.练习41.已知(x-3)2+│n-2│=0,求代数式3x n +13x n-1-(x 3+13x n-1-3)的值.2.已知A=3x 2-9xy+y 2,B=3x 2-9xy-y 2,化简:2A-{3B-[A+2(B-A )]}.3.如果无论x 取什么值,代数式34ax bx ++(分母不为零)都得到同样的值,那么a 与b•应满足什么条件?例5 已知三个正数a 、b 、c 满足abc=1,求111a b c ab a bc b ac c ++++++++的值. 分析 本题若直接通分,计算较复杂,考虑到abc=1,可将原式第二个分式的分子、分母同乘以a ,第三个分式的分子、分母同乘以ab ,达到通分的目的.解:原式=1a ab a +++2ab abc abc ab a a bc abc ab+++++ =1a ab a +++111ab ab a a ab+++++ =11a ab ab a ++++=1.练习51.若a 、b 为正数,且ab=1,求11a b a b +++的值.2.已知a+1b =1,b+1c =1,求c+1a 的值.3.若a 、b 、c 、d 是四个正数,且abcd=1, 求1111a b c d abc ab a bcd bc b cda cd c dab da d +++++++++++++++的值.答案:练习11.x y2+xy.原式=3x2y-[2xy2-2xy+3x2y+xy]+3xy2=3x2y-2xy2+2xy-3x2y-xy+3xy2=xy2+xy.2.1 │+│1-x││(因为1-x>0)=│1+1-x│=│2-x│(因为2-x>0)=2-x∴原式=1.3.当x<13时,原式=-5x;当13≤x<12时,原式=x+2;当x≥12时,原式=5x.用零点区间讨论法:由3x+1=0、2x-1=0,得零点,x=-13,、x=12,把这两个零点标在数轴上,•可把数轴分为三部分,即x<-13、-13≤x<12、x≥12,这样就可以分类讨论化简原式了.当x<-13时,原式=-(3x+1)-(2x-1)=-5x;当-13≤x〈12时,原式=(3x+1)-(2x-1)=x+2;当x≥12时,原式=(3x+1)+(2x-1)=5x.练习21.22.当x=2时,8a-2b+1=-17,即4a-b=-9;当x=-1时,-12a+3b-5=-3(4a-b)-5=-3×(-9)-5=22.2.5.设看错的是x的n次项前的符号,那么他计算的代数式实际是10x9+9x8+…+2x+1-2(n+1)x n,由题意得:10×(-1)9+9×(-1)8+…+2×(-1)+1-2(n+1)(-1)n=7,即(n+1)(-1)n=-6.∴n=5.3.A.当x=2时,27·a+25·b+23·c+2d+e=23 ①当x=-2时,-27·a-25·b-23·c-2d+e=-35 ②①+②得2e=-12,∴e=-6.选A.练习31.12或-1.设xy z+=y zx z x y=++=k,则:x=k(y+z)①;y=k(x+z)②;z=k(x+y)③.①+②+③得:x+y+z=2k(x+y+z),∴(x+y+z)(2k-1)=0.当x+y+z=0时,xy z+=xx-=-1,当2k-1=0时,k=12,即xy z+=12.2.-1911.c=5a=15b,把a=3b,c=15b代入原式,原式=3151931511b b b bb b b b++=+--=-1911.3.-115.由1x-1y=2,知y-x=2xy,故原式3()565()323y x xy xy xyy x xy xy xy-----=-++=-115.练习41.3 由题意知x=3,n=2.原式=3x n+13x n-1-x3-13x n-1+3=3x n-x3+3=3×32-33+3=3.2.2y2.原式=2A-{3B-[A+2B-2A]}=2A-{3B-A-2B+2A}=2A-3B+A+2B-2A=A-B=3x2-9xy+y2-(3x2-9xy-y2)=2y2.3.4a=3b.因不论x取什么值,代数式34axbx++的值都相同,所以我们可以取x=0,得:34axbx++=34,即不论x取什么值,该代数式的值都为34,再取x=1,得34axbx++=34,故4a=3b.练习5.1.1.由ab=1得,a=1b,故原式=111bb++1bb+=11b++1bb+=1.2.1.由题意知a=1-1b =1b b -,∴1a =1b b -. ∵1c =1-b ,∴c=11b -=-11b -. ∴c+1a =-11b -+1b b -=1. 3.1.利用abcd=1把它们化为同分母:1(1)1a a d ad abc ab a abc ab a d abd ad d ==+++++++++; 1(1)1b b ad abd bcd bc b bcd bc b ad abd ad d ==+++++++++; 11(1)1c c abd cda ad c cda cd c abd ad d abd ==+++++++++ ∴原式=1.。