钛合金微弧氧化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钛合金微弧氧化技术
1.钛合金微弧氧化概述
微弧氧化( Microarc oxidation,MAO) 又称微等离子体氧化(Micmplasma oxidation,MPO),由于在研究这项技术的过程中,对微弧氧化本质认识的不同,因此在发展过程中出现了不同的术语:阳极火花沉积,火花放电阳极氧化,等离子体电解阳极化处理,而一般称为微弧氧化或微等离子体氧化。
微弧氧化是指把有色金属放在电解液中,利用微弧放电在金属表面原位生长氧化膜的技术。该氧化膜具有优良的性质,主要应用于机械、电气、汽车、武器装备、航天和航空等行业的关键零部件的表面处理,解决表面的高温烧蚀、磨损和腐蚀等问题。比如,俄罗斯在制造洲际弹道导弹子母弹的生产过程中应用了微弧氧化技术,水上快艇高速发动机缸体下套与活塞经过微弧氧化处理后,耐磨性提高了几十倍,这些都是其它表面处理技术无法代替、无法比拟的。
早在20世纪30年代初德国科学家A.Gunterschulz和H.Betz 第一次报道了在高电场下浸在液体里的金属表面出现火花放电现象,火花对氧化膜具有破坏作用在没有发现产生硬质层的条件下,做出了“为了得到高质量的涂层,就不应该用高于出现火花时的电压”的结论,但他们为火花阳极氧化奠定了初步的理论基础。这一观点一直延续到2 0世纪7 O年代,尽管少数学者对这一现象持保留观点,但始终没能彻底改变这个结论。
1969年,前苏联科学家G.A.Markov 在向铝及铝合金材料施加高于火花区电压时,突破性地获得了高质量的氧化膜,这种膜层具有很好的耐磨性和耐腐蚀性,他把这种在微电弧条件下通过氧化获得涂层的过程称为微弧氧化( Microarc Oxidation,MAO) 。此后G.A. 一Markov 课题组进行大量基础性研究,并在此基础上进行了应用研究。期间美国、德国对此技术也进行广泛的研究,其中包括实际应用。从文献上看,美国、德国前苏联三国基本上各自独立地发展这项技术,相互之间文献引用很少。这一技术在20世纪80年代开始在世界范围内进行广泛交流。
钛合金具有重量轻、比强度大、热稳定性好等优良的综合性能,广泛应用于航空、航天以及民用工业中。但美中不足的是钛合金的表面硬度较低、耐磨性及耐腐蚀较差,特别是钛合金与其它金属接触时很容易发生接触腐蚀,严重制约了其进一步应用,为此国内外先后对钛合金表面进行了改性研究,以提高其表面性能。传统的表面改性技术有阳极氧化、P V D /C V D、离子注入、热喷涂及热氧化法等。钛合金阳极氧化膜厚度一般小于1µm,达到2~3µm己属不易,而且硬度低,目前仅在装饰涂层方面有所应用。P V D/C V D、离子注入及热氧化法在涂层制备过程中需要保持高温,在一定程度上改变了基体与涂层的结构,使基体的力学性能明显变坏( 塑性恶化) ;P V D/C V D及离子注入法需要昂贵的真空或气氛保护条件,制备成本明显提高;而热氧化法能耗大、时间长及劳动强度大,得到的涂层不均匀。因此有必要发展新的低成本高性能的涂层制备技术。微弧氧化这一高新技术综合地解决了上述难题,在实践中取得了很好的效果。
2.微弧氧化膜生成的基本原理及生长过程
微弧氧化是从普通阳极氧化发展而来的,它的基本原理是:突破了传统的阳极氧化对电流、电压的限制,把阳极电压由几十伏提高到几百伏,当电压达到某一临界值时,击穿阀金属表面形成的氧化膜(绝缘膜),产生微弧放电并形成放电通道,在放电通道内瞬间形成高温高压并伴随复杂的物理化学过程,使金属表面原位生长出性能优良的氧化膜。
在微弧氧化过程中,把工件放人电解槽中,通电后工件表面现象及膜层生长过程具有明
显的阶段性。微弧氧化过程可分为4个阶段。在微弧氧化初期,金属光泽逐渐消失,材料表面有气泡产生,在工件表面生成一层很薄且多孔的绝缘氧化膜(绝缘膜) ,绝缘膜的存在是形成微弧氧化的必要条件。此时电压、电流遵循法拉第定律,此为第1阶段——阳极氧化阶段。随着电压的升高,氧化膜被击穿,钛合金的表面开始出现移动的密集明亮小火花,这个阶段持续的时间很短,此为第2阶段——火花放电阶段。随着电压和膜层的增加,钛合金表面的火花逐渐变大,移动速度相对减缓,膜层迅速生长,此为第3阶段——微弧放电阶段。随着氧化时间延长,氧化膜达到一定厚度,膜层的击穿变得越来越困难,开始出现少数更大的红色斑点,这些斑点不再移动,而是停在某一固定位置连续放电,并伴有尖锐的爆鸣声,此为第4阶段——弧放电阶段。只是此阶段对膜层的破坏较大,应当尽量避免。
在火花放电以前,钛合金表面的氧化膜主要为二氧化钛,从火花放电阶段开始,电解液中的元素开始进人膜层当中并同基体元素反应生成新的化合物,从而改善了膜层的性能。在微弧放电阶段,氧化膜的击穿总是发生在膜层相对薄弱的部位,击穿后,该部位形成了新的氧化膜,于是击穿点又转移到下一个相对薄弱的部位,因此,最终形成的氧化膜( 陶瓷膜) 是均匀的。由于微等离子体氧化膜的形成包含了物理、化学、电化学和等离子体化学等多方面的共同作用,其过程非常复杂,至今尚没有一个合理的模型能全面的描述氧化膜的形成过程。
3.钛合金微弧氧化膜的结构及特性
从发表的文献看,钛合金微弧氧化膜层3个不同的层:即过渡层、致密层( 内层)和疏松层(外层) 。各层的薄厚、结构及组成主要受基体的化学成分、电解液组成和处理制度的影响。由基体内向外分为过渡层、致密层和疏松层。靠近基体的是过渡层。它和基体是冶金结合,膜基结合牢固;在多数电解液体系中,致密层主要由金红石TiO2 相和少量的锐钛矿T 相组成;过渡层和疏松层主要由锐钛矿TiO2 相和少量的金红石TiO2 相组成。电解液组成的不同使膜层组成相和相的含量不同,因而膜层具有不同的性能。
钛合金微弧氧化技术具有很多优点:
( 1 ) 处理后表面获得陶瓷化的氧化膜,表面除具有良好的韧性、耐腐蚀、耐磨特性外,还具有功能陶瓷的一些特性,如磁电屏蔽能力、生物医学性能及良好的绝缘性( 绝缘电阻大于100MΩ) 等;
( 2 ) 采用脉冲电流,对基体材料热输入小,基本上不会恶化材料原有的力学性能;
( 3 ) 氧化膜与基体结合强度高,氧化膜组织结构在较宽的范围内可调;
( 4 ) 打磨掉疏松层后,工件可基本保持原始尺寸;
( 5 ) 设备简单、操作方便,经济高效,且无三废排放,适合绿色环保型表面改性技术的发展要求。
4.钛合金微弧氧化膜质量的影响因素
影响微弧氧化膜质量的主要因素有:电流密度、频率、阳极与阴极的电流密度比;电解液的成分、浓度、酸碱度、温度;氧化时间;工件的化学成分。其中电参数与电解液组成对微弧氧化膜的形成影响最大。微弧氧化工艺从直流氧化法发展到交流氧化法是微弧氧化技术的一大进步。采用交流电压模式的微弧氧化法极大地提高了膜层的制备效率,改善了膜层的结构,极大地促进微弧氧化技术的发展。目前大多采用非对称交流脉冲电源进行微弧氧化工艺,在实际过程中取得了良好的效果。特别是负相电流的使用可以改善氧化膜结构及相组成。
电参数是影响微弧氧化膜形成的重要因素之一。具体而言,对应不同的微弧氧化电解液,电参数都有自己的工作范围。电压过小,膜层生长速率低,膜层较薄,硬度也较低,工作电压过高,膜层容易出现局部击穿现象,对膜层耐腐蚀性能不利。电流密度的增大。几乎所用