汽轮发电机组不平衡振动分析
汽轮机振动异常波动分析与处理
汽轮机振动异常波动分析与处理摘要:汽轮机是发电厂中将热能转换为机械能的主要设备,前端接受锅炉高温高压蒸汽,后端连接发电机旋转切割磁感线产生电力,因此汽轮机的安全稳定运行关系到整个电厂的安全生产。
在汽轮机的安全监视系统中,振动是其中一项重要参数。
受理论及制造和安装水平所限,汽轮机转子振动问题一直是影响电厂安全稳定运行的主要原因。
基于此,本文主要对汽轮机振动异常波动现象与处理措施进行分析探讨。
关键词:汽轮机;振动异常;波动分析;处理方式1、设备概况某发电厂#2汽轮机是国产350MW超临界、一次中间再热、单轴、三缸两排汽、双抽、凝汽式汽轮机。
汽轮机采用高、中压分缸结构,低压部分采用双分流结构,低压末级叶片为680mm。
该汽轮机轴系由高压转子、中压转子和低压转子组成,共有4个轴承,其中#1和#2轴承位于高压转子两端,#3和#4轴承位于低压转子两端,中压转子没有独立轴承,而是通过两端的联轴器分别与高压转子和低压转子相联,因此中压转子的负荷由#2和#3轴承来承担。
汽轮机轴系结构布置图如图1所示。
图 1""汽轮机轴系结构布置图该机组的滑销系统结构从调速器端向发电机端依次为#1轴承箱、高压缸、#2轴承箱、中压缸、#3轴承箱、低压缸、#4轴承箱。
机组设2个绝对死点,分别在#3轴承箱、低压缸中部。
#3轴承箱、低压缸分别由预埋在基础中的2块横向定位键和2块轴向定位键限制其中心移动,形成机组的绝对死点。
运行中,低压缸以各自的绝对死点为中心沿轴向和横向自由膨胀。
高、中压缸分别由4只“猫爪”支托,“猫爪”搭在轴承箱上,“猫爪”与轴承箱之间通过键配合,“猫爪”在键上可自由滑动。
高压缸前后分别与#1和#2轴承箱,中压缸前后分别与#2和#3轴承箱,在水平中分面以下都用定位中心梁连接。
汽轮机膨胀时,#3轴承箱通过定中心梁引导中压缸、#2轴承箱、高压缸至#1轴承箱的静子部分向调速器端膨胀。
#1、#2轴承箱同时受基架上导向键的限制,可沿轴向自由滑动,但不能横向移动。
汽轮发电机组振动故障分析与治理
前 轴承座 和基础进 行 了检 查和调 整 、多 次复查 联轴 器 中心 等维 修工作 ,但效 果不 明显。
二、转轴 振动分析 5 " t 0 t 设计时 只配置 了瓦振传感器 ,前期故障分析只能 以 瓦振 为主。不能完全反 映轴 振。2 0 1 0 年4 月1 5 日,利用机组 检修机会 ,加装 了1 套轴振测量系统。 测试 结果表 明 ,低转速下 轴振 已经很大 。4 0 0 r / m i n 时1 轴振达到 1 0 0 m。产生这 种现象有3 种 可能性 :测点处轴颈
1 2 振虽有所降低 ,但 仍维 持在 较高幅值 上 ,且低速时轴振
图1 汽轮发 电机组轴系布置示意图 自2 0 0 7 年投产 以来 ,机组开停机过 临界振 动过大 。1 瓦
过临界时垂直瓦振达到 1 8 0~2 3 0 m,且 频 繁 出现 下 瓦 损 坏
读 数仍 然很 大。
片 ,3 瓦底部加0 . 0 1 a r m 垫 片、左侧加0 . 0 0 5 mm垫片 、右侧减 0 . 0 0 5 m m垫 片 。复 查联 轴器对 中情 况 ,上 开 口为0 . 0 3 5 m m, 左 开 口为0 . 0 1 am。本次 检修后 ,3 r O 0 0 r / m i n 定 速后 1 垂 直和 水 平轴振从 原2 6 5 i n 、2 4 3 m分别 降为 2 0 0 m、1 9 0 m。
1 . 汽轮机 和联轴器动平衡过程分析 本次停机后对 l 轴颈作 了修磨处理 ,处理后轴颈晃度 降
为0 . 0 3 m m,在汽 轮 机 末 级 叶片 加 重 4 8 8 g L 1 8 0 。。
五 、动平衡后轴颈 中心位置和最小油膜厚 度情 况 动平衡后 机组振动明显减小 ,机组带满 负荷稳定运行 。 测试数据表明 ,满 负荷稳定运行工况下 ,1 肆 由 颈垂直 和水平 方 向上 的偏 移量稳定在0 . 1 4 2 m m和0 . 1 6 7 mm,最 小油膜厚 度 达到0 . 1 3 3 m m。轴承润滑状况明显 改善 。
水氢冷350MW汽轮发电机机组振动问题分析及改进
2020.23科学技术创新汽轮发电机机组振动可能发生在安装后运行的初期,也可能发生在运行一段时间之后。
汽轮发电机振动问题十分复杂,原因有很多,各种原因引起的特征有相同之处,也有不同之处,没有统一的规律。
当发电机转子发生振动时,需要专业人员根据实际情况进行分析,查找出造成振动的原因,并给出相应的解决方案来保证发电机转子振动恢复正常。
大型汽轮发电机出现振动问题的处理过程通常有以下四步:一是进行振动测试和数据采集工作,进行设计资料、安装、检修和运行情况资料的收集;二是对采集到的数据和收集到的资料进行分析,确定振动的主要特征,根据振动特征制定处理方案,若振动特征对应的问题可能性较多,可以制定进一步的现场检查方案或试验方案,并根据结果制定处理方案;三是实施处理方案;四是观察处理方案的实施效果,确定是否解决问题,效果如何,是否需要做进一步处理。
振动的处理还包含着很大的经验性。
在解决大型汽轮发电机出现的振动问题过程中,需要加强梳理归纳,不断总结积累相关处理经验。
水氢冷350MW汽轮发电机采用端盖式轴承,发电机定子振动和转子振动相互耦合。
发电机运行时,定子机座除了承受铁芯传来的电磁振动外,还将承受转子不平衡力产生的机械振动。
某电厂两台水氢冷350MW汽轮发电机组的轴系轴承布置如图1所示。
图1发电机组轴承布置示意图1#机组满负荷运行时,发电机5#轴承座垂直方向振动位移峰峰值最大为54μm,该值大于30μm的整定值;6#x向轴振位移峰峰值最大为95μm,该值大于76μm的整定值值。
1#机满负荷运行工况TSI监测画面如下图2所示。
图21#机满负荷TSI监测画面针对该两处振动超标,通过机组升、降速振动试验,发电机励磁电流试验,机组有功负荷试验,端盖及机座外部振动特性试验和结构固有频率试验,对该机组的振动故障进行分析和诊断并给出改进建议。
1振动异常原因分析1.11#机5#座振偏大原因分析调取1#机5#、6#轴振随转速的变化曲线可以发现:发电机5#、6#轴振在3000rpm以下存在600rpm附近和2882rpm 附加存在两个临界转速(而该型号发电机在3000rpm以下的设计临界转速只有一个为1400rpm,第二阶临界转速为3400rpm)。
600MW汽轮发电机组振动问题分析
600MW汽轮发电机组振动问题分析本文旨在针对国产的600 MW大容量汽轮发电机组进行振动分析,该发电机组有两种结构,现在将分别对不同结构的机组进行异常振动分析研究,找出振动的实质性因素,为处理振动问题提供有效的总结和一些现场处理的措施与方案。
标签:振动600 MW 蒸汽低压转子一、轴系结构类型由我国生产制造的600 MW汽轮发电机组分为两种轴系结构。
亚临界600 MW机组是早期的高压转子和低压转子分开,由11个轴承构成;另一种超临界600 MW机组轴系结构的该汽轮机组由高中压转子组合成一个转子,由9个轴承构成。
其发电机转子的轴系排列结构均是这样的顺序:高压、中压、2个低压、发电机和励磁机等转子。
若是后来投入运行的超临界600 MW机组是高压与中压组合成一个高中压转子。
两种轴系结构的机组的转子均是由刚性联轴器来连接的,转子都是双支承结构,亚临界机组的三支承结构是励磁机转子,超临界机组的却是集电小轴。
另外一个区别就是不同的厂家在生产该机组时将两低压转子间用一个连接短轴连接,大致的原理基本是一致的。
二、现场常见振动问题的分析和治理1.低压转子的振动分析和治理1.1轴承座的振动问题轴承座出现较大的振动是很多出现振动的早期国内生产的600MW机组的一个共同问题,轴承座振动不会造成轴振动的大型问题,但反映了轴承座出现了振动问题,有的还有振动超标的性质。
这样过大的振动问题缘由是因为轴承座的动刚度小的因素。
早期国产機组的低压转子的轴承座的振动原因多数是因为其坐落于低压缸凹窝之上,而该低压缸钢性弱,尺寸偏大,所以会造成轴承座的动刚度下降,由此开始出现轴承座的偏大振动问题。
后期制造的机组将低压转子的支承轴承改变成落地式的构造,轴承座就不会受到低压缸的刚度所影响,然而还是出现了轴承座的异常振动,此时的振动就与轴承座自身的支承刚度有关,表明其刚度出现了不足的问题。
当机组运行过程中,现场出现轴承座的异常振动时,其解决方案是首先对低压转子的动平衡进行调整,最大限度减小其激振力。
汽轮发电机组异常振动原因分析及处理
3 销 系统 . 滑
无论是 汽轮机还是发 电机 ,当机组带负荷受热后都要产生
膨 胀 , 销 系 统 的作 用就 是 引导 机 组 膨 胀 。 温度 变化 时 , 滑 汽缸 和
同轴度 , 励磁机联轴器端面瓢偏 9  ̄ 0x m。
在凝汽器水位处于运行状态时对低 压缸滑销进行检查 , 后
转子的中心线必须始终保持一致 , 不能引起汽缸 、 轴承座等有关
转 速 /r n ( mi) /
8 0 0 15 0 0 10 4 0
0 0 m
3J f
l 6 1 8 1O 1
2 0
4 0
Hz
6 O
8 O
10 0
4上
2 8 3 2
5 上
3 3 4 2
5 —
1 6 1 9 8 0
图 3 5 瓦水平振 动频谱图 用电桥测直流 电阻等 , 显示均为正常值 。试车时, 通过改变励磁 电流试验 , 查看轴系振动有无减小或复原 , 完全可 以排 除发 电机
转 子 匝 间短 路 故 障 。
2 5 35
4检查后 , 发现 3 轴瓦上瓦碎 裂 、 乌金脱落; 5 瓦 对机组励磁机转子 5 瓦端共进行了三次加重 , 动平衡结束 后 ,机组 冲转至 30 r i 网时又出现励 磁机 阻尼环及 固定 0 0/ n并 m 下部悬空 , 实测轴径 与轴瓦有 30 m间隙。 01 x 另外 , 各轴 瓦顶间隙 3 0 4 0 m, 5 — 0 1 乌金 与轴径接触面夹角 5 。6 。接触 点分布不均 x 5~0,
概 况
T 28 ̄ K 6 . 1
文献 标 识 码
一
、
热力 厂。七 电站 5 机 为武汉 汽轮 机厂 制造 的 C 5 3 3 2—./ 4 09 型 中压单缸抽汽凝汽式机组 , .8 整个轴系采用刚性连接 , 轴系 结 构 如 图 1 示 。 组 共有 5 轴 承 , 部 为 圆筒 式 轴 瓦 。 2 所 机 个 全 1、 轴承支撑汽轮机转子 , 4 轴承支撑发 电机转子 ,励磁 机为单 3、 支撑结构。 0 7 2 0 年调试完成投入运行后 , 瓦一直振动较大 , 轴 且
600MW超临界汽轮发电机组振动问题分析
600MW超临界汽轮发电机组振动问题分析摘要:汽轮发电机组的振动问题是电厂机组云心常见的故障现象,长时间的振动可能导致转动部件的疲劳损伤、轴承磨损、设备共振等问题,严重时可能导致设备损坏,影响电力生产的安全性和稳定性。
本文针对600MW超临界汽轮发电机组振动问题进行了深入分析。
包括转子质量不平衡、蒸汽激振力、轴系不平衡、轴承座和基础松动等。
并提出了一系列针对性的解决措施。
希望本文的研究能够为解决600MW超临界汽轮发电机组振动问题提供一些有益的思路和方法。
关键字:600MW超临界汽轮发电机组;振动问题;原因分析;解决措施在电力系统中,600MW超临界汽轮发电机组作为核心设备之一,具有较高的热效率和功率输出,其运行稳定性和可靠性对于整个系统的安全和稳定具有至关重要的作用。
然而,在实际运行中,汽轮发电机组经常会出现各种问题,其中振动问题是最为常见的问题之一。
振动问题不仅会影响设备的正常运行,还会对设备的安全性和可靠性造成威胁。
因此,对600MW超临界汽轮发电机组振动问题进行深入分析,并提出相应的解决措施,对于保障电力系统的安全和稳定具有重要意义。
一、转子质量不平衡在转子的制造过程中,材料不均匀、加工误差等因素可能导致转子质量不平衡。
此外,长期运行中的磨损、腐蚀等问题也会引起转子质量不平衡。
安装过程中,安装不到位或轴承座与转子对中不良等也会导致这种不平衡。
这种不平衡质量会在转子旋转时产生离心力,进而引起机组振动。
由于转子不平衡质量在旋转时产生的离心力是周期性的,因此机组的振动频率与转子的转速一致。
通常情况下,振动大小会随着转速的增加而增加。
这是因为随着转速的增加,不平衡质量产生的离心力也相应增加。
如果转子的不平衡质量主要集中在某一侧,那么振动的方向将与转子的旋转方向一致。
另外,由于转子的不平衡质量是固定的,因此振动的幅值和相位角通常不会随时间变化,表现出较好的稳定性。
针对由转子质量不平衡引起的振动问题,可以采取以下措施进行解决:通过在转子上添加平衡块,使转子在旋转时达到平衡状态,从而消除因转子不平衡引起的振动;改善蒸汽管道状况可以降低机组振动;调整轴系上各轴承座的相对位置使整个轴系的平衡状态达到最优;针对地基不牢固或轴承座松动引起的振动问题,可以通过加固轴承座和基础的方法来解决。
汽轮发电机振动分析及现场动平衡处理
汽轮发电机振动分析及现场动平衡处理大多数的汽轮发电机振动故障可以用现场高速动平衡的方法进行处理。
本文介绍了柔性转子的振动特性,阐述了现场校正一、二、三阶转子不平衡所采用的方法。
通过实例证明对称加重法虽然可能使汽轮发电机存在的三阶不平衡得到一定的校正,但是灵敏度低,且可能破坏一阶平衡状态;而在转子外伸端的联轴器加重时一般会取得较好的效果。
所取得的振动治理经验对同型机组类似振动故障的诊断及现场处理有一定的借鉴意义。
关键词:汽轮发电机;柔性转子;振动;现场动平衡引言汽轮发电机是火力发电厂的核心设备,振动水平是衡量机组安全可靠性最重要的指标。
剧烈的振动容易导致设备部件的疲劳损坏,一些重大的毁机事故直接或间接地与振动有关。
在汽轮发电机的各种振动故障中,不平衡引起的振动占到70%以上,还有部分故障也可以通过平衡的手段使振动得到改善,因此现场动平衡是消除振动的主要手段[1]。
由于汽轮发电机组轴系是多转子系统,相互之间有一定影响;而且在现场受加重位置的限制,有时无法在计算好的位置加重;此外大型机组启动一次的费用高达十万元以上,启动次数和时间受到了限制,因此现场高速动平衡是振动处理中十分重要而又有一定难度的环节。
随着汽轮发电机容量的增大,转子轴向长度及其重量也不断增加,而转子径向尺寸因受到材料强度限制增长不大,这样就迫使采用工作转速大于第一临界转速和第二临界转速的柔性转子[2]。
汽轮发电机转子均属于柔性转子,一般200 MW及以下的发电机工作转速在一、二阶临界转速之间,大多数300MW及以上的发电机工作转速在二、三阶临界转速之间。
这两类转子的平衡方法存在较大的差异,因此在现场动平衡时应采取针对性的处理方案才能取得理想的效果。
1 柔性转子的振动特性在不平衡作用下柔性转子的振动可表示为:柔性转子平衡主要根据其振型正交原理进行。
所谓正交是指在平衡某一阶振型时,不影响其他振型的平衡状态。
现场动平衡时通常一阶不平衡采用对称加重的方法,它与二阶振型是正交的;二阶不平衡采用反对称加重的方法,它与一阶不平衡是正交的。
汽轮机运行中振动大的原因及危害
汽轮机运行中振动大的原因及危害一、汽轮机异常振动原因分析汽轮机组担负着火力发电企业发电任务的重点。
由于其运行时间长、关键部位长期磨损等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。
汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。
由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。
因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。
针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。
二、汽轮机组常见异常震动的分析与排除引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。
(一)汽流激振现象与故障排除汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。
其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。
针对汽轮机组汽流激振的特征,其故障分析要通过长时间的记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。
通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。
通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。
简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。
(二)转子热变形导致的机组异常振动特征、原因及排除转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。
由于引起了转子弯曲变形而导致机组异常振动。
汽轮机振动故障的原因分析与处理
汽轮机振动故障的原因分析与处理汽轮机是一种工作在高速和高温环境下的设备,在其运行过程中,振动是一种常见的问题。
由于振动对设备的结构和部件造成的磨损和损坏,以及对设备的性能和可靠性产生的影响,因此振动故障的原因分析和处理非常重要。
本文将从以下几个方面对汽轮机振动故障的原因进行分析与处理。
一、原因分析1. 设备松动或磨损汽轮机运行时,部件之间的松动或磨损会引起机组振动。
如机架、轴承、齿轮和叶片等部件在运转时出现松动,或者是由于长期摩擦而导致了磨损,都会造成机组振动。
2. 不平衡汽轮机协调运转需要保证各部件的平衡性,在某些情况下,如叶轮的制造误差或者叶片领域加工不均等,会导致汽轮机的不平衡,使其产生振动。
3. 轴承故障汽轮机轴承故障也是一种常见的振动故障。
轴承故障会导致轴承工作不稳定,引起机组的振动,严重的还会导致机组运行停顿。
4. 不良的安装环境汽轮机的操作环境也是影响机组振动的原因之一。
在安装汽轮机时,其安装环境应满足一定的要求,否则将对机组的振动稳定性产生影响。
二、处理方法1. 检查和修理损坏或松动的部件首先,要对造成汽轮机振动故障的松动或损坏的部件进行检查和维修。
对于损坏的部件,可以进行采购更换,对于松动的部件,则可以进行紧固或者更换件,保证设备的稳定性和运行性能。
对于汽轮机不平衡引起的振动故障,可以通过进行平衡调整来消除振动。
具体方法是,使用专业的平衡仪器进行平衡测试,然后根据测试结果制定相应的调整计划进行平衡调整。
当汽轮机的振动故障是由于轴承故障所导致时,应尽快更换转子上的轴承,以保证汽轮机的稳定运行。
加强安装环境,包括选择适当的土建施工方式、精确的安装的严格执行,以及采用符合要求的管理和操作程序等。
在安装中严格按照操作规程和操作标准操作,以保证设备工作在良好的安装环境下。
综上所述,汽轮机振动故障是一种常见的问题,通常是由于部件松动、磨损或不平衡、轴承故障、安装环境等原因导致。
针对不同原因,对应的处理方法也有所不同。
汽轮发电机组汽流激振故障的分析及处理
汽轮发电机组汽流激振故障的分析及处理汽轮发电机组是一种常见的发电装置,使用汽轮机驱动发电机发电。
在使用过程中,有时会出现汽流激振故障,这会影响到发电机组的正常运行。
本文将对汽流激振故障进行分析,并提供处理故障的方法。
一、汽流激振故障的原因分析1. 气体流动不稳定:在汽轮机内部,气体是以高速流动的方式进入和流出。
如果气体流动不稳定,会引起汽流激振故障。
造成气体流动不稳定的原因可能包括定子叶片损伤、进气量不足、排气系统阻力过大等。
2. 汽轮机顶盖失稳:汽轮机的顶盖是固定在转子上的零件,如果顶盖在高速运转中失稳,会产生振动力,导致汽流激振故障。
顶盖失稳的原因可能包括材料疲劳、安装不稳、转子不平衡等。
3. 转子不平衡:转子不平衡是导致汽流激振故障的一个常见原因。
转子不平衡可能是由于零件制造不精确、装配过程中的错误等引起的。
二、汽流激振故障的处理方法1. 定期维护保养:定期对汽轮发电机组进行维护保养,包括定期清洗空气滤清器、检查叶片是否有损坏、检查排气系统是否通畅等。
通过定期维护保养,可以确保发电机组的稳定运行,减少汽流激振故障的发生。
2. 检查顶盖安装:检查汽轮机顶盖的安装情况,确保顶盖安装牢固,防止顶盖失稳引起的振动力。
如果顶盖材料疲劳,应及时更换。
3. 平衡转子:对转子进行平衡校正,消除转子不平衡引起的振动力。
可以使用动态平衡仪进行转子平衡校正,确保转子平衡。
4. 增强检测手段:增加汽轮发电机组的振动监测和故障检测手段,及时发现和处理潜在的汽流激振故障。
可以使用振动传感器等设备,监测发电机组的振动情况,及时判断是否存在汽流激振故障。
5. 提高制造精度:加强对汽轮发电机组零部件的制造精度控制,减少由于制造不精确导致的汽流激振故障。
加强装配过程中的质量控制,确保零部件的精确装配。
三、汽流激振故障的处理注意事项1. 处理汽流激振故障时,应先确定故障的具体原因。
可以通过检查设备、振动监测等手段进行故障诊断,找出故障的真正原因。
汽轮机振动分析与故障诊断
汽轮机振动分析与故障诊断摘要:汽轮发电机组是电力系统中的一个重要组成部分,它的结构和工作环境比较复杂,所以它的安全性要求比较高。
长期以来,汽轮机的故障率高,严重地影响了机组的正常运转。
随着科学技术的不断发展,智能化的计算机系统的广泛运用,为汽轮发电机组的振动故障自动分析提供了技术支撑。
关键词:汽轮机;发电机组;振动故障;故障检测1.汽轮机振动故障检测与诊断分析的目的目前,由于社会用电量的稳定需要和电力市场改革后对于机组稳定性要求更高,发电企业因设备故障导致的机组非计划停运而带来的经济损失是巨大的。
所以,他们必须制定一套能够保证设备正常运转的快速诊断程序。
相对于其他故障,运用先进的技术方法可以快速地对汽轮机的振动故障进行快速的判断和定位,为管理者和使用者提供了方便。
因此,在维护技术不断发展的今天,加速对汽轮机振动进行快速诊断和分析是非常必要的。
在机组运行中,最常见的故障就是汽轮机组的异常振动。
由于大机的叶片、叶轮等转动构件的受力超出了容许的设计范围,从而引起机组的损伤。
所以,设备的振动水平应控制在一定的容许值之内。
2.振动故障检测原理与分析技术的步骤2.1振动信号采集针对汽轮机故障,首先要在机组正常工作时,对其进行振动信号的检测。
振动信号是660 MW汽轮发电机组振动故障的主要载体,也是故障诊断的主要手段。
通过对振动信号的采集,可以从历史信息库中依据设备的工作特性,对故障发生的部位及原因进行客观、真实的分析。
2.2信息处理660 MW汽轮发电机组是一种大功率的机械设备,其工作时难免会产生大量的噪声,从而影响到检测系统对其检测结果的准确性。
为此,要对系统采集的噪声信号进行科学地降噪,排除异常的干扰,提取有效的信号进行分析。
2.3故障分析与诊断这是对机组振动故障进行分析的关键步骤,在此阶段,要对所搜集到的资料进行归纳、整理,并利用特征值判断出该装置的工作状态是否在合理的范围之内。
如果有什么不正常的地方,我们就得对资料库做进一步的分析。
汽轮发电机组不稳定振动故障诊断及处理
图 1 改造 后 泵 人 口端 水 平 位 置 频 谱 图 1
进或操作 控制 , 消除故 障 ; ③故 障初 始阶段 时改 进设计 。
参 考 文献
1 杨德钧 , 沈卓身 . 金属腐蚀学. 北京: 冶金工业出版社 ,9 96 19.
2 沈庆根 , 郑水英. 设备故 障诊断. 北京: 化学工业出版社 , 0 . 2 5 0 1 1
( )解 列瞬 间 4 瓦轴振 突降 7 ~ 0 m,从 25 m降至 2 0 8l x 31 x
12 ̄ 61 m左 右 。 二 、 组 异 常 振 动分 析 机
在 3 和 4 轴承上 , 影响 了该机组的安全运行 。
1 动 不 稳 定 原 因 分 析 . 振
图 3给出了不稳定振动发生时 3和 4 轴承振动频谱 , * 从图中 可以看出, 振动以工频为主 , 频谱图上 5 H 附近存在一定程度的 0z 杂 频 , 在振 动爬 升 过 程 中 以工频 为 主 , 明转 子 上存 在 一定 的不 并 说
W 11 0 25 . 3-
作者 通联 :李建 勤 天 津大港 油田石化公 司机 动设 备 处
天津 市 30 8 020
总结如 下故障处 理经验 : ①进行 泵振 动的趋 势跟踪 , 并依 据振动信 号的分析 判断 机器故 障状态 ;②进 行必 要的设 备改
E ma : q 6 8 5 i . m — i l 7 0 0 @s ac lj n o
紧力偏大是导致异常振动的根本原 因, 采取相应措施成功 消除 了机组不稳定振动。
中图 分 类 号 文献标识码
一
、
机 组 不 稳 定 振 动 现 象
某 厂 一 台 6 MW 汽 轮 发 电 机组 轴 系 结 构 如 图 1 示 , 系 0 所 轴 由汽 轮机 转 子 和发 电机 转 子 组 成 , 每个 转 子 由 两个 轴 承 支 撑 , 其 中 1和 2 轴 承 支 撑 汽 轮 机 转 子 , 4 轴 承 支 撑 发 电机 转 子 。 3和 有一 段 时 间汽 轮 机 运 行 中经 常 出 现 不 稳定 振 动 ,振 动 突 出表 现
汽轮机运行振动的大原因分析及应对措施
汽轮机运行振动的大原因分析及应对措施汽轮机是一种将热能转换为机械能的装置,它广泛应用于发电厂和工业生产中。
在汽轮机的运行过程中,振动是一个常见的问题,它可能会影响到汽轮机的稳定运行,甚至造成机械损坏。
对汽轮机运行振动的大原因进行分析,并提出相应的应对措施具有重要的意义。
一、汽轮机运行振动的大原因分析1. 轴承故障汽轮机的轴承故障是造成振动的常见原因之一。
轴承的损坏或磨损会导致轴承支撑不稳,从而产生振动。
轴承故障的根本原因可能包括润滑不良、轴承安装不当、工作负荷过大等情况。
2. 不平衡不平衡是另一个常见的汽轮机振动原因。
汽轮机转子在加工或安装过程中,如果存在不平衡现象,就会产生不同程度的振动。
不平衡可能源于转子的设计、制造或安装过程中的不当安排。
3. 叶片故障汽轮机叶片的故障也会引起振动。
叶片的严重磨损、失调或裂纹,都会导致汽轮机的振动量增加,甚至产生共振现象。
4. 调速系统故障调速系统是汽轮机的重要组成部分,当调速系统发生故障时,汽轮机的排汽量和工作负荷无法得到有效的控制,导致汽轮机振动加剧。
5. 基础或支撑结构问题汽轮机的振动还可能与其基础或支撑结构有关。
如果汽轮机的基础不稳固或者支撑结构存在问题,都有可能引起振动。
6. 轴线偏移汽轮机的轴线偏移也是引起振动的原因之一。
轴线偏移可能由于装配不当、工作负荷不均或者机械材料变形等原因引起。
二、汽轮机振动的应对措施1. 轴承检查与维护定期对汽轮机的轴承进行检查和保养是防止振动的关键措施。
对润滑系统进行定期检查,并且在轴承出现异常磨损时及时更换轴承。
2. 动平衡对汽轮机的转子进行动平衡处理,是确保汽轮机稳定运行的重要手段。
在汽轮机的设计和制造过程中,应严格保证转子的动平衡性能。
3. 叶片保养保持汽轮机叶片的完好状态也是防止振动的重要措施。
定期对叶片进行检查和保养,及时清理叶片表面的积灰和异物,保证叶片的强度和刚度。
4. 调速系统维护对汽轮机的调速系统进行定期维护和检查,确保其正常运行,并且保证调速系统与汽轮机的协调性能。
汽轮机运行振动的大原因分析及应对措施
汽轮机运行振动的大原因分析及应对措施摘要:汽轮机作为重要的能量转换动力机械,在日常运行中故障最为明显的表现就是异常振动。
造成汽轮机异常振动的原因种类繁多,对于故障分析需要极强的专业性,有效应对汽轮机的异常振动,做好故障原因分析与应对,能够确保汽轮机设备的正常运行。
关键词:汽轮机;异常振动;措施1.汽轮机振动产生的主要原因1.1运行中中心不正(1)汽轮机启动时,如暖机时间不够,升速或加负荷太快。
将引起汽缸受热膨胀不均匀,或者调节系统有卡涩,使汽缸不能自由膨胀,均会使汽缸对转子发生相对歪斜,机组产生不正常位移,造成振动。
(2)机组大修后靠背轮安装不正确。
中心没有找准确,因而运行时产生振动,此振动是随负荷的增加而增加。
(3)机组在进汽温度超过设计规范的条件下运行,将使其胀差和汽缸变形增加。
如轴封向上抬起等,会造成机组轴向位移超过允许限度,引起振动。
(4)间隙振荡。
当转子因某种原因与汽缸不同心时,可能产生间隙振荡,也称为汽隙振荡。
1.2转子质量不平衡机组运行中叶片的脱落与磨损、腐蚀等现象使得转子的质量不均匀,这种不均匀会使得转子受到离心力的冲击发生振动;转子发生弯曲也会引起振动,主要是由于转子弯曲后引起了汽轮机内部组件的摩擦,该种振动与转子质量不均匀受到离心力冲击之后所引起的振动相类似,但是也有不同,这种振动最典型的表现是轴向振动,当转子的转动速度超出了临界的转速时,转子的轴向振动效果更为明显;汽轮机转子油膜不稳定或者是受到其他外力作用遭到破坏等,也会引起振动,主要是油膜在遭到破坏以后,使得轴瓦乌金烧毁形成轴颈的弯曲;汽轮机内部各组件之间发生摩擦会引起振动,主要是动叶片与静叶片之间的摩擦、通流部分间隙与安装的处理不当等的摩擦引起的振动;水冲击也会引起振动,这种冲击会造成转子轴向推力与扭力之间的不平衡,产生剧烈振动。
1.3 汽轮机高低压转子、发电机转子连接部位机械部分故障:(1)联动部分轴系不对中,中心线不重合,定心不正确。
汽轮机振动原因分析
汽轮机振动原因分析汽轮机振动原因分析汽轮机振动原因分析汽轮发电机组是由许多部件组成的。
其中弓个或几个部件工作得不正常,都有可能引起机组较大的振动。
这就大大地增加了查找振动原因的难度。
尤其是大容量机组,多根转子互相影响,要找到引起振动的确实原因,难度就更大。
下面就一般的振动原因进行分析和处理。
1(转子本身的,质量不平衡汽轮发电机转子属大而复杂的部件,虽然经过动平衡校验,但仍然存在着残余不平衡重量。
这种因动平衡质量不佳的残余不平衡重量,。
从单根转子上来看,问题不很复杂。
但是,对于多根转子的大型机组来说,残余的不平衡重量,在轴系旋转时的离心力,往往形成多个复杂的力偶,这就使寻找振动的原因显得更加复杂。
凡属质量不平衡引起的振动,其振幅随转速的升高而加大。
在找动平衡时,试加重量对振幅有明显的反映。
所以,这种由于质量不平衡引起的振动,通过找平衡,比较容易消除。
2(转子弯曲和联轴器连接质量不佳转子弯曲和联轴器连接不佳使转子产生质量不平衡等,运行时由于扰动力作用使机组发生振动,其现象与上述相同。
但消除振动不单纯地用加平衡重量的方法来解决,而应采取直轴措施或重新找中心或重新连接联轴器3(轴承垫块接触不良及紧力不适当由于检修工艺马虎或转动中垫块与轴承座的接触腐蚀,垫块接触不良,降低了轴承的抗振能力而产生较大的振动。
因此而引;起的振动往往发生在检修后第一次启动时,或者发生在机组检修投运后1,2年内。
其特征:找动平衡时试加重量对振动的影响较小,用找平衡的方法不易消除振动。
4(轴承座底平面与基础台板接触不良由于机组启动、停机和负荷突变等因素,汽缸发生膨涨或收缩。
当轴承箱上负载太大,轴承座和台板之间比较粗糙或没有润滑剂等,使汽缸胀缩受阻,并引起轴承箱翘头或反翘头,而使轴承座与台板接触不良,导致机组振动。
因此而产生的振动,往往随着机组运行工况变化而发生。
若用塞尺检查轴承座与台板之间的接触情况,一般在前端或后端有0.10,0.30mm的间隙。
汽轮发电机组突发性不稳定振动分析
5 0
4Байду номын сангаас 5
4 0
转速/r i) (/ n m
图 2 升速过程中 3 瓦水平振动情况
3 5
取的措施 包括 : 抬高 4 瓦标高 10 m, 0 1 减小 4 瓦轴承顶 隙 , 4 x 将 瓦长径 比由 08 . 9减小到 08 。检修后开机 , .1 升速过 程中和低 负 荷状态下振动并无异常 。带负荷超 过 4 MW 时 , 、 瓦再 次 3、
出 , 加 重 以 后 , 和 瓦 在 定 速 下 的 振 动 减 小 了 , 且 半 频 在 3瓦 并
采 样点
主; :
0 O
5 0
Io o
10 5
20 0
2 0 5
30 0
30 5
40 0
频 ̄J z gH
分量也大大减小。表 2给 出了加重后机组在空负荷及满负荷时 的振动情况 。加重后 3 0r i 定速下 3 瓦和 4 瓦水平振动分 0 0/ n m 别为 6 m和 1 m。带 负荷过程 中, t x 1 机组振动稳定 , 没有再 次出 现突发性低频振动 。此后连续运行半年多 , 振动也一直很稳定 , 说明油膜失稳故障已消除。
频。
图 3 升 速 过 程 中 4 瓦水 平 振 动 情 况
3不稳定振动原因分析 . 从振动 的频谱特征来看 , 不稳 定振 动主要是半频分量。 当负 荷超过一定值时 , 半频分量容易被激发 出来 。初步怀疑 , 电机 发 组转子 出现 了油膜失稳故障。 当转 子在轴承 内高速旋转 时 , 轴颈 中心与轴承 中心之间有
要 比工频振动分量 幅值大得多 。
CC100汽轮机组振动故障的分析与研究
CC100汽轮机组振动故障的分析与研究摘要:汽轮机组的异常振是较为复杂的故障之一。
汽轮机组振动严重时会危及汽轮机安全的稳定运行,为此分析了我厂#3汽轮机组振动的振源因素,并总结了处理措施。
关键词:汽轮机转子不平衡振动由于宏伟热电厂#3机组振动相对偏大,在机组启动过临界转速的时候,振动值很大超出了不合格的范围。
曾经出现过机组启动过程中,振动值大,转速不能到达3000 r/min而定速的局面。
严重影响宏伟热电厂#3机组汽轮机安全运行及经济效益。
本文就将对宏伟热电厂#3号机组的振动原因进行分析,总结振动的表现形式及采取的解决办法。
决不允许在强烈振动的情况下让机组继续运行。
1 汽轮机振动原因分析宏伟热电厂#3机组是哈尔滨汽轮机厂生产的型号CC100-8.83/0.981/0.245型汽轮机。
型式:高压、双缸、双排汽、双抽、冲动凝汽式汽轮机。
额定功率100?MW,最大功率(冷凝/抽汽),112.5/125?MW,转速3000?r/min,汽压8.83±0.49?Mpa,汽温:535(+5-10) ℃。
1.1 转子质量不平衡当转子有质量不平衡故障时,将发生振动,主要特征有:是一个与转速同频的强迫振动,振动幅值随转速按振动理论中的共振曲线规律变化,在临界转速处达到最大值。
振动波形近似为正弦波;转子的轴心轨迹为椭圆。
1.2 转子初始弯曲有初始弯曲的转子具有与质量不平衡转子相似的振动特征,所不同的是初弯转子在转速较低时振动较明显。
由于弯曲变形与转子同步旋转,产生横向激振力激起转子的同步横向振动,在临界转速附近发生共振。
1.3 转子热态不平衡在机组的启动和停机过程中,横截面产生不均匀的温度分布,使转子发生瞬时热弯曲,产生较大的不平衡,使转子产生振动。
它一般与负荷有关,改变负荷,振动相应地发生变化,但在时间上较负荷的变化滞后,随着盘车或机组的稳态运行,整机温度趋于均匀,振动会逐渐减少。
引起机组转子热变形可能的原因有,转子自身热应力、运行中气缸进水、进冷空气以及动静摩擦、中心孔进油、发电机转子冷却不均匀等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽轮发电机组不平衡振动分析[摘要]汽轮发电机异常振动是一种复杂的综合性故障形式,而不平衡振动是汽轮机振动中最常见的形式。
通过200mw—660mw机组多起不平衡振动事例的分析,对不平衡振动随转速、负荷等重要参数的变化规律及不平衡振动的频谱特征进行了小结,提出了不平衡振动诊断时注意的事项,为科学诊断不平衡振动故障提供了借鉴。
[关键词]振动不平衡振幅基频中图分类号:tm311 文献标识码:a 文章编号:1009-914x(2013)08-235-020 引言对转动机械来说,微小的振动是不可避免的,但如果机组转动中振幅比原有水平增大较多,甚至是增大到超过允许标准,就属于异常振动。
异常振动既是汽轮发电机运转中缺陷、隐患的综合反映,反过来又将造成故障的进一步恶化和设备损坏,形成恶性循环。
异常振动还可能造成周围设备的损坏、人员的不适和职业病的发生。
准确分析判断振动类型对处理振动事故至关重要。
汽轮机组振动原因虽然很多,但最常见的振动主要有不平衡引起的振动。
不平衡引起的振动占到现场异常振动的80%左右。
虽然随着制造厂加工、装配精度以及电厂检修质量的不断提高,这类故障的发生率正在逐渐减少。
即使如此,质量不平衡目前仍是现场机组振动的主要故障。
原始质量不平衡、转动过程中部件飞脱、转子弯曲等都会造成不平衡振动。
1 原始不平衡原始质量不平衡指的是转子开始转动之前在转子上已经存在的不平衡。
它们通常是在加工制造过程中产生的,或是在检修时更换转动部件造成的。
2004年5月,某200mw机组小修后曾发生振动随转速升高迅速增大的现象,且转速稳定时,振动也变化不大。
过临界时#2轴振更是一度达到400um。
但轴向振动却只有50um左右。
带负荷运行中#2轴振则稳定在180um左右。
升降负荷过程中振动幅值相近。
时域波形和频谱图上基频分量稳定在155um左右,是典型的初始质量不平衡振动。
对汽轮机转子加重平衡后振动明显减小。
最终稳定运行时在80um以下。
2 转动过程中的部件飞脱汽轮发电机组叶片、围带、拉金以及平衡质量块转动部件发生飞脱,使原本的平衡状态发生改变,造成了质量不平衡,便引起了机组的异常振动。
与其他不平衡振动不同的是振动具有突增性。
振动突增至某一较高数值时,通常可以听见较大的声响。
2004年9月,某200mw机组带175mw负荷,振动突然增大,特别是#4、#5轴振更是分别增大到190um和270um。
同时凝汽器水位异常升高,分析原因为转动部件飞脱打破凝汽器铜管。
进行紧急停机,并对低压缸揭缸检查,检查结果低压叶片围带脱落一段,直接打破凝汽器铜管6根,最终凝汽器铜管堵管38根。
3 转子弯曲转子发生弯曲后,由于转子质量中心的变化,原本平衡良好的转子也就发生了质量不平衡。
引起转子的弯曲的原因主要有动静摩擦、热弯曲、重力弯曲,另外套装转子在装配时,由于偏斜,蹩劲也会造成主轴弯曲。
转子的原材料存在过大的残余内应力,在较高的温度下经过一段时间的运行后,内应力逐渐得到释放,也会使转子产生弯曲变形。
3.1 动静摩擦汽轮发电机组转动部件与静止部件的碰摩是运行中常见故障。
动静摩擦会使转子径向局部过热膨胀而弯曲。
随着现代机组动静间隙变小,碰摩的可能性随之增加。
碰摩常常是中间过程,大部分时候转子弯曲才是碰摩的根本原因。
2005年,某200mw机组振动一直趋高,在1400rpm中速暖机开始时,#3振幅达到130um,之后随着暖机时间的延长,振幅逐渐减小。
中速暖机时间结束,#3振幅达到100um,升速过程中振幅又迅速增大。
1500rpm时#3轴振达到120um。
升速过临界时1713rpm #3轴振达到320um,汽机跳闸。
降速过程中#2轴振最高达到400um。
仔细倾听轴封及汽缸等处,未听见明显的碰摩声。
停机后转子静止时,测量大轴的晃度从原始值92um明显增加到124um。
盘车4小时后再次冲转时情况类似。
中速暖机结束时振幅80um,升速过程中振幅又迅速增大。
升速过临界时1807rpm#3轴振达到320um,汽机跳闸。
之后将1400rpm中速暖机时间延长至3小时,并升速至1470rpm 继续暖机1小时,暖机结束时#3振幅60um,过临界时最大振动达到280um。
并网带负荷后#2轴振则稳定在140um到190um之间。
负荷增大时振幅稍有增大。
且负荷变化时,振幅变化具有迟缓性,一般在负荷变化后3—5分钟分钟振幅发生变化。
停机时,过临界时#3瓦轴振达到400um顶表。
惰走时间有正常的32min减少到24min。
投入盘车后大轴扰度141um,比原始值高出31um。
缸温降到150℃后停止盘车,对汽缸进行揭缸检查,发现中压缸第5级叶顶围带汽封全部磨损,页顶围带磨损0.3mm,中压缸前后汽封也出现严重磨损。
2012年11月,某660mw机组小机盘车投入时,#1轴振迅速增大到69um,仔细倾听#1轴封处有轻微的碰摩声音,之后随着盘车时间的增长,#1轴振逐渐恢复到12um的正常值。
分析过程如下:该机组小机为杭汽厂引进的nk63/71型汽轮机机,小机不设真空破坏门,小机轴封间隙较小,保温也比较好。
在停机后缸温下降缓慢。
小机盘车4小时后停止盘车运行,此时缸温还比较高。
该小机未设内缸缸温测点,盘面上显示的缸温测点实际上是外缸缸温,在小机正常运行中最高只到110℃左右,不能以此作为停盘车参考。
停盘车将近6小时后再投盘车时,大轴出现轻微的热弯曲。
由于轴封间隙较小,热弯曲的结果造成#1轴封处出现轻微的动静碰摩。
随着时间的推移,热弯曲逐渐减轻,同时,汽封片被磨损后碰摩现象也消失。
从上图可以看出,停机后小机盘车4小时停止盘车运行,小机盘车时间明显偏短。
在较高的汽缸温度下,过早的停止盘车造成了转子的热弯曲以致引起了轻微的碰摩。
3.2 热弯曲由于疏水不畅、暖机不充分、汽缸内进冷气冷水、汽缸保温不良、发电机转子冷却不均匀或匝间短路等都可能造成转子热弯曲。
3.2.1 疏水不畅、暖机不充分造成的热弯曲2011年6月某600mw机组#1小机首次单转冲转蒸汽参数0.78mpa/176.3℃,偏心14.5um,升速率300rpm/min,冲转过程在振动随转速上升,至800rpm暖机时已上升至100um以上无法稳定,继续升速,转速最高冲至1500rpm,振动大打闸。
投盘车后偏心超过100um。
分析认为主要是由于转子产生了暂时的热弯曲引起不平衡振动,而热弯曲原因是辅助蒸汽尽管有240℃,但其用户太少,单转小机进汽量小流通量不大,造成小机主汽门前蒸汽只有180℃左右;同时检查发现轴封疏水不畅通。
经采取措施疏通轴封疏水,并投入锅炉暖风器增加辅汽流通量等措施确保小机进汽温度上升至220℃,6月18日再次冲转,升速率300rpm/min,转速至1500rpm 暖机,振动最大不超过30um。
暖机结束,设目标转速3000rpm,升速率300rpm/min,过临界转速最大56um。
转速到达3000rpm,最终振动稳定在20um以下。
3.2.2 发电机转子冷却不均匀造成的热弯曲2011年8月,某600mw机组调试时,振动突然发生爬升现象,各轴承振动都有明显增加,发电机前后轴承振动均增大将近20um。
检查发电机两端氢气温度相差约12℃。
原来,当时进行了发电机四角氢气冷却器投入操作,由于一组氢气冷却器有漏,在对角投入两组氢气冷却器时,由于标示不对,实际上投入的都是汽端的两个氢冷器。
改变氢气冷却器投运方式后,振动恢复正常。
3.3 重力弯曲汽轮发电机长期停运时转子长期停留在同一个固定位置因重力而引起的弯曲。
现阶段许多处于待关停的机组这种现象比较突出。
2010年,某200mw机组停机3个多月后再次启动,投入盘车时,大轴扰度较以前上升35um,在冲转过程中振动大,被迫延长暖机时间4小时。
对于这种待关停的机组,停盘车前应将缸温降到更低,并应考虑停盘车后过一定时间进行盘转180度。
避免汽轮发电机转子长期停留在同一个固定位置因重力而引起的弯曲。
4 不平衡振动的普遍特征从大量现场振动实例可以发现,不平衡振动具有以下显著特征:不平衡引起的振动的对转速的变化最敏感,其振幅与转速平方成正比,在转子通过临界转速时振幅明显地增大。
但与负荷关系不大。
不平衡引起的振动径向振动较大而轴向振动却较小,时域波形和频谱图上均具有稳定的1倍频分量。
5 对不平衡振动诊断时应注意的事项汽轮发电机组振动故障的诊断分析方法很多,在振动诊断时应注意调查当时是否进行了相关操作,并分析振动随转速、负荷等重要参数的变化趋势,有条件的还可以利用频谱仪根据振动的频谱特征进行分析。
在分析时,不能拘泥于理论知识,必须将各种知识有机结合起来。
5.1 注意调查当时是否进行了相关操作突然发生的振动爬升或突增现象往往与操作有关,当发生振动增大时,第一时间询问是否进行了某项操作并对照相关影响参数对判断振动原因非常重要。
2011年8月2日,某600mw机组调试时突然发生振动增大的现象,低压缸两侧振动增大尤其明显。
crt上相关参数检查正常,低压缸轴封进汽温度维持170℃左右。
询问当时的操作,进行了凝泵变频器的升频。
至就地测量发现轴封处和轴封回汽管道温度明显降低。
经分析,因轴封进汽管道穿入低压缸,低压排汽缸喷水增大影响到了这部分轴封进汽管道,使其温度迅速降低,导致低压缸轴封实际进汽温度偏低。
将低压缸轴封进汽温度提高到220℃左右,振动有所改善但不稳定。
停机后,对穿过低压缸的轴封进汽管道加装保护套管后正常。
5.2 注意分析不平衡与不对中等振动的关系。
不平衡振动与不对中等振动有着显著的区别,但也有着千丝万缕的联系。
一些理论认为不平衡振动以基频为主,而不对中振动2倍频较大。
但在现场诊断诊断中,我们发现大部分不严重的不对中故障,振动仍是以基频为主,特别是角度不对中时。
我们不能发现振动以基频为主就排除不对中,一味怀疑是不平衡。
另外,各种振动经常是同时发生的。
在现场诊断振动时,必须将各种知识有机结合起来,这样才能找到问题的真正根源。
6 结论振动是一种比较复杂的故障形式,不平衡振动则是振动故障中最主要的表现形式。
科学诊断需要不断总结现场经验和学习振动理论知识。
突然爬升的不平衡振动往往与操作有关,不平衡振动有着显著的频谱特征,与各主要运行参数的变化规律也比较独特。
将这几方面知识有机结合、灵活应用,可以尽快找出故障的确切原因,提出正确的根治措施。
参考文献:[1] 杨建刚.旋转机械振动分析与工程应用[m]. 北京:中国电力出版社,2007[2] 寇胜利.发电机组的振动及现场平衡[m].北京:中国电力出版。