经济学统计学一元线性回归

合集下载

第二章 一元线性回归模型32学时

第二章 一元线性回归模型32学时

2016/5/8
2
一、变量间的关系及回归分析的基本概念
1. 变量间的关系
(1)确定性关系或函数关系:研究的是确定现 象非随机变量间的关系。
圆面积 f , r r 2
(2)统计依赖或相关关系:研究的是非确定现 象随机变量间的关系。
农作物产量 f 气温, 降雨量, 阳光, 施肥量
2016/5/8
11
二、总体回归函数 回归分析关心的是根据解释变量的已知或给定
值,考察被解释变量的总体均值,
即当解释变量取某个确定值时,与之统计相关的
被解释变量所有可能出现的对应值的平均值。
2016/5/8
12
例2.1:一个假想的社区有100户家庭组成,要研 究该社区每月家庭消费支出Y与每月家庭可支 配收入X的关系。 即如果知道了家庭的月收入,能否预测该社区家 庭的平均月消费支出水平。 为达到此目的,将该100户家庭划分为组内收 入差不多的10组,以分析每一收入组的家庭消 费支出。
1)根据样本观察值对计量经济学模型的参数进行估计, 求得回归方程;
主要内容
2)对回归方程、参数估计值的进行显著性检验;
3)利用回归方程进行分析、评价及预测。
2016/5/8
9
相关分析与回归分析之间的关系
联系:1)都是对存在相关关系的变量的统计相关关系的研究;
2)都能测度线性相关程度的大小; 3)都能判断线性相关关系是正相关还是负相关。
称为(双变量)总体回归函数(population regression function, PRF)。
2016/5/8
18
• 含义 回归函数(PRF)说明被解释变量Y的平均状态 (总体条件期望)随解释变量X变化的规律。 • 函数形式:可以是线性或非线性的。 例2.1中,将居民消费支出看成是其可支配收入 的线性函数时:

统计学一元线性回归模型

统计学一元线性回归模型
– – – – 相关系数(correlation coefficient) 正相关(positive correlation) 负相关(negative correlation) 不相关(non-correlation)
• 回归分析仅对存在因果关系而言。
正相关 线性相关 统计依赖关系 不相关 相关系数: 有因果关系 无因果关系 回归分析 相关分析 负相关 1 XY 1 正相关 非线性相关 不相关 负相关
1、关于模型关系的假设
• 模型设定正确假设。The regression model is correctly specified. • 线性回归假设。The regression model is linear in the parameters。
Yi 0 1 X i i
• 称为观察值围绕它的期望值的离差 (deviation),是一个不可观测的随机变量, 又称为随机干扰项(stochastic disturbance)或 随机误差项(stochastic error)。
i Yi E (Y | X i )
• 例2.1.1中,给定收入水平Xi ,个别家庭的支出 可表示为两部分之和:
• 回归分析构成计量经济学的方法论基础,其主 要内容包括:
– 根据样本观察值对经济计量模型参数进行估计,求得 回归方程;
– 对回归方程、参数估计值进行显著性检验;
– 利用回归方程进行分析、评价及预测。
二、总体回归函数 Population Regression Function, PRF
1、条件均值(conditional mean)
E (Y | X i ) f ( X i )
• 含义:回归函数(PRF)说明被解释变量Y的 平均状态(总体条件期望)随解释变量X变化 的规律。 • 函数形式:可以是线性或非线性的。 • 例2.1.1中,将居民消费支出看成是其可支配收 入的线性函数时:

第二章 一元线性回归

第二章 一元线性回归

n ei 0 i 1 n xe 0 i i i 1
经整理后,得正规方程组
n n ˆ ˆ n ( x ) 0 i 1 yi i 1 i 1 n n n ( x ) ˆ ( x 2 ) ˆ xy i 0 i 1 i i i 1 i 1 i 1
y ˆ i 0 1xi ˆi 之间残差的平方和最小。 使观测值 y i 和拟合值 y
ei y i y ˆi
n
称为yi的残差
ˆ , ˆ ) ˆ ˆ x )2 Q( ( y i 0 1i 0 1
i 1
min ( yi 0 1 xi ) 2
i
xi x
2 ( x x ) i i 1 n
yi
2 .3 最小二乘估计的性质
二、无偏性
ˆ ) E ( 1
i 1 n
n
xi x
2 ( x x ) j j 1 n
其中用到
E ( yi )
( x x) 0 (xi x) xi (xi x)2
二、用统计软件计算
1.例2.1 用Excel软件计算
什么是P 值?(P-value)
• P 值即显著性概率值 ,Significence Probability Value

是当原假设为真时所得到的样本观察结果或更极端情况 出现的概率。
P值与t值: P t t值 P值



它是用此样本拒绝原假设所犯弃真错误的真实概率,被 称为观察到的(或实测的)显著性水平。P值也可以理解为 在零假设正确的情况下,利用观测数据得到与零假设相 一致的结果的概率。
2 .1 一元线性回归模型

一元线性回归分析

一元线性回归分析

一元线性回归分析摘要:一元线性回归分析是一种常用的预测和建模技术,广泛应用于各个领域,如经济学、统计学、金融学等。

本文将详细介绍一元线性回归分析的基本概念、模型建立、参数估计和模型检验等方面内容,并通过一个具体的案例来说明如何应用一元线性回归分析进行数据分析和预测。

1. 引言1.1 背景一元线性回归分析是通过建立一个线性模型,来描述自变量和因变量之间的关系。

通过分析模型的拟合程度和参数估计值,我们可以了解自变量对因变量的影响,并进行预测和决策。

1.2 目的本文的目的是介绍一元线性回归分析的基本原理、建模过程和应用方法,帮助读者了解和应用这一常用的数据分析技术。

2. 一元线性回归模型2.1 模型表达式一元线性回归模型的基本形式为:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。

2.2 模型假设一元线性回归模型的基本假设包括:- 线性关系假设:自变量X与因变量Y之间存在线性关系。

- 独立性假设:每个观测值之间相互独立。

- 正态性假设:误差项ε服从正态分布。

- 同方差性假设:每个自变量取值下的误差项具有相同的方差。

3. 一元线性回归分析步骤3.1 数据收集和整理在进行一元线性回归分析之前,需要收集相关的自变量和因变量数据,并对数据进行整理和清洗,以保证数据的准确性和可用性。

3.2 模型建立通过将数据代入一元线性回归模型的表达式,可以得到回归方程的具体形式。

根据实际需求和数据特点,选择适当的变量和函数形式,建立最优的回归模型。

3.3 参数估计利用最小二乘法或最大似然法等统计方法,估计回归模型中的参数。

通过最小化观测值与回归模型预测值之间的差异,找到最优的参数估计值。

3.4 模型检验通过对回归模型的拟合程度进行检验,评估模型的准确性和可靠性。

常用的检验方法包括:残差分析、显著性检验、回归系数的显著性检验等。

4. 一元线性回归分析实例为了更好地理解一元线性回归分析的应用,我们以房价和房屋面积之间的关系为例进行分析。

《一元线性回归》ppt课件

《一元线性回归》ppt课件
E (Y|X i)01X i
E (Y|Xi)01Xi2 E (Y|Xi)01 2Xi
三、总体回归模型与随机干扰项 〔 population regression model,PRM & stochastic disturbance/error〕
• 描画总体中解释变量X和被解释变量Y的个体值Yi之间的变 化规律:Yi=f〔Xi〕+μi
称为线性总体回归函数。其中,0,1是未知参数,称为回归系 数〔regression coefficients〕。
A1:“线性〞的含义
• 对变量为线性——解释变量以一次方的方式出现 • ○ 从几何上看,此时总体回归线是一条直线
• 对参数为线性——回归系数以一次方的方式出现 • ○ 从几何上看,此时总体回归线并不一定是直线
四、样本回归函数 〔sample regression function,SRF〕
•描画样本中解释变量X和被解释变量Y的之间的平均变化规 律:Y^i=f〔Xi〕
1、样本回归函数〔SRF〕
• 总体的信息往往无法掌握,因此PRF实践上未知 • 现实的情况只能是在一次观测中得到总体的一个样本,经过样本的信息来 估计总体回归函数。
1969 1991 2046 2068 2101
968 1045 1243 1474 1672 1881 1078 1254 1496 1683 1925
2189 2233
1122 1298 1496 1716 1969 1155 1331 1562 1749 2013
2244 2299
1188 1364 1573 1771 2035 1210 1408 1606 1804 2101
问题:能否从样本估计总体回归函数?
例2.2:从例2.1的总体中获得如下一个样本:

计量经济学第二篇一元线性回归模型

计量经济学第二篇一元线性回归模型

第二章 一元线性回归模型2.1 一元线性回归模型的基本假定有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。

其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。

上模型可以分为两部分。

(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。

图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。

以收入与支出的关系为例。

假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。

但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。

所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。

“线性”一词在这里有两重含义。

它一方面指被解释变量Y 与解释变量X 之间为线性关系,即另一方面也指被解释变量与参数0β、1β之间的线性关系,即。

1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。

所以在经济问题上“控制其他因素不变”是不可能的。

随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。

回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略,(2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。

2.1.3 一元线性回归模型的基本假定通常线性回归函数E(y t ) = β0 + β1 x t 是观察不到的,利用样本得到的只是对E(y t ) =β0 + β1 x t 的估计,即对β0和β1的估计。

一元线性回归分析的原理

一元线性回归分析的原理

一元线性回归分析的原理
一元线性回归分析是一种用于研究变量之间相互关系的统计分析方法。

它旨在
在一组数据中,以一个线性方程的式子去拟合变量之间的关系。

借此,分析一个独立变量(即自变量)和一个取决变量(即因变量)之间的关系,求出最合适的回归系数。

一元线性回归分析可以用来发现和描述变量之间的复杂方程式,用来估计参数,以及构建预测模型。

具体而言,一元线性回归分析指的是自变量和因变量之间有线性关系的回归分析。

也就是说,自变量和因变量均遵从一元线性方程,也就是y=βx+α,其中y
为因变量,x为自变量,β为系数,α为常数。

通过一元线性回归分析可以精确
的定义出变量之间的关系,从而可以得出最佳的回归系数和常数,并估计每个参数。

一元线性回归分析用于研究很多方面,例如决策科学、经济学和政治学等领域。

例如,在政治学研究中,可以使用一元线性回归分析来分析政府的软性政策是否能够促进社会发展,以及社会福利是否会影响民众的投票行为。

在经济学研究中,则可以使用一元线性回归分析来检验价格是否会影响消费水平,或检验工资水平是否会影响经济增长率等。

总结而言,一元线性回归分析是一种有效的研究变量之间关系的统计分析方法,精确地检验独立变量和取决变量之间的关系,从而求得最合适的回归系数和常数,并用该回归方程式构建预测模型,为决策提供参考。

第二章一元线性回归模型1

第二章一元线性回归模型1

第二章一元线性回归模型计量经济学在对经济现象建立经济计量模型时,大量地运用了回归分析这一统计技术,本章和下一章将通过一元线性回归模型、多元线性回归模型来介绍回归分析的基本思想。

第一节回归分析的几个基本问题回归分析是经济计量学的主要工具,下面我们将要讨论这一工具的性质。

一、回归分析的性质(一)回归释义回归一词最先由F •加尔顿(Francis Galt on )提出。

加尔顿发现,虽然有一个趋势,父母高,儿女也高:父母矮,儿女也矮,但给定父母的身高,儿女辈的平均身高却趋向于或者“回归” 到全体人口的平均身高。

或者说,尽管父母双亲都异常高或异常矮,而儿女的身高则有走向人口总体平均身高的趋势(普遍回归规律)。

加尔顿的这一结论被他的朋友K •皮尔逊(Karl pearson)证实。

皮尔逊收集了一些家庭出身1000多名成员的身高记录,发现对于一个父亲高的群体,儿辈的平均身高低于他们父辈的身高,而对于一个父亲矮的群体,儿辈的平均身高则高于其父辈的身高。

这样就把高的和矮的儿辈一同“回归”到所有男子的平均身高,用加尔顿的话说,这是“回归到中等” 。

回归分析是用来研究一个变量(被解释变量Explained variable或因变量Dependent variable 与另一个或多个变量(解释变量Explanatory variable或自变量Independent variable之间的关系。

其用意在于通过后者(在重复抽样中)的已知或设定值去估计或预测前者的(总体)均值。

下面通过几个简单的例子,介绍一下回归的基本概念。

例子1.加尔顿的普遍回归规律。

加尔顿的兴趣在于发现为什么人口的身高分布有一种稳定性,我们关心的是,在给定父辈身高的条件下找出儿辈平均身高的变化。

也就是一旦知道了父辈的身高,怎样预测儿辈的平均身高。

为了弄清楚这一点,用图 1.1 表示如下图 1.1 对应于给定父亲身高的儿子身高的假想分布图 1.1 展示了对应于设定的父亲身高, 儿子在一个假想人口总体中的身高分布, 我们不难发现,对应于任一给定的父亲身高, 相对应都有着儿子身高的一个分布范围,同时随着父亲身高的增加,儿子的平均身高也增加,为了清楚起见,在1.1散点图中勾画了一条通过这些散点的直线,以表明儿子的平均身高是怎样随着父亲的身高增加而增加的。

一元线性回归模型检验

一元线性回归模型检验

§2.4 一元线性回归的模型检验一、经济意义检验。

二、在一元回归模型的统计检验主要包括如下几种检验1、拟合优度检验(R2检验;2、自变量显著性检验(t检验;3、残差标准差检验(SE检验。

•主要检验模型参数的符号、大小和变量之间的相关关系是否与经济理论和实际经验相符合。

一、经济意义检验i•二、统计检验•回归分析是要通过样本所估计的参数来代替总体的真实参数,或者说是用样本回归线代替总体回归线。

•尽管从统计性质上已知,如果有足够多的重复抽样,参数的估计值的期望(均值就等于其总体的参数真值,但在一次抽样中,估计值不一定就等于该真值。

那么,在一次抽样中,参数的估计值与真值的差异有多大,是否显著,这就需要进一步进行统计检验。

1、拟合优度检验拟合优度检验:对样本回归直线与样本观测值之间拟合程度的检验。

度量拟合优度的指标:判定系数(可决系数R2(1、总离差平方和的分解已知由一组样本观测值(X i ,Y i ,通过估计得到如下样本回归直线ii X Y 10ˆˆˆββ+=i i i i i i i y e Y Y Y Y Y Y y ˆˆ(ˆ(+=-+-=-=总离差平方和的分解ii X Y 10ˆˆˆββ+=ˆ(ˆY Y y i i -=i i i i i i i ye Y Y Y Y Y Y y ˆˆ(ˆ(+=-+-=-=Y 的i 个观测值与样本均值的离差由回归直线解释的部分回归直线不能解释的部分离差分解为两部分之和总离差平方和的分解公式:TSS=RSS+ESS,TSS 总离差平方和,ESS 为回归平方和,RSS 为残差平方和.((((((((0ˆˆˆ,0.0ˆˆ(ˆ(ˆˆ(2ˆˆ: 1022222222ˆˆˆˆˆˆ=+===-=-=--+=+=-+-=-+--+-=-+-=-=∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑ii i i i i ii i i i i i i i i i i i i i i i i i i i i i X e e Y e e e Y Y e Y Y e Y Y ESS RSS y e Y Y Y Y TSS Y Y Y YY Y Y YY Y Y Y Y Y Y Y ββ而因为证明TSS=ESS+RSSY的观测值围绕其均值的总离差(total variation可分解为两部分:一部分来自回归线(ESS,另一部分则来自随机部分(RSS。

计量经济学课件一元线性回归

计量经济学课件一元线性回归

二、参数的普通最小二乘估计(OLS)
给定一组样本观测值(Xi, Yi)(i=1,2,…n)要 求样本回归函数尽可能好地拟合这组值. 普通最小二乘法(Ordinary least squares, OLS) 给出的判断标准是:二者之差的平方和
ˆ ˆ X )) 2 ˆ ) (Y ( Q (Yi Y i i 0 1 i
640000 352836 1210000 407044 1960000 1258884 2890000 1334025 4000000 1982464 5290000 2544025 6760000 3876961 8410000 4318084 10240000 6682225 12250000 6400900 53650000 29157448
ˆ Y 顺便指出 ,记 y ˆi Y i
则有
ˆ ˆ X ) ( ˆ ˆ X e) ˆi ( y 0 1 i 0 1 ˆ (X X ) 1 e 1 i n i
可得
ˆx ˆi y 1 i
(**)
(**)式也称为样本回归函数的离差形式。
注意:
在计量经济学中,往往以小写字母表示对均值 的离差。
易知 故
x k x
i
i
2 i
0
k X
i
i
1
ˆ k i i 1 1
ˆ ) E ( k ) k E ( ) E( i i 1 i i 1 1 1
同样地,容易得出
ˆ ) E ( w ) E( ) w E ( ) E( i i i i 0 0 0 0
1 (2 ) n
n 2

1 2

计量经济学的2.3 一元线性回归模型的统计检验

计量经济学的2.3 一元线性回归模型的统计检验

ˆ ˆ P( ) 1
如果存在这样一个区间,称之为置信区间 (confidence interval); 1-称为置信系数(置信度) (confidence coefficient), 称为显著性水平(level of significance)(或犯第I类错误的概率,即拒真的概 率);置信区间的端点称为置信限(confidence limit) 或临界值(critical values)。置信区间以外的区间称 4 为临界域
由于置信区间一定程度地给出了样本参数估计 值与总体参数真值的“接近”程度,因此置信区间 越小越好。 (i t s , i t s )
2 i 2 i
要缩小置信区间,需要减小 (1)增大样本容量n,因为在同样的置信水平 下, n越大,t分布表中的临界值越小;同时,增大样本 容量,还可使样本参数估计量的标准差减小;
5
如何构造参数值的估计区间? 通过构造已知分布的统计量
6
构造统计量(1)
回顾: 在正态性假定下
以上统计量服从自由度为n-2的x2分布,n为样本量
7
构造统计量(2)
ˆ ˆ 0 和 1 服从正态分布
ˆ E ( 0 )= 0
ˆ E ( 1 )=1
Var 0) (ˆ
X
i 1 n i 1
§2.3 一元线性回归模型的统 计检验
一、参数的区间估计 二、拟合优度检验 三、参数的假设检验 (对教材内容作了扩充)
1
一、参数的区间估计
参数的两种估计:点估计和区间估计
点估计
通过样本数据得到参数的一个估计值。
(如:最小二乘估计、最大似然估计)
点估计不足:
(1)点估计给出在给定样本下估计出的参数的可能取值,但 它并没有指出在一次抽样中样本参数值到底离总体参数的真 值有多“近”。 (2)虽然在重复抽样中估计值的均值可能会等于真值,但由 于抽样波动,单一估计值很可能不同于真值。 2

一元线性回归模型案例

一元线性回归模型案例

一元线性回归模型案例一元线性回归模型是统计学中最基本、应用最广泛的一种回归分析方法,可以用来探究自变量与因变量之间的线性关系。

一元线性回归模型的数学公式为:y = β0 + β1x,其中y表示因变量,x表示自变量,β0和β1分别为截距和斜率。

下面以一个实际案例来说明一元线性回归模型的应用。

假设我们有一组数据,其中x表示一个房屋的面积,y表示该房屋的售价,我们想利用一元线性回归模型来预测房屋的售价。

首先,我们需要收集一组已知数据,包括房屋的面积和售价。

假设我们收集了10个不同房屋的面积和售价数据,如下所示:房屋面积(x)(平方米)售价(y)(万元)80 12090 130100 140110 150120 160130 170140 180150 190160 200170 210我们可以根据这组数据绘制散点图,横坐标表示房屋面积x,纵坐标表示售价y,如下所示:(插入散点图)接下来,我们可以利用最小二乘法来拟合一条直线,使其能够最好地拟合这些散点。

最小二乘法是一种最小化误差平方和的方法,可以得到最优的拟合直线。

根据一元线性回归模型的公式,可以通过计算拟合直线的斜率β1和截距β0来实现最小二乘法。

其中,斜率β1可以通过下式计算得到:β1 = n∑(xiyi) - (∑xi)(∑yi)n∑(xi^2) - (∑xi)^2截距β0可以通过下式计算得到:β0 = (1/n)∑yi - β1(1/n)∑xi通过带入已知数据,我们可以计算得到斜率β1和截距β0的具体值。

在本例中,计算结果如下:β1 ≈ 1.0667β0 ≈ 108.6667最后,利用得到的斜率β1和截距β0,我们可以得到一元线性回归模型的具体公式为:y ≈ 108.6667 + 1.0667x我们可以利用这个回归模型进行预测。

例如,如果有一个房屋的面积为130平方米,那么根据回归模型,可以预测该房屋的售价为170 + 108.6667 ≈ 278.6667万元。

一元线性回归模型(计量经济学)

一元线性回归模型(计量经济学)

回归分析是一种统计方法,用于研究变量之间的关系。它基于最小二乘法,寻找最合适的直线来描述变 量间的线性关系。通过回归分析,我们可以理解变量之间的因果关系和预测未知数据。
一元线性回归模型的假设
1 线性关系
2 独立误差
一元线性回归模型假设自变量和因变量之 间存在线性关系。
模型的残差项是独立的,不受其他因素的 影响。
3 常数方差
4 正态分布
模型的残差项具有恒定的方差,即方差齐 性。
模型的残差项服从正态分布。
一元线性回归模型的估计和推断
1
模型估计
使用最小二乘法估计模型的回归系数。
2
参数推断
进行参数估计的显著性检验和置信区间估计。
3
模型拟合程度
使用残差分析和R平方评估模型的拟合程度。
模型评估和解释结果
通过残差分析和R平方等指标评估模型的拟合程度,并解释模型中回归系数的 含义。了解如何正确使用模型的结果,并识别异常值和离群点对模型的影响。
一元线性回归模型(计量 经济学)
在本节中,我们将介绍一元线性回归模型,探讨回归分析的基本概念和原理, 了解一元线性回归模型所做的假设,并学习模型的估计和推断方法。我们还 将探讨模型评估和解释结果的技巧,并通过实例应用和案例分析进一步加深 对该模型的理解。最后,我们将总结和得出结论。
回归分析的基本概念和原理
实例应用和案例分析
汽车价格预测Байду номын сангаас
使用一元线性回归模型预 测汽车价格,考虑车龄、 里程等因素。
销售趋势分析
通过一元线性回归模型分 析产品销售的趋势,并预 测未来销售。
学术成绩预测
应用一元线性回归模型预 测学生的学术成绩,考虑 学习时间、背景等因素。

计量经济学一元线性回归模型总结

计量经济学一元线性回归模型总结

第一节 两变量线性回归模型一.模型的建立1.数理模型的基本形式y x αβ=+ (2.1)这里y 称为被解释变量(dependent variable),x 称为解释变量(independent variable)注意:(1)x 、y 选择的方法:主要是从所研究的问题的经济关系出发,根据已有的经济理论进行合理选择。

(2)变量之间是否是线性关系可先通过散点图来观察。

2.例如果在研究上海消费规律时,已经得到上海城市居民1981-1998年期间的人均可支配收入和人均消费性支出数据(见表1),能否用两变量线性函数进行分析?表1.上海居民收入消费情况年份 可支配收入 消费性支出 年份 可支配收入 消费性支出 1981 636.82 585 1990 2181.65 1936 1982 659.25 576 1991 2485.46 2167 1983 685.92 615 1992 3008.97 2509 1984 834.15 726 1993 4277.38 3530 1985 1075.26 992 1994 5868.48 4669 19861293.24117019957171.91586819871437.09128219968158.746763 19881723.44164819978438.896820 19891975.64181219988773.168662.一些非线性模型向线性模型的转化一些双变量之间虽然不存在线性关系,但通过变量代换可化为线性形式,这些双变量关系包括对数关系、双曲线关系等。

例3-2 如果认为一个国家或地区总产出具有规模报酬不变的特征,那么采用人均产出y与人均资本k的形式,该国家或者说地区的总产出规律可以表示为下列C-D生产函数形式y Akα=(2.2)也就是人均产出是人均资本的函数。

能不能用两变量线性回归模型分析这种总量生产规律?3.计量模型的设定 (1)基本形式:y x αβε=++ (2.3) 这里ε是一个随机变量,它的数学期望为0,即(2.3)中的变量y 、x 之间的关系已经是不确定的了。

计量经济学 第二章 一元线性回归模型

计量经济学 第二章 一元线性回归模型

计量经济学第二章一元线性回归模型第二章一元线性回归模型第一节一元线性回归模型及其古典假定第二节参数估计第三节最小二乘估计量的统计特性第四节统计显著性检验第五节预测与控制第一节回归模型的一般描述(1)确定性关系或函数关系:变量之间有唯一确定性的函数关系。

其一般表现形式为:一、回归模型的一般形式变量间的关系经济变量之间的关系,大体可分为两类:(2.1)(2)统计关系或相关关系:变量之间为非确定性依赖关系。

其一般表现形式为:(2.2)例如:函数关系:圆面积S =统计依赖关系/统计相关关系:若x和y之间确有因果关系,则称(2.2)为总体回归模型,x(一个或几个)为自变量(或解释变量或外生变量),y为因变量(或被解释变量或内生变量),u为随机项,是没有包含在模型中的自变量和其他一些随机因素对y的总影响。

一般说来,随机项来自以下几个方面:1、变量的省略。

由于人们认识的局限不能穷尽所有的影响因素或由于受时间、费用、数据质量等制约而没有引入模型之中的对被解释变量有一定影响的自变量。

2、统计误差。

数据搜集中由于计量、计算、记录等导致的登记误差;或由样本信息推断总体信息时产生的代表性误差。

3、模型的设定误差。

如在模型构造时,非线性关系用线性模型描述了;复杂关系用简单模型描述了;此非线性关系用彼非线性模型描述了等等。

4、随机误差。

被解释变量还受一些不可控制的众多的、细小的偶然因素的影响。

若相互依赖的变量间没有因果关系,则称其有相关关系。

对变量间统计关系的分析主要是通过相关分析、方差分析或回归分析(regression analysis)来完成的。

他们各有特点、职责和分析范围。

相关分析和方差分析本身虽然可以独立的进行某些方面的数量分析,但在大多数情况下,则是和回归分析结合在一起,进行综合分析,作为回归分析方法的补充。

回归分析(regression analysis)是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。

概率统计计量经济学_一元线性回归_随机误差项与残差的关系_为什么自由度是n-2_彻底理解自。。。

概率统计计量经济学_一元线性回归_随机误差项与残差的关系_为什么自由度是n-2_彻底理解自。。。

概率统计计量经济学_⼀元线性回归_随机误差项与残差的关系_为什么⾃由度是n-2_彻底理解⾃。

y=ax+b+e在这⼀基础上:⼜可以写成, y=ax+b+e, |e|^2=((ax+b)-y)^2随机⼲扰项 sigma e^2 和残差平⽅和有类似的性质?为什么这⾥需要这样修正呢?⾃由度为什么是 n-2 ?估计量的评估----⽆偏性需要满⾜:⽆偏性不是要求估计量与总体参数不得有偏差,因为这是不可能的,既然是抽样,必然存在抽样误差,不可能与总体完全相同。

⽆偏性指的是如果对这同⼀个总体反复多次抽样,则要求各个样本所得度出的估计量的平均值等于总体参数。

⽽他说的有偏估计是什么?有偏估计(biased estimate)是指由样本值求得的估计值与待估参数的真值之间有系统误差,其期望值不是待估参数的真值。

⾃由度:统计知学上的⾃由度是指当以样本的统计量来估计总体的参数时,样本中独⽴或能⾃由变化的资料的个数,称为该统计量的⾃由度.⾃由度计算公式:⾃由度=样本个数-样本数据受约束条件的个数,即df = n - k(df⾃由度,n样本个数,k约束条件个数)实际的例⼦有:例1有⼀个有4个数据()的样本,其平均值等于5,即受到的条件限制,在⾃由确定4、2、5三个数据后,第四个数据只能是9,否则。

因⽽这⾥的⾃由度 .推⽽⼴之,任何统计量的⾃由度(k为限制条件的个数)例2如果⽤⼑剖柚⼦,在北极点沿经线⽅向割3⼑,得6个⾓。

这6个⾓可视为3对。

6个⾓的平均⾓度⼀定是60度。

其中半边3个⾓中,只会有2个可以⾃由选择,⼀旦2个数值确定第3个⾓也会唯⼀地确定。

在总和已知的情况下,切分⾓的个数⽐能够⾃由切分的个数⼤1。

在这⾥对于随机误差项e也是这样:我们限制条件是ab参数已知,⽽ ab已知的前提就是⾄少有两个样本点, 这样才能拟合出来⼀对ab所以,其中有两个样本点已经被确定了, 相当于有两个样本中的e的值是确定的, 要排除掉 -2所以⾃由度= n-2⾄于⾃由度的公式=n-k ,是怎么来的呢?可以⽤线性代数的⾼斯消元法来解释,k是确定的参数个数, 其实就是⽅程组未知数的个数, 我们要求k个未知数确定就是k个未知数有且只有唯⼀解,那么消元到最后⽅程组个数/矩阵⾮0⾏数----m-----必须满⾜ m=k,这是个充要条件所以⾄少有m=k个已知样本,或者说确定的样本必须有k个,所以⾃由度n-k. k是限制条件的个数.那从这个⾓度, 反过来再想想什么是⾃由呢?我们看n个样本,还有,n-k个样本是未知的,相当于还有n-k个未知数解是⽆穷的,这就叫⾃由。

一元一次回归方程english_概述说明以及解释

一元一次回归方程english_概述说明以及解释

一元一次回归方程english 概述说明以及解释1. 引言1.1 概述在统计学和机器学习中,回归分析是一种常见的数据分析方法,用于探索变量之间的关系。

其中,一元一次回归方程是最简单、常用的回归模型之一。

它描述了自变量X对因变量Y的线性影响,并可以通过拟合直线来预测或解释观测数据。

本文将全面介绍一元一次回归方程,包括定义、原理、建立过程以及求解方法。

我们还将通过应用举例分析,展示如何收集和处理数据,并建立与拟合模型。

最后,我们会探讨该模型在实际应用中的局限性,并提出改进方法。

1.2 研究背景回归分析被广泛应用于各个领域,如经济学、社会科学、医学等。

无论是预测市场需求还是研究药物效果,研究人员都需要有效地建立模型,并通过对数据进行分析来获得有价值的信息和结论。

随着技术和计算能力的发展,机器学习和人工智能已成为热门话题。

在这个背景下,了解和掌握一元一次回归方程的基本知识,对于从事相关研究和工作的专业人士至关重要。

1.3 研究目的本文旨在介绍一元一次回归方程的基本概念和原理,并通过实例分析展示其应用方法和解释结果。

具体目标如下:- 提供一元一次回归方程的定义,明确其适用范围和假设条件;- 解释建立过程,包括数据准备、变量选择等步骤;- 探讨常见的求解方法,如最小二乘法;- 通过实际案例,演示数据收集、模型建立与拟合的过程;- 对结果进行解释与评估,引导读者理解模型预测能力与可靠性;- 讨论该模型在实际应用中的局限性,并提出改进方法;- 总结关键要点并展望未来发展方向。

通过深入研究与分析一元一次回归方程,我们希望读者能够全面了解该模型的原理和应用方法,同时认识到其局限性以及可能的改进方向。

这将为读者在日后的研究与实践中提供有益指导。

2. 一元一次回归方程:2.1 定义和原理:一元一次回归方程是统计学中常用的线性回归模型。

它描述了一个自变量(x)和相应的因变量(y)之间的线性关系。

这种关系可以用数学表达式y = a + bx表示,其中a是截距,b是斜率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10 - 12
统计学
STATISTICS
散点图
(例题分析)
10 - 13
统计学
STATISTICS
散点图
(例题分析)
不良贷款
14
12
10
8
6
4
2
0
0
100
200
300
400
贷款余额 不良贷款与贷款余额的散点图
14 12
不良贷款
10 8 6 4
2
0 0
10 - 14
10
20
30
40
贷款项目个数
不良贷款与贷款项目个数的散点图
统计学
STATISTICS
第10章 一元线性回归
10.1 变量间关系的度量 10.2 一元线性回归 10.3 利用回归方程进行估计和预测 10.4 残差分析
10 - 1
统计学
STATISTICS
学习目标
1. 相关系数的分析方法 2. 一元线性回归的基本原理和参数的最小
二乘估计 3. 回归直线的拟合优度 4. 回归方程的显著性检验 5. 利用回归方程进行估计和预测 6. 用 Excel 进行回归
x3之间的关系 ▪ 商品的消费量y与居民收入x之间的关系 ▪ 商品销售额y与广告费支出x之间的关系
10 - 8
统计学
STATISTICS
相关关系
(类型)
相关关系
线性相关 非线性相关 完全相关 不相关
正相关 负相关
10 - 9
正相关 负相关
统计学
STATISTICS
相关关系的描述与测度
(散点图)
10 - 10
相关系数
(correlation coefficient)
1. 对变量之间关系密切程度的度量 2. 对两个变量之间线性相关程度的度量称为
简单相关系数 3. 若相关系数是根据总体全部数据计算的,
称为总体相关系数,记为
4. 若是根据样本数据计算的,则称为样本相 关系数,记为 r
10 - 16
统计学
STATISTICS
不良贷款
不良贷款
14
12
10
8
6
4
2
0 0
10
20
30
累计应收贷款
不良贷款与累计应收贷款的散点图
14 12 10
8 6 4 2 0
0
50
100
150
200
固定资产投资额
不良贷款与固定资产投资额的散点图
统计学
STATISTICS
相关关系的描述与测度
(相关系数)
10 - 15
统计学
STATISTICS
10 - 2
统计学
STATISTICS
10.1 变量间关系的度量
10.1.1 变量间的关系 10.1.2 相关关系的描述与测度 10.1.3 相关系数的显著性检验
10 - 3
ห้องสมุดไป่ตู้计学
STATISTICS
变量间的关系
10 - 4
统计学
STATISTICS
函数关系
1. 是一一对应的确定关系
2. 设有两个变量 x 和 y ,变量
相关系数
(计算公式)
样本相关系数的计算公式
r (x x)( y y) (x x)2 (y y)2
或化简为 r
nxy x y
n x2 x2 n y2 y2
10 - 17
统计学
STATISTICS
相关系数
(取值及其意义)
1. r 的取值范围是 [-1,1] 2. |r|=1,为完全相关
统计学
STATISTICS
完全正线性相关
正线性相关
10 - 11
散点图
(scatter diagram)
完全负线性相关
负线性相关
非线性相关
不相关
统计学
STATISTICS
散点图
(例题分析)
【例】一家大型商业银行在多个地区设有分行, 其业务主要是进行基础设施建设、国家重点项 目建设、固定资产投资等项目的贷款。近年来 ,该银行的贷款额平稳增长,但不良贷款额也 有较大比例的增长,这给银行业务的发展带来 较大压力。为弄清楚不良贷款形成的原因,希 望利用银行业务的有关数据做些定量分析,以 便找出控制不良贷款的办法。下面是该银行所 属的25家分行2002年的有关业务数据
1. r 的抽样分布随总体相关系数和样本容量的大 小而变化
当样本数据来自正态总体时,随着n的增大,r 的
抽样分布趋于正态分布,尤其是在总体相关系数
很小或接近0时,趋于正态分布的趋势非常明显。
而当远离0时,除非n非常大,否则r的抽样分布
呈现一定的偏态。
2. 当为较大的正值时,r 呈现左偏分布;当为 较小的负值时,r 呈现右偏分布。只有当接近
于0,而样本容量n很大时,才能认为r是接近 于正态分布的随机变量
10 - 22
统计学
STATISTICS
相关系数的显著性检验
(检验的步骤)
1. 检验两个变量之间是否存在线性相关关系
r =1,为完全正相关 r =-1,为完全负正相关
3. r = 0,不存在线性相关关系
4. -1r<0,为负相关 5. 0<r1,为正相关 6. |r|越趋于1表示关系越密切;|r|越趋于0表示关
系越不密切
10 - 18
统计学
STATISTICS
相关系数
(取值及其意义)
完全负相关
无线性相关
完全正相关
-1.0 -0.5 0 +0.5 +1.0
r
负相关程度增加 正相关程度增加
10 - 19
统计学
STATISTICS
相关系数
(例题分析)
用Excel计算相关系数
10 - 20
统计学
STATISTICS
相关系数的显著性检验
10 - 21
统计学
STATISTICS
相关系数的显著性检验
( r 的抽样分布)
▪ 某种商品的销售额y与销售量x之间的关系可表 示为 y = px (p 为单价)
▪ 圆的面积S与半径之间的关系可表示为S=R2
▪ 企业的原材料消耗额y与产量x1 、单位产量消 耗x2 、原材料价格x3之间的关系可表示为 y = x1 x2 x3
10 - 6
统计学
STATISTICS
相关关系
(correlation)
1. 变量间关系不能用函数关
系精确表达
y
2. 一个变量的取值不能由另 一个变量唯一确定
3. 当变量 x 取某个值时,变 量 y 的取值可能有几个
4. 各观测点分布在直线周围
x
10 - 7
统计学
STATISTICS
相关关系
(几个例子)
相关关系的例子
▪ 父亲身高y与子女身高x之间的关系 ▪ 收入水平y与受教育程度x之间的关系 ▪ 粮食亩产量y与施肥量x1 、降雨量x2 、温度
y 随变量 x 一起变化,并完 y
全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量
3. 各观测点落在一条线上
x
10 - 5
统计学
STATISTICS
函数关系
(几个例子)
函数关系的例子
相关文档
最新文档